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Abstract

The adaptive anonymity problem is formalized where each individual shares their
data along with an integer value to indicate their personal level of desired privacy.
This problem leads to a generalization of k-anonymity to the b-matching setting.
Novel algorithms and theory are provided to implement this type of anonymity.
The relaxation achieves better utility, admits theoretical privacy guarantees that
are as strong, and, most importantly, accommodates a variable level of anonymity
for each individual. Empirical results confirm improved utility on benchmark and
social data-sets.

1 Introduction
In many situations, individuals wish to share their personal data for machine learning applications
and other exploration purposes. If the data contains sensitive information, it is necessary to protect
it with privacy guarantees while maintaining some notion of data utility [18, 2, 24]. There are
various definitions of privacy. These include k-anonymity [19], l-diversity [16], t-closeness [14]
and differential1 privacy [3, 22]. All these privacy guarantees fundamentally treat each contributed
datum about an individual equally. However, the acceptable anonymity and comfort-level of each
individual in a population can vary widely. This article explores the adaptive anonymity setting and
shows how to generalize the k-anonymity framework to handle it. Other related approaches have
been previously explored [20, 21, 15, 5, 6, 23] yet herein we contribute novel efficient algorithms
and formalize precise privacy guarantees. Note also that there are various definitions of utility. This
article focuses on the use of suppression since it is well-formalized. Therein, we hide certain values
in the data-set by replacing them with a ∗ symbol (fewer ∗ symbols indicate higher utility). The
overall goal is to maximize utility while preserving each individual’s level of desired privacy.

This article is organized as follows. § 2 formalizes the adaptive anonymity problem and shows
how k-anonymity does not handle it. This leads to a relaxation of k-anonymity into symmetric
and asymmetric bipartite regular compatibility graphs. § 3 provides algorithms for maximizing
utility under these relaxed privacy criteria. § 4 provides theorems to ensure the privacy of these
relaxed criteria for uniform anonymity as well as for adaptive anonymity. § 5 shows experiments on
benchmark and social data-sets. Detailed proofs are provided in the Supplement.

2 Adaptive anonymity and necessary relaxations to k-anonymity
The adaptive anonymity problem considers a data-setX ∈ Zn×d consisting of n ∈ N observations
{x1, . . . ,xn} each of which is a d-dimensional discrete vector, in other words, xi ∈ Zd. Each user
i contributes an observation vector xi which contains discrete attributes pertaining to that user2.
Furthermore, each user i provides an adaptive anonymity parameter δi ∈ N they desire to keep
when the database is released. Given such a data-set and anonymity parameters, we wish to output
an obfuscated data-set denoted byY ∈ {Z ∪ ∗}n×d which consists of vectors {y1, . . . ,yn} where

1Differential privacy often requires specifying the data application (e.g. logistic regression) in advance [4].
2For instance, a vector can contain a user’s gender, race, height, weight, age, income bracket and so on.
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yi(k) ∈ {xi(k), ∗}. The star symbol ∗ indicates that the k’th attribute has been masked in the i’th
user-record. We say that vector xi is compatible with vector yj if xi(k) = yj(k) for all elements of
yj(k) $= ∗. The goal of this article is to create aY which contains a minimal number of ∗ symbols
such that each entry yi ofY is compatible with at least δi entries ofX and vice-versa.

The most pervasive method for anonymity in the released data is the k-anonymity method [19, 1].
However, it is actually more constraining than the above desiderata. If all users have the same value
δi = k, then k-anonymity suppresses data in the database such that, for each user’s data vector in the
released (or anonymized) database, there are at least k − 1 identical copies in the released database.
The existence of copies is used by k-anonymity to justify some protection to attack.

We will show that the idea of k − 1 copies can be understood as forming a compatibility graph be-
tween the original database and the released database which is composed of several fully-connected
k-cliques. However, rather than guaranteeing copies or cliques, the anonymity problem can be
relaxed into a k-regular compatibility to achieve nearly identical resilience to attack. More interest-
ingly, this relaxation will naturally allow users to select different δi anonymity values or degrees in
the compatibility graph and allow them to achieve their desired personal protection level.

