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Abstract

We present a probabilistic modeling approach to learning gene transcriptional reg-
ulation networks from time series gene expression data that is appropriate for the
sparsely and irregularly sampled time series datasets currently available. We use a
clustering algorithm based on statistical splines to estimate continuous probabilistic
models for clusters of genes with similar time expression profiles and for individual
genes. Using the learned models, we present a novel mutual information score for
causal edges between pairs of clusters and between pairs of genes corresponding to a
given time lag δ. This score computes dependency between expression values as con-
tinuous quantities rather than discretizing them. We present empirical results on times
series data for the yeast cell cycle, using randomization trials to determine statistically
significant candidate network edges and the Chow-Liu graph learning algorithm to learn
the network structure, to obtain a dynamic model of cell cycle regulation. Biological
validation of the inferred network suggests that our method can learn a meaningful,
higher-level view of regulatory networks from sparse time series data.

Keywords: gene expression; gene regulatory networks; time series; machine learning.

1 Introduction

An exciting new area of research in computational biology is the problem of learning models
of gene transcriptional regulation networks from microarray hybridization data. A number
of recent papers – including work of Pe’er et al. [8], Hartemink et al. [4], and Ong et al.
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[7] – have approached this problem with the formalism of Bayes nets (also called graphical
models), where each gene expression level is modeled as random variable corresponding to a
node in a directed acyclic graph G. The main focus of research has been to learn structure of
the graphical model G from observations of the joint distribution of gene expression levels.

Microarray data presents difficult challenges to the sophisticated probabilistic methods.
The data is noisy, and while there are thousands of random variables (genes) to model,
there are at best only a few hundred joint observations. All papers cited above discretize
the data prior to Bayes net modeling, making the learning procedure more robust to sparse
and noisy data but losing information in the process. Since learning a network involving all
the genes is not possible with current datasets, the goals of learning must be more modest:
for example, finding small features of the network that are statistically significant [8] or
scoring small candidate models involving a few genes [4]. A more subtle difficulty of the
standard Bayes net model is that the directed edges of the graph G do not in general imply
causal interaction between genes. If knockout data is available, some causal edges can be
learned by modeling the knockout experiments as interventions in the graph [8]. A simpler
approach to directly learning causality is to use time series expression data and a dynamic
probabilistic model. Here, the structure learning problem consists of learning edges across
the time slice, representing a time lag of δ, from pairs of experiments at times (t, t+ δ); the
forward direction of time implies causality. However, time series expression datasets are even
more sparse and may be irregularly sampled over the time course. Ong et al. try to perform
structure learning of a dynamic Bayes net directly from a small dataset [7] and report some
of the difficulties of this approach.

In this paper, we present a new approach for learning the structure of a dynamic network
model from sparsely sampled time series expression data. Since we have many genes but
relatively few time points, we can obtain a better-supported probabilistic model for clusters
of genes with similar expression profiles across the time course rather than trying to model
individual genes. Therefore, a node in our dynamic model represents the expression level for
a cluster of similarly-behaving genes rather than a single gene. We learn assignments of genes
to clusters as well as statistical spline models for both genes and clusters using an expectation
maximization approach as presented by Bar-Joseph et al. [1]. With the statistical spline
approach, we avoid discretizing the data, and we can learn well-supported, continuous and
time-varying probabilistic models for the cluster expression levels from sparse and irregularly
sampled time series data. Using the cluster probability models, we present a novel mutual
information score for detecting dependence of cluster variables across a time slice, which we
use as the basis for our network structure learning. Our mutual information score measures
dependencies between continuous models for the cluster expression variables rather than
discretized empirical probability distributions. We present results on yeast cell-cycle data
[3], where we use randomization trials to obtain a threshold for a statistically significant
network edges and learn a sparse graphical model based on the Chow-Liu algorithm for tree
learning [2].

Previous research combining clustering with network inference include work of Toh and
Horimoto [10], who build a partial correlation coefficient matrix based on averaged expression
profiles, and Mjolsness et. al [6], who model regulation of aggregate genes using analog neural
network dynamics.

While cluster-to-cluster interactions may seem less interesting than gene-to-gene inter-
actions, in our results on yeast cell-cycle data, we find that the clusters consist of genes
with similar function; by using gene ontology annotations for the genes assigned to a clus-
ter, we can attribute a clear biological meaning to many of the clusters. We also find that
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the cluster-to-cluster edges in our network model reflect known interactions from yeast bi-
ology. Thus our approach appears successful in learning meaningful, higher-level regulatory
behavior from sparse time series data in this example.

