
Selected Papers
Most of these works have copyright protection and cannot be redistributed without permission.
For Google Scholar citations of these papers, click here.
2016
A. Choromanska, K. Choromanski, M. Bojarski, T. Jebara, S. Kumar and Y. LeCun. "Binary embeddings with structured hashed projections" . International Conference on Machine Learning (ICML), 2016.
PDF 
BIB 
SUPPLEMENT
K. Tang, N. Ruozzi, D. Belanger, and T. Jebara. "Bethe learning of graphical models via MAP decoding" . International Conference on Artificial Intelligence and Statistics (AISTATS), 2016.
PDF 
BIB 
SUPPLEMENT
2015
B. Kapicioglu, D. Rosenberg, R. Schapire and T. Jebara, "Collaborative place models" . International Joint Conferences on Artificial Intelligence (IJCAI), 2015.
PDF 
BIB 
SUPPLEMENT 1 
SUPPLEMENT 2
K. Choromanski and T. Jebara. "Coloring tournaments with forbidden substructures" .
Technical report on the arXiv, April, 2015.
PDF  BIB
K. Tang, N. Ruozzi, D. Belanger and T. Jebara. "Bethe learning of conditional random fields via MAP decoding" .
Technical report on the arXiv, March, 2015.
PDF  BIB
K.Tang, H. Gubert, R. Tonge, A. Wang, L. Wu, D. Campbell, C. Kedzie, L. Wang, A. Russell, A. Kimball, A. Kambadur, G. Mann, S. Pacifico, J. Hodson, D. Yao, K. McKeown, T. Jebara, "Learning a graphical model of Bloomberg financial and news data" . Data, Algorithms and Problems on Graphs (DAPG) Workshop, 2015.
PDF 
BIB
E. Taralova, T. Jebara, R.Yuste, "Functional models of mouse visual cortex" . Data, Algorithms and Problems on Graphs (DAPG) Workshop, 2015.
PDF 
BIB
2014
A. Weller and T. Jebara, "Clamping variables and approximate inference" . Neural Information Processing Systems (NIPS), 2014.
PDF 
BIB
N. Ruozzi and T. Jebara, "Making pairwise binary graphical models attractive" . Neural Information Processing Systems (NIPS), 2014.
PDF 
BIB
A. Weller and T. Jebara, "Approximating
the Bethe partition function" . Uncertainty in Artificial Intelligence (UAI), 2014.
PDF 
CODE
 BIB
A. Weller, K. Tang, D. Sontag and T. Jebara, "Understanding the Bethe approximation: When and how
can it go wrong?" . Uncertainty in Artificial Intelligence (UAI), 2014.
PDF 
CODE
 BIB
S.M. Bellovin, R.M. Hutchins, T. Jebara and
S. Zimmeck, "When enough is enough: Location tracking, mosaic theory
and machine learning" . 8 New York University Journal of Law & Liberty
556, 2014.
PDF  BIB
A. Aravkin, A. Choromanska, T. Jebara, and D. Kanevsky. "Semistochastic quadratic bound methods" . Second International Conference
on Learning Representations, (ICLR), Workshop Proceedings, 2014.
PDF  BIB
B. Kapicioglu, D. Rosenberg, R. Schapire, and
T. Jebara. "Collaborative ranking for local preferences" .
Seventeenth International Conference on Artificial Intelligence and
Statistics (AISTATS), April 2014.
PDF  BIB
F. Xu, K. Choromanski, S. Kumar, T. Jebara and S.F. Chang. "On learning from label proportions" .
Technical report on the arXiv, February, 2014.
PDF  BIB
T. Jebara.
"Perfect graphs and graphical modeling" .
In
Tractability: Practical Approaches to Hard Problems,
Edited by Lucas Bordeaux, Youssef Hamadi, Pushmeet Kohli, and Robert Mateescu, Cambridge University Press, 2014.
PDF  BIB  ISBN  HTML
2013
K. Choromanski, T. Jebara and K. Tang.
"Adaptive anonymity via bmatching" .
Neural Information Processing Systems (NIPS), December 2013.
