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Suppose the ellipsoid around the data (xi)
n
i=1 with x ∈ R

n is characterized
by (x − µ)>Σ

−1(x − µ) ≤ 1, where µ ∈ R
n and Σ

1 ∈ R
n×n is symmetric

and positive definite (denoted as Σ � 0), the expression for points within the
ellipsoid can be written as follows:

(x− µ)>Σ
−1(x− µ) = (x− µ)>Σ

−
1

2 Σ
−

1

2 (x− µ)

= (Ax− b)>(Ax− b) ≤ 1

where A = Σ
−

1

2 and b = Σ
−

1

2 µ. Thus, the problem of finding the minimum
volume ellipsoid around (xi)

n
i=1 can be expressed as:

min
A,b

− ln |A|

s.t. ‖Axi − b‖2 ≤ 1 ∀1 ≤ i ≤ n, A � 0.

where, |A| denotes the determinant of the matrix A. The smallest enclosing
ellipsoid is the one that has the smallest volume yet encloses all the given points.
We measure volume of an ellipsoid via the determinant of Σ. Instead of explicitly
minimizing the determinant of Σ, we equivalently maximize the determinant of
the inversely-related matrix A since A = Σ

−
1

2 . After solving (1) both µ and Σ

can be recovered using matrix inversion and simple algebra.
In practice, however, real world data has measurement noise and outliers so

the bounding ellipsoid above is not necessarily the most reliable way to estimate
the ellipsoidal gap-tolerant classifier. The following relaxed version of the above
formulation is thus used in practice2:

min
A,b,τ

− ln |A|+ E

n
∑

i=1

τi (1a)

s.t. ‖Axi − b‖2 ≤ 1 + τi, τi ≥ 0 A � 0 (1b)

where τi is a penalty on the samples that remain outside the ellipsoid, E is a
parameter that trades off the volume of the ellipsoid with the penalty on the

1We assume that Σ is of full rank, it is possible to handle the non-full rank Σ with simple

modifications.
2Sometimes we drop 0 ≤ i ≤ n from the constraint when it is clear
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outliers. The quadratic constraint in (1b) can equivalently be expressed as the
following semidefinite constraint:

[

I (Axi + b)
(Axi + b)> 1 + τi

]

� 0.

Thus the formulation (1) is an instance of a Semidefinite Programming (SDP)
which can be efficiently solved in polynomial time.

Let us now add an extra dimension to the data, that is, z>i ← [x>
i 1] and find

the ellipsoid enclosing these new points with the origin as the center. By taking
the projection of this new ellipsoid with the hyperplane zn+1 = 1, we should
be able to recover the minimum volume ellipsoid for the original problem. Now
consider the following formulation:

min
M,τ
− ln |M|+ E

n
∑

i=1

τi (2)

s.t. z
>

i Mzi ≤ 1 + τi, τi ≥ 0 ∀1 ≤ i ≤ n M � 0.

where M ∈ R
m+1×m+1. Write the above optimization as a Lagrangian:

L = − ln |M|+ E

n
∑

i=1

τi +
n

∑

i=1

γi(z
>

i Mzi − 1− τi)−
n

∑

i=1

βiτi

with βi, γi ≥ 0. Taking the gradient with respect to M, we get

∂L

∂M
= −M

−1 +
∑

i

γiziz
>

i

∂L

∂τi

= E − γi − βi

Equating the above to zero, we get M
−1 =

∑

i γiziz
>

i . Now consider,

n
∑

i=1

γiz
>

i Mzi =

n
∑

i=1

γitr(z
>

i Mzi)

=

n
∑

i=1

γitr(Mziz
>

i )

= tr(M
n

∑

i=1

γiziz
>

i )

= tr(I) = m + 1.

Substituting these results obtained from equating the partial derivatives to zero
back in the Lagrangean, we get the dual optimization problem:

max
γi

ln |

n
∑

i=1

γiziz
>

i | −

n
∑

i=1

γi + m + 1 (3)

s.t. 0 ≤ γi ≤ E ∀i ≤ i ≤ n.
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We note that m + 1 from the objective can be removed without changing the
values of γi at the solution. Now let us retrieve Σ and µ from γ. We know that,

M
−1 =

∑

i

γiziz
>

i =

[

XΓX
>

Xγ

γ>
X

> γ>
1

]

where Γ is a diagonal matrix containing γi as the diagonal entries and γ is a
vector containing γi as the entries. We can rewrite M

−1 as

M
−1 =

[

XΓX
>

Xγ

γ>
X

> γ>
1

]

=

[

I
Xγ

s

0 s

][

XΓX
> − Xγγ>X

>

s2 0
0 1

]

[

I 0
γ>X

s

>

s

]

where s = γ>
1. Inverting on both the sides,

M =

[

I 0

−γ>X

s2

>
1

s

]

[

(XΓX
> − Xγγ>X

>

s2 )−1 0
0 1

][

I −Xγ

s2

0 1

s

]

Substituting M in z
>
i Mzi ≤ 1 and identifying the resultant equation with

(1a), it can be shown that:

µ =
Xγ

γ>1

and,

Σ = XΓX
> −

Xγγ>
X

>

γ>1
.

Now, to solve (3) in kernel defined feature space, we merely make the fol-
lowing substitution:

n
∑

i=1

γiziz
>

i =

[

K
1

2 ΓK
1

2 K
1

2 γ

γ>
K

1

2 γ>
1

]

.

To calculate w
>
Σw assuming w = Xα:

w
>
Σw = α>

X
>(XΓX

> −
Xγγ>

X
>

γ>1
)Xα

= α>(KΓK−
Kγγ>

K

γ>1
)α.

A simpler (and mathematically more sound) option is to centralize the data
in Hilbert space around the origin before solving the MVE (1).
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