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Abstract
A real-time system is described for automatically

detecting, modeling and tracking faces in 3D. A closed
loop approach is proposed which utilizes structure from
motion to generate a 3D model of a face and then feed
back the estimated structure to constrain feature track-
ing in the next frame. The system initializes by us-
ing skin classi�cation, symmetry operations, 3D warp-
ing and eigenfaces to �nd a face. Feature trajectories
are then computed by SSD or correlation-based track-
ing. The trajectories are simultaneously processed by
an extended Kalman �lter to stably recover 3D struc-
ture, camera geometry and facial pose. Adaptively
weighted estimation is used in this �lter by modeling
the noise characteristics of the 2D image patch tracking
technique. In addition, the structural estimate is con-
strained by using parametrized models of facial struc-
ture (eigen-heads). The Kalman �lter's estimate of the
3D state and motion of the face predicts the trajectory
of the features which constrains the search space for the
next frame in the video sequence. The feature track-
ing and Kalman �ltering closed loop system operates
at 30Hz.

1 Introduction
Facial pose, 3D structure and position provide a

vital source of information for applications such as
face recognition, gaze tracking and interactive envi-
ronments. We describe a real-time system that auto-
matically provides such measurements from real-world
video streams. These two key attributes (real-world
video and real-time) limit us to the types of image pro-
cessing we can do. Computations must be fast without
sacri�cing generality and robustness to a wide variety
of face tracking scenarios. We propose a system that
involves the marriage of robust face detection and fast
face tracking. The system gracefully reverts to face
detection when tracking fails and re-initializes fast face
tracking anew. Tracking is accomplished by minimizing
normalized correlation over translation, rotation and
scale. However, tracking is intimately coupled with
feedback from a parametrized structure from motion
framework. This allows us to overcome some limita-
tions of linearized 2D image patches by the simultane-
ous recovery of underlying global 3D structure.

Motion provides a strong cue for estimating 3D
structure, pose and camera geometry. However, sta-
ble and accurate structure from motion has typically
been a purely bottom-up approach requiring high qual-
ity feature tracking. Moreover, structure from motion
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Figure 1: The Integrated System

(SfM) is usually constrained exclusively by rigidity as-
sumptions. However, it is possible to further constrain
the estimation of 3D shape if the range of the 3D struc-
tures is de�ned a priori. In other words, if only faces
are to be tracked, SfM can be limited by 3D head mod-
els of human faces so that unlikely con�gurations will
be eliminated. We describe a global tracking frame-
work which takes advantage of automatic initialization
and 3D parametrized structural estimation to perform
reliable feature tracking.

The details of such a tracking system are discussed
starting with initialization which is performed via au-
tomatic detection of facial features. The components of
our face detection algorithm include skin classi�cation,
symmetry transforms, 3D normalization and eigenface
analysis. Once initial locations of these facial interest
points are determined, the system tracks these features
using 2D SSD correlation patches (spanning rotation,
scale and translation). However, such tracking alone
is incapable of dealing with 3D out-of plane and other
non-linear changes. Thus, the 2D tracking and its noise
characteristics are coupled to a structure from motion
algorithm that simultaneously recovers an estimate of
the pose and of the underlying 3D structure of the face.
This structure is further constrained by a training set of
3D laser-scanned heads represented as a parametrized
eigenspace. This prevents invalid 3D shape estimates in
the structure from motion computation. This �nal �l-
tered 3D facial structure and pose estimate is fed back
to control the 2D feature tracking at the next iteration
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and overcome some of its inherent 2D limitations.
The fully integrated system is displayed in Figure 1.

Note the fast face tracking loop and the slower face de-
tection loop. The system switches between these two
modes using eigenface measurements. If the object be-
ing tracked is a face, tracking continues. However, if
the object being tracked is not face-like, reliable face
detection is used to search the whole image for a new
face. In addition, note the coupling of feature track-
ing, structure from motion and 3D eigen head model-
ing. This closed loop feedback prevents tracking from
straying o� course.

