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Optimization

Machine Learning

@ Unsupervised

<

Given D = (y:)._, sampled iid from unknown P(y)
Given family of functions pg(y) parametrized by 6

Find @ by minimizing some cost (e.g. partition function)
Output pe(y)

@ Supervised

¢ ¢ €

<

Given D = (xt, yt);—; sampled iid from unknown P(x,y)
@ Given family of functions pg(y|x) parametrized by 6

s Find 0 by minimizing some cost (e.g. partition function)
o Predict using § = arg max, pa(y|x)

@ Today: a new simple bound for such optimizations



Optimization

Optimization in Learning: Three Schools of Thought

Ways to optimize parameters to data
@ First order methods
@ Steepest descent
@ Conjugate gradient
o Stochastic gradient descent
o Bundle methods
@ Second order methods
o Newton
@ BFGS [Broyden; Fletcher; Goldfarb; Shanno '70]
@ Limited memory BFGS [Liu & Nocedal "89]
@ Majorization and bounding methods
@ Expectation-Maximization [Baum 1970, Dempster '77]
Generalized iterative scaling [Darroch & Ratcliff '72]
Majorization or majorize/minimize [deLeeuw & Heiser '77]
Quadratic lower bound principle [Bohning & Lindsay '88]
Improved iterative scaling [Berger et al. '97]
Extended Baum-Welch [Kanevsky et al. '08]
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Optimization

Majorization

If cost function 8* = arg ming C(@) has no closed form solution
Majorization uses with a surrogate  with closed form update
to monotonically minimize the cost from an initial 6

@ Find bound Q(6,80;) > C(0) where Q(6;,0;) = C(6;)
@ Update 6;,1 = arg ming Q(0, 0;)

@ Repeat until converged
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Partition Bound

Partition Function

@ Central quantity to optimize in
@ Maximum likelihood and e-family [Pitman & Wishart '36]
Maximum entropy [Jaynes '57]
Conditional random fields [Lafferty, et al. '01]
Log-linear models [Darroch & Ratcliff '72]
Graphical models, HMMs [Jordan, et al. '99]

@ Majorization preferred until [Wallach '03, Andrew & Gao '07]

]
]
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Method Iterations | LL Evaluations | Time (s)
1) > 150 > 150 > 188.65
Conjugate gradient (FR) | 19 99 124.67
Conjugate gradient (PRP) | 27 140 176.55
L-BFGS 22 22 29.72

The problem: loose & complicated bounds. Let's fix this!



Partition Bound

Partition Function

Consider log-linear model over discrete y € Q2 where Q2| = n

1

pYIO) = S e (071())

Parameters are vector 8 € R
Features are f : Q — RY mapping each y to some vector

Prior is h: Q — R™ a fixed non-negative measure

Partition function ensures that p(y|@) normalizes

Z(6) = > h(y)exp(8f(y))

y

Problem: it's ugly to minimize, we much prefer quadratics



Partition Bound

Partition Function Bound

The bound InZ(0) < Inz+ (6 — 6)'(0-6)+(0-6)"n
is tight at 6 and holds for parameters given by

Input 0,f(y), h(y)Vy € Q
Initz—0", u=0% = zI
For each y € Q {

a = h(y)exp(6'f(y))

! :f()/)l—ﬂ g
__tanh(5 In(a/2)) o T S

R AR :

p+= 5!

z+=a }

Output z, u, X2




Partition Bound

Bound Proof (Sketch)

Proof.

1) Start with bound log(e? + e=?) < c#? [Jaakkola & Jordan '99]
2) Prove scalar bound via Fenchel dual using § = /9

3) Make bound multivariate log(e? ! + e=¢'1)

4) Handle scaling of exponentials log(h1ef t + hye=0 f2)

5) Add one term Iog(hleeTfl + hze_esz + h3e_9Tf3)

6) Repeat extension for n terms O




Partition Bound

The Bound as a Variation of Newton

Input 0,f(y), h(y)Vy € Q
Initz—0", u=0% =zl
For each y € Q {
a = h(y) exp(9Tf(y))
I =f(y) - S4=

tanh( In(a/z))
Y4= 2|n(a/z) n

H+= Z+a|
z+=a }
Output z, u, X2

T «
" - z—&—aE

=y

Computing the bound (left) and Newton's approximation (right)
Both take O(nd?) and update via 8 — 6 — X1y in O(d%)



Graphical Models

Maximum Entropy

Maximum entropy (or generally) minimum relative entropy
RE(pllh) =3, p(y)In % subject to linear constraints

min RE(p||h) s.t. > p(y)f(y) =0, p(y)a(y) > 0

Its dual is the negative log-partition function (to be maximized):

~InZ(6,9) = Inz ) exp (OTf(y) +19Tg(y))

Maximum entropy is a natural application of the bound!



