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Abstract

Inference in general Markov random fields
(MRFs) is NP-hard, though identifying the
maximum a posteriori (MAP) configuration
of pairwise MRFs with submodular cost func-
tions is efficiently solvable using graph cuts.
Marginal inference, however, even for this re-
stricted class, is #P-hard. Restricting to bi-
nary pairwise models, we prove new formu-
lations of derivatives of the Bethe free en-
ergy, provide bounds on the derivatives and
bracket the locations of stationary points.
Several results apply whether the model is
associative or not. Applying these to dis-
cretized pseudo-marginals in the associative
case, we present a polynomial time approx-
imation scheme for global optimization of
the Bethe free energy provided the maxi-
mum degree ∆ = O(log n), where n is the
number of variables. Runtime is guaranteed
O(ε−

3
2n6Σ

3
4 Ω

3
2 ), where Σ = O(∆

n ) is the
fraction of possible edges present and Ω is
a function of MRF parameters. We examine
use of the algorithm in practice, demonstrat-
ing runtime that is typically much faster, and
discuss several extensions.

1 Introduction

Markov random fields are fundamental tools in ma-
chine learning with broad application in areas includ-
ing computer vision, speech recognition and computa-
tional biology. Two forms of inference are commonly
employed: maximum a posteriori (MAP), where the
most likely configuration is returned; and marginal,
where the marginal probability distributions for each
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set of variables with a linking potential function are
returned. In general, MAP inference is NP-hard [24]
and marginal inference, even for pairwise models, is
#P-hard [28, 3, 5].

An important class of MRFs, those with only unary
and pairwise submodular cost functions, admits ef-
ficient MAP inference. This was first shown for bi-
nary models [9] and applied broadly in computer vi-
sion [2], where the graph cuts method is particularly
effective [29]. Recent work extended the application
of this approach to multi-label submodular energies
of up to third order [21, 23]. Yet marginal inference,
even for binary pairwise models, is intractable with few
known exceptions. Belief propagation (BP) is efficient
(and exact) for trees, and applying the same frame-
work to general models, termed loopy belief propaga-
tion (LBP), is guaranteed to converge when the topol-
ogy has one cycle [36].

However, while LBP has proved remarkably effective in
some situations, it fails in others with no guarantee on
convergence. A key result is that BP fixed points co-
incide with stationary points of the Bethe variational
problem [37]. Stationary points, however, may not
identify the global optimum of the the Bethe free en-
ergy. Subsequently, it was further shown that all stable
BP fixed points are known to be local optima (rather
than saddle points) of this problem, but not vice versa
[11, 12]. Variational methods demonstrate that min-
imizing the Bethe free energy should deliver a good
approximation to the true marginal distribution and
recently [22] proved that for submodular MRFs, the
Bethe optimum is an upper bound on the true free
energy and thus yields a desirable lower bound on the
partition function, for which methods such as [32] pro-
vide an upper bound.

Marginal inference is a crucial problem in probabilis-
tic systems. A noteworthy example is the Quick
Medical Reference (QMR) problem [27], a graphical
model involving 600 diseases and 4000 possible find-
ings. Therein, medical diagnostics are performed by
computing the posterior marginal probability of each
disease given a set of possible findings. The marginal
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distribution over the presence of a disease must often
be precisely estimated in order to determine the course
of medical treatment. Thus, we seek the probability
that a patient suffers from a condition, rather than the
MAP estimate, which could be very different.

Marginal inference also arises during learning or pa-
rameter estimation in Markov random fields. For in-
stance, computing the gradients of a partition func-
tion in a maximum likelihood estimation procedure
is equivalent to marginal inference. In learning prob-
lems, the intractability of the marginal inference prob-
lem requires the exploration of marginal approxima-
tion schemes [7]. However, in the general case, both
exact marginal inference and approximate marginal in-
ference are NP-hard [3, 5].

For associative binary pairwise models, a FPRAS for
the true partition function (not the Bethe approxima-
tion) was derived in [15], but the runtime is unwieldy
at O(ε−2m3n11 log n), which makes it impractical.

1.1 Contribution & Summary

We derive various properties of the Bethe free en-
ergy and apply them to discretized pseudo-marginals
to prove a polynomial-time approximation scheme
(PTAS) for the global minimum of the Bethe free en-
ergy for binary pairwise associative MRFs. We then
go on to consider practical implementation.

The idea is that if we can find the optimal discretized
point on a sufficiently fine mesh that covers all possible
locations of an optimum point within a distance of δ,
then we can bound the difference to the optimum by
1
2Λδ2 where Λ is the greatest directional second deriva-
tive. To our knowledge, we present the first rigorous
bounds on Λ. One reason this is difficult is that deriva-
tives tend to infinity as singleton marginals approach
the boundary cases of 0 or 1. Hence we need to prove
bounds on the location away from these edges.

We discuss preliminaries in section 2, then in section 3,
derive various bounds, including on the location of any
stationary point of the Bethe free energy. In section
4, we establish results for second and higher deriva-
tives with a view to bounding Λ. Additional analy-
sis yields the result (Theorem 8) that the discretized
multi-label problem is submodular (see 2.1) on any
mesh and hence the discretized optimum can be found
efficiently using graph cuts [23].

In section 5, we use these earlier results to derive our
main theoretical contribution, a deterministic PTAS
for the global optimum of the Bethe free energy. The
result may be summarized below, see sections 2 and
5.3 for notation and details:
For a binary associative pairwise MRF with n vari-

ables, maximum degree ∆ = O(log n), all single-
ton potentials bounded by T and pairwise poten-
tials bounded by W s.t. all θi ∈ [−T,+T ], and
θij = wijI with 0 ≤ wij ≤ W , then within time

O(ε−
3
2n6Σ

3
4 Ω

3
2 ), our algorithm is guaranteed to return

a pseudo-marginal on the local polytope with Bethe
free energy (equivalently log Bethe partition function)
within ε of the global optimum. Σ reflects the den-
sity of edges and is O(∆

n ); Ω is a measure of how
extreme Λ, the curvature of the Bethe free energy,
can be given the properties of the MRF, and is com-
puted as Ω = max(a, b) where a = O(eW (1+∆)+2T )
and b = O(∆eW (1+∆/2)+T ).

