Bhattacharyya and Expected Likelihood Kernels

Tony Jebara and Risi Kondor

Columbia University, New York, NY 10027, USA *

Abstract. We introduce a new class of kernels between distributions.
These induce a kernel on the input space between data points by as-
sociating to each datum a generative model fit to the data point indi-
vidually. The kernel is then computed by integrating the product of the
two generative models corresponding to two data points. This kernel per-
mits discriminative estimation via, for instance, support vector machines,
while exploiting the properties, assumptions, and invariances inherent in
the choice of generative model. It satisfies Mercer’s condition and can be
computed in closed form for a large class of models, including exponential
family models, mixtures, hidden Markov models and Bayesian networks.
For other models the kernel can be approximated by sampling methods.
Experiments are shown for multinomial models in text classification and
for hidden Markov models for protein sequence classification.

1 Introduction

A variety of efforts in machine learning have explored the fusion of discrimina-
tive and generative estimation to exploit their complementary advantages. Some
approaches use discriminative learning algorithms and paradigms for generative
models. For instance, a generative model may be estimated conditionally [5, 3, 21]
or discriminatively [11,23] to improve its performance for classification. Other
approaches explore the use of generative models within standard discriminative
classifiers such as support vector machines (SVMs). These generative models
help induce appropriate feature space mappings or kernels. For example, the
Fisher kernel method forms a generative model of the aggregated data set to
compute a kernel on the resulting statistical manifold [10]. Alternatively, infor-
mation diffusion gives kernels by solving heat equations on a statistical manifold
over a given generative model’s parameter space [16]. Nevertheless, kernels are
frequently engineered independently of generative modeling to obtain desired
properties [20,9]. For instance, string kernels and sequential data kernels [18,
17,6,7,26,25] do not specifically address the generative hidden Markov model
(HMM) literature. However, there may potentially be much to gain by building
upon generative modeling, HMM-variants and statistical tools to facilitate the
kernel design process.

In this paper, we propose another point of contact between generative models
and kernels. We describe a general class of kernels that are computed by esti-
mating a generative probability model for each given datum (or multiple data

* For email contact: jebara@cs.columbia.edu or risi@cs.columbia.edu.

points) in the input space via maximum likelihood or another criterion. The
kernel’s output value for a pair of data points is then obtained by integrating
the product of their corresponding probability models taken to a power. This
measure of affinity is a generalized form of the Bhattacharyya similarity mea-
sure. The kernel readily accommodates many popular distributions allowing us
to consider a variety of input spaces (sequences, discrete structures, etc.) while
inheriting properties and invariances of the probabilistic modeling. For instance,
the kernel applies to exponential family distributions, mixtures and HMMs.

Previous efforts involved generative modeling with statistical manifolds us-
ing the Kullback-Leibler (KL) divergence to set up affinity measures between
probabilistic models [10,16]. The KL-divergence is asymmetric and typically is
approximated by a local metric (i.e. in the neighborhood of a single maximum
likelihood estimate for the whole data set) to generate, for instance, the Fisher
kernel [10]. One disadvantage of such a local approximation is that exponential
family distributions only generate linear Fisher kernels (see Section 3). Recent
work in information diffusion kernels [16] proposes an alternative way of dealing
with the statistical manifold by partial differential methods and heat equations
as opposed to a local maximum likelihood estimate for the whole dataset. The
authors explicate the cases of the multinomial on the sphere and the Gaussian
variance on a hyperbolic space which are both solvable and yield interesting
nonlinear kernels. However, the latter work has yet to be extended to the wide
class of exponential family or mixture model distributions due to the difficulty
in finding closed form solutions to the heat equation for arbitrary geometries.
In contrast, the measure we choose gives a symmetric kernel from the outset
which handles a wide variety of generative models in closed form and can even
be computed via sampling methods for arbitrary distributions.

This paper is organized as follows. We first present the general form of our
kernel as a product of two distributions each induced from data and note certain
properties. We then show how the kernel can be computed in closed form for
any distribution in the exponential family, thereby covering a wide range of
classical generative models. We derive the particular formulas for the Gaussian,
the Bernoulli and the multinomial distribution. We then discuss how to extend
the kernel to any mixture model as well as structured mixture models such as
HMMs. For generative models that are not straightforward, we show how we
can readily use sampling methods to compute the kernel. We then present other
implications of the kernel in terms of the regularization and the reproducing
kernel Hilbert space. Preliminary experiments are shown for the SCOP protein
sequence dataset and the WebKB text dataset. We conclude with discussions.

