
B-Matching for Embedding

Tony Jebara, Blake Shaw, and Vlad Shchogolev
Columbia University
New York, NY 10027

jebara@cs.columbia.edu

When learning from a dataset of samples, many algorithms begin by forming a graph that captures
pairwise affinities between all pairs of points. For example, spectral clustering forms a weighted graph
between data-points and then approximates a normalized cut on this graph [4, 2]. Nonlinear manifold
learning and embedding methods form a graph from data-points and then proceed to reconstruct
that graph’s weight matrix using a low rank approximation [5, 6]. Even classifiers can be viewed as
separating labels on a weighted graph [1]. Often, however, forming a graph from data is a crucial
first step yet might be sub-optimal: either keeping the graph fully connected or greedily building a
sparse graph via, for example, k-nearest-neighbor. We propose using b-matching [3], an interesting
polynomial-time and optimal algorithm for finding the maximum weight subgraph from a larger
graph such that the subgraph has in-degree and out-degree equal to b for each node. Meanwhile,
k-nearest neighbor only finds the maximum weight subgraph from an original graph that only has
out-degree (or in-degree) equal to k for each node (a less constrained optimization).

Assume we are given an N × N matrix A ∈ <N×N which captures pairwise similarity for each pair
of points in an N -point dataset. For instance, we may use a radial basis function kernel between
all pairs of points x1, . . . ,xN in the dataset. In that case, we have Aij = exp(− 1

2σ
‖xi − xj‖

2).
Typically, this is the first step in forming a graph for learning embedding, spectral clustering or even
certain types of classifiers. Subsequently, one can compute k-nearest neighbors which is equivalent
to finding a binary matrix P ∈ B where B is the space of binary matrices {0, 1}N×N that represents
the connectivity of the k-nearest neighbors. This matrix is initialized to zeros and then updated by
going through the nodes for i = 1 . . .N and setting Pij = Pji = 1 if Aij is one of the top k values
for j = 1 . . .N . Often, k-nearest neighbors is solved using a O(kN 2) time implementation (faster
variants are sometimes possible using ball trees, KD trees and VPN trees). Meanwhile, b-matching
(a generalization of 1-matching and the classic Kuhn-Munkres or Hungarian algorithm) is optimally
solvable in O(bN3) time. However, it also enforces that each point has b-nearest neighbors and that
only b (or k) other points can use it as their own neighbors:

max
P∈B

∑

ij

AijPij s.t.
∑

i

Pij =
∑

j

Pij = b

Fig. 1. Noisy Tea Pot Images

In Figure 1 we show a preliminary dataset for the b-matching algorithm as it learns a slightly different
graph from the tea pot data set with added noise. This dataset contains images of a teapot that is
being rotated 360 degrees. We downsampled the dataset to 100 images and added noise to make the
problem harder. In Figure 2 we see the graph recovered by both the k nearest neighbors approach
and the b-matching approach after we have embedded the graphs in two dimensions using the semi-
definite embedding (SDE) approach of [6]. Note how b-matching, unlike k-nearest neighbors, recovers



an embedding which is a circle thus capturing that proper nonlinear manifold that corresponds to
a rotation. Varying k for the k-nearest neighbors across k = 2, k = 3, k = 4 and beyond did not
improve the situation for k-nearest neighbors.

Fig. 2. K-Nearest-Neighbors vs. B-Matching in Semidefinite Embedding

Furthermore, we can now subscribe to the view that learning the graph is part of the optimization of
a cost function as opposed to a preprocessing. The equations above suggest that graph structure and
connectivity can be represented as a binary N × N matrix. We can thus interleave graph structure
learning with embedding estimation. We perform alternating minimization over the embedding and
the graph structure learning (via b-matching) to minimize the overall cost function of interest in
SDE. For instance, we iteratively reduce the cost:

min
K,P

max
β

tr(K) +
∑

ij

βijPij(Kii − 2Kij + Kjj − Aii + 2Aij − Ajj)

where P is a binary matrix summing to b row and column-wise, K is the centered positive semidefinite
embedding K ≥ 0 and

∑
ij Kij = 0 and β is a matrix of Lagrange multipliers forcing the embedding

to preserve distances. Finally, it is interesting to view b-matching as a general alternative to k-
nearest neighbor in other learning settings. This even includes using b-matching as classifier instead
of kNN where points are merely classified by taking votes from the labels of their k nearest neighbors.
Despite b-matching’s extra computational work, it may still be useful in these settings as well.

References

1. M. Belkin, I. Matveeva, and P. Niyogi. Regularization and Semi-supervised Learning on Large Graphs.
COLT 2004.

2. M. Meila, and J. Shi. Learning Segmentation by Random Walks, NIPS, 2000.

3. M. Muller-Hannemann and A. Schwartz, Implementing weighted b-matching algorithms: insights from
a computational study, J. Exp. Algorithmics, vol. 5, 2000.

4. A. Ng, M. Jordan and Y. Weiss. On spectral clustering: Analysis and an algorithm, NIPS, 2001.

5. S. Roweis and L. Saul (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding, Sci-

ence, vol. 290, no. 5500.

6. K.Q. Weinberger, F. Sha, and L.K. Saul, Learning a kernel matrix for nonlinear dimensionality reduction,
International Conference on Machine Learning, 2004.