In section 6, we discuss practical implementation of
the algorithm and present experimental results. We
show how the analysis of section 3 may be extended to
yield a fast algorithm that iteratively improves the ear-
lier Ai, Bi bounds, often leading to greatly improved
performance. We also discuss an existing alternative
approach to improve the Ai, Bi bounds due to [19]
which takes longer but can produce superior results.

Potential extensions are noted in the closing section
7, including applications to non-associative models, to
models that are themselves multi-label and to models
with higher order terms.

1.2 Structure of the overall algorithm

Input: Parameters {θi,Wij} for an associative binary
pairwise MRF, and a desired accuracy ε.

a) Compute bounds {Ai, Bi} on the location of min-
ima (see section 3 for the theoretical result, section 6
for improved performance in practice).

b) Compute Ω = max(a, b) from Theorem 11 and
bound Λ using equation (12).

c) Compute γ using Λnγ2/2 ≤ ε (see start Section 5).

d) Generate a multi-label submodular MRF on∏
i[Ai, Bi] with mesh width γ.

e) Solve for the MAP solution using graph cuts [23].

1.3 Related work

A variety of heuristics have been proposed for marginal
inference problems. Marginal inference in the QMR
medical diagnostic problem has been explored with
Markov Chain Monte Carlo (MCMC) [18, 26, 4] meth-
ods, variational methods [14], and search methods
[6]. Many of these heuristics are restricted to certain
classes of graphical model (such as QMR). Here we
explore another approach to approximate marginal in-
ference by minimizing the Bethe free energy.

The minimization of Bethe free energy is often ap-
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proached using loopy Belief propagation (LBP). Sev-
eral sets of sufficient conditions have been derived for
convergence, such as [19]. In general, however, LBP
may not converge, or may converge to a local optimum,
which prevents its use as a PTAS for Bethe minimiza-
tion [33]. This is still true for the restricted class of
associative binary pairwise models [19]. An important
contribution [35] showed that the Bethe free energy of
a binary pairwise MRF may be considered as a func-
tion only of the singleton marginals, however this con-
nection was provided without convergence results.

A PTAS was recently proposed [25] for the location of
a point whose derivative of the Bethe free energy has
magnitude less than ε. However, this identifies only
an approximately stationary point (which may not be
even a local minimum) that could be arbitrarily far
from the global optimum. That result applies for a
general binary pairwise MRF subject to maximum de-
gree O(log n). Here we primarily focus on associative
models with the same degree restriction, but our de-
liverable not only satisfies the property in [25], but
importantly, is also guaranteed to have Bethe free en-
ergy within ε of the optimum.

The PTAS in [25] may provide the global optimum
when the fixed point is unique and recent work [34]
has enumerated necessary and sufficient conditions for
uniqueness. Nevertheless, aside from these restricted
settings, there are no prior polynomial-time methods
for finding or rigorously approximating the global min-
imum of the Bethe free energy. Earlier work consid-
ered discretizations of pseudo-marginals but presented
incomplete results [16]. We go significantly further in
deriving additional key results which together admit
the PTAS and can also dramatically improve perfor-
mance in practice. These include explicit forms and
bounds on the second derivatives and on the locations
of stationary points.

As discussed in sections 3, 5 and 6, our approach re-
quires bounds on the location of minima of the Bethe
free energy. We derive a new, fast method for this
(BBP) but note that in practice, an existing approach
[19] produces bounds that are no worse, and some-
times better, though it takes more time. In other con-
texts, bounds on the true marginals may be more use-
ful. [17, 1] have derived such bounds, and [31, 13, 20]
develop them in relation to pseudo-marginals from BP.
Recent work has explored conditions under which the
fixed points of the Bethe free energy may or may not
correspond to the values of the true marginals [10].

2 Preliminaries & Notation

We focus on a binary pairwise MRF over n variables
X1, . . . , Xn ∈ B = {0, 1} with topology (V, E) and

generally follow the notation of [35]. We assume1

p(x) =
e−E(x)

Z
, E = −

∑
i∈V

θixi −
∑

(i,j)∈E

Wijxixj (1)

where the partition function Z =
∑
x e
−E(x) is a nor-

malizing constant. Let F be the Bethe free energy, so
F = E−S where S is the Bethe approximation to the
true entropy, S =

∑
(i,j)∈E Sij +

∑
i∈V(1 − zi)Si. Sij

is the entropy of a pseudo-marginal of (Xi, Xj) on the
local polytope, Si is the entropy of the singleton dis-
tribution and zi is the degree of i, that is the number
of variables to which Xi is adjacent. We assume the
model is connected so all zi ≥ 1. For each node i define
sum of positive and negative incident edge weights:
Wi =

∑
j∈N(i):Wij>0Wij , Vi = −

∑
j∈N(i):Wij<0Wij

where N(i) indicates the neighbors of node i. For a
pseudo-marginal distribution q, let qi = p(Xi = 1).
Consistency and normalization constraints from the
local polytope imply the pairwise marginal,

µij =

(
1 + ξij − qi − qj qj − ξij

qi − ξij ξij

)
(2)

for some ξij ∈ [0,min(qi, qj)], where µij(a, b) = p(Xi =
a,Xj = b). Let αij = eWij − 1. αij = 0 ⇔ Wij = 0
may be assumed not to occur else the edge (i, j) may be
deleted. αij has the same sign as Wij , if positive then
the edge (i, j) is associative; if negative then the edge
is repulsive.2 The MRF is associative if all edges are
associative. As in [35], one can solve for ξij explicitly
in terms of qi and qj by minimizing F , leading to a
quadratic equation with real roots,

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0. (3)

For αij > 0, ξij(qi, qj) is the lower root, for αij < 0
it is the higher. Notice that when αij = 0 (no edge
relationship) this reduces as expected to ξij = p(Xi =
1, Xj = 1) = p(Xi = 1)p(Xj = 1) = qiqj .

Sij is the entropy of µij(qi, qj). Hence

F (q) =
∑

(i,j)∈E

−
(
Wijξij + Sij(qi, qj)

)
+
∑
i∈V

(
− θiqi + (zi − 1)Si(qi)

)
.