Graphical Models

Conditional Random Fields (CRFs)

Conditional random fields generalize maximum entropy
Trained on iid data {(x1,y1), .., (X, ¥t)}

Each CRF is a log-linear model

p(ylx;,6) hy;(v) exp(8 7 £, ()

1
Z,;(0)

Regularized maximum likelihood objective function is

Z In

Can even constrain the allowable @ inside convex A

+ 0'f(y) — 511617 (1)

X

Permits /1 regularized CRFs, and other variants



Graphical Models

Maximum Likelihood Algorithm for CRFs

Input x;, y; and functions hy, f,, for j=1,.
Input regularizer A\ € RT and convex hull A C Rd
Initialize 89 anywhere inside A and set 8 = 6
While not converged
FOF_] =1 to t compute bound for p;, 3; from hXJ fy; N
Set §=arg mingea > 10— 0)T(=;+\)(6 - 6)
+ Z OT(HJ ij(yj) + /\9)

Output 8 = 6

If [|f5 ()|l <r get J(8)—J(8o) = (1 — ¢) maxgen(J(8)—J(60))
within {In (1/e)/In (1 + Mog")-| steps

2r2n




Graphical Models

Convergence Proof

— Upper Bound U(6)

< Objective J(0)
- --Lower Bound L(6)
-5 0 5

Figure: Quadratic bounding sandwich. Compare upper and lower bound
curvatures to bound maximum # of iterations.
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Graphical Models

Bounding Graphical Models with Large n

@ Each iteration is O(tnd?), but what if n is large?

@ Graphical model: a bipartite factor graph G representing a
distribution p(Y) where Y ={y1,...,y,} and y; € Z

@ p(Y) factorizes as product of {¢1,...,1c} functions

(squares) over {Y1,..., Yc} subsets of variables (circles)
1
p(Yla e 7Yn) = Z H wc(Yc)
ceC

° Eg.p(y1, -, ¥6)=0(y1, y2)(v2, y3)U(y3, ya, y5 )V (va: ¥5, ¥6)



Graphical Models

Bounding Graphical Models with Large n

Instead of enumerating over all n, exploit graphical model
Build junction tree and run a Collect algorithm

Already used for computing Z(0) and Z’(0) efficiently
Bound needs O(td?>"_|Yc|) rather than O(td?n)

For an HMM, this is O(TM?) instead of O(MT)



Graphical Models

Bounding Graphical Models with Large n

forc=1,...,m{
Yboth=Yc N Ypa(c); Ysolo=Yc \ Ypa(c)
for each u € Yporn {
initialize z¢x < 07, pep = 0, B = zxl
for each v € Ysoi0{
W= UV, = hC(W)eéTfC(W) H Zbjw
bech(c)
v = fC(W) — Hclu + Z Hblw
bech(c)
tanh(3 In(2x))

Zclu IT
w w

2|n(;‘C—T”u)

lw; zc|u+: Ay }}}

Ec\u"’_: Z 2b|w+
bech(c)
[0

="
He|u Zefu + O



Low Rank Bound

Low Rank Bound for Large d

(]

(]

e © ¢ ¢ ¢ ¢

Naive bounding takes O(tnd?), inverting takes O(d3)
To match gradient methods and LBFGS, need O(tnd)

tanh(% In(a/z)) nr
2In(ee/z)

As in LBFGS, use rank-k storage 3 = VSV' +D
Each rank 1 update on X is projected on V

Consider a rank 1 update: ¥+ =

Top k eigenvectors are kept with updated eigenvalues in S
Remaining residual is absorbed into diagonal D

By Jensen inequality on diagonal D, low-rank is still a bound
Avoid O(d?) inversion in @ = 6 — X1 u: use Woodbury
formula, 71 =D"! + D VT (S~ !+ VD-lv)-lvD!
with only O(k3) work



Low Rank Bound

Low Rank Bound for Large d in O(tndk)

foreach t { set z — 0"; u = 0;
for each y {

. nh(l] o
o = he(y)e? 0, ¢ = YD (1) — ),

\/21og(2)
Fori=1,....k:p(i)=r"V(i,-);r =r—p(i)V(i,-);
Fori=1,...,k:Forj=1,... k:S(i,j) = S(i,j) + p(i)p(i);
Q'AQ = svd(S); S — A;V — QV;

s :N[S(l, 1),...,S(k, k), |lr||N2]T; k =argmini_; k+18(1);
if (k < k) { D=D+S(k, k)1"|V(j, )I diag(|V(k,-)[);

