
Maximum entropy disriminationTommi Jaakkola1tommi�ai.mit.eduMarina Meila1mmp�ai.mit.eduTony Jebara2jebara�media.mit.edu1MIT AI Lab, 545 Tehnology Square, Cambridge, MA 021392MIT Media Lab, 20 Ames Street, Cambridge, MA 02139August 18, 1999Revised: Otober 10, 1999AbstratWe present a general framework for disriminative estimation based on the maximum en-tropy priniple and its extensions. All alulations involve distributions over strutures and/orparameters rather than spei� settings and redue to relative entropy projetions. This holdseven when the data is not separable within the hosen parametri lass, in the ontext of anoma-ly detetion rather than lassi�ation, or when the labels in the training set are unertain orinomplete. Support vetor mahines are naturally subsumed under this lass and we provideseveral extensions. We are also able to estimate exatly and eÆiently disriminative distri-butions over tree strutures of lass-onditional models within this framework. Preliminaryexperimental results are indiative of the potential in these tehniques.1 IntrodutionE�etive disrimination is essential in many appliation areas inluding speeh reognition, im-age lassi�ation or identi�ation of moleular binding sites in genomi DNA. Statistial approahesused in these ontexts for lassi�ation generally fall into two major ategories { generative or dis-riminative { depending on the estimation riterion used for adjusting the model parameters and/orstruture. Generative approahes rely on a full joint probability distribution over examples and las-si�ation labels whereas for disriminative methods only the onditional relation of a label given theexample is relevant. While the full joint distribution in the generative approah arries a number ofadvantages e.g. in handling inomplete examples, the typial estimation riterion (maximum likeli-hood or its variatiants) is nevertheless suboptimal from the point of view of lassi�ation objetive.Disriminative methods suh as support vetor mahines [21℄ or boosting algorithms [8℄ that fousdiretly on the parametri deision boundary typially yield more robust lassi�ation methods,whenever they are appliable.Full joint distributions and the bene�ts they onvey an be, of ourse, exploited in disriminativeapproahes as well. We may, for example, interprete the posterior probability of a label given theexample as a parametri deision boundary (see e.g. [10, 13℄). Alternatively, we an indue suitable1



vetor spae representations for examples from generative models and feed suh representations intostandard disriminative tehniques [11℄.In this paper we provide a more general notion of disrimination, one that applies also in theontex of anomaly detetion or when the lassi�ation labels themselves are unertain or missing.Note that the utility of e.g. unlabeled examples is not obvious [22, 2, 4, 18℄. Our approah towardsgeneral disriminative training relies on the well known maximum entropy priniple whih embodiesthe Bayesian integration of prior information with observed onstraints (see e.g. [15℄). The formalismthat we apply and extend in this paper allows, for example, a feasible disriminative training of boththe parameters and the struture of a lass of joint probability models. The approah is not limitedto probability models, however, and we extend e.g. support vetor mahines.2 Maximum entropy lassi�ationConsider �rst a two-lass lassi�ation problem where labels y 2 f�1; 1g are assigned to examplesX 2 X . Assume we have two lass-onditional probability distributions over the examples, i.e.,P (X j�y) with parameters �y, one for eah lass. The deision rule orresponding to any partiularparameter setting f��1g follows the sign of the disriminant funtion:L(X j�) = log P (X j�1)P (X j��1) + b (1)where � = f�1; ��1; bg and b is a bias term, usually expressed as a log-ratio of prior lass probabilitiesb = log p=(1 � p) . The lass-onditional distributions here may ome from di�erent families ofdistributions or we might speify the parametri disriminant funtion diretly without any refereneto probability models. The parameters �y may also inlude the model struture as seen later in thepaper.The parameters � = f�1; ��1; bg in the disriminant funtion should be hosen to maximizelassi�ation auray. Instead of �nding a single parameter setting, we onsider here a moregeneral problem of �nding a distribution P (�) over the parameters and using a onvex ombinationof disriminant funtions, i.e., Z P (�)L(X j�)d� (2)in plae of the original disriminant funtion in the deision rule. The problem is now to �nd anappropriate distribution P (�). Given a set of training examples fX1; : : : ; XT g and orrespondinglabels fy1; : : : ; yT g we seek for a distribution P (�) that makes the least assumptions about the hoieof the parameter values � while giving rise to a disriminant funtion that orretly separates thetraining examples. We an formalize this as a maximum entropy (ME) estimation problem. In otherwords, we maximize the entropy H(P ) of P subjet to the lassi�ation onstraintsZ P (�) [ yt L(Xtj�) ℄ d� �  (3)for all t = 1; : : : ; T . Here  spei�es a desired lassi�ation margin. We note that the solution isunique (provided that it exists) sine H(P ) is onave and the linear onstraints speify a onvexregion. Note that the preferene towards high entropy distributions (fewer assumptions) appliesonly within the admissible set of distributions P onsistent with the lassi�ation onstraints.We an readily extend this formulation to a multi-lass setting by introduing additional las-si�ation onstraints. To see this, suppose we have instead m lass-onditional probability models2