PDF  BIB  SUPPLEMENT  CODE
J. Merel, R. Fox, T. Jebara, and L. Paninski.
"A multiagent control framework for coadaptation in braincomputer interfaces" .
Neural Information Processing Systems (NIPS), December 2013.
PDF  BIB  SUPPLEMENT
K. Tang, A. Weller and T. Jebara.
"Network ranking with Bethe pseudomarginals" .
Neural Information Processing Systems (NIPS), Workshop on Discrete Optimization in Machine Learning, December 2013.
PDF  BIB
A. Choromanska, H. Kim, T. Jebara,
M. Mohan and C. Monteleoni.
"Fast spectral
clustering via the Nystrom method" .
Algorithmic Learning Theory (ALT), October 2013.
PDF  BIB
A. Weller and T. Jebara.
"On MAP inference by MWSS on perfect graphs" .
Uncertainty in Artificial Intelligence (UAI), July 2013.
PDF  BIB
F.X. Yu, D. Liu, S. Kumar, T. Jebara, and S.F. Chang. " ∝ SVM for learning with label proportions" .
International Conference on Machine Learning (ICML), June 2013.
PDF  BIB
S. Bellovin, R. Hutchins, T. Jebara and
S. Zimmeck. "When enough is enough: Location tracking, mosaic theory
and machine learning" .
Privacy Law Scholars Conference (PLSC), June 2013.
PDF  BIB
J. Wang, T. Jebara and S.F. Chang.
"Semisupervised learning using greedy maxcut" .
Journal of Machine Learning Research (JMLR), 14(Mar):771800, 2013.
PDF  BIB
A. Weller and T. Jebara.
"Bethe bounds and approximating the global optimum" .
Sixteenth International Conference on Artificial Intelligence and Statistics (AISTATs), April 2013.
PDF  BIB
2012
T. Jebara and A. Choromanska.
"Majorization for CRFs and latent likelihoods" .
Neural Information Processing Systems (NIPS), December 2012.
PDF  BIB  SUPPLEMENT  SLIDES  CODE
A. Weller and T. Jebara.
"Bethe bounds and approximating the global optimum" .
arXiv:1301.0015 and CUCS Tech Report 02212 and 2013 Information Theory and Applications Workshop (ITA), December 2012.
PDF  BIB
2011
B. Shaw, B. Huang and T. Jebara.
"Learning a distance metric from a network" .
Neural Information Processing Systems (NIPS), December 2011.
PDF  BIB  CODE
P. Shivaswamy and T. Jebara.
"Variance penalizing AdaBoost" .
Neural Information Processing Systems (NIPS), December 2011.
PDF  BIB
B. Huang, B. Shaw and T. Jebara.
"Learning a degreeaugmented distance metric from a network" .
Beyond
Mahalanobis: Supervised LargeScale Learning of Similarity Workshop,
Neural Information Processing Systems (NIPS), December 2011.
PDF  BIB
Y. Song, S. Stolfo and T. Jebara.
"Behaviorbased network traffic synthesis" .
IEEE International
Conference on Technologies for Homeland Security (IEEE HST), November 2011.
PDF  BIB
Y. Song, S. Stolfo and T. Jebara.
"Markov models for networkbehavior modeling and anonymization" .
Columbia University, Computer Science Technical Report, CUCS02911, 2011.
PDF  BIB
B. Kapicioglu, D. Rosenberg, R. Schapire, and
T. Jebara.
"Place recommendation with implicit spatial
feedback" .
New York Academy of Sciences, Machine Learning Symposium,
October 2011.
PDF  BIB  VIDEO
A. Moghadam, T. Jebara and H. Schulzrinne.
"A Markov routing algorithm for mobile DTNs based on
spatiotemporal modeling of human movement data" .
Fourteenth ACM
International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM), 2011.
PDF  BIB
B. Huang and T. Jebara.
"Fast bmatching via sufficient selection belief propagation" .
Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATs), April 2011.
PDF  BIB  CODE
T. Jebara.
"Multitask sparsity via maximum entropy discrimination" .
Journal of Machine Learning Research (JMLR), 12(Jan):75110, 2011.
