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Supplementary Material

Abstract
This supplement contains all necessary detailed proofs and a worst-case theoreti-
cal analysis in support of the main article.

7 Proof of theorem 1

Proof 1 In the first iteration, the algorithm is clearly solving Ĝ = argminG∈Gb
h(G). Let G∗ =

arg minG∈Gb
s(G). Clearly, the number of stars is less than the Hamming distance s(G) ≤ h(G)

for any G. Since Ĝ is the minimizer of h(G), we have h(Ĝ) ≤ h(G∗). Furthermore, it is easy
to show for δ-regular graphs that h(G) ≤ δs(G). Combining yields s(Ĝ) ≤ h(Ĝ) ≤ h(G∗) ≤
δs(G∗) = δminG∈Gb

s(G).

8 Proof of theorem 2

Proof 2 Create an ε-approximation s̃(G) to s(G) by adding a tiny ε > 0 to each term in the product

s̃(G) =nd−exp ln
∑
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Wik

Wik

∏

j

(1 + ε− Gij(Xik #= Xjk))

≤nd−e
P

ijkWik

“

Gij(Xik #=Xjk) ln
ε

1+ε
+ln(1+ε)

”

−
P

ikWiklnWik

where we introduced a variational parameter W ∈ Zn×ds.t.
∑

ik Wik = 1 and applied Jensen’s
inequality. The first step of the “while” loop minimizes the right hand side overG while the second
minimizes overW (modulo a harmless scaling). Thus, the algorithm minimizes a variational upper
bound on s̃(G) which cannot increase. Since the parameter G is discrete, s̃(G) must decrease with
every iteration or else the algorithm terminates (converges).

9 Proof of lemma 4.2

Proof 3 Take some perfect matching M1 in G(A, B) (it exists because of Hall’s theorem). If it
uses e then we are done. Assume it does not. Delete all edges from M1 from G(A, B) to obtain a
(δ − 1)-bipartite graph. Take one of its perfect matchings, say M2. If it uses e then we are done.
Otherwise delete edges from M2 and continue. At some point, some perfect matching will use e
because, otherwise, we end up with an empty graph (i.e. without edges).

10 Proof of lemma 4.4

Proof 4 Denote by Ğ = G(Â, B̂) the graph obtained from G(A, B) by deleting vertices of M .
Obviously it has a perfect matching, namely: M − C. In fact Ğ is a union of complete bipartite
graphs, pairwise disjoint, each with color classes of size at least (δ − c). Each perfect matching
in Ğ is a union of perfect matchings of those complete bipartite graphs. Denote by Ğv a complete
bipartite graph of Ğ corresponding to vertex v. Then obviously for every edge e in Ğv there is a
perfect matching in Ğv that uses e. In Ğv we have at least (δ − c) edges adjacent to v and that
completes the proof.
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11 Proof of theorem 4.1

Proof 5 Take perfect matching M and C ⊆ M from the statement of the theorem. For every vertex
v ∈ A, denote by m(v) its neighbor in M. Denote: m(V ) = {m(v) : v ∈ V }. Take bipartite
graph Ğ = G(Ă, B̆) with color classes Ă, B̆, obtained from G(A, B) by deleting all vertices of
C. For a vertex v ∈ Ă and an edge e adjacent to it in Ğ we will say that this edge is bad with
respect to v if there is no perfect matching in G(A, B) that uses e and all edges from C. We will say
that a vertex v ∈ Ă is bad if there are at least φ(δ) edges that are bad with respect to v. Denote
by x the number of bad vertices and by X the set of all bad vertices. We just need to prove that

x ≤ 2c3δ2n′(1+
φ(δ)+

√
φ2(δ)−2c2δ
2cδ )

φ3(δ)(1+

r

1− 2c2δ
φ2(δ)

)(1− c2
φ(δ) )

+ cδ
φ(δ) . Take some bad vertex v and some edge e which is bad

with respect to it. Graph Ğ obviously has a perfect matching, namely: M − C. However from
the definition of e, it does not have a perfect matching that uses e. So the graph Ğe = G(Ăe, B̆e)
obtained from Ğ by deleting both endpoints of e does not have a perfect matching. But, according
to Hall’s theorem, that means that in Ğe there is a subset Se

v ⊆ Ăe such that |N(Se
v)| < |Se

v |, where
N(T ) denotes the set of neighbors of the vertices from the set T . But in Ğ we have: |N(Se

v)| ≥ |Se
v|.

