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Abstract—Modern network security research has demonstrated a clear
necessity for open sharing of traffic datasets between organizations - a need
that has so far been superseded by the challenges of removing sensitive
content from the data beforehand. Network Data Anonymization is an
emerging field dedicated to solving this problem, with a main focus on re-
moval of identifiable artifacts that might pierce privacy, such as usernames
and IP addresses. However, recent research has demonstrated that more
subtle statistical artifacts may yield fingerprints that are just as differen-
tiable as the former. This result highlights certain shortcomings in cur-
rent anonymization frameworks; particularly, ignoring the behavioral id-
iosyncrasies of network protocols, applications, and users. Network traffic
synthesis (or simulation) is a closely related complimentary approach that,
while more difficult to execute accurately, has the potential for far greater
flexibility. This paper leverages the statistical-idiosyncrasies of network be-
havior to augment anonymization and traffic-synthesis techniques through
machine-learning models specifically designed to capture host-level behav-
ior. We present the design of a system that can automatically learn models
for network host behavior across time then use these models to replicate
the original behavior, to interpolate across gaps in the original traffic, and
demonstrate how to generate new diverse behaviors. Further, we measure
the similarity of the synthesized data to the original, providing us with a
quantifiable estimate of data fidelity.

I. INTRODUCTION

Open access to quality data is the foundation upon which
nearly all modern engineering research disciplines are built
upon. The availability of openly distributed and standardized
datasets is a prerequisite for scientific measurements, verifica-
tions, and comparisons of existing technologies. In the field
of networking research, however, creating publicly releasable
datasets is met with many hurdles. First and foremost, as an
information-exchange medium, network data contains the per-
sonal communications of individuals, and use such data carries
privacy concerns. Furthermore, the scale of typical enterprise
networks implies a scale of thousands, if not tens of thousands
of users, which has in the past made artificial simulation diffi-
cult to achieve.

This paper presents a new method for synthesizing network
traffic that can quantifiably mimic real-user behavior. While
different types of network traffic generators have been revealed
in the past, each serving distinct roles, to the best of our knowl-
edge, ours is the first system which was designed to agnostically
mimic user behavior by automatically learning behavioral pro-
files per user, then using these profiles to synthesize new traffic,
in a way that is quantifiably similar to the original. In this man-
ner, our system learns to mimic the behaviors of a network as a
whole based upon individual members. This work is an exten-
sion of our recent results on behavior profiling and anonymiza-
tion using statistics-preserving anonymity by crowds [1].
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In the networking and security research community, there is
a significant need for publicly available research data. A 2008
survey by Mirkovic showed that out of a total of 144 papers pub-
lished in Special Interest Group on Data Communication (SIG-
COMM) and Internet Measurement Conference (IMC) in 2006
and 2007, 49 of these efforts had utilized network traces in their
evaluations, but only 10 had used publicly available datasets [2].
The cause was cited to be a lack of high quality standardized
and openly available data. It is because of this need that orga-
nizations such as OpenPacket [3], and the more recent U.S. De-
partment of Homeland Security-sponsored PREDICT [4], were
recently created — to facilitate the sharing of information be-
tween research organizations. However, sharing network data
has proven to be difficult, at best. A packet capture of all net-
work traffic, for example, would include web traffic showing
which websites users visited, where they transfer files to and
from, the locations of their email, banking, and other private ac-
counts, as well as any credentials not protected by encryption.
In addition to personal information, the disclosure of network
profiles such as vulnerability fingerprints in existing machines,
firewall policies, details of existing security services, location of
database and other sensitive servers, and network infrastructure
in general, can all lead to unintended negative consequences for
the releasing party. Network trace anonymization (NDA) is an
emerging field that is dedicated to solving this problem. NDA
technologies aim to facilitate the exchange of authentic network
data by providing the methods by which releasing parties can
remove any potentially sensitive artifacts from the data before-
hand. Ideally, the anonymized data can then be shared without
fear of breeching privacy. Network traffic synthesis, or simula-
tion, is a closely related complimentary approach which is more
difficult to execute but has the potential for greater flexibility.

