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Abstract

Many machine learning tasks require fit-
ting probabilistic models over structured ob-
jects, such as pixel grids, matchings, and
graph edges. Maximum likelihood estima-
tion (MLE) for such domains is challenging
due to the intractability of computing par-
tition functions. One can resort to approxi-
mate marginal inference in conjunction with
gradient descent, but such algorithms require
careful tuning. Alternatively, in frameworks
such as the structured support vector ma-
chine (SVM-Struct), discriminative functions
are learned by iteratively applying efficient
maximum a posteriori (MAP) decoders. We
introduce MLE-Struct, a method for learning
discrete exponential family models using the
Bethe approximation to the partition func-
tion. Remarkably, this problem can also be
reduced to iterative (MAP) decoding. This
connection emerges by combining the Bethe
approximation with the Frank-Wolfe (FW)
algorithm on a convex dual objective, which
circumvents the intractable partition func-
tion. Our method can learn both generative
and conditional models and is substantially
faster and easier to implement than exist-
ing MLE approaches while still relying on the
same black-box interface to MAP decoding as
SVM-Struct. We perform competitively on
problems in denoising, segmentation, match-
ing, and new datasets of roommate assign-
ments and news and financial time series.

1 INTRODUCTION

Learning graphical model parameters using regu-
larized maximum likelihood estimation (MLE) is a
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ubiquitous problem in machine learning and related
fields (Lafferty, 2001). Despite the availability of al-
ternative estimators, MLE remains a primary goal for
many practitioners, since it may yield superior pre-
dictive accuracy, more interpretable parameters, and
quantification of uncertainty.

As the log-likelihood is concave, it can in principle be
maximized by gradient ascent. However, this requires
repeatedly computing gradients of the log-partition
function, which is intractable in general. As a result,
a common practice is to use an approximate marginal
inference scheme (e.g., loopy belief propagation) to
compute a surrogate partition function. However, this
double-loop approach is slow and difficult to tune: as
the inner inference problem performs continuous op-
timization, one must carefully set convergence thresh-
olds. Moreover, the effect of the resulting inference
errors on overall MLE performance is unclear. Fur-
ther, for many structured objects, such as bipartite
matchings, näıve applications of message passing are
inefficient, so problem-specific algorithms are neces-
sary (Huang & Jebara, 2009).

A variety of methods have been proposed to avoid the
double-loop approach. First, one can interleave infer-
ence and learning by dualizing the inner problem to
yield an objective jointly convex in parameters and
“messages” (Hazan & Urtasun, 2010). This results in
a coordinate update scheme for learning. But in prac-
tice, some coordinate updates cannot be computed ex-
actly, so one resorts to mixing coordinate and gradi-
ent steps. This again requires deriving new updates
for different structured problems and carefully tuning
convergence thresholds. Second, one can backpropa-
gate gradients through an approximate inference rou-
tine (Domke, 2013). Scalability of this method hinges
on carefully choosing the number of inner loop iter-
ations to run. Finally, one can avoid likelihoods en-
tirely, and use methods such as the structured per-
ceptron or structured support vector machine (SVM-
Struct) that rely only on a repeated calls to a MAP
solver (Collins, 2002; Taskar et al., 2004; Tsochan-
taridis, 2004; Lacoste-Julien, 2013)1.

1In this paper, MAP inference refers to predicting a
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MAP-based methods are computationally and theoret-
ically appealing because they consist of simple wrap-
pers around fast and well-understood combinatorial
optimization algorithms. They can be quite accurate
and are often much faster than the methods above.
Also, they offer users an attractive abstraction be-
tween the learning algorithm and the specific prob-
lem: to apply these methods to a new problem, the
user needs only to link to a new MAP solver. We refer
to these as single-loop techniques, since the black-box
inner problem can be solved in polynomial time and
does not require convergence thresholds.