2 A Kernel on Distributions

Given a positive (semi-) definite kernel K : ¥ x X +— R on the input space X, and
examples x1,x2, ..., xm € X with labels y1,¥s,...ymn €Y, kernel based learning
algorithms return hypotheses of the form A(x) = >, a; K(x;, x) + b. Instead of
defining a kernel directly between examples x, x’ € X, in this paper we define

a class of kernels K, : P x P +— R on the space of normalized probability
distributions over some probability space 2. Specifically, we define the general
Probability Product Kernel between distributions p and p’ as

K, (p.p') = /Q p(z)? P (x)" da. (1)

Examples can be of the form of a single data point x = {z € 2} or a set
of data points x = {z1,22,...,2, : z; € £2}. We assume that for each x
there is an underlying distribution generating data points, and that x is a set
of independent, identically distributed set of samples from that distribution. We
then induce a kernel between x and x’ by forming estimates p and p’ of their
underlying distributions and computing the probability product kernel between
these estimates:

Kol) = Ky o) = [pla) s/ (@) do.
0
For any p1,p2,...,pn €P and oy, a9, ...,0, ER,

S i K,y (pi,pi) = / (3, aipi(@)?) *de > 0, (2)
i Q
hence K is trivially positive definite on P. This implies that for any determin-
istic estimation procedure & : x — p, K is positive definite on X and hence a
suitable kernel for use in learning algorithms in its own right. Additionally, K is
invariant (symmetric) with respect to permutations of the individual data points
comprising x and x’. In the following, we shall omit the bar sign over the induced
kernel and may omit the subscript p when that does not risk causing confusion.
The space of distributions P can trivially be embedded in the Hilbert space
of functions Lq(f2), and the estimation mapping @ : X — P can be regarded
as the feature map. By appropriate choice of ¢ and p, a powerful family of
kernels can be constructed, combining the advantages of parametric and non-
parametric statistical methods. Essentially, the Probability Product Kernel acts
as a measure of the degree of similarity or affinity ' between the two distributions.

For p=1/2,
K1) = / Vr@V @) de 3)

which we shall call the Bhattacharyya Kernel, because in the statistics litera-
ture it is known as Bhattacharyya’s measure of affinity between distributions [4,
1], related to the better known Hellinger’s distance

H(p,p') = % / (\/m— \/p’(x))2dac

! The proposed kernels (probability product, Bhattacharyya and expected likeli-
hood) are not the only possible measures of similarity between distributions.
A more customary measure is the Kullback-Leibler divergence D(p1|p2) =
fQ p1(z) logpi(z) dx — jQ p1(z)logp2(z) dx yet it not positive definite, not sym-
metric, and often not as straightforward to use as a kernel.

by H =+2—-2K. Note that the Hellinger distance can be seen as a principled
symmetric approximation of the Kullback Leibler (KL) divergence and in fact is
a bound on KL as shown in [24] where relationships between many information
theoretic divergences are characterized. Unlike some divergences, Hellinger nat-
urally implies a symmetric (Bhattacharyya) affinity. Kernels of this form were
introduced in [15] and have the special property K(x,x’) = 1. For p = 1, we note
another interesting configuration where the kernel behaves as the expectation of
one distribution under the other:

K1) = [pa)p'(0) de = Byl (2)) = By)] (@)

which we shall refer to as the Expected Likelihood Kernel. This kernel is
particularly easy to evaluate by sampling methods, as we discuss in Section 6.

2.1 Frequentist and Bayesian methods of estimation

Various strategies may be used to estimate p(x) from the sample x. Given a
parametric family {p(x|#)}g, the simplest approach is to choose p(x) = p(x|f)
corresponding to the maximum likelihood estimator 6 = arg max log p(x|0), but
other point estimators can plugged into 6. The Bayesian approach postulates a
prior p(f) on the parameters and invokes Bayes’ rule

) p®)
PO = o (xi6) p(6) b

One could use the Maximum a Posteriori estimate p(z|fyap), where Oyap =
arg max p(6|x), or the true posterior

plal) = / p(x(6) p(6]) do. (5)

In practice, the samples x; are often very small, or consist of just a single da-
tum, and in this case the Bayesian approach may provide regularization to avoid
over-fitting. Both MAP and maximum likelihood estimators can be seen as ap-
proximations to the full posterior. Another type of regularization to consider is a
form of shrinkage which draws estimates from all training points closer together:

f = argmax [logp(xﬂ) + /\Zlog(xiw)} .

