
Maximum entropy dis
riminationTommi Jaakkola1tommi�ai.mit.eduMarina Meila1mmp�ai.mit.eduTony Jebara2jebara�media.mit.edu1MIT AI Lab, 545 Te
hnology Square, Cambridge, MA 021392MIT Media Lab, 20 Ames Street, Cambridge, MA 02139August 18, 1999Revised: O
tober 10, 1999Abstra
tWe present a general framework for dis
riminative estimation based on the maximum en-tropy prin
iple and its extensions. All 
al
ulations involve distributions over stru
tures and/orparameters rather than spe
i�
 settings and redu
e to relative entropy proje
tions. This holdseven when the data is not separable within the 
hosen parametri
 
lass, in the 
ontext of anoma-ly dete
tion rather than 
lassi�
ation, or when the labels in the training set are un
ertain orin
omplete. Support ve
tor ma
hines are naturally subsumed under this 
lass and we provideseveral extensions. We are also able to estimate exa
tly and eÆ
iently dis
riminative distri-butions over tree stru
tures of 
lass-
onditional models within this framework. Preliminaryexperimental results are indi
ative of the potential in these te
hniques.1 Introdu
tionE�e
tive dis
rimination is essential in many appli
ation areas in
luding spee
h re
ognition, im-age 
lassi�
ation or identi�
ation of mole
ular binding sites in genomi
 DNA. Statisti
al approa
hesused in these 
ontexts for 
lassi�
ation generally fall into two major 
ategories { generative or dis-
riminative { depending on the estimation 
riterion used for adjusting the model parameters and/orstru
ture. Generative approa
hes rely on a full joint probability distribution over examples and 
las-si�
ation labels whereas for dis
riminative methods only the 
onditional relation of a label given theexample is relevant. While the full joint distribution in the generative approa
h 
arries a number ofadvantages e.g. in handling in
omplete examples, the typi
al estimation 
riterion (maximum likeli-hood or its variatiants) is nevertheless suboptimal from the point of view of 
lassi�
ation obje
tive.Dis
riminative methods su
h as support ve
tor ma
hines [21℄ or boosting algorithms [8℄ that fo
usdire
tly on the parametri
 de
ision boundary typi
ally yield more robust 
lassi�
ation methods,whenever they are appli
able.Full joint distributions and the bene�ts they 
onvey 
an be, of 
ourse, exploited in dis
riminativeapproa
hes as well. We may, for example, interprete the posterior probability of a label given theexample as a parametri
 de
ision boundary (see e.g. [10, 13℄). Alternatively, we 
an indu
e suitable1



ve
tor spa
e representations for examples from generative models and feed su
h representations intostandard dis
riminative te
hniques [11℄.In this paper we provide a more general notion of dis
rimination, one that applies also in the
ontex of anomaly dete
tion or when the 
lassi�
ation labels themselves are un
ertain or missing.Note that the utility of e.g. unlabeled examples is not obvious [22, 2, 4, 18℄. Our approa
h towardsgeneral dis
riminative training relies on the well known maximum entropy prin
iple whi
h embodiesthe Bayesian integration of prior information with observed 
onstraints (see e.g. [15℄). The formalismthat we apply and extend in this paper allows, for example, a feasible dis
riminative training of boththe parameters and the stru
ture of a 
lass of joint probability models. The approa
h is not limitedto probability models, however, and we extend e.g. support ve
tor ma
hines.2 Maximum entropy 
lassi�
ationConsider �rst a two-
lass 
lassi�
ation problem where labels y 2 f�1; 1g are assigned to examplesX 2 X . Assume we have two 
lass-
onditional probability distributions over the examples, i.e.,P (X j�y) with parameters �y, one for ea
h 
lass. The de
ision rule 
orresponding to any parti
ularparameter setting f��1g follows the sign of the dis
riminant fun
tion:L(X j�) = log P (X j�1)P (X j��1) + b (1)where � = f�1; ��1; bg and b is a bias term, usually expressed as a log-ratio of prior 
lass probabilitiesb = log p=(1 � p) . The 
lass-
onditional distributions here may 
ome from di�erent families ofdistributions or we might spe
ify the parametri
 dis
riminant fun
tion dire
tly without any referen
eto probability models. The parameters �y may also in
lude the model stru
ture as seen later in thepaper.The parameters � = f�1; ��1; bg in the dis
riminant fun
tion should be 
hosen to maximize
lassi�
ation a

ura
y. Instead of �nding a single parameter setting, we 
onsider here a moregeneral problem of �nding a distribution P (�) over the parameters and using a 
onvex 
ombinationof dis
riminant fun
tions, i.e., Z P (�)L(X j�)d� (2)in pla
e of the original dis
riminant fun
tion in the de
ision rule. The problem is now to �nd anappropriate distribution P (�). Given a set of training examples fX1; : : : ; XT g and 
orrespondinglabels fy1; : : : ; yT g we seek for a distribution P (�) that makes the least assumptions about the 
hoi
eof the parameter values � while giving rise to a dis
riminant fun
tion that 
orre
tly separates thetraining examples. We 
an formalize this as a maximum entropy (ME) estimation problem. In otherwords, we maximize the entropy H(P ) of P subje
t to the 
lassi�
ation 
onstraintsZ P (�) [ yt L(Xtj�) ℄ d� � 
 (3)for all t = 1; : : : ; T . Here 
 spe
i�es a desired 
lassi�
ation margin. We note that the solution isunique (provided that it exists) sin
e H(P ) is 
on
ave and the linear 
onstraints spe
ify a 
onvexregion. Note that the preferen
e towards high entropy distributions (fewer assumptions) appliesonly within the admissible set of distributions P
 
onsistent with the 
lassi�
ation 
onstraints.We 
an readily extend this formulation to a multi-
lass setting by introdu
ing additional 
las-si�
ation 
onstraints. To see this, suppose we have instead m 
lass-
onditional probability models2



P (X j�y), y = 1; : : : ;m, prior 
lass frequen
ies fpyg, and the asso
iated pairwise dis
riminant fun
-tions Ly;y0(Xtj�) = log P (X j�y)P (X j�y0) + log pypy0 (4)where � = f�1; : : : ; �m; p1; : : : ; pmg. We may now repla
e the single 
onstraint per training examplein eq. (3) with the following m� 1 pairwise 
onstraintsZ P (�) [Lyt;y(Xtj�) ℄ d� � 
; y 6= yt; (5)to ensure that the training label yt always \wins" the 
ompetition against the alternative labelsy 6= yt. For notational simpli
ity we will 
onsider primarily only binary 
lassi�
ation problems inthe remainder of the paper but emphasize that the analogous extension to a multi-
lass setting 
anbe made.The overall ME formulation presented so far has several problems. We have, for example, madea ta
it assumption that the training examples 
an be separated with the spe
i�ed margin. Thisassumption may very well be violated in pra
ti
e. Moreover, we may have a prior reason to prefersome parameter values over others (as well as margin 
onstraints) whi
h requires us to in
orporate aprior distribution P0(�; 
) into the de�nition. Other extensions and generalizations will be dis
ussedlater in the paper.A more general formulation that addresses these 
on
erns is given by the following minimumrelative entropy prin
iple:De�nition 1 Let fXt; ytg be the training examples and labels, L(X j�) a parametri
 dis
riminantfun
tion, and 
 = [
1; : : : ; 
t℄ a set of margin variables. Assuming a prior distribution P0(�; 
), we�nd the dis
riminative minimum relative entropy (MRE) distribution P (�; 
) by minimizingD(PkP0) = Z P (�; 
) log P (�; 
)P0(�; 
) d� (6)subje
t to the (soft) 
lassi�
ation 
onstraintsZ P (�; 
) [ yt L(Xtj�)� 
t℄ d�d
 � 0 (7)for all t. The de
ision rule for any new example X is given byŷ = sign� Z P (�) L(X j�) d�� (8)Let us make a few remarks about the de�nition. First, we 
an re
over the previous ME formula-tion by appropriately adjusting the prior distribution P0(�; 
) (e.g., if P0(
) peaks around a spe
i�
setting of the margins). It is 
lear that the margin 
onstraints are hidden in the prior distributionP0(
). Se
ond, if we assume that there is a non-zero prior probability for all 
t taking some negativevalues, we guarantee that the admissible set P 
omposed of all distributions P (�; 
) 
onsistent withthe 
lassi�
ation 
onstraints, is never empty. Thus even when the examples 
annot be separatedby any dis
riminant fun
tion in the 
hosen parametri
 