In a recent paper, we proposed an anonymization system that
utilized machine-learning to train behavioral profiles for net-
work hosts. Then, by inter-mixing traffic among similarly be-
having members, we derive a pseudo statistical-mixed-net that
provided anonymity-by-crowds, while preserving the statistical
properties within the data [1]. In this paper, we extend this
work to demonstrate how, given these behavior profiles, syn-
thetic network data can be generated that mimic the proper-
ties of the original traffic. We show how this type of synthetic
data can be used for many purposes, such as producing realis-
tic network traffic, reshaping behavior, augmenting anonymiza-
tion technologies, as well as simulating networks. In addition to
anonymization, this technology has potential use in areas such
as network measurement, and simulation environments such as
the DARPA National Cyber Range (NCR) project [5].

The main novelty of our paper is the design of a system that
can automatically learn models for network host behavior across
time, then use this model replicate that behavior. We show how
to manipulate the models to generate diverse behaviors. Further,
we can measure the similarity of the new data to the original,
providing us with a quantifiable estimate of data fidelity.



II. BACKGROUND AND RELATED WORKS

Network-data generation has been an interesting research
topic for some time, for many reasons. Most focus on network
benchmarking, routing testing, firewall, IDS, and other security
related testing. As recently as 2008, great interest has emerged
in the network traffic anonymization (NDA) field which studies
the intersections between the needs of network measurement
and security community balanced with the privacy issues with
using data corresponding to human users. This section briefly
covers an overview of related topics in this specialized area, and
describes our novel approach in building systems which auto-
matically models real-user activity and mimics this in synthe-
sized data.

The 2008 survey by Mirkovic [2] and other similar stud-
ies [6], make clear the existence of a deficiency for publicly
available large network-traffic datasets. This need has resulted
in the introduction of organizations such as the U.S. Department
of Homeland Security-sponsored PREDICT [4] which aim to
facilitate the distribution of network data for research. Unlike
data used in other disciplines, raw network traffic data often
include sensitive information that cannot be released without
breech of user privacy. A packet capture of all network traffic,
for example, would include web traffic showing which websites
users visited, where they transferred files to and from, the lo-
cations of their e-mail, banking, and other private accounts, as
well as any credentials not protected by encryption. In addition
to personal information, the disclosure of network profiles such
as vulnerability fingerprints in existing machines, firewall poli-
cies, details of existing security services, location of database
and other sensitive servers, and network infrastructure in gen-
eral, can all lead to unintended negative consequences for the
releasing party.

In a recent paper, we proposed an anonymization system that
utilized machine learning to learn unique behavioral profiles for
each host on a network, then by inter-mixing the traffic amongst
similarly behaving hosts, we obtain a pseudo statistical mixed-
net which provides anonymity by crowds, while preserving the
useful statistical properties of the individuals. In this compli-
mentary paper we study the topic of statistical-behavior-based
traffic synthesis for network data generation. We augment mod-
ified data with synthetic models, and aim to further improve
NDA by fuzzing the original data to dilute it of sensative infor-
mation.

The most well known examples in artificial traffic generation
come from the network measurement disciplines. Often, net-
work engineers need to test things such as routing paths, load
balancer implementation, firewall policies, and appliances used
to maintain the network. In these disciplines the goal is to be
able to generate a wide range of data at a fast pace. Breakpoint
Systems [7] and Spirent [8] are examples of this role. Traffic
generators from these companies can send 40 Gb/s of data at
a router, hitting every port, using every protocol, setting every
TCP/IP flag, and any enumerations thereof. The second most
commonly observed need for traffic generation is for security
testing. Some of the previously mentioned systems are capable
of generating exploit traffic to test IDS implementations under
heavy load. This area is filled with specialist tools that test spe-
cific security problems. These tools generate traffic as sort of a a
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by-product to their main intended use, and in that sense they can
be considered malicious traffic generators, to an extent. Well
known tools in this area are NMap port scanner [9], the Nes-
sus web vulnerability scanner [10], the Metasploit exploitation
framework [11], and the list goes on for very long.

In the area of precision network problem diagnosis, special-
ized packet crafting tools include hping [12] and Nemesis [13].
Ostinato is a GUI-based packet assembler that aims to work like
Wireshark [14] in reverse. Network Expect [15] is a powerful
tool that allows one to craft and manipulate complicated TCP/IP
sessions using a high level scripting language. The difference
between these methods and ours is that they serve to serve to
generate specific classes of data for specific roles and do not at-
tempt to mimic existing network traffic behavior and synthesize
data for the purpose of simulation.