2 Cluster and Gene Models using Statistical Splines

We begin by learning a continuous, time-varying probabilistic model for the expression levels
of “clusters” of genes with similar expression profiles over a time course of microarray exper-
iments. We learn both a parameterized model for the cluster profiles and a soft assignment
of genes to clusters with a clustering technique introduced by Bar-Joseph et al. [1], based on
the statistical spline model given in James and Hastie [5].

We model the true expression level for gene i, belonging to cluster j as a function of time
as
(
s1(t) · · · sq(t)

) (
µj + γij

)
, where s1(t), . . . , sq(t) are spline basis functions, µj is the

mean vector of spline coefficients for cluster j and γij is the gene-specific variation vector
of spline coefficients. We assume that each experimental observation is subject to Gaussian
noise, with error ε ∼ N(0, σ2). Therefore, for a vector of observations for gene i at times t1,
. . ., tm, we have:

Yi =

Yi(t1)
...

Yi(tm)

 =

s1(t1) · · · sq(t1)
...

...
...

s1(tm) · · · sq(tm)

µ1
j
...
µqj

+

γ1
ij
...
γqij

+

 ε1
...
εm

 .

We use expectation maximization (EM) on our dataset to learn parameters σ, µj, γij, as
well as the q× q covariance matrix Γj for the vectors γij and the posterior probability p(j|i)
of gene i belonging to cluster j, given the data. Here we follow the EM formulation described
in [1], but we modify the algorithm with deterministic annealing to avoid converging to poor
local maxima of the complete log likelihood function. Details of the EM procedure are given
in the appendix.

When most of the genes satisfy the condition that maxj p(j|i) is close to 1, we can use the
j that maximizes p(j|i) as the hard cluster assignment of gene i. This leads to continuous
probabilistic models for both cluster expression profiles and gene expression profiles that
are functions of time. Specifically, our model gives the following probability distribution for
(observed) expression level Yi at time t of gene i with cluster assignment j

P (Yi|t) =
1√
2πσ

exp

− 1

2σ2

(
Yi −

q∑
k=1

sk(t)(µ
k
j + γkij)

)2


For the cluster models, let Xj represent the “cluster” expression random variable. Then we
can write Xj(t) =

(
s1(t) · · · sq(t)

)
(µj+γj)+ε where γj ∼ N(0,Γj) and ε ∼ N(0, σ2). We

get one-dimensional cluster mean value of E(Xj|t) =
(
s1(t) · · · sq(t)

)
µj =

∑q
k=1 sk(t)µ

k
j

and variance Var(Xj|t) =
(
s1(t) · · · sq(t)

)
Γj

s1(t)
...

sq(t)

 + σ2. Letting θ2
j (t) = Var(Xj|t)

(scalar variance), we get the following probabilistic model for the cluster random variable:

P (Xj|t) =
1√

2πθj(t)
exp

− 1

2θ2
j (t)

(
Xj −

q∑
k=1

sk(t)µ
k
j

)2
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.

3 Mutual Information from Continuous Models

The recovered spline parameters determine a curve and a distribution over cluster expres-
sion levels (as well as inidividual genes) over a continuous range of time. The availability of
this temporal curve distribution permits us to perform a quantitative measurement of the
statistical independence between one temporal expression profile a given cluster and the tem-
poral expression profile of another. The pairwise measure of the independence is performed
through a mutual information computation, as described below.

We model the joint distribution of two clusters, Xa and Xb, at time t and separated
by timelag δ as instantaneously independent: P (Xa, Xb|t, δ) = P (Xa|t)P (Xb|t + δ). We
integrate with respect to time to obtain an estimated model of the joint distribution of
cluster expression variables Xa and Xb separated by timelag δ:

P (Xa, Xb; δ) =
1

tfinal − tinitial

∫
P (Xa|t)P (Xb|t+ δ)dt.

We can think of this integral as taking a continuous uniform mixture with respect to the
time variable. Similarly, we can integrate to define P (Xa) and P (Xb). Now we define a
mutual information score on the edge across the timeslice with timelag δ from Xa to Xb as

I(Xa, Xb; δ) =

∫
P (Xa, Xb; δ) log

P (Xa, Xb; δ)

P (Xa)P (Xb; δ)
dXadXb.