2 Facial Feature Detection
Automatic face detection and facial feature localiza-

tion has been a di�cult problem in the �eld of com-
puter vision for several years. This can be explained
by the large variation a face can have in a scene due to
factors such as facial position, expression, pose, illumi-
nation and background clutter. We propose a system
that uses simple image processing techniques to �nd
candidates for faces and facial features and then selects
the candidate formation that maximizes the likelihood
of being a face, thereby pruning the false alarm candi-
dates.

Starting with skin classi�cation, the system �nds
blob-like regions in the image which might be faces.
The symmetry transform is applied to the skin regions
to �nd dark blobs that could be eyes and horizontal
limbs that could be a mouth. Simple vertical edge de-
tection yields an approximation for the locus of the
nose. A 3D model of the average human head is then
aligned to anchor points at the position of the eyes,
nose and mouth and warped into a canonical frontal
view. By warping the image at various anchor points
and minimizing \Distance From Face Space", the sys-
tem �nds the most likely locations of eyes, nose and
mouth from all possible candidates. The algorithm [6]
is explained in further detail below.

2.1 Skin Classi�cation using EM
Human skin forms a dense manifold in color space

which makes it an easy feature to detect in images [10].
We obtain multiple training samples of skin from im-
ages of several individuals of varying skin tone and un-
der varying illumination conditions. Each pixel in this
distribution forms a 3 element vector, [R G B]. We
perform clustering on this distribution of pixels using
Expectation Maximization to �nd a probability distri-
bution model for skin colors. This model is a mixture
of Gaussians and cross-validation is used to determine
the appropriate number of Gaussians to use in the EM
algorithm. The probability distribution model we used
is shown in Figure 2 and is described by Equation 1
where x is an (R,G,B) vector.

p(x) =
nX
i=1

mixiexpf�1
2(x � �i)T�

�1
i (x � �i)g

(2�)(d=2) j �i j1=2 (1)

When a new image is acquired, the likelihood of each
pixel is evaluated using this model and if it is above a
threshold of probability, it is labeled as skin. Then,
a connected component analysis is used to determine
the regions of skin pixels in the image. This process
is demonstrated in Figure 3. The largest skin blob is
then processed further to search for facial features. It
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Figure 2: The Skin Color Distribution and the Gaus-
sian Mixture Model

Figure 3: Skin Classi�cation

is possible to consider the smaller skin blobs as well in
case the face is not the largest skin-colored object in
the scene.

2.2 Symmetry Transformation
Using the detected skin contour and some simple

heuristics, a window can be de�ned which is expected
to contain the eyes. We then propose the use of the
dark symmetry transform [3] [7] [9] [6]. This is an
annular sampling region which detects edge con�gura-
tions that enclose an object. However, unlike template
matching, a perceptual measure of symmetric enclosure
is computed and blob centers are detected. When ap-
plied at the appropriate scale within a window de�ned
by the skin contour, this transform consistently detects
the eyes in the face. The dark symmetry transform is
computed from a phase and edge map by wave propa-
gation (for computational e�ciency). For each point in
the image p, at each scale or radius r and for each sym-
metry orientation  we �nd the set of cocircular pairs
of edges �r; (p). The magnitude of axial symmetry in
the (p, r,  ) space is as follows:

Sr; (p) =
X

�i;�j��r; (p)

k�i k k�j k (sin�=2)w1 (2)

where k�i k and k�j k are the edge intensities of the
two co-circular edges and � is the angle separating their
normals.

Then, radial symmetry is determined from the axial
symmetry map as in Equation 3 and Equation 4. Fi-
nally, the symmetry map undergoes Gaussian smooth-
ing and local maxima are determined.

S (p) =
rmax
max
r=0

Sr; (p) (3)

I(p) =
X
 i; j

S i (p)S j (p)(sin( i �  j))
w2 (4)

The strongest peaks of dark symmetry are candi-
dates for eye positions. Simple heuristics are used to
reject pairs of eyes that have insu�cient intra-occular
distance (w.r.t the skin blob) and that form an angle
larger than 20 degrees from the horizontal. The inter-
est map resulting from the dark symmetry transform
is shown in Figure 4.



Figure 4: Symmetry Transform's Possible Candidates
for Eyes

Horizontal limb extraction is performed to �nd the
mouth from the dark axial symmetrymap. The longest
linked limb is selected as the mouth.