In the following we shall investigate particular estimation methods for which the
kernel can be computed in closed form.

[Family | A(X) | K(9) [Parameter]|

Gaussian (mean) %XTX — Dlog(2m) 1070 fcRP
Gaussian (variance) — L log(2m — 7 log(0) 0eRy
Multinomial log(I'(n 4 1)) — log(v)|n log(1 + >0, exp(84))| O€RP
Exponential 0 —log(—9) OcR_
Gamma —exp(X) — log I'(0) 0eRy
Poisson lo g(X') exp(6) feR

Table 1. Definition of A and K in natural form for some exponential families.

3 Exponential families

A family of distributions is said to form an exponential family [2] if it can be
written in the form

p(x]0) = exp(A(z) + 07 T (z) — K(0))

where the measure is denoted 4, the cumulant generating function is denoted
IC, the so-called sufficient statistics are computed via 7 and the 6 is the natural
parameter of the distribution. Often, 7 () is just x.

Many familiar distributions, such as the Normal, Bernoulli, Multinomial,
Poisson and Gamma distributions can be written in this form (Table 1). Note
that A4 and K are related through the Laplace transform

K(6) = log / exp(A() + 07T (2)) dz

since p(x|f) is normalized. Furthermore, it is straightforward to show that K
is convex. The maximum likelihood estimate for # under this distribution is
given by equating the gradient (which we will denote as G(6)) of the cumulant
generating function to the (empirical) expected value of the sufficient statistic:

G(o) = ag—é@ = %ZT(”)

i=1

For exponential families, the Bhattacharyya kernel (p = 1/2) is

K(t,x) = K(p.p) = / p(]6)"/2p(a]) /2 dx
=exp (K (30 + 36") — 3K(0) — 3K(¢")) .

We can expand the above in terms of the actual data x and x’ by using (for
instance) their corresponding maximum likelihood settings for 6 and 6.

It is interesting to note that the above kernel is in general nonlinear for e-
family models (and possibly infinite dimensional in feature space) and we expect
the choice of generative distribution to greatly influence the resulting kernel

formula we obtain (the Fisher kernel for e-family models which is typically linear?

in 7 (z) unlike our kernel). For particular families, more explicit formulae also
exist for general p. In the following, we examine some of these cases.

3.1 Gaussian models
The D dimensional Gaussian distribution p(z)~AN (p, X) is of the form
p(z) = (2n)" P2 | % _1/2 exp (—3(z—p) " 7 (z—p))
where X' is a positive definite matrix and | X'| denotes its determinant. For a

pair of Gaussians p~N(u,Y) and p’ ~N (i, X"), completing the square in the
exponent gives the general probability product kernel:

K,(x,x') = K,(p,p') =/ p(x)?p' (z)Pdx

RD
_ (27T)(1*2P)D/2 ’ZT |1/2| 2‘*P/2 |5 |—P/2
_ T =1 1 .7
exp (guTE lufgu’ 2 EW)

where Xt = (pZ_l—i-pZ’_l)_l and pf = pX—'p+ pX' "' W' If the covariance is
isotropic and fixed: ¥ = 21, this simplifies to:

T /Ty / T, 1
_ oD/2 2\(1—2p)D/2 prptp (=) (W —p)
K,(p.p) = 2P/% (2m0?)1=200P/2 exp <(p1) o7 o :

which, for p=1 (the expected likelihood kernel) simply gives the following Gaus-
sian (whose variance is effectively double the original X = o2I):

_ ’_ 2 0_2
K(p, 1) = cosbsprs eI 17/ 0%

Writing the above explicitly in terms of the maximum likelihood setting p =7 =

1 n

AN jwjand W =7 = 1 x4, yields the traditional radial basis function

(RBF) kernel:

n’

K(x.1) = ko exp (~[7-7%/(402))
Similarly for p=1/2 (the Bhattacharyya kernel), we also obtain the RBF kernel.

