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Perfect Graphs

Background on Perfect Graphs

In 1960, Berge introduces perfect graphs where every induced
subgraph has clique# = coloring#

Berge also poses two conjectures:

Weak: a graph is perfect iff its complement is perfect
Strong: a graph is perfect iff it is Berge

Weak perfect graph theorem (Lovász 1972)

Link between perfection and integral LPs (Lovász 1972)

Strong perfect graph theorem (SPGT) open for 4+ decades
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Perfect Graphs

Background on Perfect Graphs

SPGT Proof (Chudnovsky, Robertson, Seymour, Thomas 2003)

Berge passes away shortly after hearing of the proof

Many NP-hard and hard to approximate problems are P for
perfect graphs

Graph coloring
Maximum clique
Maximum independent set

Recognizing perfect graphs is O(n9) (Chudnovsky et al. 2006)
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Graphical Models

Graphical Models

x1 x2 x3 x4

x5

x6

Perfect graphs for maximum a posteriori (MAP) (J 2009)

Graphical model: an undirected graph G representing a
distribution p(X ) where X = {x1, . . . , xn} and xi ∈ Z

Distribution factorizes as product of cliques or functions over
subsets of variables

p(x1, . . . , xn) =
1

Z

∏

c∈C

ψc(Xc)

E.g.p(x1, . . . , x6)=ψ(x1, x2)ψ(x2, x3)ψ(x3, x4, x5)ψ(x4, x5, x6)
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Graphical Models

MAP Estimation

A canonical problem, find most probable configuration

X ∗ = argmax p(x1, . . . , xn)

Useful for image processing, protein folding, coding, etc.

Brute force requires
∏n

i=1 |xi |

Efficient for trees and singly linked graphs (Pearl 1988)

NP-hard for general graphs (Shimony 1994)

Approach A: relaxations and variational methods

First order LP relaxations (Wainwright et al. 2002)
TRW max-product (Kolmogorov & Wainwright 2006)
Higher order LP relaxations (Sontag et al. 2008)
Fractional and integral LP rounding (Ravikumar et al. 2008)
Open problem: when are LPs tight?

Approach B: max product and message passing
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Graphical Models

Max Product Message Passing

1. For each xi to each Xc : mt+1
i→c =

∏

d∈Ne(i)\c mt
d→i

2. For each Xc to each xi : mt+1
c→i = maxXc\xi

ψc(Xc)
∏

j∈c\i m
t
j→c

3. Set t = t + 1 and goto 1 until convergence
4. Output x∗

i = argmaxxi

∏

d∈Ne(i) mt
d→i

A simple and fast algorithm that performs well in practice

Exact for trees (Pearl 1988)

Converges for single-loop graphs (Weiss & Freeman 2001)

Convergence and Gibbs measure (Tatikonda & Jordan 2002)

Local optimality guarantees (Wainwright et al. 2003)

Similar to first order LP relaxation

Recent progress

Exact for bipartite matchings (Bayati et al. 2005)
Exact for bipartite b-matchings (Huang and J 2007)
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Graphical Models

Bipartite Matching

Motorola Apple IBM

”laptop” 0$ 2$ 2$
”server” 0$ 2$ 3$
”phone” 2$ 3$ 0$

→ C =





0 1 0
0 0 1
1 0 0





GivenW , maxC∈Bn×n

∑

ij WijCij such that
∑

i Cij =
∑

j Cij = 1

Classical Hungarian marriage problem O(n3)

Creates a very loopy graphical model

Max product takes O(n3) for matching (Bayati et al. 2005)
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Bipartite Matching

Bipartite Generalized Matching

Motorola Apple IBM

”laptop” 0$ 2$ 2$
”server” 0$ 2$ 3$
”phone” 2$ 3$ 0$

→ C =





0 1 1
1 0 1
1 1 0





GivenW , maxC∈Bn×n

∑

ij WijCij such that
∑

i Cij =
∑

j Cij = b

Combinatorial b-matching problem O(bn3), (Google Adwords)

Creates a very loopy graphical model

Max product takes O(bn3) for exact MAP (Huang & J 2007)
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Bipartite Matching