P (X j�y), y = 1; : : : ;m, prior lass frequenies fpyg, and the assoiated pairwise disriminant fun-tions Ly;y0(Xtj�) = log P (X j�y)P (X j�y0) + log pypy0 (4)where � = f�1; : : : ; �m; p1; : : : ; pmg. We may now replae the single onstraint per training examplein eq. (3) with the following m� 1 pairwise onstraintsZ P (�) [Lyt;y(Xtj�) ℄ d� � ; y 6= yt; (5)to ensure that the training label yt always \wins" the ompetition against the alternative labelsy 6= yt. For notational simpliity we will onsider primarily only binary lassi�ation problems inthe remainder of the paper but emphasize that the analogous extension to a multi-lass setting anbe made.The overall ME formulation presented so far has several problems. We have, for example, madea tait assumption that the training examples an be separated with the spei�ed margin. Thisassumption may very well be violated in pratie. Moreover, we may have a prior reason to prefersome parameter values over others (as well as margin onstraints) whih requires us to inorporate aprior distribution P0(�; ) into the de�nition. Other extensions and generalizations will be disussedlater in the paper.A more general formulation that addresses these onerns is given by the following minimumrelative entropy priniple:De�nition 1 Let fXt; ytg be the training examples and labels, L(X j�) a parametri disriminantfuntion, and  = [1; : : : ; t℄ a set of margin variables. Assuming a prior distribution P0(�; ), we�nd the disriminative minimum relative entropy (MRE) distribution P (�; ) by minimizingD(PkP0) = Z P (�; ) log P (�; )P0(�; ) d� (6)subjet to the (soft) lassi�ation onstraintsZ P (�; ) [ yt L(Xtj�)� t℄ d�d � 0 (7)for all t. The deision rule for any new example X is given byŷ = sign� Z P (�) L(X j�) d�� (8)Let us make a few remarks about the de�nition. First, we an reover the previous ME formula-tion by appropriately adjusting the prior distribution P0(�; ) (e.g., if P0() peaks around a spei�setting of the margins). It is lear that the margin onstraints are hidden in the prior distributionP0(). Seond, if we assume that there is a non-zero prior probability for all t taking some negativevalues, we guarantee that the admissible set P omposed of all distributions P (�; ) onsistent withthe lassi�ation onstraints, is never empty. Thus even when the examples annot be separatedby any disriminant funtion in the hosen parametri lass (e.g. linear), we get a valid and uniquesolution. Third, the penalty for violating any of the margin onstraints also depends on the priordistribution P0; whenever the mean of t deviates from its prior mean under P0, we inur a penalty3
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PFigure 1: Minimum relative entropy (MRE) projetion from the prior distribution to the admissibleset.in the form of relative entropy distane between the orresponding distributions. It is worth notingthat the penalties are de�ned in terms of joint spei�ations of margins but, in ertain ases, theyredue to the more typial additive penalties of violating the onstraints.The prior P0(�; ) playes an important role in our de�nition and we must hoose it appropriately.Let us onsider here only the prior over the margin onstraints . Supposing again that P0(�; ) =P0(�)P0(), we an, for example, set P0() =Yt P0(t) (9)where P0(t) =  e�(1�t), for t � 1. A penalty is inurred for margins smaller than 1� 1= (theprior mean of t) while margins larger than this are not penalized. In the latter ase, the assoiatedonstraint beomes merely irrelevant. We will see in later setions that this hoie of the marginprior orresponds losely to the use of slak variables and additive penalties used in support vetormahines. A number of other hoies for P0() are possible and we disuss some of them later inthe paper.An important property of the MRE solution is that it an be viewed as a relative entropyprojetion, the e-projetion in the terminology of [1℄, from the prior distribution P0(�; ) to theadmissible set P . Figure 1 illustrates this view. Even in the non-separable ase, we an view theMRE solution as a projetion. This formalism readily extends to the ase of unertain or partiallylabeled examples as we will see later in the paper.To solve the MRE problem, we rely on the following theorem.Theorem 1 The solution to the MRE problem has the following general form (f. [7℄):P (�; ) = 1Z(�)P0(�; ) ePt �t[ ytL(Xtj�)�t℄ (10)where Z(�) is the normalization onstant (partition funtion) and � = f�1; : : : ; �T g de�nes a setof non-negative Lagrange multipliers, one for eah lassi�ation onstraint. � are set by �nding theunique maximum of the following jointly onave objetive funtion:J(�) = � logZ(�) (11)Whether the MRE solution an be found in a feasible way depends entirely on whether we anevaluate the partition funtion Z(�),Z(�) = Z P0(�; ) ePt �t[ ytL(Xtj�)�t℄ d�d (12)4



in losed form. Given a losed form expression for Z(�), the maximum of the jointly onave ob-jetive funtion J(�) an be subsequently found through any standard onvex optimization methodsuh as Newton-Raphson. The resulting set of Lagrange multipliers f�tg then de�ne the MREsolution as indiated in the theorem. Finally, prediting a label for any new example X involves av-eraging the disriminant funtion L(�) with respet to the marginal P (�) of the MRE distribution(see De�nition 1). Finding this marginal as well as performing the required averaging are no moreostly than omputing Z(�). We will elaborate these alulations further in the ontext of spei�realizations.The MRE solution is sparse in the sense that only a few Lagrange multipliers will be non-zero.This arises beause many of the lassi�ation onstraints beome irrelevant one the onstraints areenfored for a small subset of examples. For support vetor mahines that are subsumed under theabove general de�nition, this notion translates into a sparse representation of the separating hyper-plane. Sparsity leads to immediate generalization guarantees (independent of the dimensionality ofthe parameter or example spae):Lemma 1 The generalization error �g of the MRE lassi�er satis�eseg � Ef fration of non-zero Lagrange multipliers g (13)where the expetation is over the hoie of the training set.Pratial leave-one-out ross-validation estimates of the generalization error an be derived onthe basis of this result (f. [21, 12℄). We may also make use of generalization error results derivedfor onvex ombination of lassi�ers [20℄ to obtain more informative generalization bounds for MRElassi�ers. The details are left for another paper.3 Pratial realization of the MRE solutionWe now turn to the question of atually �nding the MRE solution. Consider �rst the followingelementary but helpful lemmaLemma 2 Any fatorization of the prior P0(�; ) aross any disjoint sets of variables f�; g leadsto a disjoint fatorization of the MRE solution P (�; ) aross the same sets of variables providedthat these variables appear in distint additive omponents in ytL(Xt;�)� t.If we assume that the labels fytg are �xed and that the prior distribution P0(�; ) fatorizesaross the omponents f�nb; b; g, then aording to the lemma, the MRE solution fatorizes in thesame way. This fatorization property allows us to eliminate e.g. the bias term from the remainingsolution by means of imposing additional onstraints on the Lagrange multipliers. This is analogousto the handling of the bias term in support vetor mahines [21℄:Lemma 3 Assuming P0(�; ) = P0(� n b; )P0(b) and P0(b) approahes a non-informative prior,then P (�; ) = P (� n b; )P (b) and P (� n b; ) an be found independently from P (b) provided thatwe require Pt �tyt = 0.With the help of these results, we will onsider now a few spei� realizations suh as supportvetor mahines and a lass of graphial models.
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Figure 2: Three margin prior distributions (top row) and the orresponding potential terms (bottomrow) from Eq. (15).3.1 Support vetor mahinesIt is well known that the log-likelihood ratio of two Gaussian distributions with equal ovarianematries yields a linear deision rule. With a few additional assumptions, the MRE formulationgives support vetor mahines:Theorem 2 Assuming L(X;�) = �TX�b and P0(�; ) = P0(�)P0(b)P0() where P0(�) is N(0; I),P0(b) approahes a non-informative prior, and P0() is given by eq. (9) then the Lagrange multipliers� are obtained by maximizing J(�) subjet to 0 � �t �  and Pt �tyt = 0, whereJ(�) =Xt [�t + log(1� �t=) ℄� 12Xt;t0 �t�t0ytyt0(XTt Xt0) (14)The only di�erene between our J(�) and the (dual) optimization problem for SVMs is theadditional potential term log(1� �t=). This highlights the e�et of the di�erent miss-lassi�ationpenalties, whih in our ase ome from the MRE projetion. Figures 2a) and ) show, however,that the additional potential term does not always arry a huge e�et (for  = 5). Moreover, in theseparable ase, letting !1, the two methods oinide. The deision rules are formally idential.The hoie of the prior distribution P0() leads to di�erent potential terms. Figure 2 gives thefollowing priors and their orresponding potential termsMargin prior Dual potential terma) P0() / e� (1�);  � 1; �t + log(1� �t=)b) P0() / e� j1�j; �t + 2 log(1� �t=)) P0() / e�2 (1�)2=2; �t � (�t=)2 (15)where a) is the ase disussed in the theorem. Note that the resulting potential terms may or maynot set an upper bound on the value of �t. In a) and b) �t is bounded by the onstant  whereasin ) no suh bound exists. 6