Why can’t k-anonymity handle heterogeneous anonymity levels δi? Consider the case where the
population contains many liberal users with very low anonymity levels yet one single paranoid user
(user i) wants to have a maximal anonymity with δi = n. In the k-anonymity framework, that user
will require n − 1 identical copies of his data in the released database. Thus, a single paranoid user
will destroy all the information of the database which will merely contain completely redundant
vectors. We will propose a b-matching relaxation to k-anonymity which prevents this degeneracy
since it does not merely handle compatibility queries by creating copies in the released data.

While k-anonymity is not the only criterion for privacy, there are situations in which it is sufficient
as illustrated by the following scenario. First assume the data-set X is associated with a set of
identities (or usernames) andY is associated with a set of keys. A key may be the user’s password
or some secret information (such as their DNA sequence). Represent the usernames and keys using
integers x1, . . . , xn and y1, . . . , yn, respectively. Username xi ∈ Z is associated with entry xi and
key yj ∈ Z is associated with entry yj . Furthermore, assume that these usernames and keys are
diverse, unique and independent of their corresponding attributes. These x and y values are known
as the sensitive attributes and the entries ofX andY are the non-sensitive attributes [16]. We aim to
release an obfuscated databaseY and its keys with the possibility that an adversary may have access
to all or a subset ofX and the identities.

The goal is to ensure that the success of an attack (using a username-key pair) is low. In other
words, the attack succeeds with probability no larger than 1/δi for a user which specified δi ∈ N.
Thus, the attack we seek to protect against is the use of the data to match usernames to keys (rather
than attacks in which additional non-sensitive attributes about a user are discovered). In the uniform
δi setting, k-anonymity guarantees that a single one-time attack using a single username-key pair
succeeds with probability at most 1/k. In the extreme case, it is easy to see that replacing all ofY
with ∗ symbols will result in an attack success probability of 1/n if the adversary attempts a single
random attack-pair (username and key). Meanwhile, releasing a database Y = X with keys could
allow the adversary to succeed with an initial attack with probability 1.

We first assume that all degrees δi are constant and set to δ and discuss how the proposed b-matching
privacy output subtly differs from standard k-anonymity [19]. First, define quasi-identifiers as sets
of attributes like gender and age that can be linked with external data to uniquely identify an individ-
ual in the population. The k-anonymity criterion says that a data-set such as Y is protected against
linking attacks that exploit quasi-identifiers if every element is indistinguishable from at least k − 1
other elements with respect to every set of quasi-identifier attributes. We will instead use a compati-
bility graphG to more precisely characterize how elements are indistinguishable in the data-sets and
which entries of Y are compatible with entries in the original data-set X. The graph places edges
between entries ofX which are compatible with entries ofY. Clearly, G is an undirected bipartite
graph containing two equal-sized partitions (or color-classes) of nodes A and B each of cardinality
n whereA = {a1, . . . , an} andB = {b1, . . . , bn}. Each element ofA is associated with an entry of
X and each element of B is associated with an entry ofY. An edge e = (i, j) ∈ G that is adjacent
to a node in A and a node in B indicates that the entries xi and yj are compatible. The absence of
an edge means nothing: entries are either compatible or not compatible.
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For δi = δ, b-matching produces δ-regular bipartite graphsGwhile k-anonymity produces δ-regular
clique-bipartite graphs3 defined as follows.

Definition 2.1 Let G(A, B) be a bipartite graph with color classes: A, B where A =
{a1, ..., an}, B = {b1, ..., bn}. We call a k-regular bipartite graph G(A, B) a clique-bipartite
graph if it is a union of pairwise disjoint and nonadjacent complete k-regular bipartite graphs.

Denote by Gn,δ
b the family of δ-regular bipartite graphs with n nodes. Similarly, denote by Gn,δ

k

the family of δ-regular graphs clique-bipartite graphs. We will also denote by Gn,δ
s the family of

symmetric b-regular graphs using the following definition of symmetry.

Definition 2.2 Let G(A, B) be a bipartite graph with color classes: A, B where A =
{a1, ..., an}, B = {b1, ..., bn}. We say thatG(A, B) is symmetric if the existence of an edge (ai, bj)
in G(A, B) implies the existence of an edge (aj , bi), where 1 ≤ i, j ≤ n.

For values of n that are not trivially small, it is easy to see that the graph families satisfy
Gn,δ

k ⊆ Gn,δ
s ⊆ Gn,δ

b . This holds since symmetric δ-regular graphs are δ-regular with the additional
symmetry constraint. Clique-bipartite graphs are δ-regular graphs constrained to be clique-bipartite
and the latter property automatically yields symmetry.