2 Recall the Fisher kernel computed at the dataset’s maximum likelihood estimate
0* has the following form: K (x,«') = UI,.' Uy where U, = Vg log P(x|0)]¢+ is the
general formula. For the exponential family, this reduces to U, = 7 (x) —G(6*) which
is linear in 7 (x).

3.2 Bernoulli and Naive Bayes Models

The Bernoulli distribution p(z) = v*(1 —v)!~% with parameter € [0, 1], and its
D dimensional variant, sometimes referred to as Naive Bayes,
D

= H A5 (1 — yg)t e

d=1

with v €[0, 1], are used to model binary x €{0,1} or multidimensional binary
r€{0,1}? observations, respectively. The Bhattacharyya kernel between a pair
of such distributions

K,(x,x') = Z H Yav))P7 (1 = va) (1 —))p(l z4)

2€{0,1}D d=1

factorizes trivially (for any setting of p) as
H vavg)” + (1 =7a)" (1 = 74)"].
d=1

3.3 Multinomial Models

For discrete count data, when & = (z1,22,...,2p) is a vector of non-negative
integer counts summing to X, we can use the multinomial model

X!

Xy T rp
ﬁal Ckz ...CVD
T1:T2:...XD-

p(x) =

with parameter vector a = (a1, aa, ..., ap) subject to ZdDzl ag = 1. The maxi-
mum likelihood estimate given observations =M,z ... 2™ is

D i xl(;)
E Zd 11‘(1

For the case p=1/2, fixing X, the Bhattacharyya kernel K(x,x') = K(p,p')
for counts can be computed explicitly using the multinomial theorem, giving:

g =

D

X
K(p,p') = Z xl'x2 H (aory)™/? = [Z(%%)UQ] (6)

x=(x1,%2,...,xD) d=1

which is equivalent to the homogeneous polynomial kernel of order X/2 between
(aq,qa,...,ap) and (o, ab,...,ap). If we do not wish to hold X constant, we
may sum over all its possible values

o [D X D -1
K(p,p') [Z(adaﬁl)lﬂl = (1 - Z(adaﬁz)l/2>

d=1

or weight each power differently (i.e. a power series expansion). For the general
case of p # 1/2, a general formula for discrete multinomial events is available
(if p#1/2 there is no general closed form formula for counts except for X =1
where, as opposed to counts, we really have single mutually exclusive events).
This discrete events scenario if arguably more relevant and yields the form:
D
K(p,p') =) (caal)".

d=1

4 Mixture Models

For extensions to a mixture model setting, it is clear that the Bhattacharyya
kernel with p = 1/2 becomes less attractive than the expected likelihood kernel
since the square root of a mixture probability is unwieldly®. However, with p = 1,
we can easily evaluate any mixture model via the subkernel evaluations over the
cross-product of all the hidden states as follows. Consider the case of mixture
models p = > p(m)p(xz|m) and p’ = > p'(n)p’(xz|n) (with slight abuse of
notation). Here, the first mixture is over M configurations while the second is
over N configurations. The expected likelihood kernel trivially reduces to a sum
of M x N elementary expected likelihood subkernels K; ;(x,) for each setting
of the hidden variables:

K(x.x) =33 p(m)p(n) / plelm)p! (2ln) dz = 3" p(m)p! (0) Ky, (1, 2)-

m,n

A generalization of the above is possible for p = 2,3, ... provided that the higher
order kernel K (p1,p2,...,p2p) = [p1(x)p2(x)...p2p(x) dx is easy to compute.
The above mixture models can be readily applied to our previous solutions for
the Gaussian, the multinomial (if we have a single event, i.e. X =1 as opposed
to counts) and the Bernoulli since these were computed explicitly for p=1. No
such solution is readily available for p = 1/2, and general mixture models of
other exponential family forms need to be derived specifically for p = 1. One
heuristic is to simply impute the p = 1/2 value for the subkernel exponential
family evaluations while maintaining p = 1 for handling the mixture model.

5 Hidden Markov Models and Bayesian Networks

Perhaps more interestingly, the above mixture modeling and latent variable
framework extends naturally to HMMs and general latent Bayesian networks
without considering the brute force cross product of their hidden variables. This
is done by taking advantage of conditional independencies in the graphical mod-
els. We thus consider new forms of sequence-based or network-based kernels.