Additionally, a coarse estimate for the nose's vertical
location is found by searching for the strongest vertical
gradient in the intensity image that lies in a region
bracketed by the eyes and the mouth.

At this stage, a variety of candidates have been de-
tected as possible facial features. These candidates
must be tested by more discriminating techniques to
discard false alarms and to re�ne localization.

2.3 3D Facial Pose and Directional Illumi-
nation Normalization

We begin by considering a set of candidate anchor
points for the facial features (eyes, nose and mouth).
These may be detected in a variety of con�gurations.
The loci of these feature points gives an estimate of
the pose of a face. Unfortunately, not all faces will be
facing the camera in a canonical frontal view and this
prevents us from using techniques such as eigenspace
analysis where correspondance is important. We thus
propose to warp a detected face into frontal view using
a 3D model of a head.

A 3D range data model of an average human face is
formed o�-line from a database of range data and is de-
picted in Figure 5(a). Several Cyberware range models
were averaged in 3D to obtain this average head. The
eyes, nose and mouth were located on the models and
used to align them via a 3D mapping and a vertical
stretch into a standard pose. This alignment was done
by manually selecting the 4 points and then using a
least-squares iterative �t of the 3D anchor points.

Using the computed average 3D model, a Weak-
Perspective-3-Points [1] computation can then be used
to align its eyes and nose to the ones found in a 2D im-
age. The model is also iteratively deformed by a verti-
cal stretch so that its mouth is also properly aligned
with the mouth in the 2D image as shown in Fig-
ure 5(c).

Once the optimal 4-point alignment is found, the 2D
image's intensity data is mapped onto the 3D structure
that now overlaps it. Thus, the 3D mesh is 'coated'
with the appropriate intensity values of the underly-
ing 2D image. This coated 3d model is shown in Fig-
ure 5(d). If parts of the 3D structure are occluded due
to excessive rotation, we use symmetry to mirror the
face intensities across the midline of the 3D structure.
The 3D structure is then rotated into a normalized
frontal view and projected to form a segmented, mug-
shot image of the face. Thus, we generate a frontal,

(a) Average Head (b) Input Image

(c) Model Aligned (d) Coated (e) Mug-Shot

Figure 5: Normalizingwith 3DWarping and Histogram
Fitting

Figure 6: The Mean Face and the First 4 Eigenfaces

colour mug-shot of the individual from the original im-
age and 4 anchor points corresponding to facial fea-
tures.

Each side of this new 2D face undergoes histogram
�tting to normalize its illumination [11]. Two transfer
functions are computed: one for mapping the left half
of the face to a desired histogram (i.e. a histogram
of a well-illuminated face) and the other for mapping
the right half of the face. A weighted mixture of these
transfer functions is used as we traverse from the left
side of the face to the right side, smoothly removing
directional shading of the face. Furthermore, the gen-
eration of the transfer functions is windowed to avoid
facial hair and head hair so that illumination normal-
ization does not over-brighten mug-shots of bearded
men and so on. The fully normalized face is shown in
Figure 5(e).

2.4 Eigenspace Distance Measures on 3D
Warped Faces

A database of colour face images was collected and
for each image the locations of the facial features were
manually identi�ed. These loci were then used to gen-
erate normalized mug-shots as explained above. In ad-
dition, the loci were perturbed with random spatial
noise to generate multiple mug-shots of each face with
slightly misaligned feature locations. This makes the
eigenspace sligthly less sensitive to precise feature lo-
calization. A colour eigenspace of these normalized
mug-shots is constructed and the mean face and the
�rst 4 eigenfaces are shown in Figure 6.

By projecting a new mug-shot into the span of these
eigenvectors, we can compute its coe�cients in this new
basis as well as the residual error. We also approxi-
mate its distance to the training set of faces (distance
to face-space) or how 'face-like' it is using this represen-
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Figure 7: Localization
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tation [8]. The training set of faces is mapped into this
eigenspace and the distribution of the coe�cients and
residuals is modeled as a Gaussian density. The max-
imum likelihood estimate for the probability of a data
point �tting this model is computed using this Gaus-
sian. This gives us a measure of the 'faceness' or how
face-like a given mug-shot is (or, conversely, an image
with 4 anchor points as it is warped into a mug-shot).

