Adaptive Anonymity via b-Matching
Supplementary Material

Abstract
This supplement contains all necessary detailed proofs and a worst-case theoretical analysis in support of the main article.

7 Proof of theorem[1]

Proof 1 In the first iteration, the algorithm is clearly solving $\hat{G} = \arg\min_{G \in \mathcal{G}_b} h(G)$. Let $G^* = \arg\min_{G \in \mathcal{G}_b} s(G)$. Clearly, the number of stars is less than the Hamming distance $s(G) \leq h(G)$ for any G. Since \hat{G} is the minimizer of $h(G)$, we have $h(\hat{G}) \leq h(G^*)$. Furthermore, it is easy to show for δ-regular graphs that $h(\hat{G}) \leq \delta s(G)$. Combining yields $s(G) \leq h(\hat{G}) \leq h(G^*) \leq \delta s(G^*) = \delta \min_{G \in \mathcal{G}_b} s(G)$.

8 Proof of theorem[2]

Proof 2 Create an ε-approximation $\tilde{s}(G)$ to $s(G)$ by adding a tiny $\varepsilon > 0$ to each term in the product

$$\tilde{s}(G) = nd - \exp \left(\sum_{ik} \frac{W_{ik}}{W_{ik}} \prod_j (1 + \varepsilon - G_{ij}(X_{ik} \neq X_{jk})) \right)$$

$$\leq nd - e^{\sum_{ik} W_{ik}(G_{ij}(X_{ik} \neq X_{jk}) \ln \frac{1}{1 + \varepsilon} + \ln(1 + \varepsilon))} - \sum_{ik} W_{ik} \ln W_{ik}$$

where we introduced a variational parameter $W \in \mathbb{Z}^{n \times d}$ s.t. $\sum_{ik} W_{ik} = 1$ and applied Jensen’s inequality. The first step of the “while” loop minimizes the right hand side over G while the second minimizes over W (modulo a harmless scaling). Thus, the algorithm minimizes a variational upper bound on $\tilde{s}(G)$ which cannot increase. Since the parameter G is discrete, $\tilde{s}(G)$ must decrease with every iteration or else the algorithm terminates (converges).

9 Proof of lemma[4.2]

Proof 3 Take some perfect matching M_1 in $G(A, B)$ (it exists because of Hall’s theorem). If it uses e then we are done. Assume it does not. Delete all edges from M_1 from $G(A, B)$ to obtain a $(\delta - 1)$-bipartite graph. Take one of its perfect matchings, say M_2. If it uses e then we are done. Otherwise delete edges from M_2 and continue. At some point, some perfect matching will use e because, otherwise, we end up with an empty graph (i.e. without edges).

10 Proof of lemma[3.4]

Proof 4 Denote by $\tilde{G} = G(\tilde{A}, \tilde{B})$ the graph obtained from $G(A, B)$ by deleting vertices of M. Obviously it has a perfect matching, namely: $M - C$. In fact \tilde{G} is a union of complete bipartite graphs, pairwise disjoint, each with color classes of size at least $(\delta - c)$. Each perfect matching in \tilde{G} is a union of perfect matchings of those complete bipartite graphs. Denote by \tilde{G}_v a complete bipartite graph of \tilde{G} corresponding to vertex v. Then obviously for every edge e in \tilde{G}_v, there is a perfect matching in \tilde{G}_v that uses e. In \tilde{G}_v we have at least $(\delta - c)$ edges adjacent to v and that completes the proof.
11 Proof of theorem 4.1