This article introduces graph families Gn,δ
b and Gn,δ

s to enforce privacy since these are relaxations
of the family Gn,b

k as previously explored in k-anonymity research. These relaxations will achieve
better utility in the released database. Furthermore, they will allow us to permit adaptive anonymity
levels across the users in the database. We will drop the superscripts n and δ whenever the meaning
is clear from the context. Additional properties of these graph families will be formalized in § 4 but
we first informally illustrate how they are useful in achieving data privacy.

username

alice 1 0 0 0
bob 0 0 0 0
carol 0 0 1 1
dave 1 0 1 1
eve 1 1 0 0
fred 0 1 1 1

key

* 0 0 0 ggacta
* 0 0 0 tacaga
* 0 1 1 ctagag
* 0 1 1 tatgaa
* 1 * * caacgc
* 1 * * tgttga

Figure 1: Traditional k-anonymity (in Gk) for n = 6, d = 4, δ = 2 achieves #(∗) = 10. Left to
right: usernames with data (x,X), compatibility graph (G) and anonymized data with keys (Y, y).

username

alice 1 0 0 0
bob 0 0 0 0
carol 0 0 1 1
dave 1 0 1 1
eve 1 1 0 0
fred 0 1 1 1

key

* 0 0 0 ggacta
* * 0 0 tacaga
* 0 1 1 ctagag
* * 1 1 tatgaa
1 * 0 0 caacgc
0 * 1 1 tgttga

Figure 2: The b-matching anonymity (in Gb) for n = 6, d = 4, δ = 2 achieves #(∗) = 8. Left to
right: usernames with data (x,X), compatibility graph (G) and anonymized data with keys (Y, y).

In figure 1, we see an example of k-anonymity with a graph from Gk . Here each entry of the
anonymized data-set Y appears k = 2 times (or δ = 2). The compatibility graph shows 3 fully
connected cliques since each of the k copies in Y has identical entries. By brute force exploration

3 Traditional k-anonymity releases an obfuscated database of n rows where there are k copies of each row.
So, each copy has the same neighborhood. Similarly, the entries of the original database all have to be connected
to the same k copies in the obfuscated database. This induces a so-called bipartite clique-connectivity.
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we find that the minimum number of stars to achieve this type of anonymity is #(∗) = 10. More-
over, since this problem is NP-hard [17], efficient algorithms rarely achieve this best-possible utility
(minimal number of stars).

Next, consider figure 2 where we have achieved superior utility by only introducing#(∗) = 8 stars
to form Y. The compatibility graph is at least δ = 2-regular. It was possible to find a smaller
number of stars since δ-regular bipartite graphs are a relaxation of k-clique graphs as shown in
figure 1. Another possibility (not shown in the figures) is a symmetric version of figure 2 where
nodes on the left hand side and nodes on the right hand side have a symmetric connectivity. Such an
intermediate solution (since Gk ⊂ Gs ⊂ Gb) should potentially achieve#(∗) between 8 and 10.

It is easy to see why all graphs have to have a minimum degree of δ at least (i.e. must contain a
δ-regular graph). If one of the nodes has a degree of 1, then the adversary will know the key (or the
username) for that node with certainty. If each node has degree δ or larger, then the adversary will
have probability at most 1/δ of choosing the correct key (or username) for any random victim.

We next describe algorithms which accept X and integers δ1, . . . , δn and output Y such that each
entry i inY is compatible with at least δi entries inX and vice-versa. These algorithms operate by
finding a graph in Gb or Gs and achieve similar protection as k-anonymity (which finds a graph in
the most restrictive family Gk and therefore requires more stars). We provide a theoretical analysis
of the topology of G in these two new families to show resilience to single and sustained attacks
from an all-powerful adversary.

