Adaptive Anonymity via b-Matching Supplementary Material

Abstract

This supplement contains all necessary detailed proofs and a worst-case theoretical analysis in support of the main article.

7 Proof of theorem 1

Proof 1 In the first iteration, the algorithm is clearly solving $\hat{G}=\arg \min _{G \in \mathcal{G}_{b}} h(G)$. Let $G^{*}=$ $\arg \min _{G \in \mathcal{G}_{b}} s(G)$. Clearly, the number of stars is less than the Hamming distance $s(G) \leq h(G)$ for any G. Since \hat{G} is the minimizer of $h(G)$, we have $h(\hat{G}) \leq h\left(G^{*}\right)$. Furthermore, it is easy to show for δ-regular graphs that $h(G) \leq \delta s(G)$. Combining yields $s(\hat{G}) \leq h(\hat{G}) \leq h\left(G^{*}\right) \leq$ $\delta s\left(G^{*}\right)=\delta \min _{G \in \mathcal{G}_{b}} s(G)$.

8 Proof of theorem 2

Proof 2 Create an ε-approximation $\tilde{s}(G)$ to $s(G)$ by adding a tiny $\varepsilon>0$ to each term in the product

$$
\begin{aligned}
\tilde{s}(G) & =n d-\exp \ln \sum_{i k} \frac{\mathbf{W}_{i k}}{\mathbf{W}_{i k}} \prod_{j}\left(1+\varepsilon-\mathbf{G}_{i j}\left(\mathbf{X}_{i k} \neq \mathbf{X}_{j k}\right)\right) \\
& \leq n d-e^{\sum_{i j k} \mathbf{W}_{i k}\left(\mathbf{G}_{i j}\left(\mathbf{X}_{i k} \neq \mathbf{X}_{j k}\right) \ln \frac{\varepsilon}{1+\varepsilon}+\ln (1+\varepsilon)\right)-\sum_{i k} \mathbf{W}_{i k} \ln \mathbf{W}_{i k}}
\end{aligned}
$$

where we introduced a variational parameter $\mathbf{W} \in \mathbb{Z}^{n \times d}$ s.t. $\sum_{i k} \mathbf{W}_{i k}=1$ and applied Jensen's inequality. The first step of the "while" loop minimizes the right hand side over \mathbf{G} while the second minimizes over \mathbf{W} (modulo a harmless scaling). Thus, the algorithm minimizes a variational upper bound on $\tilde{s}(G)$ which cannot increase. Since the parameter G is discrete, $\tilde{s}(G)$ must decrease with every iteration or else the algorithm terminates (converges).

9 Proof of lemma 4.2

Proof 3 Take some perfect matching M_{1} in $G(A, B)$ (it exists because of Hall's theorem). If it uses e then we are done. Assume it does not. Delete all edges from M_{1} from $G(A, B)$ to obtain a $(\delta-1)$-bipartite graph. Take one of its perfect matchings, say M_{2}. If it uses e then we are done. Otherwise delete edges from M_{2} and continue. At some point, some perfect matching will use e because, otherwise, we end up with an empty graph (i.e. without edges).

10 Proof of lemma 4.4

Proof 4 Denote by $\breve{G}=G(\hat{A}, \hat{B})$ the graph obtained from $G(A, B)$ by deleting vertices of M. Obviously it has a perfect matching, namely: $M-C$. In fact \breve{G} is a union of complete bipartite graphs, pairwise disjoint, each with color classes of size at least $(\delta-c)$. Each perfect matching in \breve{G} is a union of perfect matchings of those complete bipartite graphs. Denote by \breve{G}_{v} a complete bipartite graph of \breve{G} corresponding to vertex v. Then obviously for every edge e in \breve{G}_{v} there is a perfect matching in \breve{G}_{v} that uses e. In \breve{G}_{v} we have at least $(\delta-c)$ edges adjacent to v and that completes the proof.