lass (e.g. linear), we get a valid and uniquesolution. Third, the penalty for violating any of the margin 
onstraints also depends on the priordistribution P0; whenever the mean of 
t deviates from its prior mean under P0, we in
ur a penalty3
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PFigure 1: Minimum relative entropy (MRE) proje
tion from the prior distribution to the admissibleset.in the form of relative entropy distan
e between the 
orresponding distributions. It is worth notingthat the penalties are de�ned in terms of joint spe
i�
ations of margins but, in 
ertain 
ases, theyredu
e to the more typi
al additive penalties of violating the 
onstraints.The prior P0(�; 
) playes an important role in our de�nition and we must 
hoose it appropriately.Let us 
onsider here only the prior over the margin 
onstraints 
. Supposing again that P0(�; 
) =P0(�)P0(
), we 
an, for example, set P0(
) =Yt P0(
t) (9)where P0(
t) = 
 e�
(1�
t), for 
t � 1. A penalty is in
urred for margins smaller than 1� 1=
 (theprior mean of 
t) while margins larger than this are not penalized. In the latter 
ase, the asso
iated
onstraint be
omes merely irrelevant. We will see in later se
tions that this 
hoi
e of the marginprior 
orresponds 
losely to the use of sla
k variables and additive penalties used in support ve
torma
hines. A number of other 
hoi
es for P0(
) are possible and we dis
uss some of them later inthe paper.An important property of the MRE solution is that it 
an be viewed as a relative entropyproje
tion, the e-proje
tion in the terminology of [1℄, from the prior distribution P0(�; 
) to theadmissible set P . Figure 1 illustrates this view. Even in the non-separable 
ase, we 
an view theMRE solution as a proje
tion. This formalism readily extends to the 
ase of un
ertain or partiallylabeled examples as we will see later in the paper.To solve the MRE problem, we rely on the following theorem.Theorem 1 The solution to the MRE problem has the following general form (
f. [7℄):P (�; 
) = 1Z(�)P0(�; 
) ePt �t[ ytL(Xtj�)�
t℄ (10)where Z(�) is the normalization 
onstant (partition fun
tion) and � = f�1; : : : ; �T g de�nes a setof non-negative Lagrange multipliers, one for ea
h 
lassi�
ation 
onstraint. � are set by �nding theunique maximum of the following jointly 
on
ave obje
tive fun
tion:J(�) = � logZ(�) (11)Whether the MRE solution 
an be found in a feasible way depends entirely on whether we 
anevaluate the partition fun
tion Z(�),Z(�) = Z P0(�; 
) ePt �t[ ytL(Xtj�)�
t℄ d�d
 (12)4



in 
losed form. Given a 
losed form expression for Z(�), the maximum of the jointly 
on
ave ob-je
tive fun
tion J(�) 
an be subsequently found through any standard 
onvex optimization methodsu
h as Newton-Raphson. The resulting set of Lagrange multipliers f�tg then de�ne the MREsolution as indi
ated in the theorem. Finally, predi
ting a label for any new example X involves av-eraging the dis
riminant fun
tion L(�) with respe
t to the marginal P (�) of the MRE distribution(see De�nition 1). Finding this marginal as well as performing the required averaging are no more
ostly than 
omputing Z(�). We will elaborate these 
al
ulations further in the 
ontext of spe
i�
realizations.The MRE solution is sparse in the sense that only a few Lagrange multipliers will be non-zero.This arises be
ause many of the 
lassi�
ation 
onstraints be
ome irrelevant on
e the 
onstraints areenfor
ed for a small subset of examples. For support ve
tor ma
hines that are subsumed under theabove general de�nition, this notion translates into a sparse representation of the separating hyper-plane. Sparsity leads to immediate generalization guarantees (independent of the dimensionality ofthe parameter or example spa
e):Lemma 1 The generalization error �g of the MRE 
lassi�er satis�eseg � Ef fra
tion of non-zero Lagrange multipliers g (13)where the expe
tation is over the 
hoi
e of the training set.Pra
ti
al leave-one-out 
ross-validation estimates of the generalization error 
an be derived onthe basis of this result (
f. [21, 12℄). We may also make use of generalization error results derivedfor 
onvex 
ombination of 
lassi�ers [20℄ to obtain more informative generalization bounds for MRE
lassi�ers. The details are left for another paper.3 Pra
ti
al realization of the MRE solutionWe now turn to the question of a
tually �nding the MRE solution. Consider �rst the followingelementary but helpful lemmaLemma 2 Any fa
torization of the prior P0(�; 
) a
ross any disjoint sets of variables f�; 
g leadsto a disjoint fa
torization of the MRE solution P (�; 
) a
ross the same sets of variables providedthat these variables appear in distin
t additive 
omponents in ytL(Xt;�)� 
t.If we assume that the labels fytg are �xed and that the prior distribution P0(�; 
) fa
torizesa
ross the 
omponents f�nb; b; 
g, then a

ording to the lemma, the MRE solution fa
torizes in thesame way. This fa
torization property allows us to eliminate e.g. the bias term from the remainingsolution by means of imposing additional 
onstraints on the Lagrange multipliers. This is analogousto the handling of the bias term in support ve
tor ma
hines [21℄:Lemma 3 Assuming P0(�; 
) = P0(� n b; 
)P0(b) and P0(b) approa
hes a non-informative prior,then P (�; 
) = P (� n b; 
)P (b) and P (� n b; 
) 
an be found independently from P (b) provided thatwe require Pt �tyt = 0.With the help of these results, we will 
onsider now a few spe
i�
 realizations su
h as supportve
tor ma
hines and a 
lass of graphi
al models.
5
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Figure 2: Three margin prior distributions (top row) and the 
orresponding potential terms (bottomrow) from Eq. (15).3.1 Support ve
tor ma
hinesIt is well known that the log-likelihood ratio of two Gaussian distributions with equal 
ovarian
ematri
es yields a linear de
ision rule. With a few additional assumptions, the MRE formulationgives support ve
tor ma
hines:Theorem 2 Assuming L(X;�) = �TX�b and P0(�; 
) = P0(�)P0(b)P0(
) where P0(�) is N(0; I),P0(b) approa
hes a non-informative prior, and P0(
) is given by eq. (9) then the Lagrange multipliers� are obtained by maximizing J(�) subje
t to 0 � �t � 
 and Pt �tyt = 0, whereJ(�) =Xt [�t + log(1� �t=
) ℄� 12Xt;t0 �t�t0ytyt0(XTt Xt0) (14)The only di�eren
e between our J(�) and the (dual) optimization problem for SVMs is theadditional potential term log(1� �t=
). This highlights the e�e
t of the di�erent miss-
lassi�
ationpenalties, whi
h in our 
ase 
ome from the MRE proje
tion. Figures 2a) and 
) show, however,that the additional potential term does not always 
arry a huge e�e
t (for 
 = 5). Moreover, in theseparable 
ase, letting 
!1, the two methods 
oin
ide. The de
ision rules are formally identi
al.The 
hoi
e of the prior distribution P0(
) leads to di�erent potential terms. Figure 2 gives thefollowing priors and their 
orresponding potential termsMargin prior Dual potential terma) P0(
) / e�
 (1�
); 
 � 1; �t + log(1� �t=
)b) P0(
) / e�
 j1�
j; �t + 2 log(1� �t=
)
) P0(
) / e�
2 (1�
)2=2; �t � (�t=
)2 (15)where a) is the 
ase dis
ussed in the theorem. Note that the resulting potential terms may or maynot set an upper bound on the value of �t. In a) and b) �t is bounded by the 
onstant 
 whereasin 
) no su
h bound exists. 6