3 Approximations may be possible for the setting p = 1/2 via Jensen’s inequality.

Recall, for instance, the general form of an HMM for a sequence of observations
X = (x1,...,z7) (as discrete or continuous vectors):

T
P(X): Z $1|51 H 8t|8t 1 fﬂt\st)

S=s1,...,sT

The expected likelihood kernel is merely the co-emission probability of two dif-
ferent HMMs [19, 14]. We compute a kernel between two sequences x and x’
by fitting an HMM to each and summing (or integrating) the product over
all possible input sequences X. Given an HMM p(X|0) with discrete states s;
of cardinality M and an HMM p(X|0’') with discrete states u; of cardinality
N, a brute force evaluation would explore MT x NT configurations of their
joint hidden variables and compute a subkernel for each. This is because both
HMMs need to be marginalized over their hidden variables S = (s1,...,sr) and
U = (uy,...,ur). However, due to the Markov structure, we need not consider
all possible configurations of each HMM as shown below *

K(x,x')

[
(]
=
>
’B\
E

p(st‘st 1 Ut|ut 1 ZP xt‘st $t|ut)

Il
=[]
=M

-

~
Il
_

p(se|si—1)p (we|wr—1)(se, ue) -

I
=[]
=[]

=

~
Il
—

The above indicates only subkernels Ky, ., = >, p(2¢|s¢)p’(z¢|us) need to be
computed for each of the T x; variables independently under each setting of
their parent variables s; and u;. Thus, we evaluate T'x M x N subkernels. These
effectively form positive clique functions ¢(s;,u;) = K, ., over the common
parents of each x; variable in the network. It is then straightforward to sum over
hidden states of the resulting graphical model via a junction tree algorithm (see
Figure 1). The two graphs are coupled via common children in X and cliques
over their joint parents emerge as we propagate messages [13].

The above efficient approach extends to general Bayesian networks. These
are directed acyclic graphs whose probability distribution factorizes as P(X) =
[L; P(zi|m;) where m; is the set of random variables that are parents of the
variable z; in the graph. Some of the variables may be latent while others are
in the input or sample space. Ultimately, we only need to compute subkernels
over the configurations of the common parents for each subvariable of X in our
network. These form positive clique functions that couple the common parents:

(i, T]) = Kopy s = / plailms)p (i) de.

* For brevity in the product over t we assume p(s1|so) = p(s1) and p(u1|uo) = p(u1).

(a) HMM for p(X). (b) HMM for p'(X). (c) Resulting graph.

Fig. 1. The resulting graphical model from two hidden Markov models as the kernel
couples common parents for each node creating undirected edges between them.

The two Bayesian networks need not be the same as long as, when marginalized
over their hidden variables, they are distributions over the sample space X.
Computations grow tractably with the enlarged clique sizes of the joint parents.
Furthermore, if the original networks do not have loops, the resulting fused
network from the expected likelihood kernel will not give rise to loops itself.

6 Sampling Approximation

To accommodate the complete class of generative models (i.e. beyond mixture
models and other latent models) when we can no longer find closed form formulas
for the probability product kernel for any setting of p, the expected likelihood
kernel can be approximated by sampling methods. This hinges on our ability to
generate samples and evaluate their likelihood with a given generative model yet
these operations are often assumed to be readily available.

For p=1 (the expected likelihood kernel) the approximation (c.f. eq. 4)

Kod)=Kp)~2 S gy + S22 S pa)

~ 2
N N’
zi~p(x) x;~p' (2)
i=1,....,N i=1,...,N’
(where z1,9,...,x5 and z], 25, ..., 2y, are iid samples from p and p’ respec-

tively and S €0, 1] is a parameter of our choosing) is guaranteed to converge to
the true value of the kernel by the law of large numbers.

Often unusual distributions occur in the context of generative models. Hence,
at least for the expected likelihood kernel, when the analytic approach to calcu-
lating K (x, ') fails, we will often find that we can easily and efficiently generate
samples and compute the kernel using this approximation. In the case of infinite
samples, the above is an exact evaluation of the kernel. However, in practice we
can use a finite number of samples yet still consistently obtain a rapidly converg-
ing, reliable numerical estimate for the kernel. Furthermore, in the cases where
sampling from the distribution is difficult, we may use importance sampling and
related methods to compute the kernel.