3 Approximation algorithms
While the k-anonymity suppression problem is known to be NP-hard, a polynomial time method
with an approximation guarantee is the forest algorithm [1] which has an approximation ratio of 3k−
3. In practice, though, the forest algorithm is slow and achieves poor utility compared to clustering
methods [10]. We provide an algorithm for the b-matching anonymity problem with approximation
ratio of δ and runtime of O(δm

√
n) where n is the number of users in the data, δ is the largest

anonymity level in {δ1, . . . , δn} and m is the number of edges to explore (in the worst case with
no prior knowledge, we have m = O(n2) edges between all possible users). One algorithm solves
for minimum weight bipartite b-matchings which is easy to implement using linear programming,
max-flow methods or belief propagation in the bipartite case [9, 11]. The other algorithm uses a
general non-bipartite solver which involves Blossom structures and requiresO(δmn log(n)) time[8,
9, 13]. Fortunately, minimum weight general matching has recently been shown to require only
O(mε−1 log ε−1) time to achieve a (1 − ε) approximation [7].

First, we define two quantities of interest. Given a graphG with adjacency matrixG ∈ Bn×n and a
data-setX, the Hamming error is defined as h(G) =

∑

i

∑

j Gij

∑

k(Xik $= Xjk). The number of
stars to achieveG is s(G) = nd −

∑

i

∑

k

∏

j (1 − Gij(Xik $= Xjk)) .

Recall Gb is the family of regular bipartite graphs. Let minG∈Gb
s(G) be the minimum number of

stars (or suppressions) that one can place in Y while keeping the entries in Y compatible with at
least δ entries in X and vice-versa. We propose the following polynomial time algorithm which,
in its first iteration, minimizes h(G) over the family Gb and then iteratively minimizes a variational
upper bound [12] on s(G) using a weighted version of the Hamming distance.

Algorithm 1 variational bipartite b-matching
InputX ∈ Zn×d, δi ∈ N for i ∈ {1, . . . , n}, ε > 0 and initializeW ∈ Rn×d to the all 1s matrix
While not converged {
Set Ĝ = arg minG∈Bn×n

∑

ij Gij

∑

k Wik(Xik $= Xjk) s.t.
∑

j Gij =
∑

j Gji ≥ δi

For all i and k setWik = exp
(

∑

j Ĝij(Xik $= Xjk) ln ε
1+ε

)

}
For all i and k setYik = ∗ if Ĝij = 1 andXjk $= Xik for any j
Choose random permutationM as matrixM ∈ Bn×n and outputYpublic = MY

We can further restrict the b-matching solver such that the graphG is symmetric with respect to both
the original data X and the obfuscated data Y. To do so, we require thatG is a symmetric matrix.
This will produce a graph G ∈ Gs. In such a situation, the value of Ĝ is recovered by a general
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unipartite b-matching algorithm rather than a bipartite b-matching program. Thus, the set of possible
output solutions is strictly smaller (the bipartite formulation relaxes the symmetric one).

Algorithm 2 variational symmetric b-matching
InputX ∈ Zn×d, δi ∈ N for i ∈ {1, . . . , n}, ε > 0 and initializeW ∈ Rn×d to the all 1s matrix
While not converged {
Set Ĝ = arg minG∈Bn×n

∑

ij Gij

∑

k Wik(Xik $= Xjk) s.t.
∑

j Gij ≥ δi, Gij = Gji

For all i and k setWik = exp
(

∑

j Ĝij(Xik $= Xjk) ln ε
1+ε

)

}
For all i and k setYik = ∗ if Ĝij = 1 andXjk $= Xik for any j
Choose random permutationM as matrixM ∈ Bn×n and outputYpublic = MY

Theorem 1 For δi ≤ δ, iteration #1 of algorithm 1 finds Ĝ such that s(Ĝ) ≤ δ minG∈Gb
s(G).

Theorem 2 Each iteration of algorithm 1 monotonically decreases s(Ĝ).

Theorem 1 and 2 apply to both algorithms. Both algorithms4 manipulate a bipartite regular graph
G(A, B) containing the true matching {(a1, b1), . . . , (an, bn)}. However, they ultimately release the
data-set Ypublic after randomly shuffling Y according to some matching or permutation M which
hides the true matching. The random permutation or matching M can be represented as a matrix
M ∈ Bn×n or as a function σ : {1, . . . , n} → {1, . . . , n}. We now discuss how an adversary can
attack privacy by recovering this matching or parts of it.