PDF  BIB  SLIDES  CODE  VIDEO
2010
P. Shivaswamy and T. Jebara.
"Laplacian spectrum learning" .
European Conference on Machine Learning (ECML), 2010.
PDF  BIB  SLIDES
P. Shivaswamy and T. Jebara.
"Empirical Bernstein boosting" .
Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATs), May 2010.
PDF  BIB  SLIDES  VIDEO
B. Huang and T. Jebara.
"Collaborative filtering via rating concentration" .
Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATs), May 2010.
PDF  BIB  CODE
T. Jebara.
"Graphical modeling and inference with perfect graphs" .
The Learning Workshop, April 2010.
PDF  BIB  SLIDES
P. Shivaswamy and T. Jebara.
"Maximum relative margin and datadependent regularization" .
Journal of Machine Learning Research (JMLR), 11(Feb):747788,
2010.
PDF 
BIB
2009
T. Jebara.
"MAP estimation, message passing, and perfect graphs" .
Uncertainty in Artificial Intelligence (UAI), June 2009. Update: the runtime of GroLovSch's method was corrected.
PDF 
BIB 
SLIDES 
VIDEO
B. Shaw and T. Jebara.
"Structure preserving embedding" .
International Conference on Machine Learning (ICML), June 2009.
BEST PAPER AWARD
PDF 
BIB 
SLIDES
 CODE
 VIDEO
T. Jebara, J. Wang and S.F. Chang.
"Graph construction and bmatching for semisupervised
learning" .
International Conference on Machine Learning (ICML), June 2009.
PDF 
BIB 
SLIDES 
VIDEO
B. Huang and T. Jebara.
"Exact graph structure estimation with degree priors" .
International Conference on Machine Learning and Applications (ICMLA), December 2009.
PDF 
BIB
P. Shivaswamy and T. Jebara.
"Structured prediction with relative margin" .
International Conference on Machine Learning and Applications (ICMLA), December 2009.
PDF 
BIB
A. Howard and T. Jebara.
"Transformation learning via kernel alignment" .
International Conference on Machine Learning and Applications (ICMLA), December 2009.
PDF 
BIB
A. Weller, D. Ellis and T. Jebara.
"Structured prediction models for chord transcription of music audio" .
International Conference on Machine Learning and Applications (ICMLA), December 2009.
PDF 
BIB
D. Lazer, A. Pentland, L. Adamic, S. Aral, A.L. Barabasi, D. Brewer, N. Christakis, N. Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, and M. Van Alstyne.
"Computational social science" .
Science, February 6 2009.
PDF 
BIB
C. Lima, U. Lall, T. Jebara, and
A.G. Barnston. "Statistical prediction of ENSO from subsurface sea
temperature using a nonlinear dimensionality reduction" .
Journal of Climate, Volume 22, Number 17, Pages 45014519, September 1, 2009.
PDF  BIB
B. Huang and T. Jebara. "Approximating the permanent with belief propagation" .
Technical report on the arXiv, August 12, 2009.
PDF  BIB
B. Shaw and T. Jebara. "Dimensionality reduction, clustering, and PlaceRank applied to spatiotemporal flow data" .
New York Academy of Sciences  Machine Learning Symposium, November, 2009.
PDF  BIB
M. Loecher and T. Jebara. "CitySense: Multiscale space time clustering of GPS points and trajectories" .
Proceedings of the Joint Statistical Meeting (JSM), August, 2009.
PDF  BIB
2008
P. Shivaswamy and T. Jebara.
"Relative margin machines" .
Neural Information Processing Systems 21 (NIPS), December 2008.
PDF 
BIB
 CODE
B. Huang and T. Jebara.
"Maximum likelihood graph structure estimation with degree distributions" .
Analyzing Graphs: Theory and Applications, NIPS Workshop. December 2008.
PDF 
BIB
B. Shaw and T. Jebara.
"Visualizing graphs with structure preserving embedding" .
Analyzing Graphs: Theory and Applications, NIPS Workshop. December 2008
PDF 
BIB
W. Jiang, S.F. Chang, T. Jebara and A.C. Loui.
"Semantic concept classification by joint semisupervised learning of feature subspaces and support vector machines" .