7 Reproducing Kernel Hilbert Spaces

The mapping @ : X — P described in Section 2 is not the only Hilbert space rep-
resentation of K satisfying K (x,x') = (2(x),?(x’)). The so-called Reproducing
Kernel Hilbert Space (RKHS) representation associates with each x the function
Prius(x) = fr = K(x,). Defining the inner product as (Prxus (1), Prxus(x’)) =
K(x,x') lends the resulting Hilbert space H the special property that for any
feH, (f. fr)=[(x), in particular, (fy, fv)=fi(x)=Ffv(x)=K(x, ') .

Note that by construction of the kernel, H only contains functions symmetric

in{xy,x9,...,2,}, 1.6 invariant under permutations of the components of x. The
above inner product can be related to the standard product between functions
by (f, f) = [((Pf)(x) (Pf')(x) dx for some regularization operator P : H — H
(8].

Kernel based learning algorithms generally return hypotheses of the form
i(x) = (h,P(x))+b = h(x)+b where h € H and b € R together minimize the
regularized risk Ryeg(h,b) = =7 L(y;, A(x;)) + 5 (h, h) , where (x;)1, is the
training data, (y;)7%; are the training labels and L is a loss function. Hence,
understanding P is the key to understanding the way our kernel implements
capacity control, i.e. avoids over-fitting.

For our kernel defined by way of a kernel between distributions, if P is pa-
rameterized by 6§ € ©, we can introduce an analogous RKHS construction with
respect to © by setting fo(0") = K(pg,per) and {fy, for) = K(pg, per) leading to
(f, fo) = f(0). A family of distributions indexed by § € R? is called a location
tamily if pg(x) = pj(z—0'+6). An example of a location family is the family of
unit variance Normal distributions on R”. When our parametric model for com-
puting Bhattacharyya or expected likelihood kernels is chosen from a location
family, the kernel will be translation invariant in the sense that

K(po,por) = / po(2) por () de = k(6 —0),

where, for simplicity, we have set p = 1, although the generalization to other
values is obvious. We then have

k(0 —0) = /po(x)po(x—9'+9) dx

and by the convolution theorem, the Fourier transform of k will be k(w) =
[o(w)]?. On the other hand, by the RKHS property, fo(w) = €“?[po(w)]?.
Hence, we can recover our kernel in the form

K(po.por) = K(6'—0) = /@ (Po)(9) (P for)(9) i) = /Pfe) (o) (@) dw

by setting P f(w) — f(w)/ | po(w)] .

The analogous result for “ordinary” stationary kernels has been well known
for some time [22]. The significance of the above is that it explains the regular-
ization properties implied by K (x, x') in terms of the base distribution pg for our
choice of models P. For “smooth” distributions, |po(w) | drops off sharply with

increasing | w |. For instance, for the unit Normal distribution, po(w) ~ e=%"/2.
The above expression for the regularization operator implies that our learning
algorithm will correspondingly heavily penalize high frequency Fourier modes in

f, favoring hypotheses that appear “smooth” in the parameter space 6.

8 Text Experiments

In one experiment we attempted to classify HTML documents for the freely
available WebKB dataset using only the text component of each web page and
discarding hyperlink information. Text was represented via a bag-of-words de-
scription which only tracks the frequency of appearance of words in each docu-
ment without maintaining information on word orderings. The counts for each
document are computed and normalized to sum to unity which corresponds to
the maximum likelihood estimate of the document under a multinomial dis-
tribution over counts. This effectively gives the multinomial parameter vector
a = (a1,as,...,ap) subject to ZdD:l ag = 1 for each document.

- - RBFo=1/4 - - RBFo=1/4
RBF o=1 RBF o=1
RBF 0=4 RBF 0=4
0.25 Linear f 0.25¢ Linear
— Bhattacharyya X=1 — Bhattacharyya X=1

I

[
[T

]
[

1]
[l

]
[

]
[

]
[

I

Error Rate
°
@
Error Rate
°
@

1

2

3 4 5
Regularization og(C)

1

2

3 4 5
Regularization log(C)

(a) Training Set Size = 77 (b) Training Set Size = 622

Fig. 2. SVM error rates (and standard deviation) for the Bhattacharyya kernel for
multinomial models as well as error rates for traditional kernels on the WebKB dataset.
Various levels of regularization are explored and various training set sizes are examined.
Results are shown for 20-fold cross-validation.