11 Proof of theorem 4.1

Proof 5 Take perfect matching M and $C \subseteq M$ from the statement of the theorem. For every vertex $v \in A$, denote by $m(v)$ its neighbor in M. Denote: $m(V)=\{m(v): v \in V\}$. Take bipartite graph $\breve{G}=G(\breve{A}, \breve{B})$ with color classes \breve{A}, \breve{B}, obtained from $G(A, B)$ by deleting all vertices of C. For a vertex $v \in \breve{A}$ and an edge e adjacent to it in \breve{G} we will say that this edge is bad with respect to v if there is no perfect matching in $G(A, B)$ that uses e and all edges from C. We will say that a vertex $v \in A$ is bad if there are at least $\phi(\delta)$ edges that are bad with respect to v. Denote by x the number of bad vertices and by X the set of all bad vertices. We just need to prove that $x \leq \frac{2 c^{3} \delta^{2} n^{\prime}\left(1+\frac{\phi(\delta)+\sqrt{\phi^{2}(\delta)-2 c^{2} \delta}}{2 c \delta}\right.}{\phi^{3}(\delta)\left(1+\sqrt{\left.1-\frac{2 c^{2} \delta}{\phi^{2}(\delta)}\right)\left(1-\frac{c^{2}}{\phi(\delta)}\right.}\right)}+\frac{c \delta}{\phi(\delta)}$. Take some bad vertex v and some edge e which is bad with respect to it. Graph \breve{G} obviously has a perfect matching, namely: $M-C$. However from the definition of e, it does not have a perfect matching that uses e. So the graph $\breve{G}^{e}=G\left(\breve{A}^{e}, \breve{B}^{e}\right)$ obtained from \breve{G} by deleting both endpoints of e does not have a perfect matching. But, according to Hall's theorem, that means that in \breve{G}^{e} there is a subset $S_{v}^{e} \subseteq \breve{A}^{e}$ such that $\left|N\left(S_{v}^{e}\right)\right|<\left|S_{v}^{e}\right|$, where $N(T)$ denotes the set of neighbors of the vertices from the set T. But in \breve{G} we have: $\left|N\left(S_{v}^{e}\right)\right| \geq\left|S_{v}^{e}\right|$. In fact we can say more: $m\left(S_{v}^{e}\right) \subseteq N\left(S_{v}^{e}\right)$ in \breve{G}. Therefore it must be the case that an edge e touches a vertex from $m\left(S_{v}^{e}\right)$ and furthermore $N\left(S_{v}^{e}\right)=m\left(S_{v}^{e}\right)$ in \breve{G}. Whenever the set $S \subseteq \breve{A}$ satisfies: $N(S)=m(S)$ in G we say that it is closed. So for for every edge e bad with respect to a vertex v there exists closed set S_{v}^{e}. Fix some bad vertex v and some set E of its bad edges with size $\phi(\delta)$. Denote $S_{v}^{E}=\bigcup_{e \in E} S_{v}^{e} . S_{v}^{E}$ is closed as a sum of closed sets. We also have: $v \notin S_{v}^{E}$. Besides every edge from E touches some vertex from $m\left(S_{v}^{E}\right)$. We say that the set S is $\phi(\delta)$-bad with respect to a vertex $v \in \breve{A}-S$ if it is closed and there are $\phi(\delta)$ bad edges with respect to v that touch S. So we conclude that S_{v}^{E} is $\phi(\delta)$-bad with respect to v. Let S_{v}^{m} be the minimal $\phi(\delta)$-bad set with respect to v.

Lemma 11.1 Let v_{1}, v_{2} be two bad vertices. If $v_{2} \in S_{v_{1}}^{m}$ then $S_{v_{2}}^{m} \subseteq S_{v_{1}}^{m}$.
Proof 6 From the fact that $S_{v_{1}}^{m}$ is closed we know $\phi(\delta)$ bad edges adjacent to v_{2} and touching $m\left(S_{v_{2}}^{m}\right)$ must also touch $m\left(S_{v_{1}}^{m}\right)$. So those $\phi(\delta)$ edges also touch $m\left(S_{v_{2}}^{m} \cap S_{v_{1}}^{m}\right)$. Clearly the set $T=S_{v_{2}}^{m} \bigcap S_{v_{1}}^{m}$ is closed as an intersection of two closed sets. So from what we know so far we can conclude that it is $\phi(\delta)$-bad with respect to v_{2}. So from the definition of $S_{v_{2}}^{m}$ we can conclude that $T=S_{v_{2}}^{m}$, so $S_{v_{2}}^{m} \subseteq S_{v_{1}}^{m}$.

Lemma 11.2 Denote $P=\left\{S_{v}^{m}: v \in X\right\}$. It is a poset with the ordering induced by the inclusion relation. Then it does not have anti-chains of size larger than $\frac{c \delta}{\phi(\delta)}$.