(4)

Collecting the pairwise terms for one edge, define

fij(qi, qj) = −Wijξij(qi, qj)− Sij(qi, qj). (5)

1The energy E can always be thus reparameterized with
finite θi and Wij terms provided p(x) > 0 ∀x. There are
reasonable distributions where this does not hold, i.e. ∃x :
p(x) = 0 but this can often be handled by assigning such
configurations a sufficiently small positive probability ε.

2Our use of associative is equivalent to a submodular
energy function. Other terms used are attractive, regular
or ferromagnetic.
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We are interested in discretized pseudo-marginals
where for each qi we restrict its possible values to a
discrete set Di of points in [0, 1]. Note we may often
have Di 6= Dj . Let D =

∏
i∈V Di.

In [35], the first partial derivative of the Bethe free
energy is derived as

∂F

∂qi
= −θi + logQi , where (6)

Qi =
(1− qi)zi−1

qzi−1
i

∏
j∈N(i)(qi − ξij)∏

j∈N(i)(1 + ξij − qi − qj)
.

Recall the sigmoid function σ(x) = 1/(1 + exp(−x))
which will be used for Bethe bounds. We write Ai for
the lower bound of qi and Bi for the lower bound of
1− qi so Ai ≤ qi ≤ (1−Bi). Define ηi = min(Ai, Bi).

2.1 Submodularity

In our context, a pairwise multi-label function on a
set of ordered labels Xij = {1, . . . ,Ki} × {1, . . . ,Kj}
is submodular iff

∀x, y ∈ Xij , f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y) (7)

where for x = (x1, x2) and y = (y1, y2), (x ∧
y) = (min(x1, y1),min(x2, y2)) and (x ∨ y) =
(max(x1, y1),max(x2, y2)). For binary variables this
is equivalent to associativity.

The key property for us is that if all the pairwise cost
functions fij over Di × Dj from (5) are submodular
then the global discretized optimum may be found ef-
ficiently as a multi-label MAP inference problem using
graph cuts [23].

3 Initial bounds

We use the technique of flipping variables, i.e. con-
sidering Yi = 1 − Xi. Flipping a variable flips the
parity of all its incident edges so associative ↔ repul-
sive. Flipping both ends of an edge leaves its parity
unchanged.

3.1 Flipping all variables

Consider a new model with variables {Yi = 1−Xi, i =
1, . . . , n} and the same edges. Instead of θis and Wijs,
let the new model have parameters φi and Vij . We
identify values such that the energies of all states are

maintained up to a constant.3

E = −
∑
i∈V

θiXi −
∑

(i,j)∈E

WijXiXj

= const−
∑
i∈V

φi(1−Xi)−
∑

(i,j)∈E

Vij(1−Xi)(1−Xj).

Matching coefficients yields

Vij = Wij , φi = −θi −
∑
j∈N(i)

Wij = −θi −Wi. (8)

If the original model was associative, so too is the new.

3.2 Flipping some variables

Sometimes we flip only a subsetR ⊆ V of the variables.
This can be useful, for example, to make the model
locally associative around a variable, which can always
be achieved by flipping just those neighbors to which
it has a repulsive edge. Let Yi = 1−Xi if i ∈ R, else
Yi = Xi for i ∈ S, where S = V \ R. Let Et = {edges
with exactly t ends in R} for t = 0, 1, 2.

As in 3.1, solving for Vij and φi such that energies are
unchanged up to a constant,

Vij =

{
Wij (i, j) ∈ E0 ∪ E2,
−Wij (i, j) ∈ E1

φi =

{
θi +

∑
(i,j)∈E1 Wij i ∈ S,

−θi −
∑

(i,j)∈E2 Wij i ∈ R.
(9)

Lemma 1. Flipping any set of variables changes af-
fected pseudo-marginal matrix entries’ locations but
not values. The Bethe free energy is unchanged up
to a constant, hence the locations of stationary points
are unaffected. Proof in Supplement.

3.3 Bounds

We derive several results that are useful in bounding
the Bethe free energy as well as the marginals.

Lemma 2. αij ≥ 0⇒ ξij ≥ qiqj , αij ≤ 0⇒ ξij ≤ qiqj

Proof. The quadratic equation (3) for ξij may be
rewritten ξij−qiqj = αij(qi−ξij)(qj−ξij). Both terms
in parentheses on the right are elements of the pseudo-
marginal matrix µ so are constrained to be ≥ 0.

This simple result is sufficient to bound the location of
stationary points of the Bethe free energy away from
the edges of 0 and 1, allowing us to construct our
PTAS, though we improve the bounds in section 6.

3Any constant difference will be absorbed into the par-
tition function and leave probabilities unchanged.
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Theorem 3. If all edges incident to Xi are associative
then at any stationary point of the Bethe free energy,
σ(θi) ≤ qi ≤ σ(θi + Wi). Remark the same sandwich
result holds for the true marginal pi.

Proof. We first prove the left inequality. Consider (6).
Using αij > 0 ∀j ∈ N(i) and Lemma 2 we have

Qi =

∏
j∈N(i)(qi − ξij)

qzi−1
i

(1− qi)zi−1∏
j∈N(i)(1 + ξij − qi − qj)

≤
∏
j∈N(i) qi(1− qj)

qzi−1
i

(1− qi)zi−1∏
j∈N(i)(1− qi)(1− qj)

=
qi

1− qi
which gives the result.

To obtain the right inequality, flip all variables as in
section 3.1. Using the first inequality, (8) and Lemma
1 yields 1 − qi ≥ σ(−θi − Wi) ⇔ qi ≤ σ(θi + Wi)
since 1 − σ(−x) = σ(x). To show the result for the
true marginal, let mi=a =

∑
x:xi=a

exp(
∑
i∈V θixi +∑

(i,j)∈EWijxixj) then using (1), pi = mi=1

mi=1+mi=0
.

Since all Wij > 0 the result follows.

Using (9) we obtain a more powerful corollary.

Theorem 4. For general edge types (associative
or repulsive), let Wi =

∑
j∈N(i):Wij>0Wij, Vi =

−
∑
j∈N(i):Wij<0Wij. At any stationary point of the

Bethe free energy, σ(θi − Vi) ≤ qi ≤ σ(θi + Wi). The
same result holds for the true marginal pi.