The mutual information is the Kullback-Leibler distance between the joint probability distri-
bution P (Xa, Xb; δ) and the product of the independent distributions. Therefore, the score
gives an indication of how far the distributions of Xa and Xb are from being independent
when we consider pairs of values separated by time lag δ. A high mutual information score
I(Xa, Xb; δ) gives evidence for a causal edge from Xa to Xb. Two fully independent cluster
expression distributions (separated by time lag δ) would have a mutual information of 0. We
present our method for learning network structure from pairwise mutual information scores
in section 4.2.

To approximate the integral for I(Xa, Xb; δ), we replace the continuous mixture with
respect to time by a discrete sum over T evenly spaced time points in expressions, so that
all the probability distributions become discrete mixtures of Gaussians. We can then sample
from the Gaussian components of P (Xa, Xb; δ) in standard Monte-Carlo fashion to obtain
our approximation:

I(Xa, Xb; δ) ≈
1

T

T∑
l=1

∫
P (Xa|tl)P (Xb; tl + δ) log

P (Xa, Xb; δ)

P (Xa)P (Xb; δ)
dXadXb

≈
1

T

T∑
l=1

 1

N

∑
N points (Xa,Xb)
∼P (Xa|tl)P (Xb;tl+δ)

log

1

T

∑
j P (Xa|tj)P (Xb|tj + δ)(

1

T

∑
j P (Xa|tj)

)(
1

T

∑
j P (Xb|tj + δ)

)


4



2 4 6 8 10 12 14 16
−1150

−1100

−1050

−1000

−950

−900

−850

−800

no. of knots

lo
gl

os
s

logloss vs. no. of knots (1 cluster)

(9) 

6 8 10 12 14 16 18 20 22 24
−402

−400

−398

−396

−394

−392

−390

−388

−386

−384

#clusters

lo
gl

os
s

logloss vs # clusters (9 knots)

(A) (B)

Figure 1: Log loss curves for cross-validation. The log loss function for 1 cluster, with the number of
knots varying (plot A) and for 9 knots with the number of clusters varying (plot B).

4 Experiments: Yeast Cell Cycle

Spellman et al. [3] have listed a set of 799 genes of Saccharomyces cerevisiae that they found
were cell-cycle regulated. We applied our method to time series data (alpha-pheromone
experiment) of 791 genes, which consists of 18 time points sampled every 7 minutes and
represents two full cell cycles. We omitted 8 genes due to missing time points. Note that
this dataset is not the cdc15 dataset, whose data is a concatenation of even and odd time
points.

4.1 Model Selection by Cross-Validation

Following [1], we used natural cubic splines, where the size q of the spline basis is equal to
the number of knots. We used evenly spaced knots and determined optimal value of knots
and clusters using the log-loss function on a hold-out set of genes

log loss =
∑

genes i in hold-out set

log

( ∑
clusters j

pjP (Yi|Zi = j,µj,Γj, σ
2)

)

where the parameters for the cluster j model are as defined in the Appendix. This cross-
validation checks generalization of the learned cluster models to the held-out test set genes.

We ran the clustering algorithm on 90% of the dataset (leaving out a randomly selected
80 genes) and calculated the log loss values on the remaining 10%, based on the training
model for different number of knots and clusters. Figure 1 (plot A) shows the log loss as
a function of the number of knots when we fixed the number of clusters to one. The peak
corresponds to a value of 9 knots. Similar results were found for other cluster values as well
ranging from 2 to 24 (results not shown). Hence, 9 knots was chosen as the best value for
the number of knots. We similarly calculated the log loss varying the number of cluster from
1 to 24 using a constant value of 9 knots, performing trials on 3 randomly selected hold-out
sets for each model (Figure 1, plot B). Based on averaged los-loss results, we found that the
best model used 20 clusters.

We also compared the quality of interpolation using our spline-based model with linear
interpolation by leaving out time points for all the genes in the dataset and calculating the
total RMS error. The spline-based approach was always found to have a lower RMS error
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value. Using 20 clusters and 9 knots with the central time point eliminated for all genes, the
RMS error using the spline model was 8.610 as compared to 9.346 using the linear model.