Unipartite Generalized Matching

p1 p2 p3 p4

p1 0 2 1 2
p2 2 0 2 1
p3 1 2 0 2
p4 2 1 2 0

→ C =









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









maxC∈Bn×n,Cii=0

∑

ij WijCij such that
∑

i Cij = b,Cij = Cji

Combinatorial unipartite matching is efficient (Edmonds 1965)

Makes an LP with exponentially many blossom inequalities

Max product exact if blossomless LP integral (Sanghavi 2008)

Same b-matching code as bipartite case (Huang and J 2007)
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Back to Perfect Graphs

Max product and exact MAP depend on the LP’s integrality

Matchings have special integral LPs (Edmonds 1965)

How to generalize beyond matchings?

Perfect graphs imply LP integrality (Lovász 1972)

Lemma (Lovász 1972)

For every non-negative vector ~w ∈ R
N , the linear program

β = max
~x∈RN

~w⊤~x subject to ~x ≥ 0 and A~x ≤ ~1

recovers a vector ~x which is integral if and only if the
(undominated) rows of A form the vertex versus maximal cliques
incidence matrix of some perfect graph.
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Back to Perfect Graphs

Lemma (Lovász 1972)

β = max
~x∈RN

~w⊤~x subject to ~x ≥ 0 and A~x ≤ ~1

x1 x2 x3 x4

x5 x6

A =









1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 1 0
0 0 0 1 1 1








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nand Markov Random Fields

nand Markov Random Fields

Lovász’s lemma is not solving max p(X ) on G

How to apply the lemma to any model G and space X?

We have p(x1, . . . , xn) = 1
Z

∏

c∈C ψc(Xc)

Without loss of generality assume ψc(Xc)←
ψc (Xc )

minXc ψc (Xc )
+ ǫ

Consider procedure to G to G in NMRF form

NMRF is a nand Markov random field over space X

all variables are binary X = {x1, . . . , xN}
all potential functions are pairwise nand gates
Φ(xi , xj) = δ[xi + xj ≤ 1]
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nand Markov Random Fields

nand Markov Random Fields

A B C
AB

00

AB

01

AB

10

AB

11

BC

00

BC

01

BC

10

BC

11

Figure: Binary graphical model G (left) and nand MRF G (right).

Initialize G as the empty graph
For each clique c in graph G do

For each configuration k ∈ Xc do
add a corresponding binary node xc,k to G
for each xd,l ∈ G which is incompatible with xc,k

connect xc,k and xd,l with an edge

Figure: Algorithm to convert G into a NMRF G
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nand Markov Random Fields

nand Markov Random Fields

A B C
AB

00

AB

01

AB

10

AB

11

BC

00

BC

01

BC

10

BC

11

p(X ) ∝
∏

c∈C ψc(Xc) ρ(X) ∝
∏

i∈V(G) ewixi
∏

(i ,j)∈E(G)(1− xixj )

G has N binary variables with weights wc,k = logψc(Xc = k)

If node xc,k = 1 then clique c is in configuration k ∈ Xc

Lemma (J 2009)

The MAP estimate for ρ(X) on G recovers MAP for p(X ) on G
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Packing Linear Programs

Packing Linear Programs

MAP on ρ(X) is just Maximum Weight Stable Set (MWSS)

MWSS is NP-hard in general but P if graph G is perfect

Relaxed MAP on log ρ(X) ≡ set packing linear program

If graph G is perfect, LP is integral

Lemma (Lovász 1972)

For every non-negative vector ~w ∈ R
N , the linear program

β = max
~x∈RN

~w⊤~x subject to ~x ≥ 0 and A~x ≤ ~1

recovers a vector ~x which is integral if and only if the
(undominated) rows of A form the vertex versus maximal cliques
incidence matrix of some perfect graph.
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Packing Linear Programs

Packing Linear Programs

For general graph G , MAP is NP-hard (Shimony 1994) but...