In 2008, a broad agency announcement was sent out by
DARPA describing the goal to create a national testing plat-
form for cyber-warfare technologies. From this emerged the
National Cyber Range (NCR) project [5], a multi-million dol-
lar effort to build a system which simulates a pseudo-Internet
with thousands of nodes sending and receiving realistic look-
ing traffic. Our proposed method fits well into this category as
a technology which can be deployed on an actual network and
used to automatically learn host behaviors, then the statistical
models are transferred to a separate network where the synthe-
sis algorithms mimic the network hosts that they have learned
to emulate for network simulation purposes.

III. NETWORK TRAFFIC MODELS

Given a packet capture from an enterprise network, it’s very
likely that one can glean content signatures that uniquely iden-
tify specific individual hosts. For example, by observing web
traffic we might notice specific usernames being transmitted
from a machine to a foreign web server. A collection of such
signatures can distinguish one user from another and help form
a content-based fingerprint for that user. A related question
would then be, is it possible to obtain a signature for a user
based solely on statistical information (or “behavior”) repre-
sented by meta-data: by tracking rates of packet exchanges, fre-
quencies, and port activities? In a recent paper describing our
IMPACT anonymization framework [1] we demonstrated that
this is indeed possible. With significant accuracy we can iden-
tify users based entirely on this meta-data, without payload con-
tent. In this prior work our algorithms were used to cluster sim-
ilarly behaving hosts in an offline transform that simulates the
effects of a statistics-preserving anonymous VPN with multiple
in and multiple out aggregation points. In this paper, we extend
our models to perform data generation for simulation. Here,
our focus is on synthesizing network data that is faithful to the
trained behavioral models, in order to replicated targeted behav-
ior. Our algorithm operates on data in the form of Netflow-like
statistics. Specifically, we need the following information:

{TIME, SRC, SRCPORT, DST, DSTPORT, #PKTS}

A record for a user’s behavior activity would contain hun-
dreds to thousands of these entries, representing behavior
throughout the day. Given the port numbers we can estimate
which services the user executed. This information is easily
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Fig. 1. Log-scale port histograms. The first half of the x-axis (z < 0) repre-
sents Received-On ports; the second, Sent-To ports. Notice the distinct behav-
ioral patterns.

extracted from Cisco Netflow records as well as packet traces.
Measurable traffic data reflect a complex interaction of different
inputs throughout the many layers of the TCP/IP protocol stack,
as well as the state of the machine: a user clicks on a URL on a
webpage, this causes his browser to dispatch a message to a for-
eign server in the form of an HTTP request, which is transmitted
in a TCP stream, that is broken into independent IP datagrams,
which are encapsulated in Ethernet frames, and then passed to
the local gateway for routing. At each of these stages/layers,
measurements of quantifiable behavior, such as volume and ve-
locity of the packets, reflects user behavior as well as implicitly
taking into account the state of the network stack and the op-
erating system. In practice, the two most used all-purpose log-
ging methods are packet captures and Netflow captures. It is for
these reasons that we have chosen this statistical representation
to build our behavior models upon.

A. Statistical representations of behavior

Figure (1) shows the emergence of distinguishable behavior
when examining TCP statistics. This plot shows the log-scale
plot of the port-traffic histogram of two difference machines
on Columbia’s network, using traffic captured across the span
of one day. Here, we see a user machine making requests to
various service ports on a foreign machine, and receiving re-
sponses back on its ephemeral port. The server machine on the
right receives several distinct types of incoming requests and
makes three main types of outbound connections: a low-port
connection, most likely SSH, an outbound request for a port in
the range of 600, and replies on ephemeral ports (in this figure,
ephemeral ports are coalesced together on port 1025. Our sta-
tistical model is time-series analogue of this behavioral snap-
shot, one that tracks this system-behavior across time. Given
sufficient data sampling, our results show that very distinct sta-
tistical fingerprints of host-identity emerge. This reflects the
natural behavioral idiosyncrasies that lay hidden in plain-sight
within network data.
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Fig. 2. Protocol-transition Markov model diagram.