S(k, k) = [Irll? e =lr[7'r; V(Kk,-) =1 }
else { D=D+1"|r[diag(]r]); } }
pt=25(fly) —p) z4+=0o;

)



Mixture Models

Mixture Models and Latent Likelihood

Bounding also simplifies mixture models with hidden variables
Allows mixtures of Gaussians, HMMs, latent graphical models
Assume data-set is generated by a conditional distribution

2m P(X,y, m|O)
2 y.mP(X,y, mO)

@ [t is natural to maximize incomplete likelihood

t
> m P(Xj, i, m|©)
L(©®) = Yilxi,
©) = rtrbs.© szmp(x,,y,m@)

Assume exponential family mixture components (Gaussian,
multinomial, Poisson, Laplace)

p(xly, m,©) = h(x) exp (8] my,m(x) — 3y,m(6y.m))

p(y|X, @) =

(]



Mixture Models

Mixture Models and Latent Likelihood

Latent CRFs are just log-linear mixtures [Quattoni '07]
When a CRF has hidden variable m, the latent likelihood is

H exprJyJ, )
L2y mep (07, m).

Vectors f are concatenations of ¢, (x) sufficient statistics

(]

Apply Jensen to numerator and our bound to denominator
Get an auxiliary function L(8) > Q(0,0)

Maximizing Q(0,0) is just a matrix inverse

Like CEM or conditional variant of EM [J & Pentland '00]

If |/m| = 1, reduces back to usual conditional random field

e © ¢ ¢ ¢ ¢



Mixture Models

Mixture Models and Latent Likelihood

EM
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(a) Data-set  (b) Discriminative Bound (c) Generative EM

Figure: Mixture model conditional estimation.

Two Gaussian mixture model trained for maximum conditional
likelihood (left) and maximum likelihood (right)



Experiments

Experiments - Classification and Structured Prediction

Data-set || SRBCT | Tumors Text SecStr CoNLL PennTree
Size n=4 n=26 n=2 n=2 m=29 m=45
t=283 t=2308 |t=1500 |t = 83679 t = 1000 t = 1000
d = 9236[d = 390260 |[d = 23922 d = 632 d = 33615 | d = 14175
A=10'| Ax=10" | A=10° | A=10" A =10 A =10!
Algorithm|| time [iter| time [iter] time [iter| time Jiter]| time [iter] time [iter
LBFGS |/6.10|42|3246.83| 8 |15.54| 7 |881.31 |47 25661.54|17 | 62848.08 | 7
SD  |[7.27 |43 [18749.15 53 [153.10] 69 |1490.51] 79([93821.72|12|156319.31] 12
CG  ||40.61|100/14840.66| 42| 57.30 | 23 | 667.67 | 36||88973.93| 23| 76332.39 | 18
Bound [|3.67| 8 (1639.93| 4 | 6.18 | 3 | 27.97 | 9 |{16445.93| 4 [27073.42| 2

Table: Time in seconds and iterations to match LBFGS solution for
logistic regression (on SRBCT, Tumors, Text and SecStr data-sets where
n is the number of classes) and Markov CRFs (on CoNLL and PennTree
data-sets, where m is the number of classes). Here, t is the total number
of samples (training and testing), d is the dimensionality of the feature
vector and A is the cross-validated regularization setting.



Experiments

Experiments - Testing Latent Likelihood

Data-set || ion | bupa [hepatitis| wine |SRBCT
Algorithm|im =3m =2 m=2 m=3m=4
BFGS -5.88 |-21.78| -5.28 | -1.79 | -6.06
SD -5.56 (-21.74| -5.14 |-1.37 | -5.61
CG -5.57 |-21.81| -4.84 |-0.95| -5.76
Newton || -5.95 |-21.85| -5.50 | -0.71 | -5.54
Bound || -4.18 [-19.95| -4.40 |-0.48 | -0.11

Table: Test log-likelihood at convergence for ion, bupa, hepatitis, wine
and SRBCT data-sets.

1og((8)

-log(®)

2 [ 0
log(Time) (sec] log(Time) sec]

(b) Hepatitis (c) SRBCT

Figure: Convergence of latent likelihood over time for several data-sets.




Experiments

Conclusions

Majorization was non-competitive due to slow & loose bounds
We derived simple quadratic bound on the partition function
Makes majorization competitive with state-of-the-art

Bound is efficient for graphical models and large n

Low-rank bound is efficient for large dimensionality d

Yields fast and monotonically convergent majorization

Used for maximum entropy, CRFs and latent likelihood

Current work: HMMs, stochastic bounds, loopy graphs, deep
belief networks, distributed optimization
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