Now, refer to Figure 7(a). Up until now, detection
should have recovered a combination of eyes, mouth
and nose vertical height. However, it is still uncertain
where the exact horizontal position of the nose was on
the face. Thus, we attempt 12 di�erent normalizations
and K-L projections along the horizontal line across the
nose's bottom. The 12 candidate nose anchor points
along this line generate 12 normalized mug-shots and
their 'distances to face-space'. These are shown as we
test for a nose along each point on the horizontal line
(Figure 8). Face 0 is generated by setting the nose
anchor point all the way to the left of the nose-bottom-
line and Face 12 is generated by the anchor point on the
right tip of the line. The normalized face vector with
the highest 'faceness' probability corresponds to the
best possible nose localization (i.e. minimal DFFS).

The �nal position of the eyes, nose and mouth are
shown in Figure 7(b). If time is not critical, we sug-
gest using search or optimization techniques to re�ne
the position of these locations by searching locally for
the 3D normalization that minimizes distance to face-
space.

The time required for detecting facial feature points
is of the order of 1 second. Having found a face and
facial feature points that meet a threshold on our 'face-
ness' measure, we can initialize the tracking system ap-
propriately. Note that, if the face detector was slower
than 0.5 to 1 Hz, the tracking could not be initial-
ized properly because the face will probably move away
from the localization during the time the detection was
being computed.

Figure 9: Initialized Correlation Based Trackers

3 2D Feature Tracking
Having determined the locations of facial features

in the image, it is now possible to de�ne a number
of windows on the face which will be used for tem-
plate matching via SSD correlation [5]. Using a simple
mapping, a set of windows are overlayed upon the face
automatically from the data gathered in the face de-
tection stage. A typical initialization result is shown
in Figure 9. Eight tracking windows are initialized on
the nose, the mouth tips and the eyes automatically as
shown. These windowed correlation trackers acquire
templates from the image and minimize the SSD of the
underlying image patch from one frame to the next.
The image patches �rst undergo contrast and bright-
ness compensation. Registration of the image patch
from one frame to the next is accomplished by minimiz-
ing the normalized correlation over translation, scaling
and rotation parameters. A linear approximation of
the behaviour of the image patch under small transla-
tion, scaling and rotation perturbations can be used to
recover the motion of the image patch. Only simple lin-
ear computations are required for this (i.e. no explicit
searching) rendering the computation quite e�cient.

Given an image I(x; 0) at time 0, we wish to �nd �
that minimizes O(�) de�ned in Equation 5.

O(�) =
X
x�<2

(I(f (x; �); � )� I(x; 0))2 (5)

Where f (x; �) is a motion parametrized by vector �
which allows translation, rotation and scaling. In other
words, � = (Tx;Ty; �; scale). Solving for � in an op-
timal `2 sense is performed by computing the pseudo-
inverse of a matrix composed of the motion templates.
Such a solution for � is only valid for small displace-
ments and smoothing is used to extend the applicable
range of the solution.

The minimum value of O(�) is also recovered by the
process which gives us a cue for the reliability of the
resulting optimal �.

Unfortunately, minimizingO(�) over rotations, scal-
ing and translations cannot account for other 3D or
complex changes in the image region. Such changes
might be induced by 3D out of plane rotations, occlu-
sions or noise and could easily mislead the estimate of
�. Thus, the correlation window typically loses track
of the feature being tracked if it undergoes excessive
change beyond the span of the 2D motion model. In
addition, due to the local nature of the tracking algo-
rithm, it would be extremely unlikely for feature track-
ing to recover from this failure without external as-
sistance. Even if multiple features are being tracked,
without a strong coupling feature tracking will even-



tually fail. As unpredictable e�ects such as 3D struc-
ture, occlusion and noise, interfere with the 2D track-
ing, each of the feature trackers will stray o� in turn
and yield invalid spatial trajectories.

What is desired is a global framework that over-
comes some of the di�culties inherent in simple 2D
tracking by coupling the individual trackers to a global
3D structure. The outputs of the trackers are inte-
grated appropriately to achieve a global explanation
of the scene which can be fed back to constrain their
individual behaviour and avoid feature loss.