To bring the benefits of MAP-based methods to learn-
ing probabilistic models, we introduce MLE-Struct, a
user-friendly approximate MLE procedure that also
only requires access to a black-box MAP (or approx-
imate MAP) solver. Beginning with Bethe-style con-
vex free energies, we derive a dual formulation of ap-
proximate MLE. The resulting convex objective can
be efficiently minimized with the Frank-Wolfe (FW)
method (Frank & Wolfe, 1956; Jaggi, 2013) using re-
peated (approximate) MAP calls. Stochastic subsam-
pling (Lacoste-Julien, 2013) further improves scala-
bility. Our method comes with an O(1/T ) runtime
guarantee on the duality gap. We can also apply FW
to perform test-time marginal inference, as first pro-
posed by Sontag & Jaakkola (2007). This enables
us to learn and infer exponential-family models for
all structured outputs that SVM-Struct can, such as
bipartite/general matchings (via max-flow and Blos-
som algorithms) (Goldberg & Kennedy, 1995; Kol-
mogorov, 2009), pairwise binary graphical models (via
QPBO) (Rother, 2007), and others.

Compared to existing techniques, our method is faster,
more reliable, and easier to implement and apply to
new problems. It is equally applicable to unsupervised
problems, where we observe only structured outputs
for which we want to learn a probability distribution.
The only tuning parameters in our algorithm are a con-
vergence criterion and step-size schedule, for which a
simple default suffices. We provide user-friendly code
that is already being used in several applied projects.2

MLE-Struct is comparable in performance to MAP-
based training methods, but adds the benefits of prob-
abilistic models. Our method applies equally to super-
vised and unsupervised problems, where in the latter,
we observe only structured outputs and wish to learn
a probability distribution. We demonstrate the supe-
riority, both in speed and accuracy, of our test-time
inference procedure versus an instance of the Perturb-

discrete output Y given parameters θ and optionally in-
put features X, while MLE learning refers to estimating θ
(continuous parameters) given observations.

2https://github.com/kuitang/fwmatch-public

and-MAP (Li, 2013) framework designed specifically
for bipartite matchings. For CRFs, we outperform
recent MLE methods (Domke, 2013; Hazan & Urta-
sun, 2010). Our experiments explore grid CRFs, high
treewidth Markov random fields, and conditional ex-
ponential family models defined over bipartite and
general matchings.

2 BACKGROUND

We consider discrete, log-linear conditional ran-
dom fields where we observe independent samples
Y (1), . . . , Y (M) from some discrete space Y as well as
feature vectors X(1), . . . , X(M) ∈ X (Lafferty, 2001).
The joint distribution factors over a hypergraph G =
(V,A), where A is a collection of subsets of V , as

p(Y |X; θ) =

exp
(∑

i∈V θiφi(X,Yi) +
∑
α∈A θαφα(X,Yα)

)
Z(X; θ)

,

where φi(X,Yi) is a vector of sufficient statistics for
node i and the vector and φα(X,Yα) is a vector of
sufficient statistics for the hyperedge α. This formal-
ism can also represent non-conditional (unsupervised)
models by encoding unique indicator vectors for each
node and clique in the X(m). We aim to learn θ by
maximizing the `2-regularized log-likelihood

`(θ;X,Y ) =

M∑
m=1

[∑
i∈V
〈θV , φi(X(m), Y

(m)
i )〉+∑

α∈A
〈θA, φα(X(m), Y (m)

α )〉−

logZ(X(m); θ)
]
− λ

2
‖θ‖2, (1)

where the log-partition function is given by

logZ(X(m); θ) = log
∑
Y ∈Y

(∑
i∈V
〈θV , φi(X(m), Yi)〉

+
∑
α∈A
〈θA, φα(X(m), Yα)〉

)
. (2)

2.1 Convex Free Energy Approximation and
Approximate MLE Objective

The central challenge in MLE is computing the log-
partition function, logZ(X(m), θ), at each iteration
and for each observationm. We approximate this func-
tion in order to make learning tractable. We begin
with the Bethe free energy, a standard approximation
to the Gibbs free energy that is motivated by ideas
from statistical physics. The approximation has been
generalized to include different counting numbers that

https://github.com/kuitang/fwmatch-public
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result in alternative entropy approximations (Weiss,
2007; Wainwright & Jordan, 2008). We focus on the
restricted set of counting numbers that yield convex
reweighted free energies. For reasons that will become
clear in the sequel, we introduce a parameterized ap-
proximation to x log x.