B. Protocol-Transition Markov Model

This section provides a concise description of our model and
focuses on our extensions. We refer the reader to our previous
paper for more detailed background and derivation details [1].
The PT-Markov model tracks the dynamics of a system as a
transition between specific application services represented by
distinguishable protocols (FTP — HTTP — SMTP, ...). Let s;
represent the “state” of the system at time-step t; representing
the active service at that time. Let x4 represent the distribution
on the volume of data observed at that time-step. The overall
interaction is modeled as a single-step Markov model:

T
p(x[s,0) = p(s1)p(z]s1) HP(8t|3t71)P($t|St)o ey

t=2

In the above equation, p(s|s;—1) models the likelihood of tran-
sitions betweens states (services) and p(z|s) is the “emissions”
model which represents the volume of data observed when the
system was in that state. For this volume distribution, we use a
scalar Gaussian mixture model of form:

p(x]0) = fj L e {W} )
P \/2mo? 207

A mixture model allows us to implicitly capture an estimate of
the different types of traffic exchanges observed under a partic-
ular protocol. For example, the model state for port 80 would
track a distribution for the size of websites visited; the state for
port 25 would track a distribution for the lengths of emails sent,
and so forth. The above emissions model can be easily esti-
mated using Expectation Maximization (EM). Since the value
of the state is known, estimation of the state-transition proba-
bility table T'(a,b) = p(s¢|s;—1) consists of simply tracking the
transition-frequencies as follows:

#(s; =0,8,_1=a)

T(a,b) = #(si=bsi1=a)+#(si #b,si1=a)

3

Here, #(s; = b,s,_1 = a) is a function that counts the number
of times state b follows state « in the training data (how many
times a user transitions from FTP to HTTP, for example).



Putting these together we obtain the full probability distribu-
tion s = {s1,...,s7},x ={z1,...,o7} and © = {01, ....0p }:

p(x0,80) =1 (4)
T M

p(x[s,0) = [[T(si-1]50) Y meilN (zel0s0).  (5)
t=1 =1

T, is the mixing proportion for the GMM emission model for
state s, and ZZ ms,i = 1,Vs. Further, for each emissions model
of any given state (whose parameter is represented by 6;), we
need to track table of source and destination port pairings. Let
b; ; = p(dst = j|src = 4), this tracks the distribution of source
ports which sent traffic to the destination port represented by
this state.Table b is estimated in the same manner as 7'(a,b).
This gives us a final set of parameters that make up the model

0= {baﬂ-lmu’lao-h"'7771\/17/1/]\/170-]W}-

C. Statistical features and implementation details

If we track transition of services based on port values then, in
theory, we could have a unmanageable 65,536 x 65, 536-sized
transition matrix. In practice, this is not the case given the de-
sign of TCP. There are three types of ports defined in TCP, re-
ferred to as the “well known,” “registered,” and “‘ephemeral”
ports. Each type of port has its own predetermined range.
“Well-known” ports extend from port O to port 1024 and are
used by very common network services, such as SSH. The “reg-
istered” range extends from 1,025 to 49,151 and is used by third
party applications; several Bittorrent clients uses port 6900, for
example. Finally all other services with no registered ports uses
a randomly selected port from the “ephemeral” range of 49,152
to 65,536. Given this implementation design, two things be-
come apparent. First, since the “well-known” range tend to ex-
perience more stable and dense traffic activity it is best to main-
tain a one-to-one feature mapping. That is, features relating
to SSH should not be combined with features relating to FTP.
Second, since the “ephemeral” range maintains no correlation
between the specific service and the port used, we can collapse
all activity in this range into a single bin.

Feature extraction for the “registered” range is not well de-
fined for several reasons. First, TCP/IP implementations are
not consistent across all platforms and overlapping port regis-
tration does occur. In addition, different operating systems will
allocate ports differently based on implementation, version, and
the third-party application behavior. Third, it is not a strict re-
quirement for services to use the ports that they are registered
to. In our work, we use a histogram to represent this range
and bin services based on their numerical proximity. If we
have 49,151 — 1,025 = 48,126 registered ports, and a 100-
bin histogram, we would accumulate activity for all ports be-
tween 1025-1124 into the first bin of the histogram, 1125-1224
in the second bin, and so on. The results in this paper were
derived from models using 20-bin histograms; chosen because
port activity is typically very sparse, absent the presence of port-
scanning activities. Most hosts typically use only a handful of
services (such as SMTP and HTTP); these reside mostly in the
“well known” range. Sparsity is particularly pronounced in the
“registered” range. Using large histograms would induce higher
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training-data requirements on the machine-learning algorithms
and makes accurate parameter estimation more ill-posed.

