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Machine Learning

Unsupervised

Given D = (yt)
T
t=1 sampled iid from unknown P(y)

Given family of functions pθ(y) parametrized by θ

Find θ by minimizing some cost (e.g. partition function)
Output pθ(y)

Supervised

Given D = (xt , yt)
T
t=1 sampled iid from unknown P(x , y)

Given family of functions pθ(y |x) parametrized by θ

Find θ by minimizing some cost (e.g. partition function)
Predict using ŷ = arg maxy pθ(y |x)

Today: a new simple bound for such optimizations
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Optimization in Learning: Three Schools of Thought

Ways to optimize parameters to data

First order methods
Steepest descent
Conjugate gradient
Stochastic gradient descent
Bundle methods

Second order methods
Newton
BFGS [Broyden; Fletcher; Goldfarb; Shanno ’70]
Limited memory BFGS [Liu & Nocedal ’89]

Majorization and bounding methods
Expectation-Maximization [Baum 1970, Dempster ’77]
Generalized iterative scaling [Darroch & Ratcliff ’72]
Majorization or majorize/minimize [deLeeuw & Heiser ’77]
Quadratic lower bound principle [Bohning & Lindsay ’88]
Improved iterative scaling [Berger et al. ’97]
Extended Baum-Welch [Kanevsky et al. ’08]
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Majorization

If cost function θ∗ = arg minθ C (θ) has no closed form solution
Majorization uses with a surrogate Q with closed form update
to monotonically minimize the cost from an initial θ0

Find bound Q(θ,θi ) ≥ C (θ) where Q(θi ,θi ) = C (θi )

Update θi+1 = arg minθ Q(θ,θi )

Repeat until converged
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Partition Function

Central quantity to optimize in

Maximum likelihood and e-family [Pitman & Wishart ’36]
Maximum entropy [Jaynes ’57]
Conditional random fields [Lafferty, et al. ’01]
Log-linear models [Darroch & Ratcliff ’72]
Graphical models, HMMs [Jordan, et al. ’99]

Majorization preferred until [Wallach ’03, Andrew & Gao ’07]

Method Iterations LL Evaluations Time (s)

IIS ≥ 150 ≥ 150 ≥ 188.65
Conjugate gradient (FR) 19 99 124.67
Conjugate gradient (PRP) 27 140 176.55
L-BFGS 22 22 29.72

The problem: loose & complicated bounds. Let’s fix this!
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Partition Function

Consider log-linear model over discrete y ∈ Ω where |Ω| = n

p(y |θ) =
1

Z (θ)
h(y) exp

(

θ⊤f(y)
)

Parameters are vector θ ∈ R
d

Features are f : Ω 7→ R
d mapping each y to some vector

Prior is h : Ω 7→ R
+ a fixed non-negative measure

Partition function ensures that p(y |θ) normalizes

Z (θ) =
∑

y

h(y) exp(θ⊤f(y))

Problem: it’s ugly to minimize, we much prefer quadratics
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Partition Function Bound

The bound lnZ (θ) ≤ ln z + 1
2 (θ − θ̃)⊤Σ(θ − θ̃) + (θ − θ̃)⊤µ

is tight at θ̃ and holds for parameters given by

Input θ̃, f(y), h(y) ∀y ∈ Ω

Init z → 0+,µ = 0,Σ = zI

For each y ∈ Ω {
α = h(y) exp(θ̃⊤f(y))
l = f(y)− µ

Σ+=
tanh( 1

2
ln(α/z))

2 ln(α/z) ll⊤

µ += α
z+α l

z += α }
Output z ,µ,Σ
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Bound Proof (Sketch)

Proof.

1) Start with bound log(eθ + e−θ) ≤ cθ2 [Jaakkola & Jordan ’99]
2) Prove scalar bound via Fenchel dual using θ =

√
ϑ

3) Make bound multivariate log(eθ
⊤1 + e−θ

⊤1)

4) Handle scaling of exponentials log(h1e
θ
⊤f1 + h2e

−θ
⊤f2)

5) Add one term log(h1e
θ
⊤f1 + h2e

−θ
⊤f2 + h3e

−θ
⊤f3)

6) Repeat extension for n terms
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The Bound as a Variation of Newton

Input θ̃, f(y), h(y) ∀y ∈ Ω

Init z → 0+,µ = 0,Σ = zI

For each y ∈ Ω {
α = h(y) exp(θ̃⊤f(y))
l = f(y)− µ

Σ+=
tanh( 1

2
ln(α/z))

2 ln(α/z) ll⊤

µ += α
z+α l

z += α }
Output z ,µ,Σ

Σ+= zα
(z+α)2

ll⊤ − α
z+αΣ

Computing the bound (left) and Newton’s approximation (right)
Both take O(nd2) and update via θ ← θ̃ −Σ

−1µ in O(d3)
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Maximum Entropy

Maximum entropy (or generally) minimum relative entropy

RE(p‖h) =
∑

y p(y) ln p(y)
h(y) subject to linear constraints

min
p
RE(p‖h) s.t.