3.1.1 ExtensionWe now 
onsider the 
ase where the dis
riminant fun
tion L(X;�) 
orresponds to the log-likelihood ratio of two Gaussians with di�erent (and adjustable) 
ovarian
e matri
es. The parame-ters � in this 
ase are both the means and the 
ovarian
es. The prior P0(�) must be the 
onjugateNormal-Wishart to obtain 
losed form integrals1 for the partition fun
tion, Z. Here, P (�1;��1)is P (m1; V1)P (m�1; V�1), a density over means and 
ovarian
es (and the fa
torization follows fromour assumptions below).The prior distribution has the form P0(�1) = N (m1;m0; V1=k) IW(V1; kV0; k) with parameters(k, m0, V0) that 
an be spe
i�ed manually or one may let k ! 0 to get a non-informative prior. Weused the MAP values for k, m0 and V0 from the 
lass-spe
i�
 data2. Integrating over the parametersand the margin, we get a partition fun
tion whi
h fa
torizes Z = Z
 �Z1 �Z�1. For Z1 we obtainthe following: Z1 / N�d=21 j�S1j�N1=2 �dj=1��N1 + 1� j2 � (16)N1 �=Pt wt �X1 �=Pt wtN1Xt S1 4=Pt wtXtXTt �N1 �X1 �XT1 (17)Here, wt is a s
alar weight given by wt = u(yt) + yt�t for Z1. To solve for Z�1 we pro
eed in asimilar manner with the ex
eption that the weights are set to wt = u(�yt) � yt�t. u(�) here is thestep fun
tion. Given Z, updating � is done by maximizing the 
orresponding negative log-partitionfun
tion J(�) subje
t to 0 � �t � 
 and Pt �tyt = 0 where:J(�) =Xt [l��t + log(1� �t=
)℄� logZ1(�t)� logZ�1(�t) (18)The potential term above 
orresponds to integrating over the margin with a margin prior P0(
) /e�
(l��
) with 
 � l�. We pi
k l� to be some �-per
entile of the margins obtained under the standardMAP solution. Optimal lambda values are found via 
onstrained gradient des
ent. The resultingmarginal MRE distribution over the parameters (normalized by the partition fun
tion Z1�Z�1) isa Normal-Wishart distribution itself, P (�1) = N (m1; �X1; V1=N1) IW(V1;S1; N1) with the �nal �values. Predi
ting the labels for a data point X under the �nal P (�) involves taking expe
tationsof the dis
riminant fun
tion under a Normal-Wishart. This is simply:EP (�1)[logP (X j�1)℄ = 
onstant� N12 (X � �X1)TS�11 (X � �X1) (19)We thus obtain dis
riminative quadrati
 de
ision boundaries. These extend the linear boundarieswithout (expli
itly) resorting to kernels. Of 
ourse, kernels may still be used in this formalism,e�e
tively mapping the feature spa
e into a higher dimensional representation. However, unlikelinear dis
rimination, the 
ovarian
e estimation in this framework allows the model to adaptivelymodify the kernel.3.1.2 ExperimentsIn the following, we show results using the minimum relative entropy approa
h where the dis-
riminant fun
tion (L(X;�)) is the log-ratio of Gaussians with variable 
ovarian
e matri
es onstandard 2-
lass 
lassi�
ation problems (Leptograpsus Crabs and Breast Can
er Wis
onsin). In1This 
an be done more generally for 
onjugate priors in the exponential family.2The prior here is the posterior distribution over the parameters given the data, i.e. an empiri
al Bayes pro
edure.7



Method Training TestingErrors ErrorsNeural Network (1) 3Neural Network (2) 3Linear Dis
riminant 8Logisti
 Regression 4MARS (degree = 1) 4PP (4 ridge fun
tions) 6Gaussian Pro
ess (HMC) 3Gaussian Pro
ess (MAP) 3SVM - Linear 5 3SVM - RBF � = 0:3 1 18SVM - 3rd Order Polynomial 3 6Maximum Likelihood Gaussians 4 7MaxEnt Dis
rimination Gaussians 2 3Table 1: Leptograpsus Crabs
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positives

T
ru

e 
P

os
iti

ve
s

ROC on Crabs Training Data

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positives

T
ru

e 
P

os
iti

ve
s

ROC on Crabs Testing Data

(a) Training ROC (b) Testing ROCFigure 3: ROC 
urves on Leptograpsus Crabs for dis
riminative (solid line), Bayes / ML models(dashed line) and SVM linear models (dotted line).addition we display a two-dimensional visualization example of the 
lassi�
ation. Performan
e is
ompared to regular support ve
tor ma
hines, maximum likelihood estimation and other methods.The Leptograpsus 
rabs data set was originally provided by Ripley [19℄ and further tested byBarber and Williams [3℄. The obje
tive is to 
lassify the sex of the 
rabs from 5 s
alar anatomi
alobservations. The training set 
ontains 80 examples (40 of ea
h sex) and the test set in
ludes 120examples.The Gaussian based de
ision boundaries are 
ompared in Table 1 against other models from[3℄.The table shows that the maximum entropy (or minimum relative entropy) 
riterion improves theGaussian dis
rimination performan
e to levels similar to the best alternative models. The bias wasestimated separately from training data for both the maximum likelihood Gaussian models and themaximum entropy dis
rimination 
ase. In addition, we show the performan
e of a support ve
torma
hine (SVM) with linear, radial basis and polynomial de
ision boundaries (using the MatlabSVM Toolbox provided by Steve Gunn). In this 
ase, the linear SVM is limited in 
exibility whilekernels exhibit some over-�tting.In Figure 3 we plot the ROC 
urves on training and testing data. The ROC 
urve shows improved
lassi�
ation for maximum entropy (minimum relative entropy) 
ase.8



Method Training TestingErrors ErrorsNearest Neighbour 11SVM - Linear 8 10SVM - RBF � = 0:3 0 11SVM - 3rd Order Polynomial 1 13Maximum Likelihood Gaussians 10 16MaxEnt Dis
rimination Gaussians 3 8Table 2: Breast Can
er Classi�
ation
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(a) Training ROC (b) Testing ROCFigure 4: ROC 
urves on Breast Can
er for dis
riminative (solid line), Bayes / ML models (dashedline) and SVM linear models (dotted line).Another data set whi
h was tested was the Breast Can
er Wis
onsin data where the two 
lasses(malignant or benign) have to be 
omputed from 9 numeri
al attributes from the patients (200training 
ases and 169 test 
ases). The data was �rst presented by Wolberg [24℄. We 
ompare ourresults to those produ
ed by Zhang [25℄ who used a nearest neighbour algorithm to a
hieve 93:7%a

ura
y. As 
an be seen from Table 2, over-�tting seems to prevent good performan
e for kernelbased SVMs. The maximum entropy dis
riminator a
hieves 95:3% a

ura
y.In Figure 4 we plot the ROC 
urves on training and testing data. The training ROC 
urvesshow improved dis
rimination for the maximum entropy method. ROC 
urves for all three methodsare equivalent on testing however sin
e we typi
ally assume that bias is estimated ex
lusively fromtraining data, the results in Table 2 are more signi�
ant.Finally, for visualization, we present the te
hnique on a 2D set of training data in Figure 5 andFigure 6. The SVM in Figure 5(a) attempts to a
hieve maximum des
rimination but is limited to alinear de
ision boundary. It only su

eeds after the appli
ation of a kernel as in Figure 5(b), wherea 3rd order polynomial kernel is used. In Figure 6(a), the maximum likelihood te
hnique is usedto estimate a 2 Gaussian dis
rimination boundary (bias is estimated separately) whi
h has more
exibility than the linear SVM yet fails to a
hieve the desired optimal 
lassi�
ation. Meanwhile,the maximum entropy dis
rimination te
hnique pla
es the Gaussians in the most dis
riminative
on�guration as shown in Figure 6(b).
9



(a) Linear SVM (b) Polynomial Kernel SVMFigure 5: Classi�
ation visualization SVMs.