When measuring volume, network traffic can fluctuate dra-
matically for particular hosts even when measuring the same
services. This is due to the exchange of protocol-control and
data messages, which can induce a large variance in the statis-
tical model and reduce modeling accuracy. To compensate, we
use a log-squashing function on the volume feature. Let  repre-
sent the volume of activity that a particular service observes for
a given session, instead of measuring x in our models we mea-
sure log(z). Finally, our model tracks the distribution of port
pairings. For each destination port we track an independent set
of associated source ports from where we have observed traffic.
A problem arises when a state is encountered in testing that was
not seen in training, for example the appearance of HTTP traffic
where only SMTP was observed during training, then no entry
for that protocol would exist in the trained model. This is solved
by adding a single dummy state to represent all protocols unseen
during training, with a fixed-value set for both entry- and exit-
transition and emission probabilities. Full evaluations which
demonstrate that our model can distinguish between hosts with
upwards of 80% accuracy are provided in [1].

IV. SYNTHESIS

This section describes our algorithm for synthesizing Net-
flow from our statistical model and describe our extensions into
packet-trace synthesis. We describe the technical details of our
algorithm and provide full pseudocode for our functions.

A. Synthesizing Netflow

A few simple mathematical notations needs to be introduced
before describing the system. Let s ~ M(p1,pa,...,px) de-
note a random draw from a multinomial distribution speci-
fied by the normalized ratios parameter p = {p1,p2,...,DPk}-
Meaning, if we had an alphabet of k characters with the re-
spective probabilities of appearance p where ) . p; = 1, as
the number of draws grows the normalized proportion of se-
lected values approaches p. Let z ~ N (6;) denote sampling
a scalar quantity from the Gaussian mixture with parameter
0; = {11,001, Wim,0im} for mixture size m. The pseudo
code for our synthesis algorithm is given as follows:

SYNTHESIZE-NETFLOW (6,n)
1 return FEATURES-TO-DATA(SYNTHESIZE-STATS(6,n))

SYNTHESIZE-STATS(6,n)

1 > Use the frequency estimate to set the initial state
2 do~M(my, 7. T)
3 > Src/Dst port model used to estimate the pairing
4 SONM(bdo,l,bd0,27"')
5 zo~N(bs,) > Sampling the volume
6 > The rest is generated by induction
7 fort<1ton—1:
8 do dtNM(adhl,laadkl,%---7adt,1,k)
9 StNM(bdhl,bth,...)

10 €Ti ~ N(esf)

11 return [s,d,x]
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DATASET GENUINE SYNTHETIC RANDOM SAMPLED
WEST POINT BORDER  -4.1445E+10 -6.6203E+10 -8.3211E+10
NSA CAPTURE -5.2935E+10 -6.5322E+10 -6.6581E+10
LBNL ENTERPRISE -3.9719E+10 -6.8987E+10 -8.8169E+10
COLUMBIA UNIV. -3.0717e+10 -3.1106E+10 -5.5863E+10
GEORGE MASON UNIV. -1.3528E+10 -3.5596E+10 -3.7741E+10
UMICH. MERIT -2.0368E+10 -4.1504E+10 -5.2505e+10

TABLE I

LOG-LIKELIHOOD VALUES OF GENUINE, SYNTHETIC, AND RANDOMLY SAMPLED DATA. AVERAGE OF 10 TRIALS REPORTED.

Our synthesis method uses the service (port) transition prob-
abilities, learned during training, as parameters in a multino-
mial distribution. This is then used to sample the sequence of
service states in a traffic stream. This gives us a maximum-
likelihood transition between destination ports, in a series. For
each destination element, recall that we have a separate model
for the distribution of source ports in the b parameter. Given the
strong correlation between source and destination ports, joint-
modeling for source and destination pairings is redundant. That
is, we do not need to explicitly model p(s;,d;) as opposed to
our current p(s;|d;). Finally, volume information z; is drawn
from the Gaussian mixture parameter which is unique to each
service model 7. Function SYNTHESIZE-STATS simulates traf-
fic patterns using our feature representation. This result is then
converted back to actual port values by the following function.

FEATURES-TO-DATA(s,d, x)

1 [¢,d x|+ 0

2 n < LENGTH(s)

3 fort+1ton:

4 do s} < BIN-TO-PORTS(s;)
5 d; + BIN-TO-PORTS(d;)
6 x} + exp(zy)

7 return [s',d’,x']

BIN-TO-PORTS is a function that reverses the feature-
extraction transformation performed on the dataset during train-
ing and remaps the data from features back to their normal rep-
resentation. For example, d; = 1045 (a port-bin) then d; gets
remapped to a random ephemeral value between the range of
[49152,...,65536].