Proof. Using (9), flip all variables adjacent to Xi with
a repulsive edge, i.e. set R = {j ∈ N(i) : Wij < 0}.
The resulting new model is fully associative around Xi

so we may apply Theorem 3 to yield the result.

Lemma 5. For qi, qj ∈ [0, 1], 0 ≤ qi + qj − 2qiqj ≤ 1.
Proof in Supplement.

Lemma 6 (Upper bound for ξij). If αij > 0, then

qj − ξij ≥ qj(1−qi)
1+αij(qi+qj−2qiqj) ≥

qj(1−qi)
1+αij

qi − ξij ≥ qi(1−qj)
1+αij(qi+qj−2qiqj) ≥

qi(1−qj)
1+αij

.

Also ξij ≤ m(αij + M)/(1 + αij) ⇒ ξij − qiqj ≤
αijm(1−M)

1+αij
, where m = min(qi, qj) and M =

max(qi, qj).

Proof. We prove the first inequality. The second fol-
lows by Lemma 5 and those for qi− ξij follow by sym-
metry. The final inequality follows by combining the
earlier ones. Let ξij = qj + y and substitute into (3),

αijy
2 + y[αij(qj − qi)− 1] + qj(qi − 1) = 0.

The function is a convex parabola which at y = 0 is
at qj(qi − 1) ≤ 0.4 From Lemma 2 we know that the

4This confirms neatly that we must take the left root
else y > 0 ⇒ µ01 < 0 (a contradiction).

left root is at ξij ≥ qiqj so we may take the derivative
there, i.e. at qj + y = qiqj ⇔ y = qj(qi − 1) and by
convexity establish a lower bound for qj − ξij .

4 Higher derivatives & submodularity

We first derive a novel result for the second derivatives
of an edge which will be crucial later for bounding
the error of the discretized global optimum and also
will allow us to show that the discretized multi-label
problem is submodular.

4.1 Second derivatives for each edge

Theorem 7. For any edge (i, j), for any αij, writing
f = fij and µab = µij(a, b) from (2),

∂2f

∂q2
i

=
1

Tij
qj(1− qj)

∂2f

∂qi∂qj
=

∂2f

∂qj∂qi
=

1

Tij
(µ01µ10 − µ00µ11)

∂2f

∂q2
j

=
1

Tij
qi(1− qi)

where Tij = qiqj(1− qi)(1− qj)− (ξij− qiqj)2 ≥ 0 with
equality only if qi or qj ∈ {0, 1}. Further µ01µ10 −
µ00µ11 = qiqj − ξij and has the sign of −αij.
Proof in Supplement.

Note that stronger edge interactions lead through
higher |αij | to greater (ξij − qiqj)2 and hence larger
second derivatives.

4.2 Submodularity

Theorem 8. If a binary pairwise MRF is submodu-
lar on an edge (i, j), i.e. αij > 0, then the multi-label
discretized MRF for any discretization D is submod-
ular for that edge. In particular, if the MRF is fully
associative/submodular, i.e. αij > 0 ∀(i, j) ∈ E, then
the multi-label discretized MRF is fully submodular for
any discretization. Proof in Supplement.

4.3 Second derivatives for singleton terms

Let fi(qi) be the singleton terms from (4) for Xi. The
only non-zero derivatives are with respect to qi.

fi(qi) = −θiqi + (zi − 1)Si(qi)

∂fi
∂qi

= −θi − (zi − 1)[log qi − log(1− qi)]

∂2fi
∂q2
i

= −(zi − 1)
1

qi(1− qi)
≤ 0 for a connected graph.
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Hence,− zi − 1

ηi(1− ηi)
≤ ∂2f

∂q2
i

≤ 0, ηi = min(Ai, Bi).

(10)

5 Approximating the Global
Optimum for an Associative Model

We now assemble earlier results to form the complete
matrix H of second derivatives of the Bethe free energy
F and use this to bound the error between the dis-
cretized optimum and the global Bethe optimum. In
this section we assume the model is associative. Define
the Bethe box to be the orthotope (or hyper-cuboid)
given by qi ∈ [Ai, 1−Bi] ∀i ∈ V.

At the optimum (or any stationary point), all first
derivatives are zero. If we choose our discretization
mesh D to be sufficiently fine then we can be sure that
some point in the mesh is within distance δ of a true
optimum. In particular, if we choose each Di so that
in the qi dimension every point in [Ai, 1−Bi] is within
distance γ of an optimum, then δ2 ≤ nγ2.

Using a first order Taylor expansion of F around a true
optimum, with the remainder expressed in terms of the
second derivative, the error of our discretized optimum
versus the true Bethe optimum ≤ 1

2Λδ2, where Λ is the
largest eigenvalue of H evaluated at some intermediate
point, which we shall bound. Observe that any Bethe
optimum must lie in the Bethe box, hence we need only
bound the largest eigenvalue of H anywhere inside it.5

Note that our error is one-sided since our discretized
optimum can never be better than the true optimum.
This may facilitate further analysis to find a better
approximation by using points in the neighborhood to
estimate the likely error.

5.1 Complete matrix of second derivatives

Theorem 7 and (10) provide all the terms.

Lemma 9. All entries on the main diagonal of H are
strictly positive, all others are ≤ 0.

Proof. Apply Theorem 7. If (i, j) ∈ E then Hij =
(qiqj − ξij)/Tij ≤ 0. If (i, j) /∈ E , i 6= j then Hij = 0.
On the main diagonal,

Hii = − zi − 1

qi(1− qi)
+
∑
j∈N(i)

qj(1− qj)
Tij

(11)

≥ 1− zi
qi(1− qi)

+
∑
j∈N(i)

qj(1− qj)
qiqj(1− qi)(1− qj)

=
1

qi(1− qi)
.

5This value can also be used to find an approximately
stationary point [25] if required by considering the Taylor
expansion of F ′ around a stationary point.

5.2 Max eigenvalue & complexity bound

We have shown that H is a real symmetric matrix with
strictly positive main diagonal and all other entries
≤ 0. To further bound the entries we derive a lower
bound for Tij at any point in the Bethe box. Define

Kij = ηiηj(1−ηi)(1−ηj) 2αij+1
(αij+1)2 . All terms are known

from the data prior to the discrete optimization.

