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Abstract

A variational Bayesian estimator is proposed
that integrates over parameters of a condi-
tional model of a datum given its parent as
well as all parent-to-child out-tree connectiv-
ity structures. The approach yields Bayesian
inference in a nonparametric setting.

1. Introduction

Many paths can upgrade parametric Bayesian infer-
ence into nonparametric settings. For instance, Dirich-
let processes (Teh et al., 2004; Neal, 2003; Ferguson,
1973) and infinite mixture models (Rasmussen, 1999;
Beal et al., 2002) hypothesize latent variables that im-
plicitly group data into clusters which locally obey
some stationary parametric form. Instead of hypoth-
esizing a latent clustering, consider a latent tree con-
nectivity between data points where points are sam-
pled from a stationary conditional distribution given

their parents. This forms a flexible density estimator
for manifold structured and hierarchical data (Jebara,
2008). We derive a variational Bayes estimator by in-
tegrating over parameters of the conditional between
parent and child as well as the latent out-tree sam-
pling structure. As in most nonparametric Bayesian
methods, exchangeability is maintained. However, the
out-tree yields a richer estimator as each datum is sam-
pled with dependence on an unknown parent allowing
potentially complex interactions between points.

2. Extending iid sampling to tdid

A key quantity in Bayesian inference and density
estimation is the evidence. Given samples X =
{X1, . . . , XT } from a distribution p(X |θ) with un-
known parameters θ, the evidence is the integral
p(X ) =

∫
θ
p(X|θ)p(θ). In density estimation, a stan-

dard assumption is that X1, . . . , XT are sampled iid.
In other words, the likelihood factorizes as p(X|θ) =∏T

t=1 p(Xt|θ). If we assume iid sampling, and we as-
sume p(Xt|θ) lies in the exponential family and we
assume a conjugate prior for p(θ), Bayesian integrals
are straightforward (Box & Tiao, 1992). Nonparamet-

ric Bayesian inference can be obtained by choosing
p(Xt|θ) outside of the exponential family (i.e. mix-
tures). This article instead produces nonparametric
Bayesian inference by considering non-iid assumptions.
A more general assumption than iid is tdid or tree
dependent identically distributed sampling (Jebara,
2008). Therein, we assume that data was sampled ac-
cording to a latent out-tree (West, 1996; Kemp et al.,
2003) structure 1 which connects pairs of data points
with a parent-child dependence. Sampling tdid pro-
ceeds as follows. From a uniform prior distribution
over out-trees p(T ), an undirected tree T is chosen
to connect T nodes. Then, choose a root node from
the set of nodes. Form an out-tree by choosing all
edges to point away from the root. Then, from a prior
over root models p(θm) sample a root model θm and
then sample the attributes of the root Xr from the
model p(Xr|θm). From a prior over conditional mu-
tation models pc(θc), sample a conditional model θc.
Then, traversing from parent to child along the out-
tree, sample each child’s attribute vector Xt according
to a conditional (mutation) distribution that depends
on its parent Xπ(t) given by p(Xt|Xπ(t), θc). This sam-
pling structure strictly generalizes the iid setting which
emerges if the dependence of each datum on its par-
ent is extinguished and p(Xt|Xπ(t), θc) → p(Xt|θm).
We will assume that only the observations X are
available for inference and that both the parameters
θ = {θm, θc} and the out-tree structure T are hidden.
If we knew T and θ, the likelihood factorizes as:

p(X|T , θ) =
T∏

t=1

p(Xt|Xπ(t), θ).

Since T and θ are unknown, the evidence requires in-
tegrating over both. For now, assume that the pa-
rameters are known. Also assume a uniform prior over
out-trees p(T ) = 1

T T−1 . The tdid latent likelihood is
given by summing over all out-trees:

p(X|θ) =
1

T T−1

∑
T

T∏
t=1

p(Xt|Xπ(t), θ).

1An out-tree is an acyclic graph T with T vertices X =
X1, . . . , XT and directed edges such that each node Xt has
one parent node Xπ(t) and the root has zero parents. All
directed edges point away from the root.
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Since there are T T−1 out-trees, this is unwieldy. In-
stead, break the summation into all possible choices of
the root of the out-tree r = 1 . . . T and a summation
over the subset Tr of all T T−2 out-trees rooted at node
r. The latent tdid likelihood simplifies into:

p(X|θ) =
1

T T−1

T∑
r=1

p(Xr|θm)Zr

where we have used the property that the root has no
parent node and defined the following as the contribu-
tion of each out-tree rooted at r:

Zr =
∑
Tr

T∏
t6=r

p(Xt|Xπ(t), θc) =
∑
Tr

∏
uv∈T

βuv.