Definition 2.1. For η in [0, 1/2), define gη(x) =
x log x for x ∈ [η, 1] and gη(x) = η log(η) + (log(η) +

1)(x− η) + (x−η)2
2η for x ∈ [0, η).

The ρ-reweighted free energy is specified by a poly-
tope approximation T , a hypergraph G = (V,A), an
entropy approximation Hη

ρ , a parameter η ∈ [0, 1/2),
and a vector of counting numbers (a.k.a reweighting
parameters) ρ.

logF ηρ (τ,X; θ) , E(τ,X; θ)−Hη
ρ (τ), (3)

where the energy is given by

E(τ,X; θ) ,−
∑
i∈V 〈

∑
Yi
τi(Yi)φi(X,Yi), θV 〉

−
∑
α∈A〈

∑
Yα
τα(Yα)φα(X,Yα), θA〉

and the entropy approximation is given by

Hη
ρ (τ) ,−

∑
i∈V

∑
yi

(
1−

∑
α⊃iρα

)
gη(τi(yi))

−
∑
α∈A

∑
yα
ραgη(τα(yα)), (4)

and τ is restricted to lie in the local polytope,

T ,{τ ≥ 0 : ∀i ∈ V,
∑
Yi
τi(Yi) = 1,

∀α ∈ A, i ∈ α, Yi,
∑
Yα\{i}

τα(Yα) = τi(Yi)}. (5)

The reweighted log-partition function is then com-
puted by minimizing (3) over T

logZηρ (X; θ) , −min
τ∈T

F ηρ (τ,X; θ). (6)

Setting ρα = 1 for each α ∈ A recovers the typi-
cal Bethe free energy approximation. The reweighting
parameters can always be chosen so that the approx-
imate free energy is convex (Heskes, 2006; Ruozzi &
Tatikonda, 2013). For example, tree-reweighted belief
propagation (TRW) chooses ρ so that its components
correspond to (hyper)edge appearance probabilities of
a collection of spanning (hyper)trees (Wainwright &
Jordan, 2008). Later, we discuss how employing small
η > 0 yields approximation error, but guarantees fast
convergence of our proposed algorithm.

We replace the exact partition function in the MLE
objective (1) with a reweighted free energy approxima-
tion of the form (3). This results in a concave-convex
saddle point problem

max
θ

min
τ(1:M)

∑
m

[∑
i∈V
〈θV , φi(X(m), Y

(m)
i )〉+

∑
α∈A
〈θA, φα(X(m), Y (m)

α )〉−

F ηρ (τ (m), X(m), θ)
]
− 1

2
‖θ‖2 . (7)

3 CONVEX APPROXIMATION TO
MLE

We now consider a convex dual of (7) that yields a
new, fast learning algorithm. Since the objective is
concave-convex and one set (T ) is constrained to a
compact domain, we invoke Sion’s minimax theorem
(Sion, 1958) to swap the max and min operators while
preserving equality. With θ on the inside, the opti-
mal θ given fixed τ (1), . . . , τ (M) ∈ T can be found by
setting the gradient with respect to θ equal to zero,
yielding the linear maps

θ∗V (τ (1:M)) =
1

λ

(∑
m

∑
i∈V
[
φi(X

(m), Y
(m)
i )

−
∑
Yi
τ
(m)
i (Yi)φi(Yi, X

(m))
])

(8)

θ∗A(τ (1:M)) =
1

λ

(∑
m

∑
α∈A

[
φα(X(m), Y (m)

α )

−
∑
Yα
τ (m)
α (Yα)φα(Yα, X

(m))
])
. (9)

Substituting these back into (7) yields the following
minimization over the local polytope:

min
τ(1:M)∈T

Lηρ(τ (1:m)) ,

min
τ(1:M)∈T

1

2λ
‖θ∗(τ (1:M))‖2 −

∑
m

Hη
ρ (τ (m)) (10)

This is a convex minimization problem with linear con-
straints. We have shown that approximate MLE with
a convex variational free energy is dual to an approx-
imate max-entropy problem. However, it appears dif-
ficult to solve because all training examples are cou-
pled by the quadratic term. Next, we present an al-
gorithm that iteratively solves decoupled per-example
problems given access to an approximate MAP solver.