Lemma 10. At any point in the Bethe box, Tij ≥ Kij.

Proof. Using Theorem 7 and Lemma 6,

Tij ≥ qiqj(1− qi)(1− qj)−
(αijm(1−M)

1 + αij

)2

≥ qiqj(1− qi)(1− qj)
[
1−

( αij
1 + αij

)2]
.

Theorem 11. At any point in the Bethe box, each
entry Hij satisfies −a ≤ Hij ≤ b where

a =
1

4
max

(i,j)∈E

αij
αij + 1

1

Kij

= max
(i,j)∈E

αij(αij + 1)

4(2αij + 1)ηiηj(1− ηi)(1− ηj)
,

b = max
i∈V

1

ηi(1− ηi)

(
1− zi +

∑
j∈N(i)

(αij + 1)2

2αij + 1

)
.

Proof. For any edge (i, j) ∈ E ,

−Hij =
ξij − qiqj

Tij
≤ m(1−M)αij

1 + αij

1

Kij
≤ 1

4

αij
1 + αij

1

Kij
.

Using (11) and the expression from the proof of
Lemma 10,

Hii ≤
1− zi

ηi(1− ηi)
+
∑
j∈N(i)

1

qi(1− qi)
[
1−

(
αij

1+αij

)2]
≤ 1

ηi(1− ηi)

(
1− zi +

∑
j∈N(i)

(αij + 1)2

2αij + 1

)
.

Since αij + 1 < 2αij + 1 we have the corollary that

Hii <
1+

∑
j∈N(i) αij

ηi(1−ηi) . We remark that at any minimum

of the Bethe free energy, all eigenvalues are ≥ 0 so at
these locations the maximum eigenvalue ≤ Tr H <∑
i∈V

1
ηi(1−ηi) +

∑
(i,j)∈E αij

(
1

ηi(1−ηi) + 1
ηj(1−ηj)

)
.

To bound the largest eigenvalue anywhere in the Bethe
box, we may use recent results such as Corollary 2
in [38], though we suspect that the particular proper-
ties of H given in Lemma 9 may admit more precise
bounds. Here we use an elementary bound relating to
edge sparsity or maximum degree as in [25]. Let Σ be
the proportion of non-zero entries in H so the number
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of non-zero entries is n2Σ ≤ n+ n∆⇒ Σ ≤ ∆+1
n . Let

Ω = max(a, b) from Theorem 11, then we have

Λ ≤
√

tr(HTH) ≤
√

Σn2Ω2 = nΩ
√

Σ. (12)

Returning to our objective at the start of this sec-
tion 5, note that by using Ni points in Di, we can
ensure γ ≤ (1 − Bi − Ai)/(Ni + 1). Using worst case
Bethe bounds (Ai = Bi = 0), we achieve maximum
γ distance in each dimension with 1

γ points for each
variable, so the total number of nodes in the max-
flow graph we need to solve the multi-label graph cuts
problem is N ≤ n

γ . We require nγ2 ≤ 2ε
Λ hence

N2 ≥ n3Λ
2ε . Using (12) it is sufficient if N2 ≥ n4Ω

√
Σ

2ε .
Graph cuts is a max-flow algorithm for which there are
push-relabel methods guaranteed to run in timeO(N3)
[8]. Hence our algorithm has worst case runtime of

O(ε−
3
2n6Σ

3
4 Ω

3
2 ) . However, in practice, runtime for

this class of max-flow problem using algorithms such as
Boykov-Kolmogorov [2] can approach O(N) for much
faster performance.

5.3 Model specification

Note Ω above may depend on n. For our analysis
throughout this paper, we assumed the reparameter-
ization in (1) but a natural specification to assume
for input models avoiding bias is to provide maximum
possible values W and T with

θij =

(
Wij/2 0

0 Wij/2

)
s.t. 0 < Wij ≤W ∀(i, j) ∈ E

|θi| ≤ T ∀i ∈ V.

The required reparameterization for edge (i, j) takes
θi ← θi − Wij/2, hence reparameterizing all edges
takes θi ← θi −

∑
j∈N(i)Wij/2. A sufficient condi-

tion for 1
ηi(1−ηi) to have a polynomial upper bound is

that the maximum degree ∆ := maxi∈V zi = O(log n),
the same degree restriction as in [25]. In this case,

1
ηi(1−ηi) = O(eT+∆W/2).

Regarding Theorem 11, now a = O(eW (1+∆)+2T ) and
b = O(∆eW (1+∆/2)+T ) with Ω = max(a, b) and Σ =
O(∆/n) yielding the polynomial result.

6 Practical considerations

6.1 Improving Ai, Bi bounds

In practice, the runtime of our approach is dramati-
cally improved if we obtain better bounds [Ai, 1−Bi]
on the location of optima since then: (i) the search
space to discretize is directly reduced, and (ii) the up-
per bound on Λ is decreased through lower Ω, thus a
less fine mesh is required for a given level of accuracy.

Extending the analysis of Section 3 leads to a novel
algorithm to improve these bounds iteratively, which
we term Bethe bound propagation (BBP), see Sup-
plement for derivation and comments. The algorithm
is shown below, where we suggest using THRESH=
0.002, MAXITER= 20. BBP runs very rapidly in
time O(|E|) and can be used on general binary pairwise
models (no need for associativity), sometimes leading
to impressive results without further work.