European Conference on Computer Vision (ECCV). October 2008.
PDF 
BIB
T. Jebara.
"Bayesian outtrees" .
Uncertainty in Artificial Intelligence (UAI), July 2008.
PDF 
BIB
T. Jebara.
"Outtree dependent nonparametric Bayesian inference"
.
Workshop on Nonparameteric Bayes, July 2008.
PDF 
BIB
J. Wang, T. Jebara and S.F. Chang.
"Graph transduction via alternating minimization" .
International Conference on Machine Learning (ICML), July 2008.
PDF  BIB
T. Jebara.
"Learning from outtree dependent data" .
The Learning Workshop, April 2008.
PDF  BIB
2007
T. Jebara, Y. Song and K. Thadani.
"Density estimation under independent similarly distributed sampling assumptions" .
Neural Information Processing Systems 20 (NIPS), December 2007.
PDF 
BIB  SUPPLEMENT
A. Howard and T. Jebara.
"Learning monotonic transformations for classification" .
Neural Information Processing Systems 20 (NIPS), December 2007.
PDF  BIB
S. Andrews and T. Jebara.
"Graph reconstruction with degreeconstrained subgraphs" .
Workshop on Statistical Network Models (NIPS), December 2007.
PDF  BIB  CODE
B. Huang and T. Jebara. "Approximating the permanent with belief propagation" .
New York Academy of Sciences  Machine Learning Symposium, 2007.
PDF  BIB
B. Shaw and T. Jebara.
"Minimum volume embedding" .
Artificial Intelligence and Statistics (AISTATs), March 2007.
PDF  BIB  CODE  VIDEO
B. Huang and T. Jebara. "Loopy belief
propagation for bipartite maximum weight bmatching" .
Artificial Intelligence and Statistics (AISTATs), March 2007.
PDF  BIB  SLIDES  CODE
P. Shivaswamy and T. Jebara. "Ellipsoidal kernel machines" .
Artificial Intelligence and Statistics (AISTATs), March 2007.
PDF  BIB 
SUPPLEMENT
R. Kondor, A. Howard and T. Jebara.
"Multiobject tracking with representations of the symmetric group" .
Artificial Intelligence and Statistics (AISTATs), March 2007.
PDF  BIB  CODE
T. Jebara, Y. Song and K. Thadani.
"Spectral clustering and embedding with hidden Markov models" .
European Conference on Machine Learning (ECML), September 2007.
PDF  BIB  CODE

VIDEO
T. Jebara, B. Shaw and A. Howard. "Optimizing eigengaps and spectral functions using iterated SDP" .
The Learning Workshop, 2007.
PDF  BIB  SLIDES
2006
R. Kondor and T. Jebara. "Gaussian and Wishart hyperkernels" .
Neural
Information Processing Systems 19 (NIPS), December 2006.
PDF  BIB
M. Mandel, D. Ellis and T. Jebara. "An EM algorithm for localizing multiple sound sources in reverberant
environments" .
In Neural
Information Processing Systems 19 (NIPS), December 2006.
PDF  BIB
S. Andrews and T. Jebara.
"Structured network learning" .
Workshop on Learning to Compare Examples (NIPS), December 2006.
PDF  BIB  CODE
T. Jebara and V. Shchogolev.
"Bmatching for spectral clustering" .
European Conference on Machine Learning (ECML), September 2006.
PDF  BIB
 CODE
D. Lewis, T. Jebara and W.S. Noble.
"Support vector machine learning from heterogeneous data: An empirical analysis using protein sequence and structure" .
Bioinformatics. 22(22):27532760, 2006.
PDF  BIB  HTML
P. Shivaswamy and T. Jebara.
"Permutation invariant SVMs" .
International Conference on Machine Learning (ICML), June 2006.
PDF  BIB  CODE
D. Lewis, T. Jebara and W. Noble.
"Nonstationary kernel combination" .
International Conference on Machine Learning (ICML), June 2006.
PDF  BIB
T. Jebara, B. Shaw and V. Shchogolev.
"Bmatching for embedding" .
The Learning Workshop, April 2006.