(a) Max Likelihood (b) Max Ent Dis
riminationFigure 6: Classi�
ation visualization for Gaussian dis
rimination.3.2 The Fisher kernel 
lassi�erHere we demonstrate that the MRE formulation proposed in this paper 
ontains the Fisher kernelmethod of [11℄. The Fisher kernel method provides a 
ombination of a generative model P (X j�)with a dis
riminative method su
h as support ve
tor ma
hines through de�ning an appropriatekernel fun
tion. The kernel fun
tion, 
alled the Fisher kernel, 
an be 
omputed from any generativemodel in the neighborhood of some desired e.g. maximum likelihood parameter setting ��. TheFisher kernel fun
tion is given byKfk(X;X 0) = UX(��)T F (��)�1 UX0(��) (20)where UX(�) is the Fisher s
ore UX(�) = r� logP (X j�)j�=�� ; (21)10



F (�) = EfUX(�)UTX(�) g is the Fisher information matrix3 and the expe
tation is with respe
t toP (X j�). Repla
ing the inner produ
t XTt Xt0 between the examples in Theorem 2 with the kernelfun
tion in Eq. (20) amounts to the \simple" Fisher kernel method as explained in [11℄.Our goal in this se
tion is to show that we 
an re
over the Fisher kernel method in the MREframework so long as the prior distribution P0(�; 
) is 
hosen in an appropriate way. We start with afew ne
essary regularity assumptions about the family of distributions P (X j�) in some small (open)neighborhood O(��) of ��:1. for any X 2 X , UX(�) = r� logP (X j�) is a 
ontinuously di�erentiable ve
tor valued fun
tionof �2. F (�) = EfUX(�)UTX(�) g exists and is positive de�niteLet us de�ne, in addition, the di�erential (symmetri
) relative entropy distan
e between thedistributions P (X j�) and P (X j��)d(�; ��)2 = 12(� � ��)T F (��)�1 (� � ��) (22)valid whenever � � ��. We assign a prior distribution P0(�) in terms of this distan
e4P0(�) = 1Z(��; �) e�� d(�;��)2 (23)where � serves as a s
aling parameter. This prior assigns a low probability to all � for whi
h the
orresponding probability distribution P (X j�) deviates signi�
antly from P (X j��). Another way toview this prior is as a lo
al isotropi
 Gaussian prior distribution in the probability manifold indu
edby the family of distributions P (X j�), � 2 O(��).In the MRE formalism the obje
tive is to minimize the relative entropy distan
e between theMRE distribution P and the prior P0 subje
t to the 
lassi�
ation 
onstraintsZ P (�; 
) [ ytL(Xtj�; �)� 
t ℄ d�d
 � 0 (24)where the dis
riminant fun
tion L(Xtj�; �) is the s
aled log-likelihood ratio:L(Xtj�; �) = [�1=2 log P (Xtj�)P (Xtj��) � b ℄ (25)and � = f�; bg. This dis
riminant fun
tion en
ourages parameter values � that are indi
ative of the+1 
lass relative to the \null model" P (Xtj��).The following Theorem now establishes the desired 
onne
tion to the Fisher kernel method.Theorem 3 If we repla
e P0(�) with Eq. (23) in Theorem 2 and the dis
riminant fun
tion withL(Xtj�; �) de�ned above as well as let � !1, then the obje
tive fun
tion J(�) redu
es toJ(�) =Xt [�t + log(1� �t=
) ℄� 12Xt;t0 �t�t0ytyt0Kfk(Xt; Xt0) (26)where Kfk(Xt; Xt0) is the Fisher kernel of Eq. (20).We note that this result is merely a formal relation between the MRE prin
iple and the Fisherkernel and does not ne
essarily provide any additional motivation.3For many probability distributions the Fisher information matrix may not be possible to 
ompute in 
losed form.However, it is the 
ovarian
e matrix of the Fisher s
ores and thus 
an be easily approximated by sampling.4A more pre
ise de�nition of this prior would involve setting it to zero outside the open neighborhood where theregularity 
onditions may no longer hold. For large �, the e�e
t of this 
ondition vanishes and we omit it here forsimpli
ity. 11



3.3 Graphi
al modelsThe MRE formulation 
an a

omodate dis
riminant fun
tions resulting from log-ratios of generalgraphi
al models. The MRE distribution, i.e. P (�), in this setting is over both the parametersand the stru
ture of the model. Sin
e the estimation is 
arried out in the spa
e of distributionsthe distin
tion between dis
rete or 
ontinuous variables is immaterial. The framework does not,however, admit eÆ
ient solutions without restri
tions on the 
lass of graphi
al models. For example,assuming the stru
ture remains �xed and that the 
lass-
onditional models have no latent variables,then the MRE distribution P (�) over the parameters 
an be obtained eÆ
iently. This requiresadditional te
hni
al assumptions su
h as the use of 
onjugate priors, the parameter independen
eassumption of [6℄ and the fa
t that the probability model must be tra
table for any �xed settingof the parameters. Although restri
ted, this 
lass does in
lude e.g. naive Bayes models, mixture oftree models and so on.For a spe
ial 
lass of graphi
al models whose stru
ture is a tree, both the parameters and thestru
ture 
an be estimated eÆ
iently within our dis
riminative framework. In the remainder, wewill 
onsider su
h tree stru
tured models.First, we de�ne a tree distribution. Let V denote the set of variables of interest, jV j = n, xv 2 Xva parti
ular value of v 2 V and X 2 X an assignment to all the variables in V . Like any graphi
almodel, a tree distribution is de�ned in two stages. First, one de�nes a graph (V;E), 
alled stru
ture,whose verti
es are the variables in V and whose edges en
ode dependen
ies between these variables.A tree is an undire
ted graph over V that is 
onne
ted and has no 
y
les. For any tree over nverti
es jEj = n � 1. Be
ause su
h a tree spans all the nodes in V , it is often 
alled a spanningtree. Then, the tree distribution is de�ned as a produ
t of fa
tors 
orresponding to the edges andverti
es. T (x) = Q(u;v)2E Tuv(xu; xv)Qv2V Tv(xv)deg v�1 (27)where deg v is the degree of vertex v, i.e. the number of edges in
ident to v 2 V and Tuv and Tvdenote the marginals of T : Tuv(xu; xv) = Xv=xv;u=xuT (X)Tv(xv) = Xv=xv T (X):When the variable x is dis
rete, the marginals Tuv and Tv 
an be represented as probability tablesdenoted respe
tively �uv(xu; xv) and �v(xv). The values � are the parameters of the distribution.When it will be ne
essary to emphasize the dependen
e of the tree distribution on its stru
ture andparameters we will use the notation T (xjE; �).By taking the logarithm of T (X) and 
onveniently grouping the fa
tors one obtainslogT (X) = Xv2V logTv(xv)| {z }w0(X) + Xuv2E log Tuv(xu; xv)Tv(xv)Tu(xu)| {z }wuv(X) = w0(X) + Xuv2E wuv(X): (28)In words, the log-likelihood is a sum of terms wuv(X) ea
h 
orresponding to an edge (and dependingonly on the values of the variables u; v asso
iated with that edge) plus a stru
ture independent termw0(X) that depends on all the variables. All the terms are fun
tions of the tree parameters �.12