Algorithm 1 BBP for a general binary pairwise model

{Initialize}
for all i ∈ V do
Wi =

∑
j∈N(i):Wij>0Wij ,

Vi = −
∑
j∈N(i):Wij<0Wij ,

Ai = σ(θi − Vi), Bi = 1− σ(θi +Wi)
6

end for
for all (i, j) ∈ E do
αij = exp(|Wij |)− 1

end for

{Main loop}
repeat

for all i ∈ V do
Li = 1, Ui = 1 {Initialize for this pass}
for all j ∈ N(i) do

if Wij > 0 then
{Associative edge}
Li∗ = 1 +

αijAj

1+αij(1−Bi)(1−Aj)

Ui∗ = 1 +
αijBj

1+αij(1−Ai)(1−Bj)

else
{Repulsive edge}
Li∗ = 1 +

αijBj

1+αij(1−Bi)(1−Bj)

Ui∗ = 1 +
αijAj

1+αij(1−Ai)(1−Aj)

end if
end for
Ai = 1/(1 + exp(−θi + Vi)/Li)
Bi = 1/(1 + exp(θi +Wi)/Ui)

end for
until All Ai,Bi changed by < THRESH or run
MAXITER times

A different approach, which we term MK, was derived
in [19], based on considering the set of possible beliefs
after iterating LBP, starting from any initial values.
Since any minimum of the Bethe free energy corre-
sponds to a fixed point of LBP [36], this method may
be used as an alternative to BBP. MK considers cavity
fields around each variable, which requires more time
(often by orders of magnitude), but the bounds ob-
tained are no worse, and sometimes significantly bet-
ter. In difficult cases, the additional time required to
run MK is more than compensated by faster runtime
for the later, graph cuts part of the overall algorithm,
and hence was our preferred experimental method.
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6.2 Experiments

See section 1.2 for the overall algorithm, and Fig-
ure 1 for results. Theoretical bounds have no units
and are shown scaled to fit the axes. For all experi-
ments, ε = 0.01 was used; once the discretized multi-
label MAP problem was formed, it was solved via the
Schlesinger-Flach construction [23] to reduce to a bi-
nary max-flow problem and then using the Boykov-
Kolmogorov algorithm [2]. Typically, inference meth-
ods are more challenged as the number of variables, n,
increases, or as the number and strength of edge inter-
actions increase relative to single variable potentials.

Models are specified using the notation of section 5.3.
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Figure 1: Experiment results, see text for details.

The top graph shows the effect on runtime of vary-
ing n while using different approaches to compute the
{Ai, Bi} bounds. The slowest runs use the PTAS
bounds from Theorem 3. We also show the improve-
ment in overall performance obtained by using BBP or
MK to improve these initial {Ai, Bi} bounds. To iso-
late these effects, for each n, 12 random connected reg-
ular graphs of uniform degree dn, with T = 0 and con-
stant edge weights Wn were used. We set dn = 2blnnc
and fixed dnWn = 6.

The lower graph shows results using MK for random
connected Erdős-Rényi graphs with edge probability

log2 n
n−1 , hence expected degree dn = log2 n. T = 0

and each Wij ∼ Uniform[0,Wn] where dnWn = 8.
For each n, 100 instances were generated and the run-
time is shown against the instance-specific terms of the
theoretical bound, given by Σ3/4Ω3/2. The empirical
worst-case runtimes follow the shape of the theoretical
bound shown higher on the graph, though performance
is often much faster.

7 Conclusion & Extensions

To our knowledge, we have proved the first PTAS for
the global optimum of the Bethe free energy of an asso-
ciative binary pairwise MRF7. In doing so, we derived
a range of results, including several for general edges
and models (associative or not), which may prove use-
ful in their own right, including our results on second
derivatives and Bethe bound propagation. The ap-
proach is useful in practice, especially when combined
with BBP or MK for initial bounds.

Although the algorithm is only weakly polynomial,
we are not sure if more is possible. If input param-
eters are unrestricted, then potentially α values could
be infinite, corresponding to distributions with zero
probability for some states (which may be reasonable),
which will lead to infinite derivatives as some pseudo-
marginal entries will be driven to 0.

[30] has shown that graph cuts is in a strong sense
equivalent to max-product belief propagation with
careful scheduling and damping. Together with our
result this shows an interesting link between max-
product and sum-product techniques. One direction
to explore is how sum-product belief propagation fares
using a scheme similar to [30].

Our approach immediately also applies to approxi-
mating optimum mean field marginals. In addition,
it may readily extend to allow approximate marginal
inference for multi-label and third order submodular
MRFs, both of which can be mapped to equivalent
associative binary pairwise MRFs [23, 21].
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8 APPENDIX - SUPPLEMENTARY
MATERIAL

Here we provide proofs of several of the results in the
main paper, using the original numbering. To estab-
lish these, we also derive additional preliminary results
where required, starting with Lemma number 12. We
hope this numbering aids clarity rather than confusion.

Section 3

Lemma 1. Flipping any set of variables changes af-
fected pseudo-marginal matrix entries’ locations but
not values. The Bethe free energy is unchanged up to
a constant, hence the locations of stationary points are
unaffected.

Proof. By construction, energies are the same up to a
constant. The singleton entropies are symmetric func-
tions of qi and 1− qi so are unaffected. The impact on
pseudo-marginal matrix entries follows directly from
definitions. Thus Bethe entropy is unaffected.

Lemma 5. For qi, qj ∈ [0, 1], 0 ≤ qi + qj − 2qiqj ≤ 1.

Proof. Let f = qi+qj−2qiqj . To show the left inequal-
ity, consider m = min(qi, qj) and M = max(qi, qj),
then f ≥ 2m(1 −M) ≥ 0. For the right inequality
observe 1− f = (1− qi)(1− qj) + qiqj ≥ 0.

Lemma 12. Unless qi or qj ∈ {0, 1}, all entries of
the pseudo-marginal µij are strictly > 0, whether (i, j)
is associative or repulsive.8

Proof. First assume αij > 0. Considering (2) and us-
ing Lemmas 2 and 6, we have that element-wise

µij ≥
(

(1− qi)(1− qj) qj(1− qi)/(1 + αij)
qi(1− qj)/(1 + αij) qiqj

)
(13)

which proves the result for this case. If αij < 0 then
flip either qi or qj . As in the proof of Lemma 1, pseudo-
marginal entries change position but not value.

8Here we assume αij is finite, see footnote 1.

Section 4

Theorem 7. For any edge (i, j), for any αij , writing
f = fij and µab = µij(a, b) from (2),

∂2f

∂q2
i

=
1

Tij
qj(1− qj)

∂2f

∂qi∂qj
=

∂2f

∂qj∂qi
=

1

Tij
(µ01µ10 − µ00µ11)

∂2f

∂q2
j

=
1

Tij
qi(1− qi)

where Tij = qiqj(1−qi)(1−qj)− (ξij−qiqj)2 ≥ 0 with
equality only for qi or qj ∈ {0, 1}. Further µ01µ10 −
µ00µ11 = qiqj − ξij and has the sign of −αij .