PDF  BIB
 CODE
2005
I. R. Kondor, G. Csanyi, S.E. Ahnert and T. Jebara.
"Multi facet learning in Hilbert spaces" .
Columbia University, Computer Science Technical Report, CUCS05405. 2005.
PDF  BIB
T. Jebara and P. Long.
"Tree dependent identically distributed learning" .
Columbia University, Computer Science Technical Report, CUCS05005. 2005.
PDF  BIB
A. Howard and T. Jebara.
"Square root propagation" .
Columbia University, Computer Science Technical Report, CUCS04005. 2005.
PDF  BIB
K. Nishino, S.K. Nayar and T. Jebara.
"Clustered blockwise PCA for representing visual data" .
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 10, p. 1675, October 2005. PDF  BIB
2004
T. Jebara, R. Kondor and A. Howard.
"Probability product kernels" . Journal of Machine Learning
Research (JMLR), Special Topic on Learning Theory, 5(Jul):819844,
2004. PDF  BIB  CODE
A. Howard and T. Jebara. "Dynamical systems trees"
.
Uncertainty in Artificial Intelligence (UAI), July 2004.
PDF  BIB  CODE 
VIDEO
T. Jebara. "Kernelizing sorting, permutation and alignment for minimum volume PCA"
.
Conference on Learning Theory (COLT), July 2004.
PDF  BIB
T. Jebara. "Multitask feature and kernel selection for SVMs"
.
International Conference on Machine Learning (ICML), July 2004.
PDF  BIB

CODE
R. Pelossof, A. Miller, P. Allen and T. Jebara. "An SVM learning approach to robotic grasping" . Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 2004.
PDF  BIB
T. Jebara, and Y. Bengio. "Orbit learning using convex optimization" . The Learning Workshop, April 2004.
PDF  BIB
R. Kondor, T. Jebara, G. Csanyi, S. Ahnert. "Learning from derivatives and other linear functionals" . The Learning Workshop, April 2004.
PDF  BIB
J. Triesch and T. Jebara, Editors.
Proceedings of the 2004 International Conference on Development and Learning (ICDL), October 2004. PDF  BIB
2003
T. Jebara. Machine learning: Discriminative and generative .
Kluwer, 2003. ISBN 1402076479.
HTML  BIB 
VIDEO
T. Jebara. "Images as bags of pixels" .
International Conference on Computer Vision (ICCV), 2003.
PDF  BIB
T. Jebara and R. Kondor. "Bhattacharyya and expected likelihood kernels" .
Conference on Learning Theory (COLT), 2003.
PDF  BIB
 CODE
R. Kondor and T. Jebara. "A kernel between sets of vectors" .
International Conference on Machine Learning (ICML), 2003.
BEST STUDENT PAPER AWARD
PDF  BIB
T. Jebara. "Convex invariance learning" .
Artificial Intelligence and Statistics (AISTATs), 2003.
(Longer Version)
PDF  BIB
2002
T. Jebara and A. Pentland. "Statistical imitative learning from perceptual data" .
2nd International Conference on Development and Learning (ICDL), June 2002.
PDF  BIB
A. Kundaje, O. Antar, T. Jebara and C. Leslie.
"Learning regulatory networks from sparsely sampled time series
Expression Data" . Technical Report, 2002. PDF  BIB
2001
T. Jebara. Discriminative, generative and imitative learning .
PhD Thesis, Media Laboratory, MIT, December 2001.
PDF  BIB
B. Schiele, T. Jebara, and N. Oliver. "Sensory
augmented computing: Wearing the museum's guide" .
IEEE Micro 21 (3),
May 2001.
PDF  BIB
2000
T. Jebara, and A. Pentland. "On reversing Jensen's inequality" .
In Neural
Information Processing Systems 13 (NIPS), December 2000.
PDF  BIB
B. Moghaddam, T. Jebara, and A. Pentland. "Bayesian face recognition" .
Pattern Recognition, Vol 33:11, pps 17711782. November 2000.
HONORABLE MENTION AWARD
PDF  BIB
T. Jebara, Y. Ivanov, A. Rahimi and A. Pentland. "Tracking conversational context for machine mediation of human discourse" .