3.1 Frank-Wolfe Algorithm For Maximum
Likelihood Learning

The Frank-Wolfe algorithm minimizes a convex func-
tion f over linear constraints by iteratively minimizing
its linearization over the same constraints (Frank &
Wolfe, 1956; Jaggi, 2013). Each linear problem yields
a vertex of the constraint set. Then, the iterate is
moved one step in the direction of this vertex by a
specified schedule. We can write this procedure as

st = arg min
x∈X
〈x,∇f(xt−1)〉 (11)

xt = (1− γt)xt−1 + γtst, (12)
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where the step-size, γt, can be set to 2
2+t or obtained

via line search (Jaggi, 2013).

For the objective function in (10), each iteration re-
quires computing

st = arg minτ(1),...,τ(M)∈T 〈τ (1:m),∇Lηρ(τ
(1:m)
t−1 )〉. (13)

This is a linear program over the local polytope T ,
which is tractable. Since the constraints are sepa-
rable across training examples, (13) decouples into
M independent linear programs that can be solved
in parallel. Alternatively, this this is a convex opti-
mization problem over separable constraints, we can
use block-coordinate Frank-Wolfe (BCFW) (Lacoste-
Julien, 2013). BCFW performs the FW iterations over
a randomly selected m ∈ {1, . . . ,M} and leaves the re-
maining coordinates untouched. BCFW requires less
work at each iteration, but the asymptotic rate of con-
vergence remains the same (Lacoste-Julien, 2013). We
describe both variants of MLE-Struct in Alg. 1. Line
search can be accelerated by precomputing quadratic
terms, as discussed in D.2.

The FW algorithm converges as O(Ct ), where C is the
objective’s curvature (Jaggi, 2013). For any η > 0, the
curvature is bounded and therefore Alg. 1 converges.

Theorem 3.1. Let |V | be the number of nodes in the
model, |A| the number of factors, M the number of
samples, R the maximum norm of any feature function
φ, and η ∈ (0, 12 ). Alg. 1 converges as O(C/t) to the
optimum of (10), with curvature

C < (|V |+ |A|)M
(
Cρ
η

+
R2

λ

)
.

Here, Cρ is a constant depending only on ρ and the
graph structure of the problem.

The proof and detailed discussion appear in Ap-
pendix B. Using η > 0 results in approximation er-
ror for the Bethe-MLE problem but is necessary to
use the above convergence guarantee. In Appendix B
we discuss a data-dependent heuristic for choosing η.
Although the curvature is technically unbounded at
η = 0, experimentally, we have observed that the algo-
rithm always converges, so our results use this setting.

3.2 Frank-Wolfe For Marginal Inference

Many applications require computing marginals at test
time. We can use FW to perform marginal inference
by maximizing (3) with respect to τ , which is a concave
problem suitable for FW. Thus, at both train and test
time, we only need to interact with the constraints
through a MAP solver.

Algorithm 1 MLE-Struct: Frank-Wolfe Approximate
Maximum-Likelihood Learning

Input: training data {(X(m), Y (m)}, reweighting
parameters ρ ∈ [0, 1]n, regularizer λ, η ∈ [0, 1/2)
Output: Approximate maximum likelihood esti-
mate θ.
Initialization: Set each τ (m) uniformly.
repeat

for allm in parallel (batch) orm chosen uniformly
at random (block) do

s
(m)
t = arg minτ(M)∈T 〈τ (m),∇(m)Lηρ(τ

(1:m)
t−1 )〉

Set γ = 2
2+t for batch and γ = 2M

2M+t for block
or use line search.
τt = (1− γ)τ

(m)
t−1 + γs

(m)
t

end for
until duality gap 〈τt − st,∇L(τt)〉 < ε
Set θ using (8) and (9).

4 RELATED WORK

Although FW has been employed for marginal infer-
ence (Sontag & Jaakkola, 2007; Belanger, 2013), MAP
inference (Schwing, 2014), and max-margin learn-
ing (Lacoste-Julien, 2013), our work is the first to ap-
ply it to approximate MLE. To do so, we simplify the
saddle point problem (7) to a convex dual (10) that
would be difficult to solve without FW, since (10) cou-
ples all training examples via quadratic terms. Lin-
earization in FW is crucial for decoupling them.

