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Abstract

A variational Bayesian estimator is proposed
that integrates over parameters of a condi-
tional model of a datum given its parent as
well as all parent-to-child out-tree connectiv-
ity structures. The approach yields Bayesian
inference in a nonparametric setting.

1. Introduction

Many paths can upgrade parametric Bayesian infer-
ence into nonparametric settings. For instance, Dirich-
let processes (Teh et al., 2004; Neal, 2003; Ferguson,
1973) and infinite mixture models (Rasmussen, 1999;
Beal et al., 2002) hypothesize latent variables that im-
plicitly group data into clusters which locally obey
some stationary parametric form. Instead of hypoth-
esizing a latent clustering, consider a latent tree con-
nectivity between data points where points are sam-
pled from a stationary conditional distribution given
their parents. This forms a flexible density estimator
for manifold structured and hierarchical data (Jebara,
2008). We derive a variational Bayes estimator by in-
tegrating over parameters of the conditional between
parent and child as well as the latent out-tree sam-
pling structure. As in most nonparametric Bayesian
methods, exchangeability is maintained. However, the
out-tree yields a richer estimator as each datum is sam-
pled with dependence on an unknown parent allowing
potentially complex interactions between points.

2. Extending #id sampling to tdid

A key quantity in Bayesian inference and density
estimation is the evidence. Given samples X =
{X1,..., X7} from a distribution p(X|f) with un-
known parameters 6, the evidence is the integral
p(X) = [,p(X|0)p(6). In density estimation, a stan-
dard assumption is that Xi,..., Xp are sampled #id.
In other words, the likelihood factorizes as p(X|6) =
Hthl p(X¢|0). If we assume 7d sampling, and we as-
sume p(X|0) lies in the exponential family and we
assume a conjugate prior for p(), Bayesian integrals
are straightforward (Box & Tiao, 1992). Nonparamet-
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ric Bayesian inference can be obtained by choosing
p(X¢|0) outside of the exponential family (i.e. mix-
tures). This article instead produces nonparametric
Bayesian inference by considering non-4id assumptions.
A more general assumption than #d is tdid or tree
dependent identically distributed sampling (Jebara,
2008). Therein, we assume that data was sampled ac-
cording to a latent out-tree (West, 1996; Kemp et al.,
2003) structure ! which connects pairs of data points
with a parent-child dependence. Sampling tdid pro-
ceeds as follows. From a uniform prior distribution
over out-trees p(7), an undirected tree 7 is chosen
to connect T nodes. Then, choose a root node from
the set of nodes. Form an out-tree by choosing all
edges to point away from the root. Then, from a prior
over root models p(6,,) sample a root model 6, and
then sample the attributes of the root X, from the
model p(X,|6,,). From a prior over conditional mu-
tation models p.(6.), sample a conditional model 6.
Then, traversing from parent to child along the out-
tree, sample each child’s attribute vector X; according
to a conditional (mutation) distribution that depends
on its parent X ) given by p(X¢| X ), 0.). This sam-
pling structure strictly generalizes the iid setting which
emerges if the dependence of each datum on its par-
ent is extinguished and p(X¢| Xy, 0.) — p(X¢l0m).
We will assume that only the observations X are
available for inference and that both the parameters
0 = {0,,,0.} and the out-tree structure 7 are hidden.
If we knew 7 and 6, the likelihood factorizes as:

T
p(X|7,0) = Hp(Xt|Xw(t)79)'

t=1
Since 7 and 6 are unknown, the evidence requires in-
tegrating over both. For now, assume that the pa-
rameters are known. Also assume a uniform prior over
out-trees p(T) = 77—. The tdid latent likelihood is
given by summing over all out-trees:

T
1
p(X[0) = WZHP(XJXWQ),@)-
T t=1

LAn out-tree is an acyclic graph 7 with T vertices X =
Xi1,..., X7 and directed edges such that each node X; has
one parent node X, ;) and the root has zero parents. All
directed edges point away from the root.
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Since there are 771 out-trees, this is unwieldy. In-
stead, break the summation into all possible choices of
the root of the out-tree r = 1...7T and a summation
over the subset 7,. of all T7T—2 out-trees rooted at node
r. The latent tdid likelihood simplifies into:

T
p(X[0) =

p(erm)Zr

where we have used the property that the root has no
parent node and defined the following as the contribu-
tion of each out-tree rooted at r:

ZHp Xi| X ey, 0

T, t#r

=2 1] fu

7, wweT

Above, we also wrote the Z, term as a product of
edges in the out-tree instead of a product of nodes.
That formula involves an asymmetric § weight matrix
of size T x T populated by all pairwise conditional
probabilities (., = p(Xy4|X,,0.) and where 3, = 0.
Cleverly, Tutte’s Directed Matriz Tree Theorem (West,
1996) recovers Z, in cubic time using the determinant:

Zy = |[diag(51) — ]|

Here, we take T to be the ones column vector and the
diag(?) operator gives a diagonal matrix with ¥ on its
diagonal. Also, we denote by [Q], the matrix cofactor
obtained by deleting the r’th row and r’th column of
the matrix ). Reinserting the formula for Z,. gives
the likelihood p(X'|f) which is now efficient to evalu-
ate. Naively, this requires O(T?) total work however
Woodbury’s formula produces a solution in O(T?) (Je-
bara, 2008). Next, we tackle joint integration over
both structure and parameters (Friedman & Koller,
2003; Attias, 1999; Mau et al., 1999).

3. Variational Bayes for tdid sampling

The log-evidence € = Inp(X) is the integral over both
parameters and structures. We assume the root and
conditional distributions are in the exponential family
and the priors on their parameters p(6) = p(0,,)pc(0.)
are conjugate. Integrating with p(7) = 77— yields:

T T
= ]n/egp(XT)ZHp(Xde(t))ﬁj(w—e)l.

T, t#r
However, £ intractable, so we instead manipulate a
lower bound on the evidence. This is done by intro-
ducing variational distributions, for instance, the dis-
tribution ¢(r) over choices for the root. We also intro-
duce variational distributions over out-trees rooted at

each r which we denote ¢.(7,) and a variational distri-
bution over the parameters ¢.(6.). Applying Jensen’s
inequality produces:

£z Yt / (X, 16)p(6rn)
o7, Z/qc ) I p(Xi X rg0), 00)

t#r
+H(q) — (T -1)InT+» q(r)H(q,) — D

Above, H denotes the Shannon entropy and D denotes
the Kullback-Leibler divergence. Update rules for each
variational distribution iteratively maximize the lower
bound by taking derivatives and setting to zero. We
update the density over out-trees rooted at node r via:

o(T) = _Hef9 qe(0c) Inp(Xe| X (1) 0c)

t;ér

As in the previous section, this can be rewritten as a
product over edges in the out-tree 7, and summarized
simply by a T' x T matrix § whose off diagonal entries
are Buy = fe q.(0.) Inp(X,|Xy,0.). For exponential
family p(X, |Xv, 0 ), such integrals are easy to solve.
Each Z, is also straightforward to recover using Tutte’s
theorem. The update for the ¢(r) distribution is:

a(r) o M@ /9 (X100 )P (00n)

m

XGZTT a-(77) Zg;&r fgc qc(0c) lnp(Xt|X7r(t) ,0c)

where the entropy H(g,) and the expectation over
qr(7,) are efficient to compute from the @ matrix
(Meila & Jaakkola, 2006). Furthermore, the integrals
fe (X:|0m)p(0,) are known for exponential families.
We update the distribution over parameters via:

Ge(0e) o< p(Be)eXrmr Arar(Te) Sy np(Xal Xre) )

H p(Xu| Xy, 0,)XrT 4 (T)3(ueTr)
uFv

X p(96)

This is simply the prior times a product over all
pairs of datapoints likelihoods with different weights
qc(0c) o< p(be) [T, P(Xu | Xy, 0.)"er.  The weights
Wauo =32, 7. 4(r)g-(7:)d(uv € T,.) are recovered easily
from the current 3 matrix.

Thus, a nonparametric variational Bayesian treatment
is possible over joint tree structure and parameters.
The variational method allows us to refine the lower
bound on evidence and permits nonparametric model-
ing with only O(T?) storage and O(T?) computation
since out-tree distributions can be manipulated using
linear algebra on the asymmetric § matrix.
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