3.1.1 ExtensionWe now onsider the ase where the disriminant funtion L(X;�) orresponds to the log-likelihood ratio of two Gaussians with di�erent (and adjustable) ovariane matries. The parame-ters � in this ase are both the means and the ovarianes. The prior P0(�) must be the onjugateNormal-Wishart to obtain losed form integrals1 for the partition funtion, Z. Here, P (�1;��1)is P (m1; V1)P (m�1; V�1), a density over means and ovarianes (and the fatorization follows fromour assumptions below).The prior distribution has the form P0(�1) = N (m1;m0; V1=k) IW(V1; kV0; k) with parameters(k, m0, V0) that an be spei�ed manually or one may let k ! 0 to get a non-informative prior. Weused the MAP values for k, m0 and V0 from the lass-spei� data2. Integrating over the parametersand the margin, we get a partition funtion whih fatorizes Z = Z �Z1 �Z�1. For Z1 we obtainthe following: Z1 / N�d=21 j�S1j�N1=2 �dj=1��N1 + 1� j2 � (16)N1 �=Pt wt �X1 �=Pt wtN1Xt S1 4=Pt wtXtXTt �N1 �X1 �XT1 (17)Here, wt is a salar weight given by wt = u(yt) + yt�t for Z1. To solve for Z�1 we proeed in asimilar manner with the exeption that the weights are set to wt = u(�yt) � yt�t. u(�) here is thestep funtion. Given Z, updating � is done by maximizing the orresponding negative log-partitionfuntion J(�) subjet to 0 � �t �  and Pt �tyt = 0 where:J(�) =Xt [l��t + log(1� �t=)℄� logZ1(�t)� logZ�1(�t) (18)The potential term above orresponds to integrating over the margin with a margin prior P0() /e�(l��) with  � l�. We pik l� to be some �-perentile of the margins obtained under the standardMAP solution. Optimal lambda values are found via onstrained gradient desent. The resultingmarginal MRE distribution over the parameters (normalized by the partition funtion Z1�Z�1) isa Normal-Wishart distribution itself, P (�1) = N (m1; �X1; V1=N1) IW(V1;S1; N1) with the �nal �values. Prediting the labels for a data point X under the �nal P (�) involves taking expetationsof the disriminant funtion under a Normal-Wishart. This is simply:EP (�1)[logP (X j�1)℄ = onstant� N12 (X � �X1)TS�11 (X � �X1) (19)We thus obtain disriminative quadrati deision boundaries. These extend the linear boundarieswithout (expliitly) resorting to kernels. Of ourse, kernels may still be used in this formalism,e�etively mapping the feature spae into a higher dimensional representation. However, unlikelinear disrimination, the ovariane estimation in this framework allows the model to adaptivelymodify the kernel.3.1.2 ExperimentsIn the following, we show results using the minimum relative entropy approah where the dis-riminant funtion (L(X;�)) is the log-ratio of Gaussians with variable ovariane matries onstandard 2-lass lassi�ation problems (Leptograpsus Crabs and Breast Caner Wisonsin). In1This an be done more generally for onjugate priors in the exponential family.2The prior here is the posterior distribution over the parameters given the data, i.e. an empirial Bayes proedure.7



Method Training TestingErrors ErrorsNeural Network (1) 3Neural Network (2) 3Linear Disriminant 8Logisti Regression 4MARS (degree = 1) 4PP (4 ridge funtions) 6Gaussian Proess (HMC) 3Gaussian Proess (MAP) 3SVM - Linear 5 3SVM - RBF � = 0:3 1 18SVM - 3rd Order Polynomial 3 6Maximum Likelihood Gaussians 4 7MaxEnt Disrimination Gaussians 2 3Table 1: Leptograpsus Crabs
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(a) Training ROC (b) Testing ROCFigure 3: ROC urves on Leptograpsus Crabs for disriminative (solid line), Bayes / ML models(dashed line) and SVM linear models (dotted line).addition we display a two-dimensional visualization example of the lassi�ation. Performane isompared to regular support vetor mahines, maximum likelihood estimation and other methods.The Leptograpsus rabs data set was originally provided by Ripley [19℄ and further tested byBarber and Williams [3℄. The objetive is to lassify the sex of the rabs from 5 salar anatomialobservations. The training set ontains 80 examples (40 of eah sex) and the test set inludes 120examples.The Gaussian based deision boundaries are ompared in Table 1 against other models from[3℄.The table shows that the maximum entropy (or minimum relative entropy) riterion improves theGaussian disrimination performane to levels similar to the best alternative models. The bias wasestimated separately from training data for both the maximum likelihood Gaussian models and themaximum entropy disrimination ase. In addition, we show the performane of a support vetormahine (SVM) with linear, radial basis and polynomial deision boundaries (using the MatlabSVM Toolbox provided by Steve Gunn). In this ase, the linear SVM is limited in exibility whilekernels exhibit some over-�tting.In Figure 3 we plot the ROC urves on training and testing data. The ROC urve shows improvedlassi�ation for maximum entropy (minimum relative entropy) ase.8



Method Training TestingErrors ErrorsNearest Neighbour 11SVM - Linear 8 10SVM - RBF � = 0:3 0 11SVM - 3rd Order Polynomial 1 13Maximum Likelihood Gaussians 10 16MaxEnt Disrimination Gaussians 3 8Table 2: Breast Caner Classi�ation
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(a) Training ROC (b) Testing ROCFigure 4: ROC urves on Breast Caner for disriminative (solid line), Bayes / ML models (dashedline) and SVM linear models (dotted line).Another data set whih was tested was the Breast Caner Wisonsin data where the two lasses(malignant or benign) have to be omputed from 9 numerial attributes from the patients (200training ases and 169 test ases). The data was �rst presented by Wolberg [24℄. We ompare ourresults to those produed by Zhang [25℄ who used a nearest neighbour algorithm to ahieve 93:7%auray. As an be seen from Table 2, over-�tting seems to prevent good performane for kernelbased SVMs. The maximum entropy disriminator ahieves 95:3% auray.In Figure 4 we plot the ROC urves on training and testing data. The training ROC urvesshow improved disrimination for the maximum entropy method. ROC urves for all three methodsare equivalent on testing however sine we typially assume that bias is estimated exlusively fromtraining data, the results in Table 2 are more signi�ant.Finally, for visualization, we present the tehnique on a 2D set of training data in Figure 5 andFigure 6. The SVM in Figure 5(a) attempts to ahieve maximum desrimination but is limited to alinear deision boundary. It only sueeds after the appliation of a kernel as in Figure 5(b), wherea 3rd order polynomial kernel is used. In Figure 6(a), the maximum likelihood tehnique is usedto estimate a 2 Gaussian disrimination boundary (bias is estimated separately) whih has moreexibility than the linear SVM yet fails to ahieve the desired optimal lassi�ation. Meanwhile,the maximum entropy disrimination tehnique plaes the Gaussians in the most disriminativeon�guration as shown in Figure 6(b).
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(a) Linear SVM (b) Polynomial Kernel SVMFigure 5: Classi�ation visualization SVMs.