∑

y

p(y)f(y) = 0,
∑

y

p(y)g(y) ≥ 0

Its dual is the negative log-partition function (to be maximized):

− lnZ (θ,ϑ) = − ln
∑

y

h(y) exp
(

θ⊤f(y) + ϑ⊤g(y)
)

Maximum entropy is a natural application of the bound!
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Conditional Random Fields (CRFs)

Conditional random fields generalize maximum entropy

Trained on iid data {(x1, y1), . . . , (xt , yt)}
Each CRF is a log-linear model

p(y |xj ,θ) =
1

Zxj
(θ)

hxj
(y) exp(θ⊤fxj

(y))

Regularized maximum likelihood objective function is

J(θ) =

t
∑

j=1

ln
hxj

(yj)

Zxj
(θ)

+ θ⊤fxj
(yj)− tλ

2 ‖θ‖
2 (1)

Can even constrain the allowable θ inside convex Λ

Permits ℓ1 regularized CRFs, and other variants
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Maximum Likelihood Algorithm for CRFs

Input xj , yj and functions hxj
, fxj

for j =1, . . . , t
Input regularizer λ ∈ R

+ and convex hull Λ ⊆ R
d

Initialize θ0 anywhere inside Λ and set θ̃ = θ0

While not converged

For j = 1 to t compute bound for µj ,Σj from hxj
, fxj

, θ̃

Set θ̃=arg minθ∈Λ

∑

j
1
2(θ − θ̃)⊤(Σj +λI)(θ − θ̃)

+
∑

j θ⊤(µj − fxj
(yj ) + λθ̃)

Output θ̂ = θ̃

Theorem

If ‖fxj
(y)‖ ≤ r get J(θ̂)−J(θ0) ≥ (1− ǫ)maxθ∈Λ(J(θ)−J(θ0))

within
⌈

ln (1/ǫ) / ln
(

1 + λ log n
2r2n

)⌉

steps
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Convergence Proof

Proof.
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Figure: Quadratic bounding sandwich. Compare upper and lower bound
curvatures to bound maximum # of iterations.
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Bounding Graphical Models with Large n

Each iteration is O(tnd2), but what if n is large?

Graphical model: a bipartite factor graph G representing a
distribution p(Y ) where Y = {y1, . . . , yn} and yi ∈ Z

p(Y ) factorizes as product of {ψ1, . . . , ψC} functions
(squares) over {Y1, . . . ,YC} subsets of variables (circles)

p(y1, . . . , yn) =
1

Z

∏

c∈C

ψc(Yc)

E.g.p(y1, . . . , y6)=ψ(y1, y2)ψ(y2, y3)ψ(y3, y4, y5)ψ(y4, y5, y6)
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Bounding Graphical Models with Large n

Instead of enumerating over all n, exploit graphical model

Build junction tree and run a Collect algorithm

Already used for computing Z (θ) and Z ′(θ) efficiently

Bound needs O(td2
∑

c |Yc |) rather than O(td2n)

For an HMM, this is O(TM2) instead of O(MT )
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Bounding Graphical Models with Large n

for c = 1, . . . ,m {
Yboth =Yc ∩ Ypa(c); Ysolo =Yc \ Ypa(c)

for each u ∈ Yboth {
initialize zc|x ← 0+, µc|x = 0, Σc|x = zc|x I

for each v ∈ Ysolo{

w = u ⊗ v ; αw = hc(w)eθ̃⊤fc (w)
∏

b∈ch(c)

zb|w

lw = fc(w)− µc|u +
∑

b∈ch(c)

µb|w

Σc|u+=
∑

b∈ch(c)

Σb|w+
tanh(1

2 ln( αw

zc|u
))

2 ln( αw

zc|u
)

lw l⊤w

µc|u +=
αw

zc|u + αw
lw ; zc|u+= αw }}}
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Low Rank Bound for Large d

Naive bounding takes O(tnd2), inverting takes O(d3)

To match gradient methods and LBFGS, need O(tnd)

Consider a rank 1 update: Σ+=
tanh( 1

2
ln(α/z))

2 ln(α/z) ll⊤

As in LBFGS, use rank-k storage Σ = VSV⊤ + D

Each rank 1 update on Σ is projected on V

Top k eigenvectors are kept with updated eigenvalues in S

Remaining residual is absorbed into diagonal D

By Jensen inequality on diagonal D, low-rank is still a bound

Avoid O(d3) inversion in θ = θ̃ −Σ
−1µ: use Woodbury

formula, Σ
−1 = D−1 + D−1V⊤(S−1 + VD−1V⊤)−1VD−1

with only O(k3) work
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Low Rank Bound for Large d in O(tndk)

for each t { set z → 0+;µ = 0;
for each y {

α = ht(y)eθ̃⊤ft(y); r =

q

tanh( 1
2

log(
α
z

))
q

2 log(
α
z

)
(ft(y)− µ) ;