4.2 Network Learning from Mutual Information Scores

Using 9 knots and 20 clusters, we ran the EM clustering algorithm using deterministic
annealing (see Appendix) on the full dataset of 791 genes several times using different random
cluster centers as starting points. We observed a consistent clustering of genes and selected
the model that gave us the best complete log likelihood. Figure 2 (A) gives an example of
the learned spline trajectories for one of the clusters.

The pairwise mutual information between clusters for different values of time lag δ of 0
to 50 minutes (in steps of 2 minutes) was calculated using the method in section 3. In order
to capture changes in graph structure over the time course, we calculated these mutual infor-
mation scores over windows corresponding to our biological prior knowledge of approximate
timing of the phases of the yeast cell cycle, as observed in the experiment [3]. Specifically,
in order to capture cluster to cluster interactions across a phase transition, we calculated
mutual information over windows corresponding to two consecutive phases of the cell cycle.
Since the time course actually represents two full cell cycles, we calculate the mutual in-
formation for each phase transition “time slice” over a pair of corresponding time intervals,
where one interval comes from each cell cycle. Windows for the transitions were chosen
as follows: M/G1-G1 transition, 1-28 and 59-92 minutes; G1-S, 10-43 and 73-105 minutes,
S-G2, 24-50 and 86-113 minutes; and G2-M, 38-63 and 101-119 minutes. (See Section 4.3
for a summary of cell cycle phases.)

To obtain a threshold for the mutual information scores prior to any graph learning, we
conducted a randomization experiment. Keeping the membership of each cluster the same,
we shuffled the time values (order of experiments) of each cluster independently to eliminate
any causality and ran the EM algorithm on this new randomized dataset, one cluster at
a time, to obtain model parameters for each cluster separately. The mutual information
between the clusters based on this randomised model was then calculated for the same time
intervals as above. We chose a threshold for each time interval such that and the largest
mutual information score was higher than 99.5% of the randomized mutual information
scores.

For our structure learning, we were interested in obtaining a multi-layer dynamic network
structure where different layers model different time periods of the cell cycle, as opposed to a
single-layer network, where the structure is assumed constant across the entire time course.
We used a 5-layer model, where each layer contains 20 nodes corresponding to clusters,
and mutual information scores derived from time windows corresponding to phase transition
gave edge scores for candidate edges across the 4 time slices. All below-threshold edges (as
determined by the randomization trials) were removed from the candidate edge set, and
only edges between successive layers were allowed. Given the pruned candidate edge set, we
used the Chow-Liu algorithm [2], for each transition separately, to learn a maximal weight
spanning tree (across each time slice) in order to assemble the network. The algorithm
simply involves adding the edge in the graph with largest mutual information while also
checking to ensure that no cycles are created in the graph. (Note that cycles can occur over
several time slices when we assemble the multi-stage model.) Tree structures are appropriate
for pairwise mutual information calculations, and in the case of standard (non-dynamic)
Bayes net models, Chow-Liu learns the maximum likelihood tree structure. However, we
are primarily using Chow-Liu to enforce biologically reasonable sparsity, and we do not
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Figure 2: Network results for yeast cell cycle. (A) Example: spline models for genes in Cluster 7.
(B) Learned multi-phase network structure.

use the edge directions implied by the tree structure but rather the direction of forward
time. To learn non-tree structures or more subtle local structures (such as head-to-head
edges with weak individual mutual information scores), one must perform multi-information
calculations between sets of genes. Algorithms to find optimal graphs based on these scores
may be plagued by local maxima and approximations.

For each candidate edge, we used the δ value that resulted in the best mutual information
score but eliminated edges for which δ < 4 or δ > 35 minutes maximized mutual information,
since mutual information for a very short time lag is likely an artifact of the model or
coincidence of shape rather than evidence of causality, and long time lags are not biologically
relevant. Using these scores with the Chow-Liu algorithm, we obtained the graph in Figure 2
(B). Biological validation of our learned network structure is given in the next section. Note
that different edges can correspond to different causal time lags, which might be a useful
indication of the time scale of the kinematics of the causal interactions.