(a) Max Likelihood (b) Max Ent DisriminationFigure 6: Classi�ation visualization for Gaussian disrimination.3.2 The Fisher kernel lassi�erHere we demonstrate that the MRE formulation proposed in this paper ontains the Fisher kernelmethod of [11℄. The Fisher kernel method provides a ombination of a generative model P (X j�)with a disriminative method suh as support vetor mahines through de�ning an appropriatekernel funtion. The kernel funtion, alled the Fisher kernel, an be omputed from any generativemodel in the neighborhood of some desired e.g. maximum likelihood parameter setting ��. TheFisher kernel funtion is given byKfk(X;X 0) = UX(��)T F (��)�1 UX0(��) (20)where UX(�) is the Fisher sore UX(�) = r� logP (X j�)j�=�� ; (21)10



F (�) = EfUX(�)UTX(�) g is the Fisher information matrix3 and the expetation is with respet toP (X j�). Replaing the inner produt XTt Xt0 between the examples in Theorem 2 with the kernelfuntion in Eq. (20) amounts to the \simple" Fisher kernel method as explained in [11℄.Our goal in this setion is to show that we an reover the Fisher kernel method in the MREframework so long as the prior distribution P0(�; ) is hosen in an appropriate way. We start with afew neessary regularity assumptions about the family of distributions P (X j�) in some small (open)neighborhood O(��) of ��:1. for any X 2 X , UX(�) = r� logP (X j�) is a ontinuously di�erentiable vetor valued funtionof �2. F (�) = EfUX(�)UTX(�) g exists and is positive de�niteLet us de�ne, in addition, the di�erential (symmetri) relative entropy distane between thedistributions P (X j�) and P (X j��)d(�; ��)2 = 12(� � ��)T F (��)�1 (� � ��) (22)valid whenever � � ��. We assign a prior distribution P0(�) in terms of this distane4P0(�) = 1Z(��; �) e�� d(�;��)2 (23)where � serves as a saling parameter. This prior assigns a low probability to all � for whih theorresponding probability distribution P (X j�) deviates signi�antly from P (X j��). Another way toview this prior is as a loal isotropi Gaussian prior distribution in the probability manifold induedby the family of distributions P (X j�), � 2 O(��).In the MRE formalism the objetive is to minimize the relative entropy distane between theMRE distribution P and the prior P0 subjet to the lassi�ation onstraintsZ P (�; ) [ ytL(Xtj�; �)� t ℄ d�d � 0 (24)where the disriminant funtion L(Xtj�; �) is the saled log-likelihood ratio:L(Xtj�; �) = [�1=2 log P (Xtj�)P (Xtj��) � b ℄ (25)and � = f�; bg. This disriminant funtion enourages parameter values � that are indiative of the+1 lass relative to the \null model" P (Xtj��).The following Theorem now establishes the desired onnetion to the Fisher kernel method.Theorem 3 If we replae P0(�) with Eq. (23) in Theorem 2 and the disriminant funtion withL(Xtj�; �) de�ned above as well as let � !1, then the objetive funtion J(�) redues toJ(�) =Xt [�t + log(1� �t=) ℄� 12Xt;t0 �t�t0ytyt0Kfk(Xt; Xt0) (26)where Kfk(Xt; Xt0) is the Fisher kernel of Eq. (20).We note that this result is merely a formal relation between the MRE priniple and the Fisherkernel and does not neessarily provide any additional motivation.3For many probability distributions the Fisher information matrix may not be possible to ompute in losed form.However, it is the ovariane matrix of the Fisher sores and thus an be easily approximated by sampling.4A more preise de�nition of this prior would involve setting it to zero outside the open neighborhood where theregularity onditions may no longer hold. For large �, the e�et of this ondition vanishes and we omit it here forsimpliity. 11



3.3 Graphial modelsThe MRE formulation an aomodate disriminant funtions resulting from log-ratios of generalgraphial models. The MRE distribution, i.e. P (�), in this setting is over both the parametersand the struture of the model. Sine the estimation is arried out in the spae of distributionsthe distintion between disrete or ontinuous variables is immaterial. The framework does not,however, admit eÆient solutions without restritions on the lass of graphial models. For example,assuming the struture remains �xed and that the lass-onditional models have no latent variables,then the MRE distribution P (�) over the parameters an be obtained eÆiently. This requiresadditional tehnial assumptions suh as the use of onjugate priors, the parameter independeneassumption of [6℄ and the fat that the probability model must be tratable for any �xed settingof the parameters. Although restrited, this lass does inlude e.g. naive Bayes models, mixture oftree models and so on.For a speial lass of graphial models whose struture is a tree, both the parameters and thestruture an be estimated eÆiently within our disriminative framework. In the remainder, wewill onsider suh tree strutured models.First, we de�ne a tree distribution. Let V denote the set of variables of interest, jV j = n, xv 2 Xva partiular value of v 2 V and X 2 X an assignment to all the variables in V . Like any graphialmodel, a tree distribution is de�ned in two stages. First, one de�nes a graph (V;E), alled struture,whose verties are the variables in V and whose edges enode dependenies between these variables.A tree is an undireted graph over V that is onneted and has no yles. For any tree over nverties jEj = n � 1. Beause suh a tree spans all the nodes in V , it is often alled a spanningtree. Then, the tree distribution is de�ned as a produt of fators orresponding to the edges andverties. T (x) = Q(u;v)2E Tuv(xu; xv)Qv2V Tv(xv)deg v�1 (27)where deg v is the degree of vertex v, i.e. the number of edges inident to v 2 V and Tuv and Tvdenote the marginals of T : Tuv(xu; xv) = Xv=xv;u=xuT (X)Tv(xv) = Xv=xv T (X):When the variable x is disrete, the marginals Tuv and Tv an be represented as probability tablesdenoted respetively �uv(xu; xv) and �v(xv). The values � are the parameters of the distribution.When it will be neessary to emphasize the dependene of the tree distribution on its struture andparameters we will use the notation T (xjE; �).By taking the logarithm of T (X) and onveniently grouping the fators one obtainslogT (X) = Xv2V logTv(xv)| {z }w0(X) + Xuv2E log Tuv(xu; xv)Tv(xv)Tu(xu)| {z }wuv(X) = w0(X) + Xuv2E wuv(X): (28)In words, the log-likelihood is a sum of terms wuv(X) eah orresponding to an edge (and dependingonly on the values of the variables u; v assoiated with that edge) plus a struture independent termw0(X) that depends on all the variables. All the terms are funtions of the tree parameters �.12