In fact we can say more: m(Se
v) ⊆ N(Se

v) in Ğ. Therefore it must be the case that an edge e touches
a vertex from m(Se

v) and furthermore N(Se
v) = m(Se

v) in Ğ. Whenever the set S ⊆ Ă satisfies:
N(S) = m(S) in Ğ we say that it is closed. So for for every edge e bad with respect to a vertex
v there exists closed set Se

v . Fix some bad vertex v and some set E of its bad edges with size φ(δ).
Denote SE

v =
⋃

e∈E Se
v . SE

v is closed as a sum of closed sets. We also have: v /∈ SE
v . Besides every

edge from E touches some vertex from m(SE
v ). We say that the set S is φ(δ)-bad with respect to a

vertex v ∈ Ă − S if it is closed and there are φ(δ) bad edges with respect to v that touch S. So we
conclude that SE

v is φ(δ)-bad with respect to v. Let Sm
v be the minimal φ(δ)-bad set with respect to

v.

Lemma 11.1 Let v1, v2 be two bad vertices. If v2 ∈ Sm
v1
then Sm

v2
⊆ Sm

v1
.

Proof 6 From the fact that Sm
v1
is closed we know φ(δ) bad edges adjacent to v2 and touching

m(Sm
v2

) must also touch m(Sm
v1

). So those φ(δ) edges also touch m(Sm
v2

⋂

Sm
v1

). Clearly the set
T = Sm

v2

⋂

Sm
v1
is closed as an intersection of two closed sets. So from what we know so far we can

conclude that it is φ(δ)-bad with respect to v2. So from the definition of Sm
v2
we can conclude that

T = Sm
v2
, so Sm

v2
⊆ Sm

v1
.

Lemma 11.2 Denote P = {Sm
v : v ∈ X}. It is a poset with the ordering induced by the inclusion

relation. Then it does not have anti-chains of size larger than cδ
φ(δ) .

Proof 7 Take some anti-chain A = {Sm
v1

, ..., Sm
vl
} in P . From lemma 11.1 we know that the set

v1, ..., vl does not intersect R = Sm
v1

⋃

Sm
v2

...
⋃

Sm
vl
. But R is closed as a sum of closed sets.

Assume by contradiction that l > cδ
φ(δ) , i.e. φ(δ)l > cδ. Now consider the set D = m(R). We will

count the number of edges touching D in G(A, B). On the one hand from the fact that G(A, B) is
δ-regular we know that this number is exactly lδ. On the other hand we have at least φ(δ)l edges
(φ(δ) bad edges from every vi : i = 1, 2, ..., l) touching D. Besides from the fact that R is closed
we know that there are at least lδ − cδ edges such that each of them is adjacent to some vertex from
R and from m(R) (for every vertex from R we have δ edges in G(A, B) adjacent to it and all but
the edges adjacent to some vertices from C must touchD; altogether we have at most cδ edges such
that each of them is adjacent to some vertex from C and some vertex from R). So summing all those
edges we get more than δl edges which is a contradiction.

Corollary 11.1 Using Dillworth’s lemma about chains and anti-chains in posets and lemma 11.2,
we see that the set P = {Sm

v : v ∈ X} has a chain of length at least xφ(δ)
cδ

.