4.3 Biological Validation

The cell cycle clock in S. cerevisiae has been empirically categorized into four phases: G1
(gap1), S (synthesis), G2 (gap2), and M (mitosis). Synthesis refers to the synthesis of DNA
to complete the duplication of the cell’s chromosomes. Mitosis refers to the final separation
of the replicating cell into two daughter cells. The gaps in between these phases are called G1
and G2, but important biological regulation or check points occur at those steps to ensure
the orderly progression through the next step in the cell cycle, such as ensuring the genomic
DNA is undamaged, or the correct number of chromosomes has been synthesized. A model
of the transcriptional control of genes by phase has been shown in a review of the literature
[9]. Analysis of these genes and their regulatory targets reveals that genes during one phase
of the cell cycle contribute to the regulation of key transcription factors that induce genes
in the next phase of the cell cycle, driving the cell cycle and forming a fully connected
regulatory circuit.

To interpret our learned network in terms of cell cycle biology, we began by attaching
significant biological meaning to our clusters. We assigned each gene to the cluster for
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No. (Size) General GO description (p < .05) Phase Min p-value GO description
1 (11) budding, cytokinesis M/G1 cell wall organization and biogenesis (0.00746)

2 (132) DNA repair and replication S DNA repair (0.00300) 1

3 (6) mating M/G1 regulation of transcription, mating-type specific
(0.0228)

4 (10) cell wall metabolism (budding) G1 carbohydrate metabolism (0.00334)
5 (13) cell wall metabolism (budding) G1 methionine metabolism (5.51E-06)
6 (19) DNA replication initiation M/G1 pre-replicative complex formation and maintenance

(1.89E-07)
7 (17) chromatin S chromatin assembly/disassembly (1.14E-12)
8 (51) mitosis M proton transport (0.00392)
9 (16) cell cycle G1/S, G2/M regulation of CDK activity (0.000769)
10 (8) mating M/G1 reproduction (6.16E-08)

11 (164) mitosis M microtubule-based process (3.76E-05)
12 (221) budding M/G1 exocytosis (0.00278)
13 (37) cell wall metabolism (budding) G1 carboxylic acid metabolism (7.31E-06)
14 (9) chromatin S phosphate metabolism (0.000658)
15 (15) energy pathways S? iron transport (0.00101)
16 (13) nitrogen metabolism M? one-carbon compound metabolism (0.000258)
17 (25) DNA replication S mitotic cell cycle (5.67E-07)
18 (10) cell communication (mating) M/G1 signal transduction (0.00297)
19 (7) cytokinesis, mating M/G1 cytokinesis, completion of separation (0.000407)
20 (7) mating M/G1 signal transduction during conjugation with cellular

fusion (2.40E-05)

Figure 3: GO annotations for clusters. Cluster number, size (number of genes), general GO annotation,
and GO term with minimum p-value for the cluster.

which it had maximum posterior probability of membership. We considered the complete
set of Gene Ontology (GO) biological process annotations or terms for our genes available at
the Saccharomyces Genome Database (SGD). For each GO term for genes within a specific
cluster, we computed a p-value from the tail of hypergeometric distribution. The p-value
estimates the probability that, within the specific cluster, the term would appear at random
at least as many times as it does, based on the prevalence of the term for genes in the
entire dataset. We give a general GO biological assignment to a cluster based on those GO
annotations with p-values of less than 0.05 in Figure 3, and we also list the GO annotation
with minimum p-value associated to each cluster. Several of the clusters appear to be
dominated by genes regulated in a phase or transcription factor specific manner. Clusters
3, 6, 10, 18, 19, and 20 are associated with the mating or replication initiation process in
M/G1 phase. Clusters 1, 4, 5, 12 and 13 are associated with the budding process in late
G1 phase. Clusters 2, 7, 14, and 17 are associated with the DNA replication or chromatin
maintenance in the S phase. Clusters 8 and 11 are associated with the mitosis or cytokinesis
in M phase. Clusters 9, 15, and 16 have questionable assignments to a specific phase. No
clusters have a sound association with the G2 phase, the shortest phase in the cell cycle.
A complete list of genes for each cluster and with p-value ranked GO annotations will be
available at http://www.cs.columbia.edu/compbio.

Phases of the cell cycle are annotated on Figure 2 (B), with bold edges representing rela-
tionships that are either supported or inferred in the literature [9]. One can observe several
connections supported by the literature, but also several that are not. These unsupported
connections may be artifacts of the spline interpolation, poor biological representation of
the cluster, or previously unknown interactions/function of the genes within the cluster not
represented by GO.