3.3.1 Disriminative learning of tree struturesA tree model is de�ned by a set of disrete variables enoding its struture and a set of ontinuousvariables representing its parameters. To use the MRE framework we must de�ne a prior joint distri-bution over the strutures and their assoiated parameters. We will assume that the struture andthe parameters are independent a priori; moreover, we shall assume that exept for the funtionaldependenies among the parameters that are imposed by the fat that they have to represent a validjoint distribution overX there are no other statistial or funtional dependenies. These assumptionsorrespond to the parameter independene and parameter modularity assumptions of [9℄ (see also [6℄).In our ase, this means that there is a set of parameters � = f�uv(i; j); u; v 2 V; i 2 Xu; j 2 Xvgassoiated with the edges suh that in any tree model ontaining an edge uv 2 E, the pairwisemarginals Tuv(xu; xv) are given by �uv(xu; xv) regardless of the presene of other edges in E andtheir parameter values. This simpli�ation, in turn, allows the MRE formulation for only strutures(with a �xed set of parameters or a �xed distribution over their values), for parameters only, or forboth.We start with a MRE estimation of strutures only when the pairwise marginals �uv(xu; xv) areassumed �xed. Note that eah tree nevertheless makes use of a di�erent set of n � 1 edges andthereby a di�erent set of parameters. For eah lass or label s 2 f1;�1g, we have a separate set of�xed parameters �s. In the experiments below, the values of these parameters were obtained fromempirial (lass-onditional) marginals. We assume a uniform prior over the lass-onditional treestrutures Es.De�nition 2 Given a set (Xt; yt); t = 1; : : : T of labeled examples, a set of margin variables  =[1; : : : ; T ℄ and a prior distribution P0(E1; E�1; ) the MRE distribution P (E1; E�1; ) is the oneminimizing D(PkP0) subjet toXE1;E�1 Z P (E1; E�1; ) � yt log T (XtjE1; �1)T (XtjE�1; ��1) � t � d � 0 for t = 1; : : : T (29)Assuming P0(E1; E�1; ) = P0(E1)P0(E�1)P0(), Lemma 2 implies that the solution is fatored asP (E1)P (E�1)P () withP (Es) = 1Zs ePTt=1 s�tyt[ws0(Xt)+Puv2Es wsuv(Xt)℄ = W s0Zs Yuv2EsW suv (30)for s = 1;�1 andW s0 = ePt s�tytws0(Xt); W suv = TYt=1(wsuv(Xt))s�tyt ; s = 1;�1: (31)In the above the normalization onstants Zs and the fators W s are funtions of the Lagrangemultipliers � whih need to be set. Provided that we an obtain the normalization onstants(funtions) Zs in losed form, � are set to maximize the dual objetiveJ(�) =  � �� logZ1 � logZ�1: (32)where, for simpliity, we have assumed a �xed setting of the margin variables ftg.3.4 Computing the normalization onstant and its derivativesThe number of all possible tree strutures over n verties is nn�2 [23℄ and thus omputing thenormalization onstants by enumerating all the tree strutures is learly not possible for reasonable13



n. However, a remarkable graph theory result enables us to perform all the neessary summationsin losed form in polynomial time. This is the Matrix Tree Theorem quoted below.Theorem 4 (Matrix Tree Theorem)[23℄ Let G = (V;E) be a multigraph and denote by auv =avu � 0 the number of undireted edges between verties u and v. Then the number of all spanningtrees of G is given by jAjuv(�1)(u+v) the value of the determinant obtained from the following matrixby removing row u and olumn v5.A = 26666664 deg(v1) �a12 �a13 : : : �a1;n�a21 deg(v2) �a23 : : : �a2;n: : :�an;1 �an;2 : : : : : : deg(vn)
37777775 (33)By extending the Matrix Tree theorem to ontinuous-valued A and letting the weights Wuv playthe role of auv, one an proveTheorem 5 Let P (E) be a distribution over tree strutures de�ned byP (E) / W0 Yuv2EWuv (34)Then its normalization onstant Z is equal toZ = W0 XE Yuv2EWuv = W0jQ(W )j (35)with Q(W ) being the (n� 1)� (n� 1) matrixQuv(W ) = Qvu(W ) = � �Wuv 1 � u < v � n� 1Pnv0=1Wv0v 1 � u = v � n� 1 (36)This shows that summing over the distribution of all trees, when this distribution fators aordingto the trees' edges, an be done in losed form by omputing the value of a order n�1 determinant,operation that involves O(n3) operations.To optimize the Lagrange multipliers, we must ompute derivatives of J(�) or, equivalently,derivates of the log-partition funtions with respet to �. It is well known that suh derivatives leadto averages with respet to the distribution in question (for details see Appendix A). In our ase,for example,� logZs��t = syt < logT (XtjEs; �s) >P (Es) = syt 24ws0(Xt) +Xu 6=vwsuv(Xt)W suvMsuv35 (37)whereMs is a linear funtion of Q�1(W s) given in Appendix A. Inverting the matrix Q(W ) is O(n3)and this operation an be done one before the summations in equations (37). Thus, omputingthe derivatives of the normalization onstant w.r.t all �t takes O(n3 + n2T ) operations and O(n2)extra spae.5Note that A as a whole is a singular matrix. 14



Finally, to obtain the deision rule for any new example X we must ompute averages of thelog-likelihood ratio with respet to the (marginal) MRE distribution P (E1)P (E�1):ŷ = sgnn PE1;E�1 P (E1)P (E�1) log T (XjE1;�1)T (XjE�1;��1) o (38)= sgn� w10(X)� w�10 (X) + <Xuv2E1w1uv(X)>P (E1) � <Xuv2E�1w�1uv (X)>P (E�1) 	 (39)where we have omitted a possible bias term b. The required averages an be omputed analogouslyto Eq. (37) yielding e.g. <Xuv2E1w1uv(X)>P (E1)=Xu 6=vw1uv(X)WuvM1uv (40)where M1uv is the same matrix as in Eq. (37) and has been already omputed in the last step of thetraining algorithm. Classifying a new data point therefore requires only roughly O(n2) operations.3.5 MRE distributions over tree strutures and parametersHere we desribe briey how to �nd the MRE distribution over both strutures and parameters,i.e., P (E1; �1; E�1; ��1). We assume a fatored prior P0(�1)P0(��1) over the parameters and as be-fore a uniform prior over the strutures. In addition to the parameter independene and modularityassumptions used earlier, we must assume that the priors P0(�s); s = 1;�1 are likelihood equivalent(i.e. they assign the same value to models having the same likelihood for all data sets). In this ase,the priors over parameters are fored to be Dirihlet [9℄ and de�ned in terms of a set of equivalentmarginal ounts ~Nsuv(xu; xv) satisfyingXxu ~Nsuv(xu; xv) = ~Nsv (xv) Xxv ~Nsuv(xu; xv) = ~Nsu(xu) Xxuxv ~Nsuv(xu; xv) = ~Ns (41)Beause the prior over parameters is independent of the struture, the MRE distribution fator-izes as P (Es; �s) = 1ZsP0(�s)ePt s�tyt log T (XtjEs;�s) (42)To evaluate the partition funtion Zs, the parameters �s an be analytially integrated out beforethe summation over strutures. The resulting marginal distribution over tree strutures is similarto equation (35) P (Es) = W s0Zs XE Yuv2EW suv (43)with the fators W s are now funtions of both � and Dirihlet distribution parameters ~Ns (seeappendix B for exat expression).The lassi�ation rule is also similar in form to equation (39) with the terms ws depending on�, the data, and the equivalent ounts as desribed in Appendix B.3.6 General Bayes netsA Bayes net with given struture an be parametrized by the set of onditional distributionsP (vjpa(v) = xpa(v)) of a variable given a on�guration of its parents. A disriminative MRE solutionan be found for the parameter distribution P (�1; ��1) assuming omplete observations. Findingthe MRE distribution over strutures is, however, unlikely to be feasible for other than trees (.f.[5℄). 15
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Figure 7: ROC urves for the ME disriminative lassi�er (full line) and the ML lassi�er (dashedline) for the splie juntion lassi�ation problem. The minimum test errors are 12.4% and 14%respetively.
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(a) (b)Figure 8: Logarithmi weights wuv versus mutual informations Iuv for lass 1 (a) respetive �1 (b).The square in position uv; u < v represents wuv while its symmetri, vu represents Iuv . Largervalues appear more bak in the �gures.3.7 ExperimentsWe tested our model in the �xed parameter version on the detetion of DNA splie sites andompared its performane to the performane of a lassi�er using a Maximum Likelihood (ML) treefor eah lass. In both ases, the tree parameters � were the ML parameters for the orrespondinglass (empirial lass-onditional marginals).The domain onsists of 25 variables representing sites around a (hypotheti) splie juntion.The test set had 400 examples split equally between the two lasses; the training set onsisted of4724 examples, about a fourth being positives ones. For simpliity, we used a �xed margin  = 4,the largest value that allowed perfet lass separation. The number of �'s that are nonzero in thisexample is 61 (out of 400) suggesting a performane level of about %15 aording to Lemma 1. TheROC urves for the two lassi�ers are ompared in �gure 7. MRE distribution over tree struturesis superior to a pair maximum Likelihood trees, although the parameter values are idential. Thetest set error is 14.0% for the ML lassi�er and 12.3% for the MRE method. The training error is0.5% for the ML lassi�er and zero for the disriminative one indiating that the MRE method isresistant to over�tting.Figure 8 ompares the \edge weights" for the two lassi�ers. These edge weights reet thepreferenes assigned to tree strutures in the MRE distribution or in the (single) lass-onditionalmaximum likelihood (ML) tree. Sine the estimation riterion di�ers in the two ases, the most16