4 Privacy guarantees
We now characterize the anonymity provided by a compatibility graph G ∈ Gb (or G ∈ Gs) under
several attack models. The goal of the adversary is to correctly match people to as many records as
possible. In other words, the adversary wishes to find the randommatchingM used in the algorithms
(or parts of M ) to connect the entries of X to the entries of Ypublic (assuming the adversary has
stolenX andYpublic or portions of them). More precisely, we have a bipartite graphG(A, B) with
color classes A, B, each of size n. Class A corresponds to n usernames and class B to n keys. Each
username in A is matched to its key in B through some unknown matchingM .

We consider the model where the graphG(A, B) is δ-regular, where δ ∈ N is a parameter chosen by
the publisher. The latter is especially important if we are interested in guaranteeing different levels
of privacy for different users and allowing δ to vary with the user’s index i.

Sometimes it is the case that the adversary has some additional information and at the very beginning
knows some complete records that belong to some people. In graph-theoretic terms, the adversary
thus knows parts of the hidden matching M in advance. Alternatively, the adversary may have
come across such additional information through sustained attack where previous attempts revealed
the presence or absence of an edge. We are interested in analyzing how this extra knowledge can
help him further reveal other edges of the matching. We aim to show that, for some range of the
parameters of the bipartite graphs, this additional knowledge does not help him much. We will
compare the resilience to attack relative to the resilience of k-anonymity. We say that a person v is
k-anonymous if his or her real data record can be confused with at least k− 1 records from different
people. We first discuss the case of single attacks and then discuss sustained attacks.

4.1 One-Time Attack Guarantees

Assume first that the adversary has no extra information about the matching and performs a one-time
attack. Then, lemma 4.1 holds which is a direct implication of lemma 4.2.

Lemma 4.1 IfG(A, B) is an arbitrary δ-regular graph and the adversary does not know any edges
of the matching he is looking for then every person is δ-anonymous.

4It is straightforward to put a different weight on certain suppressions over others if the utility of the data
is not uniform for each entry or bit. This done by using an n × d weight matrix in the optimization. It is also
straightforward to handle missing data by allowing initial stars inX before anonymizing.
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Lemma 4.2 Let G(A, B) be a δ-regular bipartite graph. Then for every edge e of G(A, B) there
exists a perfect matching in G(A, B) that uses e.

The result does not assume any structure in the graph beyond its δ-regularity. Thus, for a single
attack, b-matching anonymity (symmetric or asymmetric) is equivalent to k-anonymity when b = k.

Corollary 4.1 Assume the bipartite graph G(A, B) is either δ-regular, symmetric δ-regular or
clique-bipartite and δ-regular. An adversary attackingG once succeeds with probability≤ 1/δ.

4.2 Sustained Attack on k-Cliques

Now consider the situation of sustained attacks or attacks with prior information. Here, the adver-
sary may know c ∈ N edges in M a priori by whatever means (previous attacks or through side
information). We begin by analyzing the resilience of k-anonymity where G is a cliques-structured
graph. In the clique-bipartite graph, even if the adversary knows some edges of the matching (but
not too many) then there still is hope of good anonymity for all people. The anonymity of every
person decreases from δ to at least (δ − c). So, for example, if the adversary knows in advance δ

2
edges of the matching then we get the same type of anonymity for every person as for the model
with two times smaller degree in which the adversary has no extra knowledge. So we will be able to
show the following:

Lemma 4.3 If G(A, B) is clique-bipartite δ-regular graph and the adversary knows in advance c
edges of the matching then every person is (δ − c)-anonymous.

The above is simply a consequence of the following lemma.

Lemma 4.4 Assume that G(A, B) is clique-bipartite δ-regular graph. Denote by M some perfect
matching in G(A, B). Let C be some subset of the edges of M and let c = |C|. Fix some vertex
v ∈ A not matched in C. Then there are at least (δ − c) edges adjacent to v such that, for each of
these edges e, there exists some perfect matchingM e in G(A, B) that uses both e and C.

Corollary 4.2 Assume graph G(A, B) is a clique-bipartite and δ-regular. Assume that the adver-
sary knows in advance c edges of the matching. The adversary selects uniformly at random a vertex
the privacy of which he wants to break from the set of vertices he does not know in advance. Then
he succeeds with probability at most 1

δ−c
.

We next show that b-matchings achieve comparable resilience under sustained attack.

4.3 Sustained attack on asymmetric bipartite b-matching

We now consider the case where we do not have a graphG(A, B) which is clique-bipartite but rather
is only δ-regular and potentially asymmetric (as returned by algorithm 1).