Above, we also wrote the Zr term as a product of
edges in the out-tree instead of a product of nodes.
That formula involves an asymmetric β weight matrix
of size T × T populated by all pairwise conditional
probabilities βuv = p(Xu|Xv, θc) and where βvv = 0.
Cleverly, Tutte’s Directed Matrix Tree Theorem (West,
1996) recovers Zr in cubic time using the determinant:

Zr = |[diag(β1) − β]r| .

Here, we take ~1 to be the ones column vector and the
diag(~v) operator gives a diagonal matrix with ~v on its
diagonal. Also, we denote by [Q]r the matrix cofactor
obtained by deleting the r’th row and r’th column of
the matrix Q. Reinserting the formula for Zr gives
the likelihood p(X|θ) which is now efficient to evalu-
ate. Naively, this requires O(T 4) total work however
Woodbury’s formula produces a solution in O(T 3) (Je-
bara, 2008). Next, we tackle joint integration over
both structure and parameters (Friedman & Koller,
2003; Attias, 1999; Mau et al., 1999).

3. Variational Bayes for tdid sampling

The log-evidence E = ln p(X ) is the integral over both

parameters and structures. We assume the root and
conditional distributions are in the exponential family
and the priors on their parameters p(θ) = p(θm)pc(θc)
are conjugate. Integrating with p(T ) = 1

T T−1 yields:

E = ln

∫
θ

T∑
r=1

p(Xr)
∑
Tr

T∏
t6=r

p(Xt|Xπ(t))
p(θ)

T T−1
.

However, E intractable, so we instead manipulate a
lower bound on the evidence. This is done by intro-
ducing variational distributions, for instance, the dis-
tribution q(r) over choices for the root. We also intro-
duce variational distributions over out-trees rooted at

each r which we denote qr(Tr) and a variational distri-
bution over the parameters qc(θc). Applying Jensen’s
inequality produces:

E ≥
∑

r

q(r) ln

∫
θm

p(Xr|θm)p(θm)

+
∑
r,Tr

q(r)qr(Tr)

T∑
t6=r

∫
θc

qc(θc) ln p(Xt|Xπ(t), θc)

+H(q) − (T − 1) lnT +
∑

r

q(r)H(qr) − D(qc‖pc)

Above, H denotes the Shannon entropy and D denotes
the Kullback-Leibler divergence. Update rules for each
variational distribution iteratively maximize the lower
bound by taking derivatives and setting to zero. We
update the density over out-trees rooted at node r via:

qr(Tr) =
1

Zr

T∏
t6=r

e
R

θc
qc(θc) ln p(Xt|Xπ(t),θc).

As in the previous section, this can be rewritten as a
product over edges in the out-tree Tr and summarized
simply by a T ×T matrix β whose off diagonal entries
are βuv =

∫
θc

qc(θc) ln p(Xu|Xv, θc). For exponential

family p(Xu|Xv, θc), such integrals are easy to solve.
Each Zr is also straightforward to recover using Tutte’s
theorem. The update for the q(r) distribution is:

q(r) ∝ eH(qr)

∫
θm

p(Xr|θm)p(θm)

×e
P

Tr
qr(Tr)

P

T
t6=r

R

θc
qc(θc) ln p(Xt|Xπ(t),θc)

where the entropy H(qr) and the expectation over
qr(Tr) are efficient to compute from the β matrix
(Meila & Jaakkola, 2006). Furthermore, the integrals∫

θm
p(Xr|θm)p(θm) are known for exponential families.

We update the distribution over parameters via:

qc(θc) ∝ p(θc)e
P

r,Tr
q(r)qr(Tr)

P

T
t6=r ln p(Xt|Xπ(t),θc).

∝ p(θc)
∏
u6=v

p(Xu|Xv, θc)
P

r,Tr
q(r)qr(Tr)δ(uv∈Tr).

This is simply the prior times a product over all
pairs of datapoints likelihoods with different weights
qc(θc) ∝ p(θc)

∏
u6=v p(Xu|Xv, θc)

Wuv . The weights
Wuv =

∑
r,Tr

q(r)qr(Tr)δ(uv ∈ Tr) are recovered easily
from the current β matrix.

Thus, a nonparametric variational Bayesian treatment
is possible over joint tree structure and parameters.
The variational method allows us to refine the lower
bound on evidence and permits nonparametric model-
ing with only O(T 2) storage and O(T 3) computation
since out-tree distributions can be manipulated using
linear algebra on the asymmetric β matrix.
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