likely tree in the MRE solution does not in general equal the ML tree struture. Figure 8a) displaysw1uv = log(W 1uv) fators orresponding to eah edge uv in the MRE distribution for lass 1 as well asthe respetive mutual information values I1uv . Sine both matries are symmetri, one an displayboth sets of values in a 25 by 25 square: the upper left half represents the ME weights whereas thelower right half of the square shows the mutual information. Figure 8,b shows the same results forlass -1. Note that summing w1uv or I1uv aross the edges of a partiular tree pertains diretly to thelog-probability of the tree and thus the omparison is meaningful 6.The �gure shows that there are relatively few edges with large weights on both sides of thediagonal. This is partiularly relevant for the disriminative model of the positive examples, sineit shows that the MRE distribution deays rapidly around its peak. The maximum W 1uv is morethan 103 times the next largest value, learly separating edges that are disriminative and thosewhose inlusion or exlusion has little e�et on disrimination. This ontrast is understandably lesspronouned for the negative examples that represent a diverse olletion of spurious splie sites.A seond important remark is that neither �gure 8,a nor 8,b are symmetri w.r.t the diagonal. Inother words, not all pairs of variables that exhibit high mutual information are also disriminative.Note for example that the subdiagonal band showing that adjaent variables are informative ofeah other is almost ompletely e�aed under disriminative training. Our method brings out thedisriminative struture of the data, whih is di�erent from its struture as a density estimator.4 Anomaly detetionIn anomaly detetion we are given a set of training examples representing only one lass, the\typial" examples. We attempt to apture regularities among the examples to be able to reognizeunlikely members of this lass. Estimating a probability distribution P (X j�) on the basis of thetraining set fX1; : : : ; XT g via the standard maximum likelihood (or analogous) riterion is notappropriate sine there is no reason to further inrease the probability of those examples that arealready well aptured by the model. A more relevant measure involves the level setsX = fX 2 X : logP (X j�) �  g (44)These level sets are used in deiding the lass membership, even in the ontext of ML parameterestimation. We therefore estimate the parameters � to optimize an appropriate level set. As before,we ast this problem as MRE:De�nition 3 Given a probability model P (X j�), � 2 �, a set of training examples fX1; : : : ; XT g,a set of margin variables  = [1; : : : ; T ℄, and a prior distribution P0(�; ) we �nd the MREdistribution P (�; ) suh that minimizes D(PkP0) subjet to the onstraintsZ P (�; ) [ logP (Xtj�)� t ℄ d�d � 0 (45)for all t = 1; : : : ; T .Note that this is again a MRE projetion problem whose solution an be obtained as before.The hoie of P0() in P0(�; ) = P0(�)P0() is not as straightforward as before sine eah margint needs to be lose to ahievable log-probabilities. We an nevertheless easily �nd a reasonablehoie e.g. by relating the prior mean of t to some ��perentile of the training set log-probabilitiesgenerated through ML or other standard parameter estimation riterion. Denote the resulting valueby l� and de�ne the prior P0(t) as P0(t) =  e� (l��t) for t � l�. In this ase the prior meanof t is l� � 1=.6The omparison is done upto a saling fator and an additive onstant.17
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Figure 9: a) Distribution of training set log-likelihoods for the MRE model (solid line) or the Bayesmodel (dashed-line). b) ROC urve for the two models on an independent test set.We have veri�ed experimentally for a simple produt distribution that this hoie of prior to-gether with the MRE framework leads to a real improvement over standard (Bayesian) approah.Figure 9 illustrates the bene�t of the MRE approah for disriminating between true and spurioussplie sites. The examples were �xed length DNA sequenes (length 25) and we used the followingprodut distribution of simple multinomials:P (X j�) = 25Yi=1Pi(xij�i) = 25Yi=1 �xiji (46)where X = fx1; : : : ; x25g, xi 2 fA;C; T;Gg, and Pxi �xiji = 1. The model parameters f�xijig wereestimated on the basis of only true examples (7000). The estimation riterion was either Bayesianwith an independent Dirihlet prior over eah omponent distribution f��jig or through the relativeentropy projetion method with the same prior. Figure 9a) indiates, as expeted, that the trainingset log-likelihoods from the MRE method are more uniform and without the long tails7. Thisdi�erene leads to improved anomaly detetion as shown by the ROC urve in Figure 9b). The testset onsisted of 1192 true splie sites and 3532 spurious ones.We expet the e�et to be more striking in the ontext of more sophistiated models suh asHMMs that may otherwise easily apture spurious regularities in the data. In the next setion wedesribe how suh models an be used eÆiently within the MRE framework.4.1 Extension to latent variable modelsIn the presene of latent variables (missing information) we an no longer use the above formula-tion diretly. This arises beause logP (Xtj�) does not deompose into a sum of simple omponents.We an, however, ahieve an eÆient lower bound solution. If we letXh be the set of latent variables,we an resort to the following variational lower bound:logP (Xtj�) �XXh Qt(Xh) logP (Xt; Xhj�) +H(Qt) (47)where H(Qt) is the entropy of the Qt distribution. A separate transformation has to be introduedfor eah training example. Note that the lower bound is reasonable in this ontext sine the objetive7To ompute these log-likelihoods from the MRE method, we used the MRE solution as the posterior distributionover the parameters. This is suboptimal for the MRE method given that the riterion is slightly di�erent but suÆeshere for the purposes of illustration. An analogous �gure with minor di�erenes ould be omputed on the basis ofR P (�) logP (Xj�)d� for the two methods. In this ase, the �gure would be suboptimal for the Bayesian approah.18