Theorem 4.1 Let G(A,B) be a δ-regular bipartite graph with color classes: A and B. Assume
that |A| = |B| = n. Denote by M some perfect matching M in G(A, B). Let C be some
subset of the edges of M and let c = |C|. Take some ξ ≥ c. Denote n′ = n − c. Fix
any function φ : N → R satisfying ∀δ(ξ

√

2δ + 1
4 < φ(δ) < δ). Then for all but at most

η =
2cδ2n′ξ(1+

φ(δ)+
√

φ2(δ)−2ξ2δ
2ξδ )

φ3(δ)(1+

r

1− 2ξ2δ

φ2(δ)
)( 1

ξ−
c

φ(δ) +
δ(1− c

ξ
)

φ(δ) )
+ cδ

φ(δ) vertices v ∈ A not matched in C the following

holds: The size of the set of edges e adjacent to v and having the additional property that there ex-
ists some perfect matchingMv inG(A, B) that uses e and edges from C is: at least (δ− c− φ(δ)).

Essentially, theorem 4.1 says that all but at most a small number η of people are (δ − c − φ(δ))-
anonymous for every φ satisfying: c

√

2δ + 1
4 < φ(δ) < δ if the adversary knows in advance c

edges of the matching. For example, take φ(δ) := θδ for θ ∈ (0, 1). Fix ξ = c and assume that
the adversary knows in advance at most δ 1

4 edges of the matching. Then, using the formula from
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theorem 4.1, we obtain that (for n large enough) all but at most 4n′

δ
1
4 θ3

+ δ
1
4

θ
people from those that

the adversary does not know in advance are ((1 − θ)δ − δ
1
4 )-anonymous. So if δ is large enough

then all but approximately a small fraction 4

δ
1
4 θ3

of all people not known in advance are almost
(1 − θ)δ-anonymous.

Again take φ(δ) := θδ where θ ∈ (0, 1). Take ξ = 2c. Next assume that 1 ≤ c ≤ min( δ
4 , δ(1 −

θ − θ2)). Assume that the adversary selects uniformly at random a person to attack. Our goal is to
find an upper bound on the probability he succeeds. Then, using theorem 4.1, we can conclude that
all but at most Fn′ people whose records are not known in advance are ((1 − θ)δ − c)-anonymous
for F = 33c2

θ2δ . The probability of success is at most: F + (1 − F ) 1
(1−θ)δ−c . Using the expression

on F that we have and our assumptions, we can conclude that the probability we are looking for is
at most 34c2

θ2δ . Therefore we have:

Theorem 4.2 Assume graph G(A, B) is δ-regular and the adversary knows in advance c edges of
the matching, where c satisfies: 1 ≤ c ≤ min( δ

4 , δ(1− θ− θ2)). The adversary selects uniformly at
random a vertex the privacy of which he wants to break from those that he does not know in advance.
Then he succeeds with probability at most 34c2

θ2δ
.

4.4 Sustained attack on symmetric b-matching with adaptive anonymity

We now consider the case where the graph is not only δ-regular but also symmetric as defined in
definition 2.2 and as recovered by algorithm 2. Furthermore, we consider the case where we have
varying values of δi for each node since some users want higher privacy than others. It turns out
that if the corresponding bipartite graph is symmetric (we define this term below) we can conclude
that each user is (δi − c)-anonymous, where δi is the degree of a vertex associated with the user
of the bipartite matching graph. So we get results completely analogous to those for the much
simpler models described before. We will use a slightly more elaborate definition of symmetric5,
however, since this graph has one if its partitions permuted by a random matching (the last step in
both algorithms before releasing the data).

Definition 4.1 Let G(A, B) be a bipartite graph with color classes: A, B and matching M =
{(a1, b1), ...(an, bn)}, whereA = {a1, ..., an}, B = {b1, ..., bn}. We say thatG(A, B) is symmetric
with respect to M if the existence of an edge (ai, bj) in G(A, B) implies the existence of an edge
(aj , bi), where 1 ≤ i, j ≤ n.

From now on, the matchingM with respect to whichG(A, B) is symmetric is a canonical matching
of G(A, B). Assume that G(A, B) is symmetric with respect to its canonical matchingM (it does
not need to be a clique-bipartite graph). In such a case, we will prove that, if the adversary knows
in advance c edges of the matching, then every person from the class A of degree δi is (δi − c)-
anonymous. So we obtain the same type of anonymity as in a clique-bipartite graph (see: lemma 4.3).