4 Structure from Motion
Recently, structure from motion has been reformu-

lated into a stable recursive estimation problem and
been shown to converge reliably [2]. By remapping
the data into a new parametrized representation, what
was essentially an under-constrained problem becomes
uniquely solvable with no numerical \ill-conditioning".

4.1 Stable Representation for Recursive
Estimation

The objective of SfM is to recover 3D structure,
motion and camera geometry. These form the \inter-
nal state vector", x of the system under observation.
These internal states are to be recovered by observation
measurements of the system. For a thorough justi�ca-
tion of the internal state vector representation, consult
Azarbayejani and Pentland [2]. One internal state pa-
rameter is the camera geometry. Instead of trying to
estimate focal length to describe the camera, we esti-
mate � = 1

f . The structure of points on the 3D object

is represented with one parameter per point instead
of an XYZ spatial location. The mapping from this 3
Cartesian form to one parameter is described in Equa-
tion 6 where � is the new representation of structure
and u and v are the coordinates of the point in the
image plane when tracking is initialized."

X
Y
Z

#
=

"
(1 + ��)u
(1 + ��)v

�

#
(6)

In addition, we de�ne translation as (tX ; tY ; tZ�).
Rotation is de�ned in terms of (!X ; !Y ; !Z) which are
the incremental Euler angles for the interframe rota-
tion. This representation of rotation overcomes the
normality constraints of the quaternion representation
by linearizing with a tangent hyper-plane on the unit
hyper-sphere formed by the quaternion representation.

The �nal representation of the internal state vector
has a total of 7+N parameters where N is the number
of feature points being tracked (each of which requires
one scalar depth value to determine 3D structure):

x = (tX; tY; tZ�; !X; !Y; !Z; �; �1; �2; :::; �N) (7)

At each time step, we also have a measurement or
observation vector, y of size 2N with the following
form:

y = (X1;Y1;X2;Y2; :::;XN;YN) (8)
Where (Xi; Yi) are the positions of a feature point

currently being tracked in the image. Unlike other for-
mulations which are underdetermined at every time
step, the above parametrization of the SfM problem
is well-posed when 2N � 7 +N or when N � 7. Thus,
if 7 or more feature points are being tracked in 2D si-
multaneously, a unique, well-constrained solution can

be found for the internal state and a recursive �lter can
be employed.

Due to the non-linearities in the mapping of state
vector to measurements, an extended Kalman �lter is
used as the estimator. The dynamics of the internal
state are trivially chosen to be identity with Gaussian
noise for each time step.

4.2 Mapping 2D Feature Tracking into the
Kalman Filter

As was discussed previously, each feature tracker re-
covers an optimal � motion parameter by minimizing
O(�). However, since the 2D feature tracking in ques-
tion was being used to recover translation, rotation and
scale, the � vector has 4 degrees of freedom (not merely
2). We can represent these 4 degrees of freedom as 2
point features that are free to translate independently.
In other words, two arbitrary points on the correlation
window are selected (i.e. 2 opposing corners) and it is
trivial to compute their locations from a correspond-
ing � transformation (translation, scale and rotation).
This mapping goes both ways and we can model the 2D
tracking for each image patch with the SSD model us-
ing � or using the positions of 2 distinct feature points
somewhere within the window (X1; Y1; X2; Y2). ForM
correlation-based windows, we compute the (X,Y) loca-
tion of N = 2M points. These feature points are then
arranged into the y vector for input into the EKF.

4.3 Mapping Residuals to Spatial Uncer-
tainty

At each iteration, one more output can be recovered
from the 2D correlation based tracker in addition to
�. The output in question is the actual value of the
residual O(�). This residual can be used to weight
the input measurements feeding into the Kalman �lter.
Thus, if a feature has a very high residual, the �lter
should trust its spatial information less and focus on
other feature tracks. In addition, if a feature is lost or
occluded, its correlation window will have a very high
residual error and the Kalman �lter should essentially
ignore its contribution to the estimation.