Proof 5 Take perfect matching M and $C \subseteq M$ from the statement of the theorem. For every vertex $v \in A$, denote by $m(v)$ its neighbor in M. Denote: $m(V) = \{ m(v) : v \in V \}$. Take bipartite graph $\hat{G} = G(\hat{A}, \hat{B})$ with color classes \hat{A}, \hat{B}, obtained from $G(A, B)$ by deleting all vertices of C. For a vertex $v \in \hat{A}$ and an edge e adjacent to it in \hat{G} we will say that this edge is bad with respect to v if there is no perfect matching in $G(A, B)$ that uses e and all edges from C. We will say that a vertex $v \in \hat{A}$ is bad if there are at least $\phi(\delta)$ edges that are bad with respect to v. Denote by \mathbf{X} the number of bad vertices and by \mathbf{X} the set of all bad vertices. We just need to prove that

$$x \leq 2e^{\phi(\delta)}m(1 + 2(1 - 1/2\phi(\delta))^{1 - 1/2\phi(\delta)}) + \frac{2\phi(\delta)}{\phi(\delta)}.$$

Take some bad vertex v and some edge e which is bad with respect to v. Graph \hat{G} obviously has a perfect matching, namely: $M - C$. However from the definition of e, it does not have a perfect matching that uses e. So the graph $\hat{G}\setminus e = G(\hat{A}\setminus e, \hat{B}\setminus e)$ obtained from \hat{G} by deleting both endpoints of e does not have a perfect matching. But, according to Hall’s theorem, that means that in $\hat{G}\setminus e$ there is a subset $S_v^e \subseteq A\setminus e$ such that $|N(S_v^e)| < |S_v^e|$, where $N(T)$ denotes the set of neighbors of the vertices from the set T. But in \hat{G} we have: $|N(S_v^e)| \geq |S_v^e|$. In fact we can say more: $m(S_v^e) \subseteq N(S_v^e)$ in \hat{G}. Therefore it must be the case that an edge e' touches a vertex from $m(S_v^e)$ and furthermore $N(S_v^e) = m(S_v^e)$ in \hat{G}. Whenever the set $S \subseteq \hat{A}$ satisfies: $N(S) = m(S)$ in \hat{G} we say that it is closed. So for every edge e bad with respect to a vertex v there exists closed set S_v^e. Fix some bad vertex v and some set E of its bad edges with size $\phi(\delta)$. Denote $S_v^E = \bigcup_{e \in E} S_v^e$; S_v^E is closed as a sum of closed sets. We also have: $v \notin S_v^E$. Besides every edge from E touches some vertex from $m(S_v^E)$. We say that the set S is $\phi(\delta)$-bad with respect to a vertex $v \in \hat{A} - S$ if it is closed and there are $\phi(\delta)$ bad edges with respect to v that touch S. So we conclude that S_v^E is $\phi(\delta)$-bad with respect to v. Let S_v^m be the minimal $\phi(\delta)$-bad set with respect to v.

Lemma 11.1 Let v_1, v_2 be two bad vertices. If $v_2 \in S_{v_1}^m$ then $S_{v_2}^m \subseteq S_{v_1}^m$.

Proof 6 From the fact that $S_{v_1}^m$ is closed we know $\phi(\delta)$ bad edges adjacent to v_2 and touching $m(S_{v_1}^m)$ must also touch $m(S_{v_2}^m)$. So those $\phi(\delta)$ edges also touch $m(S_{v_1}^m \cap S_{v_2}^m)$. Clearly the set $T = S_{v_1}^m \cap S_{v_2}^m$ is closed as an intersection of two closed sets. So from what we know so far we can conclude that it is $\phi(\delta)$-bad with respect to v_2. So from the definition of $S_{v_2}^m$ we can conclude that $T = S_{v_2}^m$, so $S_{v_2}^m \subseteq S_{v_1}^m$.

Lemma 11.2 Denote $P = \{ S_v^m : v \in X \}$. It is a poset with the ordering induced by the inclusion relation. Then it does not have anti-chains of size larger than $\frac{\phi(\delta)}{\phi(\delta)}$.