Now take an arbitrary chain of P = {Sm
v : v ∈ X} of length at least xφ(δ)

cδ
. Denote L =

{Sm
v1

, ..., Sm
vd
}, where Sm

v1
⊆ Sm

v2
⊆ ... ⊆ Sm

vd
. So we have d ≥ xφ(δ)

cδ
. Denote: Xi = Sm

vi+1
−Sm

vi
for
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i = 1, 2, ..., d−1. Assume that |Xi| ≥ (ξ+1). ThenXi contains at least ξ vertices different than vi.
Call this set of verticesCi. At least one vertex fromCi must have at most ( cδ−φ(δ)

ξ
) edges adjacent to

it and touchingm(Sm
vi

). Assume not and count the number of edges ofG(A, B) with one endpoint in
m(Sm

vi
). Then we have more than ξ cδ−φ(δ)

ξ such edges adjacent to vertices from Ci. Moreover, there
are at least φ(δ) bad edges adjacent to vertex vi. Finally we have at least δ|Sm

vi
|− cδ edges like that

adjacent to vertices from Sm
vi
(the analysis of this last expression is the same as in lemma 11.2). So

altogether we have more than δ|Sm
vi
| which is impossible because G(A, B) is δ-regular. So we can

conclude that if |Xi| ≥ (ξ+1) thenXi contains vertex xi with at most ( cδ−φ(δ)
ξ ) edges adjacent to it

and touchingm(Sm
vi

). So there are at least δ− cδ−φ(δ)
ξ edges adjacent to xi with second endpoints in

B−m(Sm
vi

). But we also know that xi ∈ Sm
vi+1

and the set Sm
vi+1

is closed. So at least δ− cδ−φ(δ)
ξ

−c
edges adjacent to xi have second endpoints in m(Sm

vi+1
− Sm

vi
) = m(Xi). But that means that

|m(Xi)| ≥ δ − cδ−φ(δ)
ξ

− c, so |Xi| ≥ δ − cδ−φ(δ)
ξ

− c. So we can conclude that if |Xi| ≥ (ξ + 1)

thenXi ≥ δ − cδ−φ(δ)
ξ

− c. Let’s now analyze how many consecutive sets Xi may satisfy |Xi| ≤ ξ.
Assume that sets Xi+1, ..., Xi+l all have size at most ξ. Consider vertices vi+1, vi+2, ..., vi+j and
the sets of bad edges E(vi+j) related to vi+j and Sm

vi+j
for 1 ≤ j ≤ l. We have: |E(vi+j)| ≥ φ(δ).

We will count the number of edges in G(A, B) that touch m(Sm
vi

). All edges from E(vi+1) satisfy
this condition. At least E(vi+2) − |Xi| from E(vi+2) satisfy it, at least E(vi+3) − |Xi| − |Xi+1|
edges fromE(vi+3), etc. So we have at least lφ(δ)−ξ−2ξ− ...−(l−1)ξ edges from

⋃l
j=1 E(vi+j)

satisfying this condition. Furthermore we have at least δ|Sm
vi
| − cδ other edges satisfying it (with

one endpoint in Sm
vi
). Because altogether we can’t have more than δ|Sm

vi
| edges satisfying the con-

dition, we must have: lφ(δ) − ξ − 2ξ − ... − (l − 1)ξ ≤ cδ. Note that ξ ≥ c. So we have in

particular: lφ(δ) − ξl2

2 ≤ ξδ. Solving this quadratic equation we obtain: l ≤ φ(δ)−
√

φ2(δ)−2ξ2δ

ξ
or

l ≥ φ(δ)+
√

φ2(δ)−2ξ2δ

ξ
. Now assume that we have more than φ(δ)−

√
φ2(δ)−2ξ2δ

ξ
consecutive Xi of

size at most ξ. Then let r be the smallest integer greater than φ(δ)−
√

φ2(δ)−2ξ2δ

ξ . Take r consecutive

sets: Xi+1, ..., Xi+r. Then it’s easy to check that the condition φ(δ) > ξ
√

2δ + 1
4 implies that we

have: φ(δ) −
√

φ2(δ) − 2ξ2δ < ξr < φ(δ) +
√

φ2(δ) − 2ξ2δ. But this is a contradiction accord-

ing to what we have said so far. Therefore we must have: l ≤ l0, where l0 =
φ(δ)−

√
φ2(δ)−2ξ2δ

ξ
.