Convert G to G (polynomial time)

If graph G is perfect (polynomial time)
Solve MAP via MWSS (polynomial time)

...by finding cliques C and solving LP in O(
p

|C |N3)
...by Lovász theta function semidefinite program in O(N5)

Theorem (J 2009)

MAP estimation of any graphical model G with cliques c ∈ C over
variables {x1, . . . , xn} producing a nand Markov random with a
perfect graph G is in P and requires no more than

O
(

(
∑

c∈C

(
∏

i∈c |xi |
))5

)

.
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Recognizing Perfect Graphs

Perfect Graphs

To determine if G is perfect
Run algorithm on G in O(N9) (Chudnovsky et al. 2005)
or use tools from perfect graph theory to prove perfection

Clique number of a graph ω(G): size of its maximum clique

Chromatic number of a graph χ(G): minimum number of
colors such that no two adjacent vertices have the same color

A perfect graph G is a graph where every induced subgraph
H ⊆ G has ω(H) = χ(H)

x1

x2

x3

x4x5

x1 x2 x3

x4x5

x1 x2 x3

x4x5x6

Perfect Not Perfect Perfect
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Recognizing Perfect Graphs

Strong Perfect Graph Theorem

A graph is perfect iff it is Berge (Chudnovsky et al. 2003)

Berge graph: a graph that contains no odd hole and whose
complement also contains no odd hole

Hole: an induced subgraph of G which is a chordless cycle of
length at least 5. An odd hole has odd cycle length.

Complement: a graph Ḡ with the same vertex set V(G) as G,
where distinct vertices u, v ∈ V(G) are adjacent in Ḡ just
when they are not adjacent in G

x1 x2 x3

x4x5

x1 x2 x3

x4x5x6

x1 x2 x3 x4

x5x6x7

odd hole even hole odd hole
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Recognizing Perfect Graphs

Recognition using Strong Perfect Graph Theorem

SPGT implies that a Berge graph is one of these primitives

bipartite graphs
complements of bipartite graphs
line graphs of bipartite graphs
complements of line graphs of bipartite graphs
double split graphs

or decomposes structurally (into graph primitives)

via a 2-join
via a 2-join in the complement
via an M-join
via a balanced skew partition

Line graph: L(G) a graph which contains a vertex for each
edge of G and where two vertices of L(G) are adjacent iff they
correspond to two edges of G with a common end vertex
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Recognizing Perfect Graphs

Recognition using Strong Perfect Graph Theorem

SPGT and theory give tools to analyze graph

Decompose using replication, 2-join, M-joins, skew partition...

May help diagnose perfection when algorithm is too slow

Lemma (Replication, Lovász 1972)

Let G be a perfect graph and let v ∈ V(G). Define a graph G′ by
adding a new vertex v ′ and joining it to v and all the neighbors of
v . Then G′ is perfect.

x1 x2 x3

x4x5x6

x1 x2 x3

x4x5x6

x7 x1 x2 x3

x4x5x6

x7
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Recognizing Perfect Graphs

Recognition using Strong Perfect Graph Theorem

SPGT and theory give tools to analyze graph

Decompose using replication, 2-join, M-joins, skew partition...

May help diagnose perfection when algorithm is too slow

Lemma (Gluing on Cliques, Skew Partition, Berge & Chvátal 1984)

Let G be a perfect graph and let G′ be a perfect graph. If G ∩ G′ is
a clique (clique cutset), then G ∪ G′ is a perfect graph.

x1 x2 x3

x4x5x6

∪

x3 x7 x8

x9x0x4

=

x1 x2 x3

x4x5x6

x7 x8

x9x0
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Proving Exact MAP

Proving Exact MAP for Tree Graphs

Theorem (J 2009)

Let G be a tree, the NMRF G obtained from G is a perfect graph.

Proof.

First prove perfection for a star graph with internal node v with |v |
configurations. First obtain G for the star graph by only creating
one configuration for non internal nodes. The resulting graph is a
complete |v |-partite graph which is perfect. Introduce additional
configurations for non-internal nodes one at a time using the
replication lemma. The resulting Gstar is perfect. Obtain a tree by
induction. Add two stars Gstar and Gstar ′ . The intersection is a
fully connected clique (clique cutset) so by (Berge & Chvátal
1984), the resulting graph is perfect. Continue gluing stars until
full tree G is formed.
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Proving Exact MAP

Proving Exact MAP for Bipartite Matchings

Theorem (J 2009)

The maximum weight bipartite matching graphical model

p(X ) =

n
∏

i=1

δ





n
∑

j=1

xij ≤ 1



 δ





n
∑

j=1

xji ≤ 1





n
∏

k=1

efikxik

with fij ≥ 0 has integral LP and yields exact MAP estimates.