BIN-TO-PORTS(z, k)
1 ifx<1026: > Well known ports
2 then return z

3 elseif x > (10254 h) : > Ephemeral ports
4 then return RAND(1,...,16384) + 49151

5 z+<(49152—-1025)/h > Registered ports
6 return 1025+ (z — 1025) x h+ RAND(1,...,h)

B. Quantifying Similarity

We quantify the fidelity of the synthesized data by evaluat-
ing the log-likelihood of the generated data over the trained
models. A faithful reproduction would yield a higher log-
likelihood score than a poorly synthesized sequence. The likeli-
hood score is calculated using Equation (5) in the previous sec-
tion. log(p(s,x|0)) is used to avoid underflow errors. We com-

pare the log-likelihood scores of synthetic data with the original
(genuine) data as well as data piece together by randomly select-
ing subsets of other hosts’s original traffic. The latter case, rep-
resented in the table by “Random” is meant to represent a naive
way of simulating data. We chose to randomly sample real data
vs generating completely random data as this gives us a more
challenging performance baseline to compare against given that
we are using considering real traffic. Table (I) shows this like-
lihood comparison. All results are average of 10 randomized
trials. As expected, our synthesized data consistently exhibit
higher loglikelihood than the randomly sampled data, but lower
than the genuine set, which represents an upper bound. This
means that our method of synthesizing data is more accurate
than if one were to randomly piece together sessions of actual
traffic from other hosts in the same dataset.

C. Interpolation and Behavior Shaping

Behavior interpolation can be achieved by using a switched-
Markov-model. In this case, multiple behavioral models
are connected using a new external state variable. During
the chain of data synthesis, this variable switches between
multiple models probabilistically under a user-specific dis-
tribution. A simple method is to provide a ratio parame-
ter and sample from a multinomial, as was done previously.
SYNTHESIZE-MIXED-NETFLOW provides the pseudocode for
this procedure.

SYNTHESIZE-MIXED-NETFLOW (O, n,p, )

1 [s,d,x] <0

2 fort< 1to |n/c|:

3 do i ~ M(p)

4 [st,d¢,X¢] ¢ SYNTHESIZE-NETFLOW (6;,¢)
5 [s,d,x] < APPEND([s;,d¢,x¢])

6 t+—t+1

7 return [s,d, x|

Data synthesis using switched-models involves generating
blocks of traffic of length ¢ for each model, and combining
them. The result is that individual sections of the data will be
statistically similar to different profiles. In practice, ¢ can be
randomized at each iteration within the loop to avoid block pat-
terns. One might consider why ¢ should not be set as 1. The
reason for this is that the PT-Markov model measures transi-
tional probability. Therefore, if ¢ = 1, in the worst case where
we have two completely different behavior models, we can have
a thrashing scenario where the model-switch occurs after each
generated entry. This would, in theory, yield a result that is dis-
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Fig. 3. Behavior interpolation: Two clusters of behavior profiles are embedded
(’sos” and “web”) along with a new class of behavior (”S”) that interpolates
between these two models.

similar to both of the initial models. This thrashing effect is
mitigated if two models are similar to each other, meaning they
share a certain amount of overlap in ports used, thus allowing
the models to transition between each other more smoothly. In
practice, c can be adjusted based on the model similarities.

We use a visual similarity-measurement technique to quantify
the the fidelity of the synthesized data in this interpolation set-
ting. This is done by plotting points in a 2-D plane in a way such
that each point corresponds to a synthesized data sequence, and
the distances between points in this 2-D plane is proportional
to the distances between the corresponding traffic samples in
the original space. This technique is known as “embedding,”
and we have developed methods for network-data embedding
in our prior work [1]. In this experiment, we began with two
classes of behavior: one modeled after a web server (denoted
by “web”) and the other modeled after a general-computation
server (denoted by “sos”). A switched model is used to syn-
thesize samples of their interpolated behavior which we labeled
the “S” class. Visually, we can confirm that the synthesized
data indeed falls between these two distinct classes of behavior.
The exact method which we used to map this abstract behav-
ior manifold is known as Kernel Principle Component Analy-
sis (KPCA). The kernel used, in this case, is a variation of the
Probability Product kernel [16] derived specifically for the PT-
Markov model. For more details we refer the reader to our other
paper which describes this work in more detail [1].