Proof. We begin with the same approach as [16] but
extend the analysis and derive stronger results.

For notational convenience add a third pseudo-
dimension restricted to the value 1. Let y = (y1, y2, y3)
be the vector with components y1 = xi, y2 = xj and
y3 = 1 where xi, xj ∈ B. Define π(y) = µij(xi, xj),
and φ(y) = Wij if y = (1, 1, 1) or φ(y) = 0 otherwise.
Let r = (qi, qj , 1). Define function h used in entropy
calculations as h(z) = −z log z.

Consider (5) but instead of solving for ξij explicitly,
express f as an optimization problem, minimizing free
energy subject to local consistency and normalization
constraints in order to use techniques from convex op-
timization. We have f(qi, qj) = g(r) where

g(r) = min
π

∑
y

(
− φ(y)π(y)− h(π(y))

)
s.t.

∑
y:yk=1

π(y) = rk k = 1, 2, 3. (14)

The Lagrangian can be written as

Lr(π,λ) =
∑
y

[(−φ(y)− 〈y,λ〉)π(y)− h(π(y))] + 〈r,λ〉

and its derivative is

∂Lr(π,λ)

∂π
= −φ(y)− 〈y,λ〉+ 1 + log π

which yields a minimum at

πλ(y) = exp(φ(y) + 〈y,λ〉 − 1). (15)

Since the minimization problem in (14) is convex
and satisfies the weak Slater’s condition (the con-
straints are affine), strong duality applies and g(r) =
maxλG(r,λ) = G(r,λ∗(r)) where the dual is simply

G(r,λ) = min
π
Lr(π,λ) = −

∑
y

πλ(y) + 〈r,λ〉. (16)
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Let Dk(r,λ) = ∂G(r,λ)
∂λk

then Dk(r,λ∗) = 0, k = 1, 2, 3.

Hence ∂g
∂rk

= ∂G
∂rk

= λk using (16). Focusing on
our goal of obtaining second derivatives, we consider
∂2g

∂rl∂rk
= ∂λk

∂rl
which we shall express in terms of

Ckl := ∂2G
∂λl∂λk

= ∂Dk

∂λl
.

Differentiating Dk(r,λ∗) = 0 with respect to rl,

0 =
∂Dk(r,λ∗)

∂rl
=
∂Dk

∂rl
+

3∑
p=1

∂Dk

∂λp

∂λp
∂rl

k, l = 1, 2, 3.

Considering (16), ∂Dk

∂rl
= ∂2G

∂rl∂λk
= δkl hence 0 = δkl +∑

p Ckp
∂2g

∂rl∂rp
. Thus ∂2g

∂rl∂rk
= −[C−1]kl. Using its

definition and (16), we have

Ckl =
∂2G

∂λl∂λk
=

∂

∂λl

(
−
∑
y

ykπλ(y) + rk

)
= −

∑
y

ykylπλ(y) = −
∑

y:yk=yl=1

πλ(y).

Earlier work [16] stopped here, recognizing that
detC ≤ 0. We more precisely characterize this matrix

C = −

µ10 + µ11 µ11 µ10 + µ11

µ11 µ01 + µ11 µ01 + µ11

µ10 + µ11 µ01 + µ11 1

 (17)

Recall constraints µ00+µ01+µ10+µ11 = 1, µ01+µ11 =
qj , µ10 + µ11 = qi. Note C is symmetric.

Applying the result above and using Cramer’s rule,

∂2f

∂q2
i

=
∂2g

∂r2
1

= − 1

detC
(µ01+µ11)(µ00+µ10) =

qj(1− qj)
−detC

∂2f

∂qi∂qj
=

∂2f

∂qj∂qi
=

∂2g

∂r1∂r2
=

(µ01µ10 − µ00µ11)

−detC

∂2f

∂q2
j

=
∂2g

∂r2
2

= − 1

detC
(µ10+µ11)(µ00+µ01) =

qi(1− qi)
−detC

.

Using (17) and simplifying, we obtain −detC =
µ00µ10µ11 + µ10µ11µ01 + µ11µ10µ00 + µ01µ00µ10. By
Lemma 12 this is strictly > 0 unless qi or qj ∈ {0, 1}.
Substituting in terms from (2) and simplifying estab-
lishes −detC = Tij from the statement of the the-
orem, and µ01µ10 − µ00µ11 = qiqj − ξij . The sign
follows from Lemma 2 or observing from (15) that
µ00µ11

µ01µ10
= eWij = αij + 1.

Lemma 13 (Finite 3rd derivatives). For any edge
(i, j) with αij > 0, if qi, qj ∈ (0, 1) then all third
derivatives exist and are finite.

Proof. Using Theorem 7 noting Tij > 0 strictly and

considering (2), it is sufficient to show
∂ξij
∂qk

is finite.

We may assume k ∈ {i, j} else the derivative is 0 and

by symmetry need only check
∂ξij
∂qi

. Differentiating (3),

∂ξij
∂qi

=
αij(qj − ξij) + qj

1 + αij(qi − ξij + qj − ξij)
,

clearly finite for αij > 0 since recalling (2), qi − ξij
and qj − ξij are elements of the pseudo-marginal and
hence are non-negative (or use Lemma 6).

Theorem 8. If a binary pairwise MRF is submodu-
lar on an edge (i, j), i.e. αij > 0, then the multi-label
discretized MRF for any discretization D is submod-
ular for that edge. In particular, if the MRF is fully
associative/submodular, i.e. αij > 0 ∀(i, j) ∈ E , then
the multi-label discretized MRF is fully submodular
for any discretization.

Proof. For any edge (i, j), let f be the pairwise func-
tion fij from (5) and note the submodularity re-
quirement (7). Let x = (x1, x2), y = (y1, y2) be
any points in [0, 1]2. Define s(x, y) = (s1, s2) =
(min(x1, y1),min(x2, y2)), and t(x, y) = (t1, t2) =
(max(x1, y1),max(x2, y2)). Let g(x, y) = f(s1, s2) +
f(t1, t2)− f(s1, t2)− f(s2, t1), call this the submodu-
larity of the rectangle defined by x, y. We must show
g(x, y) ≤ 0. Note f is continuous in [0, 1]2 hence so also
is g. We shall show that ∀(x, y) ∈ (0, 1)2, g(x, y) < 0
then the result follows by continuity.