Proof.

The graphical model is in NMRF form so G and G are equivalent.
G is the line graph of a (complete) bipartite graph (Rook’s graph).
Therefore, G is perfect, the LP is integral and recovers MAP.
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Proving Exact MAP

Proving Exact MAP for Unipartite Matchings

Theorem (J 2009)

The unipartite matching graphical model G = (V ,E ) with fij ≥ 0

p(X ) =
∏

i∈V

δ





n
∑

j∈Ne(i)

xij ≤ 1





∏

ij∈E

efijxij

has integral LP and produces the exact MAP estimate if G is a
perfect graph.

Proof.

The graphical model is in NMRF form and graphs G and G are
equivalent. The set packing LP relaxation is integral and recovers
the MAP estimate if G is a perfect graph.
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Proving Exact MAP

Proving Exact MAP for Associative MRFs

Theorem (Greig, Porteous, and Seheult (1989))

MAP for associate Markov random fields is in P via mincut

p(X ) ∝

n
∏

i=1

n
∏

j=1

ψi ,j ,1(xi ,j , xi+1 mod n,j)ψi ,j ,2(xi ,jxi ,j+1 mod n).

Proof via Perfect Graphs.

The resulting NMRF G from G is bipartite and hence perfect.
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Proving Exact MAP

Convergent Message Passing (Globerson & Jaakkola 2009)

Can perform convergent message passing on G

If all variables are binary, it recovers same fixed points as LP

Input: NMRF G = (V, E) and weights wi for i ∈ V.
1. Find all cliques C in E .
2. Initialize all messages to any value.
3. For each node i ∈ V and clique c ∈ C

λi ,c = 1−|c|
|c|

∑

c′∈C\c:i∈c′

λi ,c′ + 1
|c|

wi
P

c∈C

[i∈c]

− 1
|c| max

[

0, max
i ′∈c\i

[

θi′
P

c∈C

[i ′∈c] +
∑

c′∈C\c:i ′∈c′

λi ′,c′

]]

4. Repeat 3 until convergence.

Theorem (J 2009)

Convergent message passing on perfect NMRFs solves MAP.
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Proving Exact MAP

MAP Experiments for Unipartite Matching
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(a) Perfect Graphs (b) Random Graphs

Figure: Scores for the exact MAP estimate (horizontal axis) and message
passing estimate (vertical axis) for random graphs and weights. Figure
(a) shows scores for four types of basic Berge graphs while (b) shows
scores for arbitrary graphs. Minor score discrepancies on Berge graphs
arose due to numerical issues and early stopping.
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Conclusions

Conclusions

Perfect graph theory is fascinating, many recent breakthroughs

A crucial tool for exploring LP integrality and MAP estimation

Solve MAP on NMRF G as Max Weight Stable Set problem

If graph G is perfect, MWSS is polynomial

...via Lovász theta function semidefinite program

...via linear programming or message passing

Exact MAP and message passing applies to

Trees and singly-linked graphs
Single loop graphs
Matchings
Generalized matchings
and now Perfect graphs
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Conclusions

Further Reading and Thanks

MAP Estimation, Message Passing, and Perfect Graphs,
T. Jebara. Uncertainty in Artificial Intelligence, June 2009.

Graphical Models, Exponential Families and Variational
Inference, M.J. Wainwright and M.I. Jordan. Foundations and
Trends in Machine Learning, Vol 1, Nos 1-2, 2008.

Loopy Belief Propagation for Bipartite Maximum Weight
b-Matching, B. Huang and T. Jebara. Artificial Intelligence
and Statistics, March 2007.

Thanks to Maria Chudnovsky, Delbert Dueck and Bert Huang.
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