Those edges supported by the literature include two general types of regulatory relation-
ships. Some mutual information edges appear to represent genetic relationships approxi-
mately within one cell cycle phase (or including part of its adjacent phase). Other mutual
information edges appear to represent transitions between cell cycle phases. Examples of
biologically supported transition edges found in the M/G1 and G1 phases are mitosis genes
in M phase preceding induction of histone genes in late G1/S (16-7), mating genes in M/G1
preceding induction of budding, histone, chromatin, and cyclin genes in G1/S phases (19-
1,19-7, 19-14, 19-18, respectively). In the G1 and S phases, one can see preceding interactions
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between DNA replication initiation genes in M/G1 and DNA replication and repair genes in
S (6-2), and mating genes in M/G1 and DNA replication genes in S (20-17). Finally in the
case of G2 and M phases, one finds preceding interactions between histone genes and cyclin
genes of the G2/M transition (7-9). Other biologically supported edges represent intra-phase
genetic relationships.

5 Discussion and Future Work

We have presented a framework for learning a regulatory network from sparsely sampled
time series gene expression data using a continuous probabilistic model of temporal clus-
ter expression and a novel mutual information score. Our method avoids discretizing the
expression values, thus allowing a more sensitive mutual information score. The mutual in-
formation scores were used with a tree-learning algorithm to produce a biologically plausible
multi-stage temporal network model for the yeast cell cycle.

While the current dataset has presented interesting results, many other time series
datasets are becoming available and can be studied with the method developed here. Further-
more, experiments with other graph structures are of interest. Here, a Chow-Liu algorithm
was constrained to learn multi-stage sub-graphs. This structure learning is appropriate for
the pairwise mutual information scores that were computed between the various clusters.
However, higher order mutual information measures may be used which capture more subtle
dependencies in the data. However, unlike Chow-Liu and pairwise mutual information, these
higher order variants typically involve intractable learning algorithms and careful approxi-
mation strategies must be investigated. We are exploring means to characterize the nature
of the edges in our graphical model, such as applying scoring functions that will inform us of
the strength and sign of the interactions between nodes in the model. Finally, we note that
our method also produces continuous probabilistic models for individual genes. In combina-
tion with other data types that inform regulatory interactions (for example, genome location
analysis and binding motif data), these individual gene models could be used to learn a finer
and fuller structure of the cell cycle regulatory network.
Acknowledgments: We would like to thank Chris Wiggins, Harmen Bussemaker, Jiri
Zavadil, and Erwin Böttinger for useful conversations and Dimitris Anastassiou for providing
additional computational resources. CL is partially supported by NIH grant LM07276-02.

Appendix: Annealed EM-based Clustering

For convenience, we outline the expectation maximization clustering algorithm from [1] which
we modify with deterministic annealing. For each gene i, both the cluster assignment Zi and
the gene-specific variation γij from cluster mean µj are treated as hidden variables, using
the model

P (Yi,γij|Zi = j,µj,Γj, σ
2)

=
1

(2π)
m+q

2 |Γj|
1
2σm

exp(−(Yi − S(µj + γij)
t(Yi − S(µj + γij))/(2σ

2))) exp(−1

2
γtijΓ

−1
j γij)

In the E-step, we calculate p(j|i) =
(pjP (Yi,γij|Zi = j,µj,Γj, σ

2))β∑
k(pkP (Yi,γik|Zi = k,µk,Γk, σ

2))β
, where pk are prior

probabilities on the cluster assignments and β is the annealing parameter. Still in the E-step,
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we calculate expectations

γ̂ij = (σ2Γ−1 + StS)−1St(Yi − Sµj) and ̂γtijγij = γ̂ij
t
γ̂ij + (Γ−1

j + StS/σ2)−1.

In the M-step, we update parameters with

σ2 =

∑
i

∑
j p(j|i)(Yi − S(µj + γ̂ij))

t(Yi − S(µj + γ̂ij))

mN
, Γj =

∑
i p(j|i)̂γtijγij∑

i p(j|i)

µj = (
∑
i

p(j|i)StS)−1(
∑
i

p(j|i)St(Yi − Sγ̂ij), pj =
1

N

∑
i

p(j|i).

We start with the annealing parameter 0 < β � 1 and gradually let β approach 1 as we
iterate E-steps and M-steps. This technique helps the algorithm avoid poor local maxima of
the complete log likelihood function.
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