3.3.1 Dis
riminative learning of tree stru
turesA tree model is de�ned by a set of dis
rete variables en
oding its stru
ture and a set of 
ontinuousvariables representing its parameters. To use the MRE framework we must de�ne a prior joint distri-bution over the stru
tures and their asso
iated parameters. We will assume that the stru
ture andthe parameters are independent a priori; moreover, we shall assume that ex
ept for the fun
tionaldependen
ies among the parameters that are imposed by the fa
t that they have to represent a validjoint distribution overX there are no other statisti
al or fun
tional dependen
ies. These assumptions
orrespond to the parameter independen
e and parameter modularity assumptions of [9℄ (see also [6℄).In our 
ase, this means that there is a set of parameters � = f�uv(i; j); u; v 2 V; i 2 Xu; j 2 Xvgasso
iated with the edges su
h that in any tree model 
ontaining an edge uv 2 E, the pairwisemarginals Tuv(xu; xv) are given by �uv(xu; xv) regardless of the presen
e of other edges in E andtheir parameter values. This simpli�
ation, in turn, allows the MRE formulation for only stru
tures(with a �xed set of parameters or a �xed distribution over their values), for parameters only, or forboth.We start with a MRE estimation of stru
tures only when the pairwise marginals �uv(xu; xv) areassumed �xed. Note that ea
h tree nevertheless makes use of a di�erent set of n � 1 edges andthereby a di�erent set of parameters. For ea
h 
lass or label s 2 f1;�1g, we have a separate set of�xed parameters �s. In the experiments below, the values of these parameters were obtained fromempiri
al (
lass-
onditional) marginals. We assume a uniform prior over the 
lass-
onditional treestru
tures Es.De�nition 2 Given a set (Xt; yt); t = 1; : : : T of labeled examples, a set of margin variables 
 =[
1; : : : ; 
T ℄ and a prior distribution P0(E1; E�1; 
) the MRE distribution P (E1; E�1; 
) is the oneminimizing D(PkP0) subje
t toXE1;E�1 Z P (E1; E�1; 
) � yt log T (XtjE1; �1)T (XtjE�1; ��1) � 
t � d
 � 0 for t = 1; : : : T (29)Assuming P0(E1; E�1; 
) = P0(E1)P0(E�1)P0(
), Lemma 2 implies that the solution is fa
tored asP (E1)P (E�1)P (
) withP (Es) = 1Zs ePTt=1 s�tyt[ws0(Xt)+Puv2Es wsuv(Xt)℄ = W s0Zs Yuv2EsW suv (30)for s = 1;�1 andW s0 = ePt s�tytws0(Xt); W suv = TYt=1(wsuv(Xt))s�tyt ; s = 1;�1: (31)In the above the normalization 
onstants Zs and the fa
tors W s are fun
tions of the Lagrangemultipliers � whi
h need to be set. Provided that we 
an obtain the normalization 
onstants(fun
tions) Zs in 
losed form, � are set to maximize the dual obje
tiveJ(�) = 
 � �� logZ1 � logZ�1: (32)where, for simpli
ity, we have assumed a �xed setting of the margin variables f
tg.3.4 Computing the normalization 
onstant and its derivativesThe number of all possible tree stru
tures over n verti
es is nn�2 [23℄ and thus 
omputing thenormalization 
onstants by enumerating all the tree stru
tures is 
learly not possible for reasonable13



n. However, a remarkable graph theory result enables us to perform all the ne
essary summationsin 
losed form in polynomial time. This is the Matrix Tree Theorem quoted below.Theorem 4 (Matrix Tree Theorem)[23℄ Let G = (V;E) be a multigraph and denote by auv =avu � 0 the number of undire
ted edges between verti
es u and v. Then the number of all spanningtrees of G is given by jAjuv(�1)(u+v) the value of the determinant obtained from the following matrixby removing row u and 
olumn v5.A = 26666664 deg(v1) �a12 �a13 : : : �a1;n�a21 deg(v2) �a23 : : : �a2;n: : :�an;1 �an;2 : : : : : : deg(vn)
37777775 (33)By extending the Matrix Tree theorem to 
ontinuous-valued A and letting the weights Wuv playthe role of auv, one 
an proveTheorem 5 Let P (E) be a distribution over tree stru
tures de�ned byP (E) / W0 Yuv2EWuv (34)Then its normalization 
onstant Z is equal toZ = W0 XE Yuv2EWuv = W0jQ(W )j (35)with Q(W ) being the (n� 1)� (n� 1) matrixQuv(W ) = Qvu(W ) = � �Wuv 1 � u < v � n� 1Pnv0=1Wv0v 1 � u = v � n� 1 (36)This shows that summing over the distribution of all trees, when this distribution fa
tors a

ordingto the trees' edges, 
an be done in 
losed form by 
omputing the value of a order n�1 determinant,operation that involves O(n3) operations.To optimize the Lagrange multipliers, we must 
ompute derivatives of J(�) or, equivalently,derivates of the log-partition fun
tions with respe
t to �. It is well known that su
h derivatives leadto averages with respe
t to the distribution in question (for details see Appendix A). In our 
ase,for example,� logZs��t = syt < logT (XtjEs; �s) >P (Es) = syt 24ws0(Xt) +Xu 6=vwsuv(Xt)W suvMsuv35 (37)whereMs is a linear fun
tion of Q�1(W s) given in Appendix A. Inverting the matrix Q(W ) is O(n3)and this operation 
an be done on
e before the summations in equations (37). Thus, 
omputingthe derivatives of the normalization 
onstant w.r.t all �t takes O(n3 + n2T ) operations and O(n2)extra spa
e.5Note that A as a whole is a singular matrix. 14



Finally, to obtain the de
ision rule for any new example X we must 
ompute averages of thelog-likelihood ratio with respe
t to the (marginal) MRE distribution P (E1)P (E�1):ŷ = sgnn PE1;E�1 P (E1)P (E�1) log T (XjE1;�1)T (XjE�1;��1) o (38)= sgn� w10(X)� w�10 (X) + <Xuv2E1w1uv(X)>P (E1) � <Xuv2E�1w�1uv (X)>P (E�1) 	 (39)where we have omitted a possible bias term b. The required averages 
an be 
omputed analogouslyto Eq. (37) yielding e.g. <Xuv2E1w1uv(X)>P (E1)=Xu 6=vw1uv(X)WuvM1uv (40)where M1uv is the same matrix as in Eq. (37) and has been already 
omputed in the last step of thetraining algorithm. Classifying a new data point therefore requires only roughly O(n2) operations.3.5 MRE distributions over tree stru
tures and parametersHere we des
ribe brie
y how to �nd the MRE distribution over both stru
tures and parameters,i.e., P (E1; �1; E�1; ��1). We assume a fa
tored prior P0(�1)P0(��1) over the parameters and as be-fore a uniform prior over the stru
tures. In addition to the parameter independen
e and modularityassumptions used earlier, we must assume that the priors P0(�s); s = 1;�1 are likelihood equivalent(i.e. they assign the same value to models having the same likelihood for all data sets). In this 
ase,the priors over parameters are for
ed to be Diri
hlet [9℄ and de�ned in terms of a set of equivalentmarginal 
ounts ~Nsuv(xu; xv) satisfyingXxu ~Nsuv(xu; xv) = ~Nsv (xv) Xxv ~Nsuv(xu; xv) = ~Nsu(xu) Xxuxv ~Nsuv(xu; xv) = ~Ns (41)Be
ause the prior over parameters is independent of the stru
ture, the MRE distribution fa
tor-izes as P (Es; �s) = 1ZsP0(�s)ePt s�tyt log T (XtjEs;�s) (42)To evaluate the partition fun
tion Zs, the parameters �s 
an be analyti
ally integrated out beforethe summation over stru
tures. The resulting marginal distribution over tree stru
tures is similarto equation (35) P (Es) = W s0Zs XE Yuv2EW suv (43)with the fa
tors W s are now fun
tions of both � and Diri
hlet distribution parameters ~Ns (seeappendix B for exa
t expression).The 
lassi�
ation rule is also similar in form to equation (39) with the terms ws depending on�, the data, and the equivalent 
ounts as des
ribed in Appendix B.3.6 General Bayes netsA Bayes net with given stru
ture 
an be parametrized by the set of 
onditional distributionsP (vjpa(v) = xpa(v)) of a variable given a 
on�guration of its parents. A dis
riminative MRE solution
an be found for the parameter distribution P (�1; ��1) assuming 
omplete observations. Findingthe MRE distribution over stru
tures is, however, unlikely to be feasible for other than trees (
.f.[5℄). 15
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Figure 7: ROC 
urves for the ME dis
riminative 
lassi�er (full line) and the ML 
lassi�er (dashedline) for the spli
e jun
tion 
lassi�
ation problem. The minimum test errors are 12.4% and 14%respe
tively.
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(a) (b)Figure 8: Logarithmi
 weights wuv versus mutual informations Iuv for 
lass 1 (a) respe
tive �1 (b).The square in position uv; u < v represents wuv while its symmetri
, vu represents Iuv . Largervalues appear more ba
k in the �gures.3.7 ExperimentsWe tested our model in the �xed parameter version on the dete
tion of DNA spli
e sites and
ompared its performan
e to the performan
e of a 
lassi�er using a Maximum Likelihood (ML) treefor ea
h 
lass. In both 
ases, the tree parameters � were the ML parameters for the 
orresponding
lass (empiri
al 
lass-
onditional marginals).The domain 
onsists of 25 variables representing sites around a (hypotheti
) spli
e jun
tion.The test set had 400 examples split equally between the two 
lasses; the training set 
onsisted of4724 examples, about a fourth being positives ones. For simpli
ity, we used a �xed margin 
 = 4,the largest value that allowed perfe
t 
lass separation. The number of �'s that are nonzero in thisexample is 61 (out of 400) suggesting a performan
e level of about %15 a