Assume x, y ∈ (0, 1)2. Consider derivatives of f in
the compact set R = [s1, t1] × [s2, t2]. Using (6) and
Lemma 12, first derivatives exist and are bounded. By
Theorem 7 and Lemma 13 the same holds for second
and third derivatives. Further, Theorem 7 and Lemma

14 show that ∂2f
∂qi∂qj

= ∂2f
∂qj∂qi

< 0.

If a rectangle is sliced fully along each dimension so
as to be subdivided into sub-rectangles then summing
the submodularities of all the sub-rectangles, internal
terms cancel and we obtain the submodularity of the
original rectangle.

Hence there exists an ε such that if we subdivide the
rectangle defined by x, y into sufficiently small sub-
rectangles with sides < ε and apply Taylor’s theorem
up to second order with the remainder expressed in
terms of the third derivative evaluated in the interval,
then the second order terms dominate and the sub-
modularity of each small sub-rectangle < 0. Summing
over all sub-rectangles provides the result.
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Section 6

In order to derive our approach of Bethe bound prop-
agation (BBP), we extend the analysis of bounds on
ξij from Section 3.

Lemma 14 (Better lower bound for ξij). If αij > 0,
then ξij ≥ qiqj + αijqiqj(1 − qi)(1 − qj)/[1 + αij(qi +
qj − 2qiqj)], equality only possible at an edge, i.e. one
or both of qi, qj ∈ {0, 1}.

Proof. Write ξij = qiqj + y and substitute into (3),

αijy
2−y[1+αij(qi+qj−2qiqj)]+αijqiqj(1−qi)(1−qj) = 0.

We have a convex parabola which at y = 0 is above
the abscissa (unless qi or qj ∈ {0, 1}) and has negative
gradient by Lemma 5. Hence all roots are at y ≥ 0 and
given convexity we can bound below using the tangent
at y = 0 which yields the result.

Bethe bound propagation (BBP)

We have already derived bounds on stationary points
in Theorems 3 and 4. Here we show for variables with
only associative edges how we can iteratively improve
these bounds, sometimes with striking results. Note
that a fully associative model is not required, and as
in section 3.2, any model may be selectively flipped to
yield local associativity around a particular node.

We first assume all αij ≥ 0 and adopt the approach of
Theorem 3, now using the better bound from Lemma
14 to obtain

qi − ξij ≤ qi − qiqj −
αijqiqj(1− qi)(1− qj)
1 + αij(qi + qj − 2qiqj)

= qi(1− qj)
[
1− αijqj(1− qi)

1 + αij(qi + qj − 2qiqj)

]
,

1 + ξij − qi − qj ≥

1 + qiqj − qi − qj +
αijqiqj(1− qi)(1− qj)
1 + αij(qi + qj − 2qiqj)

= (1− qi)(1− qj)
[
1 +

αijqiqj
1 + αij(qi + qj − 2qiqj)

]
.

Hence Qi ≤ qi
1−qi

∏
j∈N(i)R

−1
ij where

Rij =
1 +

αijqiqj
1+αij(qi+qj−2qiqj)

1− αijqj(1−qi)
1+αij(qi+qj−2qiqj)

= 1 +
αijqj

1 + αijqi(1− qj)
,

monotonically increasing with qj and decreasing with
qi. Hence

eWij = 1+αij ≥ Rij ≥ Lij := 1+
αijAj

1 + αij(1−Bi)(1−Aj)
(18)

Using Theorem 3, we initialize Ai = σ(θi) and Bi =
1− σ(θi +Wi).

Using (6), at any stationary point we must have

qi ≥ 1/[1 + exp(−θi)/Li]

where Li =
∏
j∈N(i) Lij . Intuitively, in an associative

model, if variable i has neighbors j which are likely to
be 1 (i.e. high Aj) then this pulls up the probability
that i will be 1 (i.e. raises Ai).

Flipping all variables,

1− qi ≥ 1/[1 + exp(θi +Wi)/Ui]

where Ui =
∏
j∈N(i) Uij with

e−Wij ≥ Uij := 1 +
αijBj

1 + αij(1−Ai)(1−Bj)
.

It is also possible to write this as

σ(θi + logLi) ≤ qi ≤ σ(θi +Wi − logUi).

This establishes a message passing type of algorithm
for iteratively improving the bounds {Ai, Bi}. Repeat
until convergence:

new Ai ← (1 + exp(−θi)/Li)−1

new Bi ← (1 + exp(θi +Wi)/Ui)
−1

recompute Li, Ui using new Ai, Bi.

Lemma 15. At every iteration, all of Ai, Bi, Lij , Uij
monotonically increase.

Proof. All of the dependencies are monotonically in-
creasing on all inputs. The first iteration yields an
increase since each Lij , Uij > 1.

Since Ai + Bi ≤ 1, each is bounded above and we
achieve monotonic convergence. Combining this with
the main global optimization approach can dramati-
cally reduce the range of values that need be consid-
ered, leading to significant time savings. Convergence
is rapid even for large, densely connected graphs. Each
iteration takes O(|E|) time; a good heuristic is to run
for up to 20 iterations, terminating early if all parame-
ters improve by less than a threshold value. This adds
negligible time to the global optimization.

This procedure alone can produce impressive results.
For example, running on a 100-node graph with in-
dependent random edge probability 0.04 (hence av-
erage degree 4), each Wij and θi drawn randomly
from Uniform [0, 1] and then adjusting θi ← θi −∑
j∈N(i)Wij/2 in order to be unbiased, convergence

takes about 11 iterations yielding final average bracket
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width of 0.05 after starting with average bracket width
of 0.40. Greater connectivity, higher edge strengths
and smaller individual node potentials make the prob-
lem more challenging and may widen the returned final
brackets significantly.

BBP for general models

A repulsive edge (i, j) may always be flipped to as-
sociative by flipping variable j, which flips its Bethe
bounds Aj ↔ Bj . Using Theorem 4 we can extend
the analysis above to run BBP on any model, see Al-
gorithm 1 in section 6. Performance in terms of con-
vergence speed and final bracket width is similar for
associative and non-associative models.