In concurrent work, Krishnan et al. (2015) have intro-
duced the contraction polytope, an inner bound to the
marginal polytope. They propose two algorithms for
approximate inference: one yields an O(1/T ) conver-
gence rate but incurs approximation error (similar to
MLE-Struct with η > 0), and the other has no approx-
imation error but only converges at the rate O(1/

√
T ).

We expect their technique could be applied for learn-
ing as well but leave this for future work.

A related method for inference using MAP solvers is
Perturb-and-MAP (Li, 2013). In Appendix F, we de-
scribe experiments on CRFs for bipartite matchings,
demonstrating the favorable accuracy and speed of
FW inference against both Perturb-and-MAP and be-
lief propagation (Huang & Jebara, 2009). Another
method for bipartite matchings is to obtain unbiased
but noisy gradients using a strongly polynomial per-
fect sampler (Huber & Law, 2008). However, only
experiments with graphs up to 20 nodes have been
done (Petterson, 2009).

Wainwright (2006) investigated the use of TRW for
learning in pairwise binary graphical models. They
observe that the parameters learned via TRW are more
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robust to the addition of new data than those learned
by BP, in a theoretically precise manner.

In the context of structured prediction, Kulesza &
Pereira (2008) and Finley & Joachims (2008) have in-
vestigated potential failure cases of approximate MAP
decoding for parameter learning. Our method only ap-
proximates the MAP problem by optimizing over the
local polytope, a superset of the marginal polytope.
This is an overgenerating approximation in the termi-
nology of Finley & Joachims (2008), which has been
shown to enjoy robust theoretical properties.

There are a variety of methods to solve (7) directly,
all of which compute the partition function iteratively,
yielding expensive double-loop algorithms. Ganapathi
(2008) followed a maximum entropy (dual) approach
using the Bethe entropy approximation (i.e., ρ = 1),
but avoided convex entropy approximations, instead
using the concave-convex procedure. Domke (2013)
proposed performing MLE using a small, fixed number
of TRW iterations to estimate the gradient. However,
if TRW does not quickly converge, then the result-
ing procedure can diverge, as some of our experiments
show. Vishwanathan (2006) proposed improving the
convergence in the outer loop using accelerated gradi-
ent methods.

Most related to our method are techniques for ren-
dering (7) more friendly by dualizing the inner maxi-
mization, yielding an objective that is jointly convex in
θ and dual messages (i.e., beliefs) (Hazan & Urtasun,
2010; Meshi, 2010). However, these dual objectives ex-
plicitly retain iterates in θ and τ and the algorithms re-
quire alternating message passing and gradient steps.
In practice, similar to Domke (2013), they rely on run-
ning the inner loop for a fixed number of iterations.

Finally, a key advantage of MLE-Struct over the above
techniques is its ease of implementation. It interacts
with the underlying problem only via an off-the-shelf
MAP solver. This allows us to easily prototype ap-
plications on various problems without deriving new
message-passing updates.

5 EXPERIMENTS

We demonstrate the versatility and competitiveness
of MLE-Struct on grid CRFs, high treewidth Markov
random fields, and probabilistic models of bipartite
and general matchings. For grid CRFs, we compare
against Hazan & Urtasun (2010) and Domke (2013),
both of which attempt to optimize the same objec-
tive (7). MLE-Struct is significantly more scalable
than both. For matchings, we compare against dis-
criminative methods and obtain competitive test error.
In each case, we use the same generic FW code, with

only problem-specific gradient and MAP subroutines.
Appendix A contains details and additional results.

5.1 Grid CRFs

For pairwise binary CRFs, MAP inference is in-
tractable, but we can efficiently solve the LP relaxation
over the local polytope using QPBO (Rother, 2007).
Solutions over the local polytope are known to yield
accurate predictions (Wainwright & Jordan, 2008). Of
the related methods in Section 4, only Domke (2013)
provides experimental results on the same scale as the
problems below, with up to 40K nodes.