Proof 7 Take some anti-chain $A=\left\{S_{v_{1}}^{m}, \ldots, S_{v_{l}}^{m}\right\}$ in P. From lemma 11.1 we know that the set v_{1}, \ldots, v_{l} does not intersect $R=S_{v_{1}}^{m} \bigcup S_{v_{2}}^{m} \ldots \bigcup S_{v_{l}}^{m}$. But R is closed as a sum of closed sets. Assume by contradiction that $l>\frac{c \delta}{\phi(\delta)}$, i.e. $\phi(\delta) l>c \delta$. Now consider the set $D=m(R)$. We will count the number of edges touching D in $G(A, B)$. On the one hand from the fact that $G(A, B)$ is δ-regular we know that this number is exactly $l \delta$. On the other hand we have at least $\phi(\delta) l$ edges $\left(\phi(\delta)\right.$ bad edges from every $\left.v_{i}: i=1,2, \ldots, l\right)$ touching D. Besides from the fact that R is closed we know that there are at least $l \delta-c \delta$ edges such that each of them is adjacent to some vertex from R and from $m(R)$ (for every vertex from R we have δ edges in $G(A, B)$ adjacent to it and all but the edges adjacent to some vertices from C must touch D; altogether we have at most $c \delta$ edges such that each of them is adjacent to some vertex from C and some vertex from R). So summing all those edges we get more than δl edges which is a contradiction.

Corollary 11.1 Using Dillworth's lemma about chains and anti-chains in posets and lemma 11.2 we see that the set $P=\left\{S_{v}^{m}: v \in X\right\}$ has a chain of length at least $\frac{x \phi(\delta)}{c \delta}$.