SVMs were used to discriminate between two categories in the WebKB
dataset: faculty web pages and student web pages. We compare the Bhattacharyya
kernel for multinomials 6 (with the setting X = 1) against the (linear) dot prod-
uct kernel and the Gaussian RBF kernel. The dataset contains a total of 1641
student web pages and 1124 faculty web pages. The data for each class is further
split into 4 universities and 1 miscellaneous category and we performed the usual
training and testing split as described by [16, 12] where testing is performed on
a held out university. We averaged the results over 20-fold cross-validation and
show the error rates for the various kernels in Figure 2.

The figure shows error rates for different sizes of the training set ranging over
77 and 622 training points. Each figure plots the average error rate of each kernel
as a function of the SVM regularization parameter C'. In addition, we show the
standard deviation of the error rate for the Bhattacharyya kernel. Even though
we only used a single arbitrary setting of X = 1 for the Bhattacharyya kernel, we
note that it performs better than the linear kernel as well as the RBF at multiple
settings of its o parameter (where we attempted o = {1/4, 1,4}). Exploring other
settings of X (or summing over all settings of X as previously discussed) as well
as exploring various settings of A to perform shrinkage-like regularization might
further improve our results. Nevertheless, in this preliminary application the
Bhattacharyya kernel is promising and the kernel provides a more appropriate
affinity measure for count data which reduces error (although similar squashing
functions on word frequencies have already been explored in text retrieval).

9 Sequence Experiments

In another preliminary experiment, we computed the expected likelihood kernel
on HMMs for the SCOP protein sequence dataset [10,17,19]. These sequences
are variable length discrete emissions from an alphabet of roughly 20 symbols.
For simplicity, we only considered a single sub-task in the SCOP experiments,
namely distinguishing proteins into negative and positive classes for SCOP sub-
families 2.1.1.4 and 2.1. We followed the same train and test split suggested
for the SCOP 1.37 PDB-90 database experiments but reduced the size of the
training set and testing set to keep computations simple. Therefore, we only
used a total of 120 positive and 120 negative training examples and evaluated
the resulting SVM on the appropriately held out 120 positive and 120 negative
testing examples. The HMMs were trained on each sequence in the dataset.
Thus, we have a total of 480 distinct HMM parameters with a fixed topology
of 2 hidden states. Subsequently, we computed the Gram matrix over the whole
dataset using the approach in Section 5.

10° 10°

o
Regularization G 0 ts a0 20

(a) Error Rate (b) Gram Matrix

Fig. 3. SVM error rates for the expected likelihood kernel for HMMs. In (a) error
under various levels of regularization is shown (dashed line is training error, solid is
test error). In (b) the corresponding Gram matrix is shown.

Figure 3 shows the error rate under varying levels of regularization for the
expected likelihood kernel. In addition, we show the Gram matrix which was
verified to be positive definite by a singular value decomposition. One open issue
is the potential of the individual HMMs to overfit under maximum likelihood
due to the shortness of the sequences and the large alphabet size for protein
sequences (this is less problematic with, e.g. gene sequences, which are longer
yet have smaller 4-element alphabets). Further experiments and comparisons
will be investigated in future work.

10 Discussion

We have introduced a new and simple kernel between probability distributions,
the Probability Product Kernel, which eschews some of the complexities that
kernels based on the Kullback-Leibler divergence often contend with. In spe-
cial cases, our kernel reduces to Bhattacharyya’s measure of similarity or the
expected likelihood kernel. Furthermore, as a kernel between distributions the
proposed computations are available in closed form for many common distribu-
tions and can be efficiently approximated in other cases.

To use the probability product kernel for learning from examples, we pro-
posed the following general procedure. First, select a class of parametric genera-
tive models suitable for the data at hand. Then for each data point, estimate the
parameters of the generative model using an appropriate frequentist or Bayesian
procedure. Finally, for each pair of datapoints, define the kernel between them
as the value of the probability product kernel between the corresponding distri-
butions. The resulting kernel between datapoints can then be plugged into the
kernel based learning algorithm of choice (SVM, Gaussian Process, Kernel ICA,
etc.) for classification, regression or data analysis.