ording to Lemma 1. TheROC 
urves for the two 
lassi�ers are 
ompared in �gure 7. MRE distribution over tree stru
turesis superior to a pair maximum Likelihood trees, although the parameter values are identi
al. Thetest set error is 14.0% for the ML 
lassi�er and 12.3% for the MRE method. The training error is0.5% for the ML 
lassi�er and zero for the dis
riminative one indi
ating that the MRE method isresistant to over�tting.Figure 8 
ompares the \edge weights" for the two 
lassi�ers. These edge weights re
e
t thepreferen
es assigned to tree stru
tures in the MRE distribution or in the (single) 
lass-
onditionalmaximum likelihood (ML) tree. Sin
e the estimation 
riterion di�ers in the two 
ases, the most16



likely tree in the MRE solution does not in general equal the ML tree stru
ture. Figure 8a) displaysw1uv = log(W 1uv) fa
tors 
orresponding to ea
h edge uv in the MRE distribution for 
lass 1 as well asthe respe
tive mutual information values I1uv . Sin
e both matri
es are symmetri
, one 
an displayboth sets of values in a 25 by 25 square: the upper left half represents the ME weights whereas thelower right half of the square shows the mutual information. Figure 8,b shows the same results for
lass -1. Note that summing w1uv or I1uv a
ross the edges of a parti
ular tree pertains dire
tly to thelog-probability of the tree and thus the 
omparison is meaningful 6.The �gure shows that there are relatively few edges with large weights on both sides of thediagonal. This is parti
ularly relevant for the dis
riminative model of the positive examples, sin
eit shows that the MRE distribution de
ays rapidly around its peak. The maximum W 1uv is morethan 103 times the next largest value, 
learly separating edges that are dis
riminative and thosewhose in
lusion or ex
lusion has little e�e
t on dis
rimination. This 
ontrast is understandably lesspronoun
ed for the negative examples that represent a diverse 
olle
tion of spurious spli
e sites.A se
ond important remark is that neither �gure 8,a nor 8,b are symmetri
 w.r.t the diagonal. Inother words, not all pairs of variables that exhibit high mutual information are also dis
riminative.Note for example that the subdiagonal band showing that adja
ent variables are informative ofea
h other is almost 
ompletely e�a
ed under dis
riminative training. Our method brings out thedis
riminative stru
ture of the data, whi
h is di�erent from its stru
ture as a density estimator.4 Anomaly dete
tionIn anomaly dete
tion we are given a set of training examples representing only one 
lass, the\typi
al" examples. We attempt to 
apture regularities among the examples to be able to re
ognizeunlikely members of this 
lass. Estimating a probability distribution P (X j�) on the basis of thetraining set fX1; : : : ; XT g via the standard maximum likelihood (or analogous) 
riterion is notappropriate sin
e there is no reason to further in
rease the probability of those examples that arealready well 
aptured by the model. A more relevant measure involves the level setsX
 = fX 2 X : logP (X j�) � 
 g (44)These level sets are used in de
iding the 
lass membership, even in the 
ontext of ML parameterestimation. We therefore estimate the parameters � to optimize an appropriate level set. As before,we 
ast this problem as MRE:De�nition 3 Given a probability model P (X j�), � 2 �, a set of training examples fX1; : : : ; XT g,a set of margin variables 
 = [
1; : : : ; 
T ℄, and a prior distribution P0(�; 
) we �nd the MREdistribution P (�; 
) su
h that minimizes D(PkP0) subje
t to the 
onstraintsZ P (�; 
) [ logP (Xtj�)� 
t ℄ d�d
 � 0 (45)for all t = 1; : : : ; T .Note that this is again a MRE proje
tion problem whose solution 
an be obtained as before.The 
hoi
e of P0(
) in P0(�; 
) = P0(�)P0(
) is not as straightforward as before sin
e ea
h margin
t needs to be 
lose to a
hievable log-probabilities. We 
an nevertheless easily �nd a reasonable
hoi
e e.g. by relating the prior mean of 
t to some ��per
entile of the training set log-probabilitiesgenerated through ML or other standard parameter estimation 
riterion. Denote the resulting valueby l� and de�ne the prior P0(
t) as P0(
t) = 
 e�
 (l��
t) for 
t � l�. In this 
ase the prior meanof 
t is l� � 1=
.6The 
omparison is done upto a s
aling fa
tor and an additive 
onstant.17
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Figure 9: a) Distribution of training set log-likelihoods for the MRE model (solid line) or the Bayesmodel (dashed-line). b) ROC 
urve for the two models on an independent test set.We have veri�ed experimentally for a simple produ
t distribution that this 
hoi
e of prior to-gether with the MRE framework leads to a real improvement over standard (Bayesian) approa
h.Figure 9 illustrates the bene�t of the MRE approa
h for dis
riminating between true and spuriousspli
e sites. The examples were �xed length DNA sequen
es (length 25) and we used the followingprodu
t distribution of simple multinomials:P (X j�) = 25Yi=1Pi(xij�i) = 25Yi=1 �xiji (46)where X = fx1; : : : ; x25g, xi 2 fA;C; T;Gg, and Pxi �xiji = 1. The model parameters f�xijig wereestimated on the basis of only true examples (7000). The estimation 
riterion was either Bayesianwith an independent Diri
hlet prior over ea
h 
omponent distribution f��jig or through the relativeentropy proje
tion method with the same prior. Figure 9a) indi
ates, as expe
ted, that the trainingset log-likelihoods from the MRE method are more uniform and without the long tails7. Thisdi�eren
e leads to improved anomaly dete
tion as shown by the ROC 
urve in Figure 9b). The testset 
onsisted of 1192 true spli
e sites and 3532 spurious ones.We expe
t the e�e
t to be more striking in the 
ontext of more sophisti
ated models su
h asHMMs that may otherwise easily 
apture spurious regularities in the data. In the next se
tion wedes
ribe how su
h models 
an be used eÆ
iently within the MRE framework.4.1 Extension to latent variable modelsIn the presen
e of latent variables (missing information) we 
an no longer use the above formula-tion dire
tly. This arises be
ause logP (Xtj�) does not de
ompose into a sum of simple 
omponents.We 
an, however, a
hieve an eÆ
ient lower bound solution. If we letXh be the set of latent variables,we 
an resort to the following variational lower bound:logP (Xtj�) �XXh Qt(Xh) logP (Xt; Xhj�) +H(Qt) (47)where H(Qt) is the entropy of the Qt distribution. A separate transformation has to be introdu
edfor ea
h training example. Note that the lower bound is reasonable in this 
ontext sin
e the obje
tive7To 
ompute these log-likelihoods from the MRE method, we used the MRE solution as the posterior distributionover the parameters. This is suboptimal for the MRE method given that the 
riterion is slightly di�erent but suÆ
eshere for the purposes of illustration. An analogous �gure with minor di�eren
es 
ould be 
omputed on the basis ofR P (�) logP (Xj�)d� for the two methods. In this 
ase, the �gure would be suboptimal for the Bayesian approa
h.18



is to guarantee that all (or most) training examples have likelihoods above some margin threshold.Whenever the lower bound ex
eeds the threshold, so does the original likelihood.The MRE distribution P (�; 
) is obtained under the following 
onstraints:Z P (�; 
)"XXh Qt(Xh) logP (Xt; Xhj�) � 
t # d� +H(Qt) � 0 (48)whi
h are of the same form (linear) as before. Note that we have made an additional assumptionthat Qt(Xh) is fun
tionally independent of the parameters �. This assumption guarantees that theMRE distribution P (�; 
) 
an be 
omputed eÆ
iently for a large 
lass of probability models su
has mixture models and HMMs. The loss in a