D. Behavior Regression

In addition to behavior interpolation and shaping, we can
use these models to perform data regression to fill-in miss-
ing segments of data. Ideally, we would like the synthesized
data to match with the actual data along the boundaries so
that transition probabilities are properly maximized. While
this is not so difficult if we use a simple one-step Markov
model as the basic setting of our model uses, problems would
arise in the future if we were to extend our model and use
a multi-step Markov dependency assumptions where we have
p(s¢|S¢—1,8t—2,--.,5t—). In this case aligning the boundaries
becomes more difficult. Given this we propose a more general
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solution that can work for any variation on the behavior mod-
els. An efficient randomized algorithm is to simply generate
many solutions and pick the one that yields the highest likeli-
hood given the choice of probability model p(s,x|©) . This
takes the form of the following algorithm:

NETFLOW-REGRESSION(6,s,d, %, ¢)

n <— SOME LARGE NUMBER
D + [00,00,...,00] of length n
[s',d’,x'] <~ SYNTHESIZE-NETFLOW (6, n)
fort<4ton—c—4:
do Dy =i, 4lld —dif| + 5510 ||di = dj]] ..

i=t+c .
iy sllsi = st + LT [1si — sl
j < FIND-INDEX-OF(MIN(D))
[S*ad*7x*] A [83‘,..4,j+c—17 3‘,..4,j+c—17$3‘,..
return [s*, dx, x|

.7j+c—1]

O 001N N AW

Here a long sequence is synthesized and a sweep is per-
formed to find the indices where the boundaries are most simi-
larly aligned between the original data and the synthetic data, as
measured using a simple Euclidean norm. The values between
the boundaries within the synthetic data are then taken to patch
the missing gap of size ¢ within the original.

26910 4765 46 26910 4765 46
25156 62631 1186 25156 62631 116
80 7178 143

443 45850 222

80 31877 124

443 34456 72

25514 4390 133

443 59685 124

26136 58498 117

26772 60792 279

25161 4145 819 25161 4145 819

Fig. 4. Filling in missing data: (Left) Shaded entries represents missing data.
(Right) Synthesized entries.

Figure (4) provides an example of this regression method.
Here, we have pre-trained a model for a particular host. We
took a previously unseen segment of traffic from this host and
removed a portion of it, this is represented by the shaded values
on the left side of the figure. On the right side of the figure,
denoted in bold font, we show the sequence of entries generated
using our regression technique. Visually, we can confirm the
similarity between the real and synthesized data.

E. Extensions into Packet-Trace Synthesis

Our algorithm can generate statistical Netflow-like data, for
the form seen in Figure (4). This data encapsulates the statisti-
cal behavioral profile for any given host on a network. For many
research purposes this is all that is needed; in many network-
traffic measurement problems, for example, one is interested
in finding bottlenecks, heavy hitters, rates, and patterns among
traffic. Given that the synthesized traffic faithfully recreates the
same statistical distribution as the original traffic, this is suffi-
cient for many network research tasks that only require statis-
tics. However, certain, research requires packet data. Recently,
as an extension of this work, we have produced a systematic
method to generate full TCP sessions driven by these statistical
profiles. The synthesized packet streams contain fully session-
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izable packets. This implies many properties: proper TCP hand-
shakes, proper header values such as window-sizes, as well as
sequence numbers which are consistent to the path MTUs etc.
Our method is implemented as a custom pseudo-TCP software
stack. The size, duration, length, direction, timing and other sta-
tistical characters of newly generated packet sessions are spec-
ified by the synthesized statistical data, and the software stack
uses this information to craft packets which are consistent with
this profile and in a manner that conforms to RFC specifications
for TCP. The full details of this procedure will be explained in
a forthcoming paper.

FE. Memory cost and runtimes

The memory footprint of our models is small when imple-
mented using efficient underlying data structures. The largest
variable within the model is the transition-probabilities table
T. This size is upper bounded by the size of the list of po-
tential port features. In our implementation, we had 1025 well
known ports, 20 registered-ports bins, 1 ephemeral-port bin,
which yields a 1046 x 1046-sized transition table. If double pre-
cision floating point storage is used for all values then we have a
roughly 8Mb maximum storage requirement per model. How-
ever, the transition-probabilities table is typically very sparse,
because most hosts exercises only a small subset of potential
network protocols, unless a host is experiencing some sort of
port-scanning activity. In practice, for a typical host which uses
a dozen network services, the storage requirement using sparse-
matrix implementation is roughly 12Kb per host. This means
that on modern computing platforms it is easily possible to com-
pute profiles for networks containing tens of thousands of hosts
and keep all parameters in memory simultaneously.