We study the binary denoising dataset of Kumar &
Hebert (2003), which is the largest problem solved
by Hazan & Urtasun (2010), and the Weizmann
horses (Borenstein & Ullman, 2002), which is the
largest binary problem solved by Domke (2013). We
configure all algorithms to solve the same objective (7).
Some methods solve the primal while others solve the
dual, so to compare, we measure relative error in the
objective value. This is the absolute difference between
the objective value and the optimum (measured at the
last iteration) over the optimum.

5.1.1 Binary Denoising

We denoise 64 × 64 images. Each node has a single
feature—its noisy observation, and each edge a bias
feature for every entry in the overcomplete node poten-
tial. This rich parameterization allows both methods
to attain zero test error in one iteration. Therefore, we
compare the methods’ efficiency as optimization algo-
rithms. Fig. 1b shows the speedup of our algorithm;
the geometric mean of our speedup for reaching 1%
relative error is 283x. Fig. 1a plots the relative error
vs. time of one problem; plots for the others are in
Appendix A.1.1. We obtain the desired accuracy in
less than one minute while the method of Hazan &
Urtasun (2010) requires over an hour.

5.1.2 Image Segmentation

Next we learn to segment the Weizmann
horses (Borenstein & Ullman, 2002) using the
same setup as Domke (2013) and compare against
their algorithm. In Appendix A.1.2 we discuss how
the algorithm of Hazan & Urtasun (2010) could
not scale to this dataset. In Fig. 2, we compare
two variants of our algorithm with three variants
of Domke (2013) in terms of objective value and test
error over time. MLE-Struct curves are the BCFW
version of our Alg. 1. MLE-Struct-wavg evaluates
test error using a weighted average of the iterates as
described by Lacoste-Julien (2013). The curve for
averaged iterates is substantially smoother than the



Bethe Learning of Graphical Models via MAP Decoding

Time (min)
0 50 100 150 200Lo

g 
R

el
at

iv
e 

E
rr

or

10 -10

100

gaussian 1

HU Primal
HU Dual
FW Dual

(a) Objective value vs. time.

Gaussian Bimodal
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Hazan & Urtasun (2010) 45.7 45.7 45.1 46.4 46.6 46.2 48.6 48.1

Ratio 331 304 271 340 235 238 308 255

(b) Time (minutes) to reach 1% relative error.

Figure 1: Binary denoising results. FW Dual and MLE-Struct are our method.
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(a) Top: Log duality gap vs time. Bottom:
Test error vs time. The -wavg suffix is for the
weighted average iterates.

(b) Left: Raw image and ground truth segmentation. Middle: MLE-
Struct prediction after 9.2 min. (top) and 3.7h (bottom). Right: domke40
prediction after 9.2 min. (top) and 3.7h (bottom).

Figure 2: Horse results. MLE-Struct curves are our method.

 

 

 

 

(a) Left: Approximate MAP assignment produced from the learned model. Red
edges were incorrectly matched. Mid: Pseudomarginals for a correctly predicted
edge. The correct edge has high probability (red) while all others have low
probability (blue). Right: Pseudomarginals for a wrongly predicted edge. There
are two edges with nontrivial probability (red and green). When the model is
forced to pick one, it picked the wrong one.

Hotel
FW lin.+l.

0 0.0 0.0
10 0.0 0.0022
20 0.0049 0.0049
30 0.020 0.020
40 0.023 0.013
50 0.0614 0.050
60 0.13 0.12
70 0.17 0.15
80 0.24 0.19
90 0.33 0.30

House
FW lin.+l.

0 0.0
0.0040 0.0
0.0022 0.0022
0.0049 0.0
0.0 0.0
0.017 0.022
0.041 0.051
0.051 0.067
0.080 0.14
0.12 0.11

(b) Test Hamming loss for MLE-Struct
vs Caetano (2009)

Figure 3: Graph matching results. Left plot and FW column are our method.

False Positive
0 0.2 0.4 0.6 0.8 1

T
ru

e 
P

os
iti

ve

0

0.2

0.4

0.6

0.8

1

MLE-Struct AUC=0.659
Baseline AUC=0.585
Random AUC=0.500

(a) ROC curves for roommate matching of our algorithm
and a constant baseline.