Proof 7 Take some anti-chain $A = \{ S_{v_1}^m, \ldots, S_{v_l}^m \}$ in P. From lemma 11.1 we know that the set v_1, \ldots, v_l does not intersect $R = S_{v_1}^m \cup S_{v_2}^m \cup \ldots \cup S_{v_l}^m$. But R is closed as a sum of closed sets. Assume by contradiction that $l > \frac{\phi(\delta)}{\phi(\delta)}$, i.e. $\phi(\delta)l > \phi(\delta)$. Now consider the set $D = m(R)$. We will count the number of edges touching D in $G(A, B)$. On the one hand from the fact that $G(A, B)$ is δ-regular we know that this number is exactly δl. On the other hand we have at least $\phi(\delta)l$ edges ($\phi(\delta)$ bad edges from every v_i : $i = 1, 2, \ldots, l$) touching D. Besides the fact that R is closed we know that there are at least $\delta l - \phi(\delta)$ edges such that each of them is adjacent to some vertex from R and from $m(R)$ (for every vertex from R we have δ edges in $G(A, B)$ adjacent to it and all but the edges adjacent to some vertices from C must touch D; altogether we have at most $\phi(\delta)$ edges such that each of them is adjacent to some vertex from C and some vertex from R). So summing all those edges we get more than δl edges which is a contradiction.

Corollary 11.1 Using Dillworth’s lemma about chains and anti-chains in posets and lemma 11.2 we see that the set $P = \{ S_v^m : v \in X \}$ has a chain of length at least $\frac{\phi(\delta)}{\phi(\delta)}$.

Now take an arbitrary chain of $P = \{ S_v^m : v \in X \}$ of length at least $\frac{\phi(\delta)}{\phi(\delta)}$. Denote $L = \{ S_{v_1}^m, \ldots, S_{v_d}^m \}$, where $S_{v_1}^m \subseteq S_{v_2}^m \subseteq \ldots \subseteq S_{v_d}^m$. So we have $d \geq \frac{\phi(\delta)}{\phi(\delta)}$. Denote: $X_i = S_{v_{i+1}}^m - S_{v_i}^m$ for
i = 1, 2, ..., d − 1. Assume that |X_i| ≥ (ξ + 1). Then X_i contains at least ξ vertices different than v_i. Call this set of vertices C_i. At least one vertex from C_i must have at most \((\frac{\phi(\delta)}{\xi})\) edges adjacent to it and touching m(S_{v_i}^m). Assume not and count the number of edges of G(A, B) with one endpoint in m(S_{v_i}^m). Then we have more than \(\frac{\xi}{\phi(\delta)}\) such edges adjacent to vertices from C_i. Moreover, there are at least \(\phi(\delta)\) bad edges adjacent to vertex v_i. Finally we have at least \(\delta S_{v_i}^m - c\phi(\delta)\) edges like that adjacent to vertices from S_{v_i}^m (the analysis of this last expression is the same as in lemma [12]). So altogether we have more than \(\delta S_{v_i}^m\), which is impossible because G(A, B) is δ-regular. So we can conclude that if |X_i| ≥ (ξ + 1) then X_i contains vertex x_i with at most \(\frac{\phi(\delta)}{\xi}\) edges adjacent to it and touching m(S_{v_i}^m). So there are at least \(\delta - \frac{\phi(\delta)}{\xi}\) edges adjacent to x_i with second endpoints in B − m(S_{v_i}^m). But we also know that x_i ∈ S_{v_i+1} and the set S_{v_i+1} is closed. So at least \(\delta - \frac{\phi(\delta)}{\xi} - c\) edges adjacent to x_i have second endpoints in m(S_{v_i+1} − S_{v_i}^m) = m(X_i). But that means that |m(X_i)| ≥ \(\delta - \frac{\phi(\delta)}{\xi} - c\), so |X_i| ≥ \(\delta - \frac{\phi(\delta)}{\xi} - c\). So we can conclude that if |X_i| ≥ (ξ + 1) then X_i ≥ \(\delta - \frac{\phi(\delta)}{\xi} - c\). Let’s now analyze how many consecutive sets X_i may satisfy |X_i| ≤ ξ.