is to guarantee that all (or most) training examples have likelihoods above some margin threshold.Whenever the lower bound exeeds the threshold, so does the original likelihood.The MRE distribution P (�; ) is obtained under the following onstraints:Z P (�; )"XXh Qt(Xh) logP (Xt; Xhj�) � t # d� +H(Qt) � 0 (48)whih are of the same form (linear) as before. Note that we have made an additional assumptionthat Qt(Xh) is funtionally independent of the parameters �. This assumption guarantees that theMRE distribution P (�; ) an be omputed eÆiently for a large lass of probability models suhas mixture models and HMMs. The loss in auray due to this simplifying assumption vanisheswhenever the (marginal) MRE distribution P (�) beomes peaked. In priniple, this means that wean always �nd the single most disriminative setting of the parameters even with the variationalbound. Roughly speaking, we inur a loss only relative to the exat MRE approah.The overall solution to the MRE problem is no longer unique, however, but we an �nd a loallyoptimal solution iteratively as follows:Step 1. Fix fQt(Xh)g and �nd the MRE distribution P (�; ) as beforeStep 2. Fix P (�; ) and let Qt(Xh) / exp�Z P (�) logP (Xt; Xhj�)d�� (49)Both steps an be omputed eÆiently for a large lass of models suh as HMMs assuming the priorP0(�) is Dirihlet and fatorizes aross the parameters. More generally, the prior should be theonjugate prior satisfying the parameter independene assumption of [6℄ (see also [9℄).The iterative algorithm atually onverges in the sense de�ned by the following theorem:Theorem 6 If we let P (n)(�; ) be the MRE distribution after n steps of the iterative algorithmdesribed above, then D(P (1)kP0) � D(P (2)kP0) � : : : � D(P (n)kP0) (50)The theorem is easy to understand as follows: eah time we optimize any of the Qt(Xh) dis-tributions, we maximize the assoiated lower bound. This maximization relaxes the orrespondingonstraint on the MRE distribution and allows the relative entropy to be dereased.5 Unertain or inompletely labeled examplesExamples with unertain labels are hard to deal with in any standard disriminative lassi�ationmethod, probabilisti or not. Note the di�erene between labels that are inherently stohasti andthose that are preditable but merely missing (the ase onsidered here). Unertain labels an behandled in a prinipled way within the maximum entropy formalism: let y = fy1; : : : ; yT g be a setof binary variables orresponding to the labels for the training examples. We an de�ne a priorunertainty over the labels by speifying P0(y); for simpliity, we an take this to be a produtdistribution P0(y) =Yt Pt;0(yt) (51)19



where a di�erent level of unertainty an be assigned to eah example. We may, for example,set Pt;0(yt) = 1 whenever yt is observed and Pt;0(yt) = 0:5 if the label is missing. The MREsolution is found by alulating the relative entropy projetion from the overall prior distributionP0(�; ; y) = P0(�)P0()P0(y) to the admissible set of distributions P (no longer diretly funtionof the labels) that are onsistent with the onstraints:Xy Z�; P (�; ; y) [ ytL(Xt;�)� t ℄ d� d � 0 (52)for all t = 1; : : : ; T . The prior distribution P0() in this formulation enourages deision rules thatahieve large lassi�ation margins for the examples (most of the probability mass is assigned tovalues t � 0). This preferene towards large margins reates dependenies between the (a priori)unknown labels and the parameters � of the disriminant funtion. Consequently, even unlabeledexamples will ontribute to the (marginal) MRE distribution P (�) that spei�es the deision rule.We may alternatively view the MRE formulation as a transdution algorithm [22℄ whose objetiveis to determine the lass labels for a set of unlabeled training examples.While this provides a prinipled framework for dealing with unertain or partially labeled ex-amples, the MRE solution itself is not in general feasible to obtain. For example, in the ontextof support vetor mahines (for an alternative approah see [2℄), the MRE distribution over thelabels will be (roughly speaking) a Boltzmann mahine and therefore not manageable in general viaexat alulations. We an nevertheless employ eÆient approximate methods to obtain an iterativealgorithm for self-onsistent probabilisti assignment of the unertain labels.5.1 Feasible approximationTo be able to deal with unertain labels in a feasible way, we solve instead the following MREproblem with additional onstraints:De�nition 4 Given a parametri disriminant funtion L(X;�), a set of margin variables  =[1; : : : ; T ℄, a set of lass variables y = [y1; : : : ; yT ℄, and a prior distributionP0(�; ; y) = P0(�)"Yt P0(t)# "Yt P0;t(yt)# (53)we �nd a onstrained MRE distribution P (�; ; y) of the form P (�; )P (y) that minimizes D(PkP0)subjet to the onstraintsXy Z�; P (�; )P (y) [ ytL(Xt;�)� t ℄ d� d � 0 (54)for all t = 1; : : : ; T .We may view this as a type of mean �eld approximate sine the MRE distribution is foredto fatorize to make the problem tratable. The solution is no longer unique but an be obtainedthrough the following two-stage iterative algorithm:Step 1. Fix P (y) and let pt = Py P (y)yt. We �nd P (�; ) as the MRE solution subjet to theonstraints Z�; P (�; ) [ ptL(Xt;�)� t ℄ d� d � 0 (55)Note that sine the prior fatorizes aross f�; g the MRE solution fatorizes as well, i.e.,P (�; ) = P (�)P (). 20