Runtime in SECONDS

o 05 1 15 2
Data Length x 10"

Fig. 5. SYNTHESIZE-NETFLOW maintain O(n) growth. Large traffic set with
20,000 session entries took less than five seconds to synthesize.

Figure (5) shows the runtime of our synthesis algorithm. As
expected, our algorithm grows linearly in O(n). The experi-
ment shown in Fig. (5) shows runtimes for synthesizing the be-
havior of a host which had used 16 network services. The figure
shows that synthesizing a relatively large 20,000 element Net-
flow record required less than five seconds. Our computation
was performed on a 64-bit 2.66Ghz processor with six cores.
We believe our relatively un-optimized research-oriented code
can be improved in production settings and significantly higher
performance can be achieved.

V. CONCLUSION

In this paper we have described a model for representing net-
work behavior at the host level, for purposes of network traffic
simulation. We showed how to extend these models and use
them to synthesize realistic looking traffic that mimic the orig-
inal hosts. We demonstrated how to modify these models to
manipulate the resulting synthetic data, by adjusting the param-
eters, and interpolating between different models to simulate
adjustable new behavior. We further showed how to use our
models to perform data regression, to fill in “missing” gaps of
traffic. Methods to quantify the fidelity of these algorithms are
presented, and backed up by experiments which demonstrate fa-
vorable performance of our algorithm. To the best of our knowl-
edge, we have presented the first system that can deployed to a
foreign network environment, automatically learn the behavior
of hosts on the network, then synthesize new traffic which sim-
ulates this behavior on a separate network. at both the Netflow
and packet levels.

ACKNOWLEDGMENTS

We thank Prof. Angelos Stavrou and Brian Schulte at GMU,
and Kyle Creyts at Merit Network for providing us with valu-
able data (UMich. dataset.) This research was sponsored
by Department of Homeland Security, SPAWAR Contract No.
N66001-09-C-0080, Privacy Preserving Sharing of Network
Trace Data (PPSNTD) Program and a DURIP Instrumentation
grant from AFOSR (FA 99500910389).

REFERENCES

[1] Y. Song, S.J. Stolfo, and T. Jebara, “Markov models for network-behavior
modeling and anonymization,” Columbia University, Technical Report
cucs-029-11, June 2011.

[2] J. Mirkovic, “Privacy-safe network trace sharing via secure queries,” in
Proceedings of the 1st ACM workshop on Network data anonymization,
2008.

[3] R. Bejtlich, J. Cummings, and S. Parsell, “Openpacket.org: a centralized
repository of network traffic traces for researchers,” 2011. [Online].
Available: https://www.openpacket.org

[4] PREDICT, “PREDICT: The Protected Repository for the Defense of
Infrastructure Against Cyber Threats,” http://www.predict.org, 2011.
[Online]. Available: http://www.predict.org

[5] DARPA, “National Cyber Range (NCR) program,” DARPA-BAA-08-43,
2008.

[6] M. Alllman and V. Paxson, “Issues and etiquette concerning use
of shared measurement data,” in Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, ser. IMC '07. New
York, NY, USA: ACM, 2007, pp. 135-140. [Online]. Available:
http://doi.acm.org/10.1145/1298306.1298327

[7] BreakingPoint Systems, “Breakingpoint network traffic generation sys-
tems,” 2011. [Online]. Available: http://www.breakingpointsystems.com/

[8] Spirent, “Spirent hypermetrics 40/100g module,” 2011. [Online].
Available: http://www.spirent.com/

[9]1 G. Lyon, “Nmap - free security scanner for network exploitation &

security audits,” 2011. [Online]. Available: http://nmap.org

Tenable Security, “Nessus: The network vulnerability scanner,” 2011.

[Online]. Available: http://www.tenable.com

Metasploit, “Metasploit Project,” 2010, http://www.metasploit.com.

S. Sanfilippo, “hping: active network security tool,” 2006. [Online].

Available: http://www.hping.org/

J. Nathan, “Nemesis: Packet injection tool suite,” 2011 2011. [Online].

Available: http://nemesis.sourceforge.net/

W. Foundation, “wireshark: network protocol analyzer,” 2011. [Online].

Available: http://www.wireshark.org/

[15] E. Paris, “Network  expect,”

http://netexpect.org/

T. Jebara, R. Kondor, and A. Howard, “Probability product kernels,” Jour-

nal of Machine Learning Research, vol. 5, pp. 819-844, 2004.

[10]

[11]
[12]

[13]
[14]
2010.

[Online].  Available:

[16]