Profile Item Weight
Smoking -0.0484
Personality -0.0370
I generally go to bed at... -0.0296
I generally wake up at... -0.0218
Study with audio/visual -0.0133
Overnight Guests -0.0097
Cleanliness -0.0056

(b) Largest `1 distance features of roommate survey data.
More negative values increasingly discourage features from
differing.

Figure 4: Roommates results. MLE-Struct is our method.
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raw MLE-Struct curve, and very quickly attains a low
test error. The domkex curves result from running
their algorithm for x TRW inner loop iterations.
Note that this is not guaranteed to converge for
any finite x. A practitioner must run the algorithm
for a sequence of increasing values of x to confirm
convergence to the correct value. Overall, we reach
10% relative error 2.83x and 1% relative error 1.68x
faster. We also reach 1% of the final test error 35.1x
faster. In Appendix A.1.2 we provide intuition for
why we reach low test error so quickly.

The efficiency of MLE-Struct is apparent when visu-
alizing predicted marginals on a test image in Fig. 2b.
Domke40 takes 9.2 minutes to complete one iteration.
Their marginal estimates at this point only use local
intensity data: light regions are classified as “horse”
and dark regions are classified as “not horse.” In about
the same time, our BCFW method had already run
12K iterations and had made 60 passes over the train-
ing data. It essentially recovered the correct segmen-
tation (except for difficult portions on the mane and
hind legs, where the background texture is confusing)
with mean Hamming loss of 0.068.

5.2 High Treewidth Markov Random Fields

We obtained a dataset of 48 financial indicators (such
as market indices or macroeconomic indicators) and 19
news indicators (measuring intensity of various cate-
gories of events in each part of the world) for all hours
in which the indicators were available from the years
2009 to 2014. This is an unsupervised, density estima-
tion problem, since we have no additional features. We
converted the data into a binary time series of whether
the indicator was below or greater-or-equal-to its me-
dian value over the five year period. For simplicity, we
ignored the temporal order and treated the data from
each hour as an i.i.d. sample. We used the method
of Ravikumar et al. (2010) to learn the structure, and
then MLE-Struct using indicator features to learn the
parameters. Figure 5 shows the model with highest
approximate test likelihood of -42.1648, which we se-
lected by holding out 20% of the samples and perform-
ing grid search (over one regularization parameter each
for the structure and parameter learning procedures).
We also computed, via the junction tree algorithm, the
exact log-likelihood of -44.3310 for this model, which
compares favorably with an independent model with
log-likelihood -45.3448.

5.3 Permanents And Matchings

Consider the problem of learning distributions over
perfect matchings of a given graph: given an adjacency
matrix Y and a weight matrix W , the probability of

observing a particular matching is

f(Y ;W ) = 1
Z(W ) exp

(
1
2 tr(WY )

)
. (14)

In practice, W is unknown and must be learned from
data. We can learn a generative model by estimating
W directly, or a conditional model by assuming that
W is the linear combination of K feature maps, e.g.,
W =

∑
k θkFk, and then estimating θ. This formula-

tion can be relaxed to distributions over all matchings
by allowing Y to correspond to the adjacency matrix
of any (not necessarily perfect) matching.

When G is bipartite, the partition function is the per-
manent of the matrix of edge weights and is thus #P-
hard to compute (Valiant, 1979). Although the par-
tition function can be computed to any given accu-
racy using a fully polynomial randomized approxima-
tion scheme (Jerrum, 2004), such algorithms are im-
practical for graphs of any significant size. Instead,
we will apply our strategy, noting that the reweighted
free energy is convex over the local polytope for a wide
range of parameter settings. We use max-flow as the
MAP solver (Goldberg & Kennedy, 1995; Kolmogorov,
2009). Synthetic experiments in Appendix A.2.1 show
that ρ = 1 yields very accurate parameter estimates.

Theorem 5.1. For any ρ ∈ [0, 1]|V |, any graph (bi-
partite or general), and any matching (perfect or im-
perfect), the reweighted free energy (3) is convex over
the local polytope.

Theorem 5.1 is proven in Appendix C. By inclusion, it
implies (3) is also convex over the marginal polytope.
This generalizes earlier known results on the convexity
of the Bethe free energy for bipartite perfect matchings
(Vontobel, 2013; Chertkov & Yedidia, 2013) to general
matchings; we use this result in our experiments below.