Now take an arbitrary chain of $P=\left\{S_{v}^{m}: v \in X\right\}$ of length at least $\frac{x \phi(\delta)}{c \delta}$. Denote $L=$ $\left\{S_{v_{1}}^{m}, \ldots, S_{v_{d}}^{m}\right\}$, where $S_{v_{1}}^{m} \subseteq S_{v_{2}}^{m} \subseteq \ldots \subseteq S_{v_{d}}^{m}$. So we have $d \geq \frac{x \phi(\delta)}{c \delta}$. Denote: $X_{i}=S_{v_{i+1}}^{m}-S_{v_{i}}^{m}$ for
$i=1,2, \ldots, d-1$. Assume that $\left|X_{i}\right| \geq(\xi+1)$. Then X_{i} contains at least ξ vertices different than v_{i}. Call this set of vertices C_{i}. At least one vertex from C_{i} must have at most $\left(\frac{c \delta-\phi(\delta)}{\xi}\right)$ edges adjacent to it and touching $m\left(S_{v_{i}}^{m}\right)$. Assume not and count the number of edges of $G(A, B)$ with one endpoint in $m\left(S_{v_{i}}^{m}\right)$. Then we have more than $\xi \frac{c \delta-\phi(\delta)}{\xi}$ such edges adjacent to vertices from C_{i}. Moreover, there are at least $\phi(\delta)$ bad edges adjacent to vertex v_{i}. Finally we have at least $\delta\left|S_{v_{i}}^{m}\right|-c \delta$ edges like that adjacent to vertices from $S_{v_{i}}^{m}$ (the analysis of this last expression is the same as in lemma 11.2). So altogether we have more than $\delta\left|S_{v_{i}}^{m}\right|$ which is impossible because $G(A, B)$ is δ-regular. So we can conclude that if $\left|X_{i}\right| \geq(\xi+1)$ then X_{i} contains vertex x_{i} with at most $\left(\frac{c \delta-\phi(\delta)}{\xi}\right)$ edges adjacent to it and touching $m\left(S_{v_{i}}^{m}\right)$. So there are at least $\delta-\frac{c \delta-\phi(\delta)}{\xi}$ edges adjacent to x_{i} with second endpoints in $B-m\left(S_{v_{i}}^{m}\right)$. But we also know that $x_{i} \in S_{v_{i+1}}^{m}$ and the set $S_{v_{i+1}}^{m}$ is closed. So at least $\delta-\frac{c \delta-\phi(\delta)}{\xi}-c$ edges adjacent to x_{i} have second endpoints in $m\left(S_{v_{i+1}}^{m}-S_{v_{i}}^{m}\right)=m\left(X_{i}\right)$. But that means that $\left|m\left(X_{i}\right)\right| \geq \delta-\frac{c \delta-\phi(\delta)}{\xi}-c$, so $\left|X_{i}\right| \geq \delta-\frac{c \delta-\phi(\delta)}{\xi}-c$. So we can conclude that if $\left|X_{i}\right| \geq(\xi+1)$ then $X_{i} \geq \delta-\frac{c \delta-\phi(\delta)}{\xi}-c$. Let's now analyze how many consecutive sets X_{i} may satisfy $\left|X_{i}\right| \leq \xi$. Assume that sets X_{i+1}, \ldots, X_{i+l} all have size at most ξ. Consider vertices $v_{i+1}, v_{i+2}, \ldots, v_{i+j}$ and the sets of bad edges $E\left(v_{i+j}\right)$ related to v_{i+j} and $S_{v_{i+j}}^{m}$ for $1 \leq j \leq l$. We have: $\left|E\left(v_{i+j}\right)\right| \geq \phi(\delta)$. We will count the number of edges in $G(A, B)$ that touch $m\left(S_{v_{i}}^{m}\right)$. All edges from $E\left(v_{i+1}\right)$ satisfy this condition. At least $E\left(v_{i+2}\right)-\left|X_{i}\right|$ from $E\left(v_{i+2}\right)$ satisfy it, at least $E\left(v_{i+3}\right)-\left|X_{i}\right|-\left|X_{i+1}\right|$ edges from $E\left(v_{i+3}\right)$, etc. So we have at least $l \phi(\delta)-\xi-2 \xi-\ldots-(l-1) \xi$ edges from $\bigcup_{j=1}^{l} E\left(v_{i+j}\right)$ satisfying this condition. Furthermore we have at least $\delta\left|S_{v_{i}}^{m}\right|-c \delta$ other edges satisfying it (with one endpoint in $S_{v_{i}}^{m}$). Because altogether we can't have more than $\delta\left|S_{v_{i}}^{m}\right|$ edges satisfying the condition, we must have: $l \phi(\delta)-\xi-2 \xi-\ldots-(l-1) \xi \leq c \delta$. Note that $\xi \geq c$. So we have in particular: $l \phi(\delta)-\frac{\xi l^{2}}{2} \leq \xi \delta$. Solving this quadratic equation we obtain: $l \leq \frac{\phi(\delta)-\sqrt{\phi^{2}(\delta)-2 \xi^{2} \delta}}{\xi}$ or $l \geq \frac{\phi(\delta)+\sqrt{\phi^{2}(\delta)-2 \xi^{2} \delta}}{\xi}$. Now assume that we have more than $\frac{\phi(\delta)-\sqrt{\phi^{2}(\delta)-2 \xi^{2} \delta}}{\xi}$ consecutive X_{i} of size at most ξ. Then let r be the smallest integer greater than $\frac{\phi(\delta)-\sqrt{\phi^{2}(\delta)-2 \xi^{2} \delta}}{\xi}$. Take r consecutive sets: X_{i+1}, \ldots, X_{i+r}. Then it's easy to check that the condition $\phi(\delta)>\xi \sqrt{2 \delta+\frac{1}{4}}$ implies that we have: $\phi(\delta)-\sqrt{\phi^{2}(\delta)-2 \xi^{2} \delta}<\xi r<\phi(\delta)+\sqrt{\phi^{2}(\delta)-2 \xi^{2} \delta}$. But this is a contradiction according to what we have said so far. Therefore we must have: $l \leq l_{0}$, where $l_{0}=\frac{\phi(\delta)-\sqrt{\phi^{2}(\delta)-2 \xi^{2} \delta}}{\xi}$. But that means that in the set: $\left\{X_{1}, X_{2}, \ldots, X_{d-1}\right\}$ we have at least $\frac{d-1}{l_{0}+1}$ sets of size at least $\delta-\frac{c \delta-\phi(\delta)}{\xi}-c$. Sets X_{i} are pairwise disjoint and are taken from the set of size $n^{\prime}=n-c$. Therefore we have: $\frac{d-1}{l_{0}+1}\left(\delta-\frac{c \delta-\phi(\delta)}{\xi}-c\right) \leq n^{\prime}$. So we have: $d \leq \frac{n^{\prime}\left(l_{0}+1\right)}{\delta-\frac{c \delta-\phi(\delta)}{\xi}-c}+1$. But then using the inequality $d \geq \frac{x \phi(\delta)}{c \delta}$ and substituting in the expression for l_{0} we complete the proof of the theorem.

