B-Matching for Embedding

Tony Jebara, Blake Shaw, and Vlad Shchogolev
Columbia University
New York, NY 10027
jebara@cs.columbia.edu

When learning from a dataset of samples, many algorithms begin by forming a graph that captures pairwise affinities between all pairs of points. For example, spectral clustering forms a weighted graph between data-points and then approximates a normalized cut on this graph [4, 2]. Nonlinear manifold learning and embedding methods form a graph from data-points and then proceed to reconstruct that graph's weight matrix using a low rank approximation $[5,6]$. Even classifiers can be viewed as separating labels on a weighted graph [1]. Often, however, forming a graph from data is a crucial first step yet might be sub-optimal: either keeping the graph fully connected or greedily building a sparse graph via, for example, k-nearest-neighbor. We propose using b-matching [3], an interesting polynomial-time and optimal algorithm for finding the maximum weight subgraph from a larger graph such that the subgraph has in-degree and out-degree equal to b for each node. Meanwhile, k-nearest neighbor only finds the maximum weight subgraph from an original graph that only has out-degree (or in-degree) equal to k for each node (a less constrained optimization).
Assume we are given an $N \times N$ matrix $A \in \Re^{N \times N}$ which captures pairwise similarity for each pair of points in an N-point dataset. For instance, we may use a radial basis function kernel between all pairs of points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ in the dataset. In that case, we have $A_{i j}=\exp \left(-\frac{1}{2 \sigma}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}\right)$. Typically, this is the first step in forming a graph for learning embedding, spectral clustering or even certain types of classifiers. Subsequently, one can compute k-nearest neighbors which is equivalent to finding a binary matrix $P \in \mathcal{B}$ where \mathcal{B} is the space of binary matrices $\{0,1\}^{N \times N}$ that represents the connectivity of the k-nearest neighbors. This matrix is initialized to zeros and then updated by going through the nodes for $i=1 \ldots N$ and setting $P_{i j}=P_{j i}=1$ if $A_{i j}$ is one of the top k values for $j=1 \ldots N$. Often, k-nearest neighbors is solved using a $\mathcal{O}\left(k N^{2}\right)$ time implementation (faster variants are sometimes possible using ball trees, KD trees and VPN trees). Meanwhile, b-matching (a generalization of 1-matching and the classic Kuhn-Munkres or Hungarian algorithm) is optimally solvable in $\mathcal{O}\left(b N^{3}\right)$ time. However, it also enforces that each point has b-nearest neighbors and that only b (or k) other points can use it as their own neighbors:

$$
\max _{P \in \mathcal{B}} \sum_{i j} A_{i j} P_{i j} \text { s.t. } \sum_{i} P_{i j}=\sum_{j} P_{i j}=b
$$

Fig. 1. Noisy Tea Pot Images

In Figure 1 we show a preliminary dataset for the b-matching algorithm as it learns a slightly different graph from the tea pot data set with added noise. This dataset contains images of a teapot that is being rotated 360 degrees. We downsampled the dataset to 100 images and added noise to make the problem harder. In Figure 2 we see the graph recovered by both the k nearest neighbors approach and the b-matching approach after we have embedded the graphs in two dimensions using the semidefinite embedding (SDE) approach of [6]. Note how b-matching, unlike k-nearest neighbors, recovers
an embedding which is a circle thus capturing that proper nonlinear manifold that corresponds to a rotation. Varying k for the k-nearest neighbors across $k=2, k=3, k=4$ and beyond did not improve the situation for k-nearest neighbors.

Fig. 2. K-Nearest-Neighbors vs. B-Matching in Semidefinite Embedding

Furthermore, we can now subscribe to the view that learning the graph is part of the optimization of a cost function as opposed to a preprocessing. The equations above suggest that graph structure and connectivity can be represented as a binary $N \times N$ matrix. We can thus interleave graph structure learning with embedding estimation. We perform alternating minimization over the embedding and the graph structure learning (via b-matching) to minimize the overall cost function of interest in SDE. For instance, we iteratively reduce the cost:

$$
\min _{K, P} \max _{\beta} \operatorname{tr}(K)+\sum_{i j} \beta_{i j} P_{i j}\left(K_{i i}-2 K_{i j}+K_{j j}-A_{i i}+2 A_{i j}-A_{j j}\right)
$$

where P is a binary matrix summing to b row and column-wise, K is the centered positive semidefinite embedding $K \geq 0$ and $\sum_{i j} K_{i j}=0$ and β is a matrix of Lagrange multipliers forcing the embedding to preserve distances. Finally, it is interesting to view b-matching as a general alternative to knearest neighbor in other learning settings. This even includes using b-matching as classifier instead of kNN where points are merely classified by taking votes from the labels of their k nearest neighbors. Despite b-matching's extra computational work, it may still be useful in these settings as well.

References

1. M. Belkin, I. Matveeva, and P. Niyogi. Regularization and Semi-supervised Learning on Large Graphs. COLT 2004.
2. M. Meila, and J. Shi. Learning Segmentation by Random Walks, NIPS, 2000.
3. M. Muller-Hannemann and A. Schwartz, Implementing weighted b-matching algorithms: insights from a computational study, J. Exp. Algorithmics, vol. 5, 2000.
4. A. Ng, M. Jordan and Y. Weiss. On spectral clustering: Analysis and an algorithm, NIPS, 2001.
5. S. Roweis and L. Saul (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol. 290, no. 5500.
6. K.Q. Weinberger, F. Sha, and L.K. Saul, Learning a kernel matrix for nonlinear dimensionality reduction, International Conference on Machine Learning, 2004.