Assume that sets X_{i+1}, ..., X_{i+r} all have size at most ξ. Consider vertices v_{i+1}, v_{i+2}, ..., v_{i+r} and the sets of bad edges E(v_{i+1}) related to v_{i+1} and S_{v_i} for 1 ≤ j ≤ l. We have: |E(v_{i+1})| ≥ φ(\delta). We will count the number of edges in G(A, B) that touch m(S_{v_i}^m). All edges from E(v_{i+1}) satisfy this condition. At least E(v_{i+2}) − |X_i| from E(v_{i+2}) satisfy it, at least E(v_{i+3}) − |X_i| − |X_{i+1}| edges from E(v_{i+3}), etc. So we have at least \(\phi(\delta) - \xi - 2\xi - ... - (l-1)\xi\) edges from \(\bigcup_{j=1}^{l} E(v_{i+j})\) satisfying this condition. Furthermore we have at least \(\delta S_{v_i}^m - c\phi(\delta)\) other edges satisfying it (with one endpoint in S_{v_i}^m). Because altogether we can’t have more than \(\delta S_{v_i}^m\) edges satisfying the condition, we must have: \(\phi(\delta) - \xi - 2\xi - ... - (l-1)\xi\) ≤ \(\phi(\delta) - \xi - 2\xi - ... - (l-1)\xi\) ≤ \(\phi(\delta) - \xi - 2\xi - ... - (l-1)\xi\) ≤ \(\phi(\delta) - \xi - 2\xi - ... - (l-1)\xi\) ≤ \(\phi(\delta) - \xi - 2\xi - ... - (l-1)\xi\) ≤ \(\phi(\delta) - \xi - 2\xi - ... - (l-1)\xi\) ≤ \(\phi(\delta) - \xi - 2\xi - ... - (l-1)\xi\). Note that \(\xi ≥ c\). So we have in particular: \(\phi(\delta) - \frac{\phi(\delta)}{\xi}\) ≤ \(\phi(\delta) - \frac{\phi(\delta)}{\xi}\). Solving this quadratic equation we obtain: \(l ≤ \frac{\phi(\delta) + \sqrt{\phi^2(\delta) - 2\xi^2}}{\xi}\) or \(l ≥ \frac{\phi(\delta) - \sqrt{\phi^2(\delta) - 2\xi^2}}{\xi}\). Now assume that we have more than \(\frac{\phi(\delta) - \sqrt{\phi^2(\delta) - 2\xi^2}}{\xi}\) consecutive X_i of size at most ξ. Then let r be the smallest integer greater than \(\frac{\phi(\delta) - \sqrt{\phi^2(\delta) - 2\xi^2}}{\xi}\). Take r consecutive sets: X_{i+1}, ..., X_{i+r}. Then it’s easy to check that the condition \(\phi(\delta) > \xi\sqrt{2\delta + \frac{\xi}{2}}\), \(\phi(\delta) > \xi\sqrt{2\delta + \frac{\xi}{2}}\). But that means that in the set \(\{X_1, X_2, ..., X_{i-1}\}\) we have at least \(\frac{d-1}{d+1}\) sets of size at least \(\delta - \frac{\phi(\delta)}{\xi} - c\). That sets X_i are pairwise disjoint and are taken from the set of size \(n' = n - c\). Therefore we have: \(\frac{d-1}{d+1}(\delta - \frac{\phi(\delta)}{\xi} - c) \leq n'.\) So we have: \(d ≤ \frac{n'(l+1)}{\delta - \frac{\phi(\delta)}{\xi} - c} + 1.\) But then using the inequality \(d ≥ \frac{\phi(\delta)}{\phi(\delta)}\) and substituting in the expression for \(l_0\) we complete the proof of the theorem.