The proposed kernel marries discriminative learning frameworks with flexible
generative modeling and can exploit advantages of both parametric an nonpara-
metric approaches. We discussed the form our kernel takes for several members
of the exponential family, mixture models, HMMs and Bayesian networks. For
the special case of location families we also developed the regularization the-
ory corresponding to our new kernel and discussed the link between the form
of the distribution used as generative model and the regularization operator on
parameter space. Experiments on text data and sequence data indicate that the
approach is feasible and may be promising in practice.

Acknowledgments
Thanks to A. Jagota and R. Lyngsoe for profile HMM comparison code, C. Leslie
and R. Kuang for SCOP data and the referees for important corrections.

References

1. F Aherne, N. Thacker, and P. Rockett. The Bhattacharyya metric as an absolute
similarity measure for frequency coded data. Kybernetika, 32(4):1-7, 1997.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

O. Barndorft-Nielsen. Information and FExponential Families in Statistical Theory.
John Wiley & Sons, 1978.

Y. Bengio and P. Frasconi. Input-output HMM'’s for sequence processing. IEEE
Transactions on Neural Networks, 7(5):1231-1249, September 1996.

A. Bhattacharyya. On a measure of divergence between two statistical populations
defined by their probability distributions. Bull. Calcutta Math Soc., 1943.

C. Bishop. Neural Networks for Pattern Recognition. Oxford Press, 1996.

M. Collins and N. Duffy. Convolution kernels for natural language. In Neural
Information Processing Systems 14, 2002.

C. Cortes, P. Haffner, and M. Mohri. Rational kernels. In Neural Information
Processing Systems 15, 2002.

F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural network
architectures. Neural Computation, 7:219-269, 1995.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-
CRL-99-10, University of California at Santa Cruz, 1999.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative clas-
sifiers. In Neural Information Processing Systems 11, 1998.

T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. In Neural
Information Processing Systems 12, 1999.

T. Joachims, N. Cristianini, and J. Shawe-Taylor. Composite kernels for hypertext
categorisation. In International Conference on Machine Learning, 2001.

M. Jordan. Learning in Graphical Models. Kluwer Academic, 1997.

T. Kin, K. Tsuda, and K. Asai. Marginalized kernels for rna sequence data analysis.
In Proc. Genome Informatics, 2002.

R. Kondor and T. Jebara. A kernel between sets of vectors. Machine Learning:
Tenth International Conference, ICML 2003, February 2003.

J. Lafferty and G. Lebanon. Information diffusion kernels. In Neural Information
Processing Systems, 2002.

C. Leslie, E. Eskin, J. Weston, and W.S. Noble. Mismatch string kernels for svm
protein classification. In Neural Information Processing Systems, 2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text
classification using string kernels. Journal of Machine Learning Research, 2:419—
444, February 2002.

R.B. Lyngso, C.N.S. Pedersen, and H. Nielsen. Metrics and similarity measures
for hidden markov models. In Proceedings of the 7th International Conference on
Intelligent Systems for Molecular Biology (ISMB), 1999.

C. Ong, A. Smola, and R. Williamson. Superkernels. In Neural Information Pro-
cessing Systems, 2002.

C. Rathinavelu and L. Deng. Speech trajectory discrimination using the minimum
classification error learning. In IEEFE Trans. on Speech and Audio Processing, 1997.
A. J. Smola and B. Schélkopf. From regularization operators to support vector
machines. In Neural Information Processing Systems, pages 343-349, 1998.

N. Tishby, W. Bialek, and F. Pereira. The information bottleneck method: Extract-
ing relevant information from concurrent data. Technical report, NEC Research
Institute, 1998.

F. Topsoe. Some inequalities for information divergence and related measures of
discrimination. J. of Inequalities in Pure and Applied Mathematics, 2(1), 1999.
S.V.N. Vishawanathan and A.J. Smola. Fast kernels for string and tree matching.
In Neural Information Processing Systems 15, 2002.

C. Watkins. Advances in kernel methods, chapter Dynamic Alignment Kernels.
MIT Press, 2000.