5.3.1 Bipartite Matchings: Stereo Vision

We apply the bipartite matching model to a graph
matching problem on the CMU house and hotel im-
age sequences, comparing against the linear+learning
method of Caetano (2009). Both models use the same
features and MAP predictors, but theirs minimizes
a hinge loss. The methods achieve comparable test
error, with ours doing slightly better on the houses
and theirs doing slightly better on the hotels. MLE-
Struct permits fast and simple approximate MLE in
this problem where it was previously difficult. Exper-
imentally, we found that using BP (Huang & Jebara,
2009; Bayati, 2011) to compute marginals for the stan-
dard double-loop MLE approach was very unstable.

Fig. 3a illustrates one advantage of learning a proba-
bilistic model versus a discriminative model: the pseu-
domarginals indicate the model’s confidence in a pre-
diction. In many cases, when the algorithm made
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Figure 5: Learned graphical model of binary news and financial indicators. Nodes prefixed with d- encode
hourly absolute differences and nodes with %d- encode hourly percentage changes. Blue and red lines denote
attractive and repulsive edges, respectively, and darker shades denote larger magnitudes.

the wrong prediction, two edges incident to a specific
node had relatively high pseudomarginal probabilities.
Here, the errors are not unfounded: similar parts were
matched, albeit incorrectly.

5.4 General Matchings

Many undergraduate institutions assign first-year stu-
dents to roommates based on questionnaires, but al-
low returning students to pick their own roommates.
We can use observed roommate matchings of return-
ing students to train a model for students’ preferences.
Such a model can then be used to assign first-year stu-
dents to roommates that they would have picked on
their own, had they already met each other. Our data
consists of 3 years of roommate assignments and sur-
vey responses of 14 questions for 2374–2504 students
per year. As our data includes neither class nor gender,
we treat the entire matching assignment for one year
as one observation. We fit a model of the form (14)
for a general matching with MLE-Struct.

MLE-Struct is, to our knowledge, the only MLE-based
method to learn a model over general matchings in
polynomial time and space. This because while all
known descriptions of the general matching polytope
require exponentially many constraints ot describe,
there exists nevertheless a polynomial-time algorithm
to solve MAP problems over the general matching
polytope (Kolmogorov, 2009). Since we interact with
the polytope only through the MAP solver, we inherit
this polynomial runtime. Message-passing algorithms
would need to explicitly represent the constraints of
the matching polytope, leading to exponential space
and runtime requirements.

Table 4b lists the distance features with largest mag-
nitude; more negative values indicate closer agreement
is required. Smoking, personality (introverted vs. ex-
troverted), and sleeping habits require the strongest
agreement. Additional results are in Appendix A.

As we are effectively classifying ≈ 2500 classes using
only ≈ 14 features, we do not expect high accuracy
in terms of Hamming error. Instead, we consider the

use-case where we use the model to reject very bad
roommate assignments. To evaluate this, we use our
learned θ to form the cost matrix from features of the
test year (2012), and use the entries of this cost ma-
trix as scores for a binary classifier. We then plot ROC
curves in Fig. 4a, where we demonstrate gains above
random guesses and a constant baseline. We also eval-
uated a structured perceptron and structured SVM us-
ing the same MAP decoder, but even after extensive
parameter tuning, they were unable to generalize, and
obtained worse test AUCs than the constant baseline.

6 DISCUSSION

We have introduced a new approximate MLE method
that relies only on a simple wrapper around a black-
box MAP solver and scales well to large datasets.
The method employs convex free energy approxima-
tions with a convex dual learning objective that can
be solved efficiently using Frank-Wolfe and block-
coordinate Frank-Wolfe optimization. Previously,
practitioners either employed expensive double-loop
MLE procedures or abandoned MLE by resorting to
structured SVMs and perceptrons. Our method is
competitive with max-margin MAP-based estimation
methods in terms of prediction error and faster than
competing MLE methods, while being simple to imple-
ment. In the future, we will consider other combinato-
rial structures, incorporate structure learning with `1
regularization, and handle latent variable models.
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