For i = 1, . . . , k : p(i) = r⊤V(i , ·); r = r− p(i)V(i , ·);
For i = 1, . . . , k : For j = 1, . . . , k : S(i , j) = S(i , j) + p(i)p(j);
Q⊤AQ = svd(S);S← A;V← QV;

s = [S(1, 1), . . . ,S(k, k), ‖r‖2]⊤; k̃ = arg mini=1,...,k+1 s(i);

if (k̃ ≤ k) { D = D + S(k̃, k̃)1⊤|V(j , ·)| diag(|V(k, ·)|);
S(k̃, k̃) = ‖r‖2; r = ‖r‖−1

r; V(k, ·) = r; }
else { D = D + 1⊤|r|diag(|r|); } }
µ += α

z+α(ft(y)− µ); z += α;

} }
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Mixture Models and Latent Likelihood

Bounding also simplifies mixture models with hidden variables

Allows mixtures of Gaussians, HMMs, latent graphical models

Assume data-set is generated by a conditional distribution

p(y |x ,Θ) =

∑

m p(x , y ,m|Θ)
∑

y ,m p(x , y ,m|Θ)

It is natural to maximize incomplete likelihood

L(Θ) =
t

∏

j=1

p(yj |xj ,Θ) =
t

∏

j=1

∑

m p(xj , yj ,m|Θ)
∑

y ,m p(xj , y ,m|Θ)

Assume exponential family mixture components (Gaussian,
multinomial, Poisson, Laplace)

p(x |y ,m,Θ) = h(x) exp
(

θ⊤
y ,mφy ,m(x)− ay ,m(θy ,m)

)
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Mixture Models and Latent Likelihood

Latent CRFs are just log-linear mixtures [Quattoni ’07]

When a CRF has hidden variable m, the latent likelihood is

L(θ) =

t
∏

j=1

∑

m exp
(

θ⊤fj ,yj ,m

)

∑

y ,m exp (θ⊤fj ,y ,m) .

Vectors f are concatenations of φy ,m(x) sufficient statistics

Apply Jensen to numerator and our bound to denominator

Get an auxiliary function L(θ) ≥ Q(θ, θ̃)

Maximizing Q(θ, θ̃) is just a matrix inverse

Like CEM or conditional variant of EM [J & Pentland ’00]

If |m| = 1, reduces back to usual conditional random field
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Mixture Models and Latent Likelihood
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Figure: Mixture model conditional estimation.

Two Gaussian mixture model trained for maximum conditional
likelihood (left) and maximum likelihood (right)
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Experiments - Classification and Structured Prediction

Data-set SRBCT Tumors Text SecStr CoNLL PennTree

Size n = 4 n = 26 n = 2 n = 2 m = 9 m = 45

t = 83 t = 308 t = 1500 t = 83679 t = 1000 t = 1000

d = 9236 d = 390260 d = 23922 d = 632 d = 33615 d = 14175

λ = 101
λ = 101

λ = 102
λ = 101

λ = 101
λ = 101

Algorithm time iter time iter time iter time iter time iter time iter

LBFGS 6.10 42 3246.83 8 15.54 7 881.31 47 25661.54 17 62848.08 7

SD 7.27 43 18749.15 53 153.10 69 1490.51 79 93821.72 12 156319.31 12

CG 40.61 100 14840.66 42 57.30 23 667.67 36 88973.93 23 76332.39 18

Bound 3.67 8 1639.93 4 6.18 3 27.97 9 16445.93 4 27073.42 2

Table: Time in seconds and iterations to match LBFGS solution for
logistic regression (on SRBCT, Tumors, Text and SecStr data-sets where
n is the number of classes) and Markov CRFs (on CoNLL and PennTree
data-sets, where m is the number of classes). Here, t is the total number
of samples (training and testing), d is the dimensionality of the feature
vector and λ is the cross-validated regularization setting.
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Experiments - Testing Latent Likelihood

Data-set ion bupa hepatitis wine SRBCT

Algorithm m = 3 m = 2 m = 2 m = 3 m = 4

BFGS -5.88 -21.78 -5.28 -1.79 -6.06

SD -5.56 -21.74 -5.14 -1.37 -5.61

CG -5.57 -21.81 -4.84 -0.95 -5.76

Newton -5.95 -21.85 -5.50 -0.71 -5.54

Bound -4.18 -19.95 -4.40 -0.48 -0.11

Table: Test log-likelihood at convergence for ion, bupa, hepatitis, wine
and SRBCT data-sets.
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Figure: Convergence of latent likelihood over time for several data-sets.
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Conclusions

Majorization was non-competitive due to slow & loose bounds

We derived simple quadratic bound on the partition function

Makes majorization competitive with state-of-the-art

Bound is efficient for graphical models and large n

Low-rank bound is efficient for large dimensionality d

Yields fast and monotonically convergent majorization

Used for maximum entropy, CRFs and latent likelihood

Current work: HMMs, stochastic bounds, loopy graphs, deep
belief networks, distributed optimization
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