Step 2. Fix the marginal P (�) obtained in the previous step and �nd the MRE solution P 0(y; )subjet to Xy Z P 0(y; ) �Z� P (�) [ yt L(Xt;�)� t ℄ d�� d � 0 (56)for all t. Update P (y)  (1 � �)P (y) + �P 0(y) or simply set pt  (1 � �)pt + �p0t wherep0t =Py P 0(y)yt.The fat that we inlude P () also in the seond step is neessary sine any adjustments tothe labels must be ompensated by an inreased margin. The distribution P (y) is updated viarelaxation to ensure a more ontrolled adjustment of the labels; any large hange in P (y) is likely toindue a signi�ant subsequent modi�ation to the solution of the �rst step. Although the iterativealgorithm remains stable even if larger hanges are made, we believe the relaxation update leadsto better loal optima. Moreover, sine the admissible set is onvex and beause the minimizationobjetive (relative entropy) is also onvex, the relaxation update always yields a hange in theappropriate diretion. The solution to either step is well de�ned and an be obtained in losedform assuming the problem is tratable when we have omplete information about the labels. Theiterative algorithm is well-behaved in the sense of the following theorem:Theorem 7 Let P (n)(�; ; y) = P (n)(�; )P (n)(y) be the onstrained MRE solution after n itera-tions. Then for all 0 � � � 1, where � is the step size used in the algorithm, we haveD(P (1)kP0) � D(P (2)kP0) � : : : � D(P (n)kP0) (57)The result holds also after either step of the two-stage iterative algorithm.5.2 Example: support vetor mahinesHere we provide a preliminary numeral assessment of how the above algorithm is able to make useof unlabeled examples in the ontext of prediting DNA splie sites with support vetor mahines.A detailed formulation of the algorithm for SVMs an be found in Appendix C. We generated threetraining sets of examples orresponding to whether 1) all the labels were known, 2) labels wereprovided only for about 10% randomly hosen examples and the remaining 90% were unlabeled butavailable, and 3) only the 10% labeled examples were used for training. The full training set in thisase onsisted of 500 true DNA splie sites and 500 spurious ones (false examples). The exampleswere �xed length (25) strings of DNA letters (A,C,T,G) whih were translated into bit vetors usinga four bit enoding (e.g. A! [1000℄). Figure 10 gives ROC urves based on an independent test set(1192 true examples and 3532 false examples) for SVMs trained with one of the three training sets.Note that when the training set is fully labeled the algorithm redues to the standard formulation.The �gures show that even the approximate formulation8 is able to reap most of the bene�t fromthe unlabeled examples. The �nding is also robust against the hoie of the kernel funtion as isseen by omparing Figure 10a) and 10b). The �ndings are preliminary.6 DisussionWe have presented a general approah to disriminative training of model parameters, strutures,or parametri disriminant funtions. The formalism is based on the minimum relative entropy prin-iple reduing all alulations to relative entropy projetions. Quite remarkably, we an eÆiently8In our experiments, � = 0:1 and the iterative algorithm was run for 10 iterations. The bene�t may vary as afuntion of � and the number of iterations, partiularly if � is too large. The prior probability P0(y) =Qt P0;t(yt)over the labels were set to 0 or 1 when the label for yt was observed and to 0:5 for the unlabeled ones.21
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This lemma an be easily proved by equating jQ(We�f )j with its de�nition (36) and then takingderivatives of both sides. Then, remembering that for any matrix A with elements Aij�jAj�Aij = jAj(A�1)ij (60)one obtains, after onveniently grouping the terms, the result of Lemma 5:Lemma 5 Let P (E) and Q be given by equations (34) and (36) respetively, M be a symmetrimatrix with 0 diagonal de�ned byMuv = Mvu = � 12 [(Q�1)uu + (Q�1)vv � 2(Q�1)uv)℄; u; v < n12 (Q�1)vn v < u = n (61)and f a funtion of the struture E satisfying f(E) =Puv2E fuv. Then the average of f under Pis < f(E) >P = XE P (E)f(E) = nXu;v=1 fuvWuvMuv : (62)B Integrating over the parameters P (Es; �s)Let us de�ne Nsuv(xu; xv) = Xt:v=xv;u=xus�tyt Nsuv(xv) = Xt:v=xv s�tyt (63)�suv = Yxu Yxv �(Nsuv(xu; xv) + ~Nsuv(xu; xv))�( ~Nsuv(xuxv)) (64)�sv = Yxv �(Nsv (xv) + ~Nsv (xv))�( ~Nsv (xv)) (65)With these notations we an express W suv and W s0 in equation (43) asW suv = �suv�su�sv and W s0 = �( ~Ns)�(Ns + ~Ns) Yv2V �sv (66)In the above, �() denotes Euler's Gamma funtion. Note that the \ounts" Nsuv an be eitherpositive or negative, so that the variables � may not be de�ned for arbitrary values of �. All theabove expressions exist, however, for � = 0; in this ase W suv =W s0 = 1.The lassi�ation rule is given by equation (39) with wsuv(X); ws0(X) rede�ned aswsuv(X) = 	[Nsuv(xuxv) + ~Nsuv(xuxv)℄�	[Nsv (xv) + ~Nsv (xv)℄�	[Nsu(xu) + ~Nsu(xu)℄ (67)ws0(X) = Xv2V 	[Nsv (xv) + ~Nsv (xv)℄�	[Ns + ~Ns℄ (68)with 	 representing the derivative of the log-Gamma funtion:	(z) = ddz log �(z) (69)Note the similarity with the �xed parameter ase: the lassi�ation rule is still an average of alog-likelihood di�erene; the 	 funtions arise from averaging the log-likelihood under the MREdistribution of the � parameters. 24



C Unertain labels and support vetor mahinesWe provide here more details about the two step feasible algorithm for dealing with partial-ly labeled examples in the ontext of support vetor mahines. We start by de�ning the priordistribution over all the parameters asP0(�; b; ; y) = P0(�)P0(b)P0()P0(y) (70)where P0(�) is N (0; I) and P0(b) approahes a non-informative prior. By the non-informative priorwe mean here a limit of P0(bjk) = N (0; I � k) as k ! 1. The prior over the labels is assumed tofatorize aross the examples, i.e., P0(y) =Yt P0;t(yt) (71)where, for example, we an set eah P0;t(yt) = 1 whenever the orresponding label yt is known andP0;t(yt) = 0:5; yt = �1 for all unlabeled examples. We use here P0() from eq. (9); the alternativeswere disussed in the text.Let now pt =Py P0(y)yt =Pyt P0;t(yt)yt, where pt is the mean value of the label. With theseinitializations, the two step algorithm is given as follows:Step 1. We �x fptg and �nd the MRE solution for P (�; b; ). Based on Lemma 3 P (�; ) and P (b)an be found separately. For P (�; ) the the Lagrange multipliers are obtained by maximizing(analogously to Theorem 2):J�;(�) =Xt [�t + log(1� �t=) ℄� 12Xt;t0 �t�t0ptpt0(XTt Xt0) (72)subjet to the onstraint thatPt �tpt = 0. This is no more diÆult to solve than the originalSVM optimization problem with hard labels.As for the bias term b, we only need its mean relative to the MRE solution, i.e., �b = R P (b)b db.This an be omputed as the limit of the means orresponding to proper priors P0(bjk) (eahMRE solution P (bjk) based on P0(bjk) is a Gaussian with a well-de�ned mean). We omit thealgebra and instead provide the answer in terms of the following averages:�Lt = Z P (�) (�TXt) d� =Xt0 �t0pt0(XTt Xt0) (73)�t = Z P () t d = 1� 1� �t (74)The desired mean �b is now given by�b = argmaxb nmint ( pt(�Lt + b)� �t )o (75)This setting optimizes the most ritial onstraints of eq. (55). In other words, �b maximizesthe minimum of the left hand sides of eq. (55).Step 2. To update the MRE distribution over the labels, we �x P (�; b) and �nd P 0(y; ) subjet toXy Z P 0(y; ) Z�;b P (�; b) � yt(�TXt + b)� t � d�dbd= Xy Z P 0(y; ) � yt(�Lt +�b)� t � d � 0 (76)25



Analogously to the �rst step, the Lagrange multipliers are found by maximizing the orre-sponding �logZ (algebra omitted):Jy;(�0) =Xt (�0t + log(1� �0t=)� log Xyt=�1P0;t(yt)e yt�0t(�Lt+�b) ) (77)Note that the Lagrange multipliers here are not tied and an be optimized independently foreah t. This happens beause we have assumed that the prior distribution fatorizes aross theexamples and beause the disriminant funtion does not tie the variables together. Eah ofthe one dimensional onvex optimization problems are readily solved by any standard methods(e.g. Newton-Raphson). The resulting MRE distribution over the labels, P 0(y) is given byP 0(y) =Yt P 0t (yt) (78)where P 0t (yt) = 1ZtP0;t(yt) e yt�0t(�Lt+�b) (79)We an easily ompute p0t =Pyt P 0t (yt)yt from this result. Finally, the updatespt  (1� �)pt + �p0t (80)omplete the seond step.The deision rule for a new example X is given byŷ = sign Xt �tpt(XTt X) + �b! (81)where f�tg and �b are the solutions to the �rst step of the iterative algorithm.
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