ura
y due to this simplifying assumption vanisheswhenever the (marginal) MRE distribution P (�) be
omes peaked. In prin
iple, this means that we
an always �nd the single most dis
riminative setting of the parameters even with the variationalbound. Roughly speaking, we in
ur a loss only relative to the exa
t MRE approa
h.The overall solution to the MRE problem is no longer unique, however, but we 
an �nd a lo
allyoptimal solution iteratively as follows:Step 1. Fix fQt(Xh)g and �nd the MRE distribution P (�; 
) as beforeStep 2. Fix P (�; 
) and let Qt(Xh) / exp�Z P (�) logP (Xt; Xhj�)d�� (49)Both steps 
an be 
omputed eÆ
iently for a large 
lass of models su
h as HMMs assuming the priorP0(�) is Diri
hlet and fa
torizes a
ross the parameters. More generally, the prior should be the
onjugate prior satisfying the parameter independen
e assumption of [6℄ (see also [9℄).The iterative algorithm a
tually 
onverges in the sense de�ned by the following theorem:Theorem 6 If we let P (n)(�; 
) be the MRE distribution after n steps of the iterative algorithmdes
ribed above, then D(P (1)kP0) � D(P (2)kP0) � : : : � D(P (n)kP0) (50)The theorem is easy to understand as follows: ea
h time we optimize any of the Qt(Xh) dis-tributions, we maximize the asso
iated lower bound. This maximization relaxes the 
orresponding
onstraint on the MRE distribution and allows the relative entropy to be de
reased.5 Un
ertain or in
ompletely labeled examplesExamples with un
ertain labels are hard to deal with in any standard dis
riminative 
lassi�
ationmethod, probabilisti
 or not. Note the di�eren
e between labels that are inherently sto
hasti
 andthose that are predi
table but merely missing (the 
ase 
onsidered here). Un
ertain labels 
an behandled in a prin
ipled way within the maximum entropy formalism: let y = fy1; : : : ; yT g be a setof binary variables 
orresponding to the labels for the training examples. We 
an de�ne a priorun
ertainty over the labels by spe
ifying P0(y); for simpli
ity, we 
an take this to be a produ
tdistribution P0(y) =Yt Pt;0(yt) (51)19



where a di�erent level of un
ertainty 
an be assigned to ea
h example. We may, for example,set Pt;0(yt) = 1 whenever yt is observed and Pt;0(yt) = 0:5 if the label is missing. The MREsolution is found by 
al
ulating the relative entropy proje
tion from the overall prior distributionP0(�; 
; y) = P0(�)P0(
)P0(y) to the admissible set of distributions P (no longer dire
tly fun
tionof the labels) that are 
onsistent with the 
onstraints:Xy Z�;
 P (�; 
; y) [ ytL(Xt;�)� 
t ℄ d� d
 � 0 (52)for all t = 1; : : : ; T . The prior distribution P0(
) in this formulation en
ourages de
ision rules thata
hieve large 
lassi�
ation margins for the examples (most of the probability mass is assigned tovalues 
t � 0). This preferen
e towards large margins 
reates dependen
ies between the (a priori)unknown labels and the parameters � of the dis
riminant fun
tion. Consequently, even unlabeledexamples will 
ontribute to the (marginal) MRE distribution P (�) that spe
i�es the de
ision rule.We may alternatively view the MRE formulation as a transdu
tion algorithm [22℄ whose obje
tiveis to determine the 
lass labels for a set of unlabeled training examples.While this provides a prin
ipled framework for dealing with un
ertain or partially labeled ex-amples, the MRE solution itself is not in general feasible to obtain. For example, in the 
ontextof support ve
tor ma
hines (for an alternative approa
h see [2℄), the MRE distribution over thelabels will be (roughly speaking) a Boltzmann ma
hine and therefore not manageable in general viaexa
t 
al
ulations. We 
an nevertheless employ eÆ
ient approximate methods to obtain an iterativealgorithm for self-
onsistent probabilisti
 assignment of the un
ertain labels.5.1 Feasible approximationTo be able to deal with un
ertain labels in a feasible way, we solve instead the following MREproblem with additional 
onstraints:De�nition 4 Given a parametri
 dis
riminant fun
tion L(X;�), a set of margin variables 
 =[
1; : : : ; 
T ℄, a set of 
lass variables y = [y1; : : : ; yT ℄, and a prior distributionP0(�; 
; y) = P0(�)"Yt P0(
t)# "Yt P0;t(yt)# (53)we �nd a 
onstrained MRE distribution P (�; 
; y) of the form P (�; 
)P (y) that minimizes D(PkP0)subje
t to the 
onstraintsXy Z�;
 P (�; 
)P (y) [ ytL(Xt;�)� 
t ℄ d� d
 � 0 (54)for all t = 1; : : : ; T .We may view this as a type of mean �eld approximate sin
e the MRE distribution is for
edto fa
torize to make the problem tra
table. The solution is no longer unique but 
an be obtainedthrough the following two-stage iterative algorithm:Step 1. Fix P (y) and let pt = Py P (y)yt. We �nd P (�; 
) as the MRE solution subje
t to the
onstraints Z�;
 P (�; 
) [ ptL(Xt;�)� 
t ℄ d� d
 � 0 (55)Note that sin
e the prior fa
torizes a
ross f�; 
g the MRE solution fa
torizes as well, i.e.,P (�; 
) = P (�)P (
). 20