Lemma 4.5 Assume that G(A, B) is a bipartite graph, symmetric with respect to its canonical
matching M . Assume furthermore that the adversary knows in advance c edges of the matching.
Then every person that he does not know in advance is (δi − c)-anonymous, where δi is a degree of
the related vertex of the bipartite graph.

As a corollary, we obtain the same privacy guarantees in the symmetric case as the k-cliques case.

Corollary 4.3 Assume bipartite graph G(A, B) is symmetric with respect to its canonical match-
ingsM . Assume that the adversary knows in advance c edges of the matching. The adversary selects
uniformly at random a vertex the privacy of which he wants to break from the set of vertices he does
not know in advance. Then he succeeds with probability at most 1

δi−c , where δi is a degree of a
vertex of the matching graph associated with the user.

5A symmetric graph G(A, B) may not remain symmetric according to definition 2.2 if nodes in B are
shuffled by a permutationM . However, it will still be symmetric with respect toM according to definition 4.1.
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In summary, the symmetric case is as resilient to sustained attack as the cliques-bipartite case, the
usual one underlying k-anonymity if we set δi = δ = k everywhere. The adversary succeeds with
probability at most 1/(δi−c). However, the asymmetric case is potentially weaker and the adversary
can succeed with probability at most 34c2

θ2δ
. Interestingly, in the symmetric case with variable δi

degrees, however, we can provide guarantees that are just as good without forcing all individuals to
agree on a common level of anonymity.
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Figure 3: Utility (1 − #(∗)
nd
) versus anonymity on (a) Bupa (n = 344, d = 7), Wine (n = 178, d =

14), Heart (n = 186, d = 23), Ecoli (n = 336, d = 8), and Hepatitis (n = 154, d = 20) and Forest
Fires (n = 517, d = 44) data-sets and (b) CalTech University Facebook (n = 768, d = 101) and
Reed University Facebook (n = 962, d = 101) data-sets.

5 Experiments
We compared algorithms 1 and 2 against an agglomerative clustering competitor (optimized to min-
imize stars) which is known to outperform the forest method [10]. Agglomerative clustering starts
with singleton clusters and keeps unifying the two closest clusters with smallest increase in stars until
clusters grow to a size at least k. Both algorithms release data with suppressions to achieve a de-
sired constant anonymity level δ. For our algorithms, we swept values of ε in {2−1, 2−2, . . . , 2−10}
from largest to smallest and chose the solution that produced the least number of stars. Further-
more, we warm-started the symmetric algorithm with the star-pattern solution of the asymmetric
algorithm to make it converge more quickly. We first explored six standard data-sets from UCI
http://archive.ics.uci.edu/ml/ in the uniform anonymity setting. Figure 3(a) summarizes the re-
sults where utility is plotted against δ. Fewer stars imply greater utility and larger δ implies higher
anonymity. We discretized each numerical dimension in a data-set into a binary attribute by finding
all elements above and below the median and mapped categorical values in the data-sets into a binary
code (potentially increasing the dimensionality). Algorithms 1 achieved significantly better utility
for any given fixed constant anonymity level δ while algorithm 2 achieved a slight improvement.
We next explored Facebook social data experiments where each user has a different level of desired
anonymity and has 7 discrete profile attributes which were binarized into d = 101 dimensions. We
used the number of friends fi a user has to compute their desired anonymity level (which decreases
as the number of friends increases). We set F = maxi=1,...n -log fi. and, for each value of δ in the
plot, we set user i’s privacy level to δi = δ − (F − -log fi.). Figure 3(b) summarizes the results
where utility is plotted against δ. Since the k-anonymity agglomerative clustering method requires
a constant δ for all users, we set k = maxi δi in order to have a privacy guarantee. Algorithms 1
and 2 consistently achieved significantly better utility in the adaptive anonymity setting while also
achieving the desired level of privacy protection.

6 Discussion
We described the adaptive anonymity problem where data is obfuscated to respect each individual
user’s privacy settings. We proposed a relaxation of k-anonymity which is straightforward to imple-
ment algorithmically. It yields similar privacy protection while offering greater utility and the ability
to handle heterogeneous anonymity levels for each user.
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