Recall that Kalman �ltering uses a noise covariance
matrix to describe the expected noise on input mea-
surements. Traditionally, the noise covariance matrix
is denoted R and is n � n where n is the number of
measurements in the observation vector y. The role
of R in the computation of the Kalman gain matrix
described by Equation 9. Adaptive Kalman �ltering
[4] proposes the use of a dynamically varying R ma-
trix that changes with the arrival of new observation
vectors to model the con�dence of the new data. By
changing R using the values of the residuals of the 2D
correlation based trackers, we can assign a weight on
the observations they provide and end up with a more
robust overall estimate of internal state.

K = P�HT [HP�HT + R]�1 (9)

At this stage, we address the issue of relating resid-
uals from the correlation-based trackers to the noise
covariance matrix on the feature points being tracked
for Kalman �ltering. We propose �tting a function that
models the residual as a function of spatial uncertainty.

Consider, �rst, the simple case of SSD tracking with
only translational motion. We observe the residuals be-
tween an image patch I(x; 0) and the same image patch
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after a given translation I(f (x; �); 0). The residual is
expected to grow as alignment errors increase and this
value is plotted over various perturbations in x and y
translation (�x;�y) as shown in Figure 10. We can
model this residue function with respect to (�x;�y)
as a 2D paraboloid centered at (0; 0) by sampling var-
ious values of (�x;�y) and �tting in a least-squares
sense. The result of this �tting is a �tted paraboloid
as shown in Figure 10. Note that these residual error
functions or paraboloids have di�erent shapes for dif-
ferent textures over which normalized correlation is to
be applied.

Extending this concept to 4D (the true dimension of
� in our application), we can compute a 4D paraboloid
which maps the spatial error in alignment to correla-
tion residue error. This process is performed on all
image patches being tracked each time the system is
initialized. The perturbations on � are computed for
a variety of �X = (�X1;�Y1;�X2;�Y2) perturba-
tions and a 4D paraboloid of the form in Equation 10
is found.

p
SSD = �X

2
64
axx axy axm axn
axy ayy aym ayn
axm aym amm amn
axn ayn amn ann

3
75�XT (10)

Having solved this 4D paraboloid, we can �nd the
4D ellipsoid that corresponds to a given value of residue
directly. The surface de�ned by the 4D ellipsoid is
essentially the error window on the current estimate
of (X1; Y1; X2; Y2) from the correlation based tracking.
Under the paraboloid noise model, it is straightfor-
ward to show that the 4D iso-residual surface (the ellip-
soid) is also a 4D iso-probability surface for a Gaussian
model of the spatial noise on the current estimate of
(X1; Y1; X2; Y2). Thus, the Gaussian error on the cur-
rent feature points can be estimated by the following
4� 4 covariance matrix in Equation 11.

C / p
SSD

2
64
axx axy axm axn
axy ayy aym ayn
axm aym amm amn
axn ayn amn ann

3
75
�1

(11)

For each of the N correlation windows in the track-
ing, a 4x4 sub matrix of the form of C can be computed

and these are placed into the matrix R in the Kalman
�lter. For feature i, we compute a noise covariance Ci
and place it into R which becomes block-diagonal as
shown in Equation 12.

R = diag(C1; C2; :::CN) (12)
At each iteration, the rotation, scaling and residue of

a correlation window determine the rotation and scal-
ing of the covariance sub-matrix Ci associated with it.
Thus, R is adaptively adjusted to reect the noise on
the spatial position of the feature points being tracked.
In addition, these covariances are determined by a sen-
sitivity analysis and are specialized to the noise char-
acteristics of the particular texture being tracked.

Thus, at each iteration, we have an appropriate
weighting of feature tracks determined by the current
orientation and scale of the correlation trackers as well
as their residual values and the spatial sensitivity of
the textures they have been initialized to track. The
Kalman �lter abstracts the rest of the estimation and
returns the structure, motion and camera geometry op-
timally from the weighted set of inputs.

5 Initialization and Parametrization of
the Kalman Filter State Vector

Since the particular objects being tracked by the sys-
tem are faces, we can initialize the system with a 3D
model of the structure of a head to speed up conver-
gence of true structural motion. In addition, during
tracking and estimation, a more constrained set of 3D
con�gurations for the structural estimate in the SfM
solution is expected. Only faces are being tracked so
we do not wish to allow the structural estimate of the
SfM computation to diverge to another shape. Thus,
we propose �ltering the estimated 3D structure com-
puted by the EKF to avoid any unreasonable estimates.
This is done by constructing an eigenspace �lter from
a set of previously scanned 3D structures.