12 Proof of lemma 4.5

Proof 8 Take canonical matching \(M = \{(a_1, b_1), ..., (a_n, b_n)\}\) of G(A, B). Without loss of generality assume that the adversary knows the edges: \(\{(a_1, b_1), ..., (a_n, b_n)\}\). Write C = \(\{(a_1, b_1), ..., (a_n, b_n)\}\) and \(m(a_i) = b_i\) for \(i = 1, 2, ..., n\). Denote the degree of a vertex \(a_i\) in G(A, B) as \(d_i\) for \(i = 1, 2, ..., n\). Note that from our assumption about the bipartite graph we know that the degree of a vertex \(b_i\) is also \(d_i\) for \(i = 1, 2, ..., n\). For a subset \(S ⊆ A\) denote \(m(S) = \{m(v) : v ∈ S\}\). Take vertex \(v = a_i\) for \(i > c\). An edge \(e\) non-incident with edges from C, but incident with \(v\) is a good edge if there exists a perfect matching in G(A, B) that uses \(e\) such that C is its sub-matching. It suffices to prove that for any fixed \(v = a_i\) for \(i > c\) every edge \(e\) non-incident with edges from C, but incident with \(v\) is a good edge. Assume by contradiction that this is not the case. Denote by \(\tilde{G}(A, B)\) the graph obtained from G(A, B) by deleting edges of C. For a subset \(S ⊆ A\) we will denote by \(N(S)\) the set of neighbors of the vertices of S in \(\tilde{G}(A, B)\). Graph \(\tilde{G}(A, B)\) obviously has a perfect matching (a sub-matching of the perfect matching of G(A, B)). Our assumption on \(e\) let’s us deduce that, if we exclude from \(\tilde{G}(A, B)\) an edge \(e\) together with its
endpoints, then the graph obtained in such a way does not have a perfect matching. So, using Hall’s theorem we can conclude that there exists \(S_v^c \subseteq A \) such that \(v \notin S_v^c \) and, furthermore, the following two statements hold: \([e \in incident with some vertex from \(m(S_v^c) \)]\) and \([N(S_v^c) \subseteq m(S_v^c)]\).

Without loss of generality write \(S_v^c = \{a_{c+1}, ..., a_{c+l}\} \) for some \(l > 0 \). Write \(\Delta = \sum_{i=1}^l \delta_{c+i} \).

Consider a fixed vertex \(a_{c+i} \) for \(i = 1, ..., l \). Denote by \(F_i \) the set of the vertices of \(m(S_v^c) \) adjacent to it and by \(G_i \) the set of the vertices from the set \(\{b_1, ..., b_c\} \) adjacent to it. Denote by \(D_i \) the set of the neighbors of \(a_{c+i} \) in \(G(A, B) \). Note first that \(D_{c+i} = F_i \cup G_i \) for \(i = 1, ..., l \). Otherwise there would exist a vertex in \(S_v^c \) adjacent to some vertex \(x \notin m(S_v^c) \) of \(G(A, B) \). But that contradicts the fact that \(N(S_v^c) \subseteq m(S_v^c) \). For a vertex \(b_j \in G_i \) we call a vertex \(a_j \) a reverse of \(b_j \) with respect to \(i \).

Note that by symmetry \((a_j, b_{c+i})\) is an edge of \(G(A, B) \). For a given vertex \(a_{c+i} \), for \(i = 1, 2, ..., l \) write \(Rev_i = \{(a_j, b_{c+i}) : b_j \in G_i \} \). Note that the sets \(Rev_1, ..., Rev_l \) are pairwise disjoint and besides \(|Rev_1 \cup ... \cup Rev_l| = \sum_{i=1}^l |G_i|\). Therefore we can conclude that there are at least \(\sum_{i=1}^l |G_i| + \sum_{i=1}^l |F_i| \) edges nonadjacent to \(v \) and with one endpoint in the set \(m(S_v^c) \). Thus, from the fact that \(D_{c+i} = F_i \cup G_i \) for \(i = 1, 2, ..., l \), we can conclude that there are at least \(\sum_{i=1}^l |D_{c+i}| \) edges nonadjacent to \(v \) and with one endpoint in the set \(m(S_v^c) \). Since an edge \(e \) has also an endpoint in \(m(S_v^c) \), we can conclude that altogether there are at least \(\Delta + 1 \) edges in \(G(A, B) \) with one endpoint in the set \(m(S_v^c) \). But this completes the proof since it contradicts the definition of \(\Delta \).