But that means that in the set: {X1, X2, ..., Xd−1} we have at least d−1
l0+1 sets of size at least

δ − cδ−φ(δ)
ξ − c. Sets Xi are pairwise disjoint and are taken from the set of size n′ = n − c.

Therefore we have: d−1
l0+1 (δ − cδ−φ(δ)

ξ
− c) ≤ n′. So we have: d ≤ n′(l0+1)

δ− cδ−φ(δ)
ξ −c

+ 1. But then

using the inequality d ≥ xφ(δ)
cδ

and substituting in the expression for l0 we complete the proof of the
theorem.

12 Proof of lemma 4.5

Proof 8 Take canonical matching M = {(a1, b1), ..., (an, bn)} of G(A, B). Without loss of
generality assume that the adversary knows the edges: {(a1, b1), ..., (ac, bc)}. Write C =
{(a1, b1), ..., (ac, bc)} and m(ai) = bi, for i = 1, 2, ..., n. Denote the degree of a vertex ai in
G(A, B) as δi for i = 1, 2, ..., n. Note that from our assumption about the bipartite graph we
know that the degree of a vertex bi is also δi for i = 1, 2, ..., n. For a subset S ⊆ A denote
m(S) = {m(v) : v ∈ S}. Take vertex v = ai for i > c. An edge e non-incident with edges from
C, but incident with v is a good edge if there exists a perfect matching in G(A, B) that uses e such
that C is its sub-matching. It suffices to prove that for any fixed v = ai for i > c every edge e non-
incident with edges from C, but incident with v is a good edge. Assume by contradiction that this is
not the case. Denote by G̈(A, B) the graph obtained from G(A, B) by deleting edges of C. For a
subset S ⊆ A we will denote by N(S) the set of neighbors of the vertices of S in G̈(A, B). Graph
G̈(A, B) obviously has a perfect matching (a sub-matching of the perfect matching of G(A, B)).
Our assumption on e let’s us deduce that, if we exclude from G̈(A, B) an edge e together with its
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endpoints, then the graph obtained in such a way does not have a perfect matching. So, using Hall’s
theorem we can conclude that there exists Se

v ⊆ A such that v /∈ Se
v and, furthermore, the following

two statements hold: [e is incident with some vertex from m(Se
v)] and [N(Se

v) ⊆ m(Se
v)].

Without loss of generality write Se
v = {ac+1, ..., ac+l} for some l > 0. Write ∆ =

∑l
i=1 δc+i.

Consider a fixed vertex ac+i for i = 1, ..., l. Denote by Fi the set of the vertices of m(Se
v) adjacent

to it and by Gi the set of the vertices from the set {b1, ..., bc} adjacent to it. Denote by Di the set of
the neighbors of ac+i in G(A, B). Note first that Dc+i = Fi

⋃

Gi for i = 1, ..., l. Otherwise there
would exist a vertex in Se

v adjacent to some vertex x /∈ m(Se
v) of G̈(A, B). But that contradicts the

fact that N(Se
v) ⊆ m(Se

v). For a vertex bj ∈ Gi we call a vertex aj a reverse of bj with respect to
i. Note that by symmetry (aj , bc+i) is an edge of G(A, B). For a given vertex ac+i for i = 1, 2, ...l
write Revi = {(aj , bc+i) : bj ∈ Gi}. Note that the sets Rev1, ..., Rev(l) are pairwise disjoint
and besides |Rev1