Recall the set of cyberware heads used to gener-
ate the average 3D human head for face detection.
These 3D models have all been aligned into frontal
view. When automatic face detection determines the
loci of eyes, nose and mouth, it aligns a 3D aver-
age head model to these locations. Thus, it auto-
matically has an estimate of the depth map of the
face and the depth values at the positions of the fea-
ture points to be tracked are sampled. In addition,
the system has an estimate for the 3D pose of the
face (TX ; TY ; TZ ; �X ; �Y ; �Y ). The SfM state vector
can thus be initialized (camera geometry is arbitrar-
ily set to � = 0:5) using much of the information
from the previous face detection stage which gives us
xt=0 = (TX;TY;TZ�; �X; �Y; �Y; �1; �2; :::; �N).

During tracking, the structural estimate can also
be �ltered to prevent any non-face-like structural es-
timates. Recall that the average 3D head model
was aligned to the locations of the eyes, nose and
mouth. Susbequently, the 3D model of the average
head generates a depth map to �nd the initial val-
ues for (�1; �2; :::; �N). This is also done for each of
the other cyberware heads so that multiple vectors
of � = (�1; �2; :::; �N) are generated. We perform a
Karhunen-Loeve decomposition on 12 such � vectors
from our 12 cyberware 3D head models and obtain a
parametrized representation of the structure.

The eigenspace is computed each time the system
is initialized since the parametrization of structure



(�1; �2; :::; �N) depends on initial feature positions in
the image plane. However, due to the small size of the
training set, this computation is trivial.

A linear subspace is formed from the �rst 4 eigen-
vectors of this eigenspace (the eigen-�-structures). At
each time time step, we project the Kalman �lter's cur-
rent estimate of structure into this eigenspace. Thus,
the N degrees of freedom in the structural estimate are
constrained by the 4 degrees of freedom in our linear
subspace of facial structure. Equation 13 maps the cur-
rent structure vector into an eigenspace parametriza-
tion by projection onto the eigenvectors ei. Equa-
tion 14 reconstructs the �ltered structure vector, �̂.
Thus, constraints are introduced into the loop by �lter-
ing the recovered SfM information with an eigenspace.

ci = � � ei (13)

�̂ =
i=4X
i=1

ciei (14)

6 System Integration and Feedback
We now go over the implementation details of the

system integration and the feedback process. The sys-
tem begins with the face detection loop and repeats
until a face is detected and satis�es a threshold on dis-
tance from face-space. The facial features detected are
eyes, nose and mouth. From these features, a set of
templates can be placed on the face (one on each tip
of the mouth, one on each side of the nose, and two for
each eye). These acquire the underlying texture and
then a sensitivity analysis is performed to obtain the
mapping between spatial uncertainty and correlation
residual. A depth map of the face is obtained by �t-
ting a 3D model to the position of the features and this
is used to initialize the depth parameters of a Kalman
�lter that recovers structure from motion.

The correlation-based feature trackers begin by
tracking in a nearest-neighbour sense and search lo-
cally for the facial features. However, at each iteration,
the Kalman �lter computes an estimate of the rigid 3D
structure that could correspond to the motion of the set
of 2D SSD trackers. This global estimate is weighted
using the noise characteristics and residuals of the 2D
tracking. Once this structure is computed and an esti-
mate of orientation and camera focal length are found,
the 3D structure is �ltered using an eigenspace of 3D
head shape. The �nal 3D structure, motion and focal
length are used to projected feature points back onto
the image to determine an estimated position of the
2D feature trackers. Then, at the next frame in the
sequence, correlation-based search is performed start-
ing at this 3D estimated position as well as starting
at the original destination of the feature track. The
best match of these two searches is then fed back into
the Kalman �lter as the 2D spatial observation vector
and the loop continues. Two searches are performed
for each SSD tracker since the EKF may possibly per-
form worse than straight neareset-neighbour searching
before structural convergence. The feedback from the
adaptive Kalman �lter maintains a sense of 3D struc-
ture and enforces a global collaboration between the
separate 2D trackers.