12 Proof of lemma 4.5

Proof 8 Take canonical matching $M=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\}$ of $G(A, B)$. Without loss of generality assume that the adversary knows the edges: $\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{c}, b_{c}\right)\right\}$. Write $C=$ $\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{c}, b_{c}\right)\right\}$ and $m\left(a_{i}\right)=b_{i}$, for $i=1,2, \ldots, n$. Denote the degree of a vertex a_{i} in $G(A, B)$ as δ_{i} for $i=1,2, \ldots, n$. Note that from our assumption about the bipartite graph we know that the degree of a vertex b_{i} is also δ_{i} for $i=1,2, \ldots, n$. For a subset $S \subseteq A$ denote $m(S)=\{m(v): v \in S\}$. Take vertex $v=a_{i}$ for $i>c$. An edge e non-incident with edges from C, but incident with v is a good edge if there exists a perfect matching in $G(A, B)$ that uses e such that C is its sub-matching. It suffices to prove that for any fixed $v=a_{i}$ for $i>c$ every edge e nonincident with edges from C, but incident with v is a good edge. Assume by contradiction that this is not the case. Denote by $\ddot{G}(A, B)$ the graph obtained from $G(A, B)$ by deleting edges of C. For a subset $S \subseteq A$ we will denote by $N(S)$ the set of neighbors of the vertices of S in $\ddot{G}(A, B)$. Graph $\ddot{G}(A, B)$ obviously has a perfect matching (a sub-matching of the perfect matching of $G(A, B)$). Our assumption on e let's us deduce that, if we exclude from $\ddot{G}(A, B)$ an edge e together with its
endpoints, then the graph obtained in such a way does not have a perfect matching. So, using Hall's theorem we can conclude that there exists $S_{v}^{e} \subseteq A$ such that $v \notin S_{v}^{e}$ and, furthermore, the following two statements hold: [e is incident with some vertex from $m\left(S_{v}^{e}\right)$] and $\left[N\left(S_{v}^{e}\right) \subseteq m\left(S_{v}^{e}\right)\right]$.
Without loss of generality write $S_{v}^{e}=\left\{a_{c+1}, \ldots, a_{c+l}\right\}$ for some $l>0$. Write $\Delta=\sum_{i=1}^{l} \delta_{c+i}$. Consider a fixed vertex a_{c+i} for $i=1, \ldots, l$. Denote by \mathcal{F}_{i} the set of the vertices of $m\left(S_{v}^{e}\right)$ adjacent to it and by \mathcal{G}_{i} the set of the vertices from the set $\left\{b_{1}, \ldots, b_{c}\right\}$ adjacent to it. Denote by \mathcal{D}_{i} the set of the neighbors of a_{c+i} in $G(A, B)$. Note first that $\mathcal{D}_{c+i}=\mathcal{F}_{i} \bigcup \mathcal{G}_{i}$ for $i=1, \ldots$, l. Otherwise there would exist a vertex in S_{v}^{e} adjacent to some vertex $x \notin m\left(S_{v}^{e}\right)$ of $\ddot{G}(A, B)$. But that contradicts the fact that $N\left(S_{v}^{e}\right) \subseteq m\left(S_{v}^{e}\right)$. For a vertex $b_{j} \in \mathcal{G}_{i}$ we call a vertex a_{j} a reverse of b_{j} with respect to i. Note that by symmetry $\left(a_{j}, b_{c+i}\right)$ is an edge of $G(A, B)$. For a given vertex a_{c+i} for $i=1,2, \ldots l$ write $\operatorname{Rev}_{i}=\left\{\left(a_{j}, b_{c+i}\right): b_{j} \in \mathcal{G}_{i}\right\}$. Note that the sets $\operatorname{Rev}_{1}, \ldots, \operatorname{Rev}(l)$ are pairwise disjoint and besides $\left|\operatorname{Rev}_{1} \cup \ldots \cup \operatorname{Rev}_{l}\right|=\sum_{i=1}^{l}\left|\mathcal{G}_{i}\right|$. Therefore we can conclude that there are at least $\sum_{i=1}^{l}\left|\mathcal{G}_{i}\right|+\sum_{i=1}^{l}\left|\mathcal{F}_{i}\right|$ edges nonadjacent to v and with one endpoint in the set $m\left(S_{v}^{e}\right)$. Thus, from the fact that $\mathcal{D}_{c+i}=\mathcal{F}_{i} \cup \mathcal{G}_{i}$ for $i=1,2, \ldots, l$, we can conclude that there are at least $\sum_{i=1}^{l}\left|\mathcal{D}_{c+i}\right|$ edges nonadjacent to v and with one endpoint in the set $m\left(S_{v}^{e}\right)$. Since an edge e has also an endpoint in $m\left(S_{v}^{e}\right)$, we can conclude that altogether there are at least $\Delta+1$ edges in $G(A, B)$ with one endpoint in the set $m\left(S_{v}^{e}\right)$. But this completes the proof since it contradicts the definition of Δ.