Step 2. Fix the marginal P (�) obtained in the previous step and �nd the MRE solution P 0(y; 
)subje
t to Xy Z P 0(y; 
) �Z� P (�) [ yt L(Xt;�)� 
t ℄ d�� d
 � 0 (56)for all t. Update P (y)  (1 � �)P (y) + �P 0(y) or simply set pt  (1 � �)pt + �p0t wherep0t =Py P 0(y)yt.The fa
t that we in
lude P (
) also in the se
ond step is ne
essary sin
e any adjustments tothe labels must be 
ompensated by an in
reased margin. The distribution P (y) is updated viarelaxation to ensure a more 
ontrolled adjustment of the labels; any large 
hange in P (y) is likely toindu
e a signi�
ant subsequent modi�
ation to the solution of the �rst step. Although the iterativealgorithm remains stable even if larger 
hanges are made, we believe the relaxation update leadsto better lo
al optima. Moreover, sin
e the admissible set is 
onvex and be
ause the minimizationobje
tive (relative entropy) is also 
onvex, the relaxation update always yields a 
hange in theappropriate dire
tion. The solution to either step is well de�ned and 
an be obtained in 
losedform assuming the problem is tra
table when we have 
omplete information about the labels. Theiterative algorithm is well-behaved in the sense of the following theorem:Theorem 7 Let P (n)(�; 
; y) = P (n)(�; 
)P (n)(y) be the 
onstrained MRE solution after n itera-tions. Then for all 0 � � � 1, where � is the step size used in the algorithm, we haveD(P (1)kP0) � D(P (2)kP0) � : : : � D(P (n)kP0) (57)The result holds also after either step of the two-stage iterative algorithm.5.2 Example: support ve
tor ma
hinesHere we provide a preliminary numeral assessment of how the above algorithm is able to make useof unlabeled examples in the 
ontext of predi
ting DNA spli
e sites with support ve
tor ma
hines.A detailed formulation of the algorithm for SVMs 
an be found in Appendix C. We generated threetraining sets of examples 
orresponding to whether 1) all the labels were known, 2) labels wereprovided only for about 10% randomly 
hosen examples and the remaining 90% were unlabeled butavailable, and 3) only the 10% labeled examples were used for training. The full training set in this
ase 
onsisted of 500 true DNA spli
e sites and 500 spurious ones (false examples). The exampleswere �xed length (25) strings of DNA letters (A,C,T,G) whi
h were translated into bit ve
tors usinga four bit en
oding (e.g. A! [1000℄). Figure 10 gives ROC 
urves based on an independent test set(1192 true examples and 3532 false examples) for SVMs trained with one of the three training sets.Note that when the training set is fully labeled the algorithm redu
es to the standard formulation.The �gures show that even the approximate formulation8 is able to reap most of the bene�t fromthe unlabeled examples. The �nding is also robust against the 
hoi
e of the kernel fun
tion as isseen by 
omparing Figure 10a) and 10b). The �ndings are preliminary.6 Dis
ussionWe have presented a general approa
h to dis
riminative training of model parameters, stru
tures,or parametri
 dis
riminant fun
tions. The formalism is based on the minimum relative entropy prin-
iple redu
ing all 
al
ulations to relative entropy proje
tions. Quite remarkably, we 
an eÆ
iently8In our experiments, � = 0:1 and the iterative algorithm was run for 10 iterations. The bene�t may vary as afun
tion of � and the number of iterations, parti
ularly if � is too large. The prior probability P0(y) =Qt P0;t(yt)over the labels were set to 0 or 1 when the label for yt was observed and to 0:5 for the unlabeled ones.21
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Figure 10: a) test set ROC 
urves based on a training set with fully labeled examples (solid line),90% unlabeled and 10% labeled (dot-dashed), only the 10% labeled examples (dashed). In a) alinear kernel was used and in b) a Gaussian kernel.and exa
tly 
ompute the best dis
riminative distribution over tree stru
tures within this framework.The MRE idea gives, in addition, a natural dis
riminative formulation of anomaly dete
tion prob-lems or 
lassi�
ation problems involving partially labeled examples. EÆ
ient algorithms were alsogiven to exploit su
h formulations.A
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turesLemma 4 If P (E) is given by equation (34) and f; g are fun
tions of E additive in the edges (i.e.f(E) =Puv2E fuv) then < f(E) >P = 1Z �jQ(We�f )j�� ����=0 (58)< f(E)g(E) >P = 1Z �2jQ(We�f+�g)j���� ����=�=0 (59)
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This lemma 
an be easily proved by equating jQ(We�f )j with its de�nition (36) and then takingderivatives of both sides. Then, remembering that for any matrix A with elements Aij�jAj�Aij = jAj(A�1)ij (60)one obtains, after 
onveniently grouping the terms, the result of Lemma 5:Lemma 5 Let P (E) and Q be given by equations (34) and (36) respe
tively, M be a symmetri
matrix with 0 diagonal de�ned byMuv = Mvu = � 12 [(Q�1)uu + (Q�1)vv � 2(Q�1)uv)℄; u; v < n12 (Q�1)vn v < u = n (61)and f a fun
tion of the stru
ture E satisfying f(E) =Puv2E fuv. Then the average of f under Pis < f(E) >P = XE P (E)f(E) = nXu;v=1 fuvWuvMuv : (62)B Integrating over the parameters P (Es; �s)Let us de�ne Nsuv(xu; xv) = Xt:v=xv;u=xus�tyt Nsuv(xv) = Xt:v=xv s�tyt (63)�suv = Yxu Yxv �(Nsuv(xu; xv) + ~Nsuv(xu; xv))�( ~Nsuv(xuxv)) (64)�sv = Yxv �(Nsv (xv) + ~Nsv (xv))�( ~Nsv (xv)) (65)With these notations we 
an express W suv and W s0 in equation (43) asW suv = �suv�su�sv and W s0 = �( ~Ns)�(Ns + ~Ns) Yv2V �sv (66)In the above, �() denotes Euler's Gamma fun
tion. Note that the \
ounts" Nsuv 
an be eitherpositive or negative, so that the variables � may not be de�ned for arbitrary values of �. All theabove expressions exist, however, for � = 0; in this 
ase W suv =W s0 = 1.The 
lassi�
ation rule is given by equation (39) with wsuv(X); ws0(X) rede�ned aswsuv(X) = 	[Nsuv(xuxv) + ~Nsuv(xuxv)℄�	[Nsv (xv) + ~Nsv (xv)℄�	[Nsu(xu) + ~Nsu(xu)℄ (67)ws0(X) = Xv2V 	[Nsv (xv) + ~Nsv (xv)℄�	[Ns + ~Ns℄ (68)with 	 representing the derivative of the log-Gamma fun
tion:	(z) = ddz log �(z) (69)Note the similarity with the �xed parameter 
ase: the 
lassi�
ation rule is still an average of alog-likelihood di�eren
e; the 	 fun
tions arise from averaging the log-likelihood under the MREdistribution of the � parameters. 24



C Un
ertain labels and support ve
tor ma
hinesWe provide here more details about the two step feasible algorithm for dealing with partial-ly labeled examples in the 
ontext of support ve
tor ma
hines. We start by de�ning the priordistribution over all the parameters asP0(�; b; 
; y) = P0(�)P0(b)P0(
)P0(y) (70)where P0(�) is N (0; I) and P0(b) approa
hes a non-informative prior. By the non-informative priorwe mean here a limit of P0(bjk) = N (0; I � k) as k ! 1. The prior over the labels is assumed tofa
torize a
ross the examples, i.e., P0(y) =Yt P0;t(yt) (71)where, for example, we 
an set ea
h P0;t(yt) = 1 whenever the 
orresponding label yt is known andP0;t(yt) = 0:5; yt = �1 for all unlabeled examples. We use here P0(
) from eq. (9); the alternativeswere dis
ussed in the text.Let now pt =Py P0(y)yt =Pyt P0;t(yt)yt, where pt is the mean value of the label. With theseinitializations, the two step algorithm is given as follows:Step 1. We �x fptg and �nd the MRE solution for P (�; b; 
). Based on Lemma 3 P (�; 
) and P (b)
an be found separately. For P (�; 
) the the Lagrange multipliers are obtained by maximizing(analogously to Theorem 2):J�;
(�) =Xt [�t + log(1� �t=
) ℄� 12Xt;t0 �t�t0ptpt0(XTt Xt0) (72)subje
t to the 
onstraint thatPt �tpt = 0. This is no more diÆ
ult to solve than the originalSVM optimization problem with hard labels.As for the bias term b, we only need its mean relative to the MRE solution, i.e., �b = R P (b)b db.This 
an be 
omputed as the limit of the means 
orresponding to proper priors P0(bjk) (ea
hMRE solution P (bjk) based on P0(bjk) is a Gaussian with a well-de�ned mean). We omit thealgebra and instead provide the answer in terms of the following averages:�Lt = Z P (�) (�TXt) d� =Xt0 �t0pt0(XTt Xt0) (73)�
t = Z P (
) 
t d
 = 1� 1
� �t (74)The desired mean �b is now given by�b = argmaxb nmint ( pt(�Lt + b)� �
t )o (75)This setting optimizes the most 
riti
al 
onstraints of eq. (55). In other words, �b maximizesthe minimum of the left hand sides of eq. (55).Step 2. To update the MRE distribution over the labels, we �x P (�; b) and �nd P 0(y; 
) subje
t toXy Z P 0(y; 
) Z�;b P (�; b) � yt(�TXt + b)� 
t � d�dbd
= Xy Z P 0(y; 
) � yt(�Lt +�b)� 
t � d
 � 0 (76)25



Analogously to the �rst step, the Lagrange multipliers are found by maximizing the 
orre-sponding �logZ (algebra omitted):Jy;
(�0) =Xt (�0t + log(1� �0t=
)� log Xyt=�1P0;t(yt)e yt�0t(�Lt+�b) ) (77)Note that the Lagrange multipliers here are not tied and 
an be optimized independently forea
h t. This happens be
ause we have assumed that the prior distribution fa
torizes a
ross theexamples and be
ause the dis
riminant fun
tion does not tie the variables together. Ea
h ofthe one dimensional 
onvex optimization problems are readily solved by any standard methods(e.g. Newton-Raphson). The resulting MRE distribution over the labels, P 0(y) is given byP 0(y) =Yt P 0t (yt) (78)where P 0t (yt) = 1ZtP0;t(yt) e yt�0t(�Lt+�b) (79)We 
an easily 
ompute p0t =Pyt P 0t (yt)yt from this result. Finally, the updatespt  (1� �)pt + �p0t (80)
omplete the se
ond step.The de
ision rule for a new example X is given byŷ = sign Xt �tpt(XTt X) + �b! (81)where f�tg and �b are the solutions to the �rst step of the iterative algorithm.
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