In addition, at each iteration, the orientation of the
face is computed and is used to warp the face image
back into frontal view to compute 'distance to face

space'. If DFFS is below a threshold, tracking contin-
ues. Otherwise, the system reverts back to the initial
detection stage.

7 Testing and Performance
The full detection and tracking loop was tested on

live video streams. Typically, detection found a face
within 1 or 2 loops and was able to handle � 20 de-
grees rotation in-plane as well as roughly � 20 de-
grees rotation out-of-plane. This exibility is due to
the rather lax constraints on feature detection and the
heauristics in the search. However, the consequent false
alarms are eliminated by using 3D normalization and
a strict eigenspace DFFS technique. Thus, subjects
do not need to look explicitly at the camera for track-
ing to commence since detection can handle non-frontal
views. Detection has been tested successfully in a wide
variety of backgrounds, under many views and with nu-
merous subjects. The system was used to detect facial
features in the Achermann face database (courtesy of
the University of Bern in Switzerland) and obtained
over 90% success even though the skin classi�cation
stage was not used (the images were gray-scale). The
database contains 30 individuals in 10 di�erent views
(of which 8 involve signi�cant out-of-plane rotation).

Real-time tracking was tested on the live video se-
quence shown in Figure 11. Roughly 2000 frames were
tracked without feature-loss (over 1 minute of tracking
in real-time). The �ltered tracking windows are shown
projected on the face. The normalized mug-shot (after
3D warping and illumination correction) is shown at
the bottom of Figure 11.

As can be seen, the subject is undergoing large in-
plane and out-of plane rotations in all axes as well as
partial occlusion (in frame 827). Out-of-plane rota-
tions of over � 45 degrees are tolerated without feature
loss. Even though almost half of the correlation-based
trackers may be occluded under large, out-of-plane ro-
tations, the global EKF �ltering maintains tracking us-
ing the visible features. Unless very jerky motion is
used or extreme out-of-plane rotations are observed,
the system maintains tracking and does not exhibit in-
stability. The system has been tested on multiple sub-
jects from live video streams and tracking performance
is consistent.

Figure 12(a) displays the typical residual correla-
tion error of a tracking window. However, this noisy
behaviour is �ltered and a stable estimate of depth
structure is obtained in Figure 12(b). The EKF con-
verges quickly to the true underlying 3D geometry de-
spite noisy feature tracking. We also measured the SSD
residual between the initial mug-shot (at frame 0) and
the current normalized face. Figure 12(d) displays the
DFFS value over the sequence which is used as a cue
to stop tracking (when DFFS is too large). In this se-
quence, the threshold was set to a generous value of
0.5 and face detection was not re-used since tracking
did not fail. However, if the DFFS value were to exceed
0.5, tracking would stop and detection would search for
a new face.

8 Conclusions
We have presented an integrated system for detect-

ing, modeling and tracking faces in real-time. The sys-
tem uses detection to automatically initialize a track-
ing system and to re-initialize upon failure. The track-
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Figure 11: Real-Time Closed-loop tracking of a sample video sequence.
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Figure 12: EKF Estimates and Residual Errors.

ing system uses a feedback approach to stabilize 2D
correlation-based trackers by recovering structure from
motion and constraining structure with learned 3D fa-
cial geometry. Adaptive Kalman �ltering is used to
weight features by determining a mapping between 2D
spatial tracking accuracy and textures and correlation
residuals. The system achieves greater stability un-
der 3D variations, occlusion and local feature failure
since a global estimation framework links the individ-
ual trackers by acquiring the underlying 3D structure
of the face. The system is demonstrated on live video
sequences where it tracks large out-of-plane rotations
stably.

We are currently investigating more sophisticated
representations of the 3D model of facial structure to
better constrain the structure from motion problem.
In particular, it is possible to place the model's struc-
tural parameters (i.e. the coe�cients of the eigenspace)
directly into the EKF as parameters in its internal
state vector. This would replace the current estima-
tion and post-processing of point-wise depth structure.
The linearization in the EKF would be performed on
our eigenspace of 3D heads directly and would be used
to form the Jacobians for the estimation of internal
state.
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