13 Appendix - worst case example of asymmetric matching

We here illustrate a worst-case type analysis for the asymmetric regular graph setting.
One can ask whether it is possible to prove some reasonable k-anonymity in the asymmetric case (the general δ-regular asymmetric bipartite graphs) for every person, rather than the all-but-at-most guarantee of theorem 4.1? The answer is - no. In fact we can claim more. For every δ there exist δ regular bipartite graphs $G(A, B)$ with the following property: there exists an edge e of some perfect matching M in $G(A, B)$ and a vertex $w \in A$ nonadjacent to e such that in every perfect matching M^{\prime} in $G(A, B)$ that uses e, vertex w is adjacent to an edge from M.
So, in other words, it is possible that if the adversary is lucky and knows in advance a complete record of one person then he will reveal with probability 1 a complete record of some other person. Thus, those types of persons do not have much privacy. Fortunately, theorem 4.1 says that if the publisher chooses the parameters of a δ-regular bipartite graph he creates carefully then there will only be a tiny fraction of persons like that. We next show constructions of asymmetric δ-regular bipartite graphs for which the adversary, if given information about one specific edge of the matching in advance, can find another edge of the matching with probability 1.
For a fixed δ our constructed graph $G(A, B)$ will consist of color classes of sizes $\delta^{2}+1$ each. The graph $G(A, B)$ is the union of $\delta+2$ bipartite subgraphs and some extra edges added between these graphs. The subgraphs are:

- subgraphs $F_{i}: i=1,2, \ldots,(\delta-1)$, where each F_{i} is a complete bipartite graph with one color class of size δ (the one from A) and one color class of size $(\delta-1)$ (the one from B). We denote the set of vertices of F_{i} from A as $\left\{u_{1}^{i}, \ldots, u_{\delta}^{i}\right\}$ and from B as $\left\{d_{1}^{i}, \ldots, d_{\delta-1}^{i}\right\}$
- bipartite subgraph B_{1} of two adjacent vertices: $x \in A, y \in B$
- bipartite subgraph B_{2} with vertex $z \in A$ and k vertices from B adjacent to it, namely $\left\{r_{0}, r_{1}, \ldots, r_{\delta-1}\right\}$
- complete $(\delta-1)$-regular bipartite subgraph B_{3} with color classes $\left\{w_{1}, \ldots, w_{\delta-1}\right\} \subseteq A$ and $\left\{v_{1}, \ldots, v_{\delta-1}\right\} \subseteq B$
with edges between the above $\delta+2$ subgraphs as follows:
- $\left(y, u_{1}^{i}\right)$ for $i=1,2, \ldots, \delta-1$
- $\left(r_{\delta-i}, u_{j}^{i}\right)$ for $i=1,2, \ldots,(\delta-1) ; j=2,3, \ldots, \delta$
- $\left(x, v_{i}\right)$ for $i=1,2, \ldots, \delta-1$
- $\left(r_{0}, w_{i}\right)$ for $i=1,2, \ldots, \delta-1$.

Consider when an adversary attacks the above constructed graph $G(A, B)$ after knowing one edge in advance. It is enough to prove that any matching in $G(A, B)$ that uses (x, y) must also use $\left(z, r_{0}\right)$. So assume by contradiction that there is a matching M in $G(A, B)$ that uses both (x, y) and $\left(z, r_{\delta-i}\right)$ for some $i \in\{1,2, \ldots, \delta-1\}$. Denote by $\grave{G}(A, B)$ the graph obtained from $G(A, B)$ by deleting $x, y, z, r_{\delta-i}$. This graph must have a perfect matching. However it does not satisfy Hall's condition. The condition is not satisfied by the set $\left\{u_{1}^{i}, \ldots, u_{\delta}^{i}\right\}$ because one can easily check that in $\grave{G}(A, B)$ we have: $N\left(\left\{u_{1}^{i}, \ldots, u_{\delta}^{i}\right\}\right)=\left\{d_{1}^{i}, \ldots, d_{\delta-1}^{i}\right\}$. That completes the proof.