⋃

...
⋃

Revl| =
∑l

i=1 |Gi|. Therefore we can conclude that there are at least
∑l

i=1 |Gi| +
∑l

i=1 |Fi| edges nonadjacent to v and with one endpoint in the set m(Se
v). Thus, from

the fact thatDc+i = Fi

⋃

Gi for i = 1, 2, ..., l, we can conclude that there are at least
∑l

i=1 |Dc+i|
edges nonadjacent to v and with one endpoint in the set m(Se

v). Since an edge e has also an
endpoint in m(Se

v), we can conclude that altogether there are at least ∆ + 1 edges in G(A, B) with
one endpoint in the set m(Se

v). But this completes the proof since it contradicts the definition of ∆.

13 Appendix - worst case example of asymmetric matching

We here illustrate a worst-case type analysis for the asymmetric regular graph setting.

One can ask whether it is possible to prove some reasonable k-anonymity in the asymmetric case
(the general δ-regular asymmetric bipartite graphs) for every person, rather than the all-but-at-most
guarantee of theorem 4.1? The answer is - no. In fact we can claim more. For every δ there exist δ-
regular bipartite graphsG(A, B) with the following property: there exists an edge e of some perfect
matching M in G(A, B) and a vertex w ∈ A nonadjacent to e such that in every perfect matching
M ′ in G(A, B) that uses e, vertex w is adjacent to an edge from M .

So, in other words, it is possible that if the adversary is lucky and knows in advance a complete
record of one person then he will reveal with probability 1 a complete record of some other person.
Thus, those types of persons do not have much privacy. Fortunately, theorem 4.1 says that if the
publisher chooses the parameters of a δ-regular bipartite graph he creates carefully then there will
only be a tiny fraction of persons like that. We next show constructions of asymmetric δ-regular
bipartite graphs for which the adversary, if given information about one specific edge of the matching
in advance, can find another edge of the matching with probability 1.

For a fixed δ our constructed graph G(A, B) will consist of color classes of sizes δ2 + 1 each. The
graphG(A, B) is the union of δ + 2 bipartite subgraphs and some extra edges added between these
graphs. The subgraphs are:

• subgraphs Fi : i = 1, 2, ..., (δ − 1), where each Fi is a complete bipartite graph with one
color class of size δ (the one from A) and one color class of size (δ − 1) (the one fromB).
We denote the set of vertices of Fi from A as {ui

1, ..., u
i
δ} and from B as {di

1, ..., d
i
δ−1}

• bipartite subgraphB1 of two adjacent vertices: x ∈ A, y ∈ B

• bipartite subgraph B2 with vertex z ∈ A and k vertices from B adjacent to it, namely
{r0, r1, ..., rδ−1}

• complete (δ− 1)-regular bipartite subgraphB3 with color classes {w1, ..., wδ−1} ⊆ A and
{v1, ..., vδ−1} ⊆ B

with edges between the above δ + 2 subgraphs as follows:

• (y, ui
1) for i = 1, 2, ..., δ − 1

• (rδ−i, ui
j) for i = 1, 2, ..., (δ − 1); j = 2, 3, ..., δ

• (x, vi) for i = 1, 2, ..., δ − 1

• (r0, wi) for i = 1, 2, ..., δ − 1.
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Consider when an adversary attacks the above constructed graph G(A, B) after knowing one edge
in advance. It is enough to prove that any matching inG(A, B) that uses (x, y)must also use (z, r0).
So assume by contradiction that there is a matchingM inG(A, B) that uses both (x, y) and (z, rδ−i)
for some i ∈ {1, 2, ..., δ − 1}. Denote by G̀(A, B) the graph obtained from G(A, B) by deleting
x, y, z, rδ−i. This graph must have a perfect matching. However it does not satisfy Hall’s condition.
The condition is not satisfied by the set {ui

1, ..., u
i
δ} because one can easily check that in G̀(A, B)

we have: N({ui
1, ..., u

i
δ}) = {di

1, ..., d
i
δ−1}. That completes the proof.
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