13 Appendix - worst case example of asymmetric matching

We can illustrate a worst-case type analysis for the asymmetric regular graph setting.

One can ask whether it is possible to prove some reasonable \(k \)-anonymity in the asymmetric case (the general \(\delta \)-regular asymmetric bipartite graphs) for every person, rather than the all-but-at-most guarantee of theorem 4.11. The answer is - no. In fact we can claim more. For every \(\delta \) there exist \(\delta \)-regular bipartite graphs \(G(A, B) \) with the following property: there exists an edge \(e \) of some perfect matching \(M \) in \(G(A, B) \) and a vertex \(w \in A \) nonadjacent to \(e \) such that in every perfect matching \(M' \) in \(G(A, B) \) that uses \(e \), vertex \(w \) is adjacent to an edge from \(M' \).

So, in other words, it is possible that if the adversary is lucky and knows in advance a complete record of one person then he will reveal with probability 1 a complete record of some other person. Thus, those types of persons do not have much privacy. Fortunately, theorem 4.11 says that if the publisher chooses the parameters of a \(\delta \)-regular bipartite graph he creates carefully then there will only be a tiny fraction of persons like that. We next show constructions of asymmetric \(\delta \)-regular bipartite graphs for which the adversary, if given information about one specific edge of the matching in advance, can find another edge of the matching with probability 1.

For a fixed \(\delta \) our constructed graph \(G(A, B) \) will consist of color classes of sizes \(\delta^2 + 1 \) each. The graph \(G(A, B) \) is the union of \(\delta + 2 \) bipartite subgraphs and some extra edges added between these graphs. The subgraphs are:

- subgraphs \(F_i : i = 1, 2, ..., (\delta - 1) \), where each \(F_i \) is a complete bipartite graph with one color class of size \(\delta \) (the one from \(A \)) and one color class of size \((\delta - 1) \) (the one from \(B \)). We denote the set of vertices of \(F_i \) from \(A \) as \(\{u_1, ..., u_{\delta}^i\} \) and from \(B \) as \(\{d_1, ..., d_{\delta-1}^i\} \)
- bipartite subgraph \(B_1 \) of two adjacent vertices: \(x \in A, y \in B \)
- bipartite subgraph \(B_2 \) with vertex \(z \in A \) and \(k \) vertices from \(B \) adjacent to it, namely \(\{r_0, r_1, ..., r_{\delta-1}\} \)
- complete \((\delta - 1) \)-regular bipartite subgraph \(B_3 \) with color classes \(\{w_1, ..., w_{\delta-1}\} \subseteq A \) and \(\{v_1, ..., v_{\delta-1}\} \subseteq B \)

with edges between the above \(\delta + 2 \) subgraphs as follows:

- \((y, u_1^i)\) for \(i = 1, 2, ..., \delta - 1\)
- \((r_{\delta-i}, u_j^i)\) for \(i = 1, 2, ..., (\delta - 1); j = 2, 3, ..., \delta\)
- \((x, v_l)\) for \(i = 1, 2, ..., \delta - 1\)
- \((r_0, w_1)\) for \(i = 1, 2, ..., \delta - 1\).
Consider when an adversary attacks the above constructed graph $G(A, B)$ after knowing one edge in advance. It is enough to prove that any matching in $G(A, B)$ that uses (x, y) must also use (z, r_0). So assume by contradiction that there is a matching M in $G(A, B)$ that uses both (x, y) and $(z, r_{δ−i})$ for some $i \in \{1, 2, ..., δ − 1\}$. Denote by $\hat{G}(A, B)$ the graph obtained from $G(A, B)$ by deleting $x, y, z, r_{δ−i}$. This graph must have a perfect matching. However it does not satisfy Hall’s condition. The condition is not satisfied by the set $\{u_1^i, ..., u_{δ_{−1}}^i\}$ because one can easily check that in $\hat{G}(A, B)$ we have: $N(\{u_1^i, ..., u_{δ_{−1}}^i\}) = \{d_{1^i}, ..., d_{δ_{−1}}\}$. That completes the proof.