In AAAI Fall 2000 Symposium  Socially Intelligent Agents  The Human in the Loop. Nov. 2000.
PDF  BIB
T. Jebara and T. Jaakkola. "Feature selection and dualities in maximum entropy
discrimination" .
In 16th Conference on Uncertainty in Artificial Intelligence (UAI), July 2000. Note the typo: E_P{\theta_i,s_i} = Logistic[ 0.5 W_i^2 + \log \frac{p_0}{1p_0} ] W_i.
PDF  BIB  SLIDES
1999
T. Jaakkola, M. Meila and T. Jebara. "Maximum entropy discrimination" . In Neural
Information Processing Systems 12 (NIPS), December 1999.
PDF  BIB 
SUPPLEMENT
J. Strom, T. Jebara, S. Basu, and A. Pentland. "Real time tracking and modeling of faces: An EKFbased analysis by
synthesis approach" .
Proceedings of the Modelling People Workshop at
ICCV, August 1999.
PDF  BIB
T. Jebara, A. Azarbayejani, and A. Pentland. "3D structure from 2D motion" . In IEEE Signal Processing Magazine,
"3D And Stereoscopic Visual Communication" May 1999, Vol. 16. No. 3.
PDF  BIB 
HTML
T. Jebara and A. Pentland.
"Action reaction learning: Automatic visual analysis and synthesis of
interactive behaviour". In International Conference on Vision Systems (ICVS), January 1999.
PDF  BIB
B. Schiele, N. Oliver, T. Jebara and A. Pentland.
"An interactive computer vision system DyPERS: Dynamic personal enhanced reality system". In International Conference on Vision Systems (ICVS), January 1999.
PDF  BIB
T. Choudhury, B. Clarkson, T. Jebara and A. Pentland.
"Multimodal person recognition using unconstrained audio and video". International Conference on Audio and VideoBased Biometric Person Authentication (AVBPA), 1999.
PDF  BIB
1998
T. Jebara and A. Pentland.
"Maximum conditional likelihood via bound maximization and the CEM
algorithm". Neural Information Processing Systems 11 (NIPS), Dec. 1998.
PDF  BIB  CODE
B. Moghaddam, T. Jebara and A. Pentland.
"Bayesian modeling of facial similarity". Neural Information Processing Systems 11 (NIPS), December 1998.
PDF  BIB
T. Jebara, B. Schiele, N. Oliver and A. Pentland.
"DyPERS: Dynamic personal enhanced reality system".
In Proceedings of the 1998 Image Understanding Workshop, November 1998.
PDF  BIB

T. Jebara.
Action reaction learning: Analysis and synthesis of human
behaviour . Master's Thesis, Media Laboratory, MIT, May 1998.
PDF
 BIB 
HTML
T. Jebara, K. Russell and A. Pentland.
"Mixtures of eigenfeatures for realtime structure from texture" .
International Conference on Computer Vision (ICCV), January 1998.
PDF  BIB  SLIDES
T. Jebara and A. Pentland.
"Action reaction learning: Analysis and synthesis of human behaviour". In Workshop on the Interpretation of
Visual Motion at the Conference on Computer
Vision and Pattern Recognition (CVPR), June 1998.
PDF  BIB
T. Starner, B. Schiele, B. Rhodes, T. Jebara,
N. Oliver, J. Weaver and A. Pentland. "Augmented realities integrating
user and physical models". In Workshop on Augmented Reality, 1998.
PDF  BIB
1997
T. Jebara, C. Eyster, J. Weaver, T. Starner and A. Pentland.
"Stochasticks: Augmenting the billiards experience with probabilistic vision and wearable computers".
International Symposium on Wearable Computers (ISWC), Oct. 1997.
PDF  BIB 
HTML
T. Jebara and A. Pentland.
"Parametrized structure from motion for 3D adaptive feedback tracking of faces".
Computer Vision and
Pattern Recognition (CVPR), June 1997.
PDF  BIB
1996
T. Jebara.
3D pose estimation and normalization for face recognition . Undergraduate Thesis, Center for Intelligent
Machines, McGill University, May 1996.
PDF  BIB 
HTML
