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ABSTRACT

Motivation: Drawing inferences from large, heterogeneous sets of

biological data requires a theoretical framework that is capable of

representing, e.g. DNA and protein sequences, protein structures,

microarray expression data, various types of interaction networks,

etc. Recently, a class of algorithms known as kernel methods has

emerged as a powerful framework for combining diverse types of

data. The support vector machine (SVM) algorithm is the most popular

kernelmethod, due to its theoretical underpinnings andstrongempirical

performance on a wide variety of classification tasks. Furthermore,

several recently described extensions allow the SVM to assign relative

weights to various datasets, depending upon their utilities in performing

a given classification task.

Results: In this work, we empirically investigate the performance of

the SVM on the task of inferring gene functional annotations from a

combination of protein sequence and structure data. Our results sug-

gest that the SVM is quite robust to noise in the input datasets.

Consequently, in the presenceof only two types of data, anSVM trained

from an unweighted combination of datasets performs as well or better

than a more sophisticated algorithm that assigns weights to individual

data types. Indeed, for thissimplecase,wecandemonstrateempirically

that no solution is significantly better than the naive, unweighted

average of the two datasets. On the other hand, when multiple noisy

datasets are included in the experiment, then the naive approach

fares worse than the weighted approach. Our results suggest that

for many applications, a naive unweighted sum of kernels may be

sufficient.

Availability: http://noble.gs.washington.edu/proj/seqstruct

Contact: noble@gs.washington.edu

Supplementary information: Supplementary Data are available at

Bioinformatics online.

1 INTRODUCTION

It is by now a truism to point out that biological data is being

produced at a rapid rate. Less obvious, but equally daunting, is

the large variety of types of biological data being produced.

Traditional statistical methods that assume Gaussian distributions,

or engineering methods that assume vector or matrix input do not

obviously generalize to datasets comprised of variable-length

strings, vectors of real numbers, trees and networks. Consequently,

much recent work has focused on the development of statistical and

computational methods that are capable of drawing inferences from

large, heterogeneous biological datasets.

Kernel methods (Schölkopf et al., 1999) provide a principled

means to represent and hence draw inferences from diverse types

of data. A kernel method represents a collection of arbitrarily com-

plex data objects by using a so-called kernel function that defines

the similarity between any given pair of objects. In practice, this

means that a collection of n objects can be sufficiently represented

via an n· n matrix of pairwise kernel values. This kernel matrix,

hence, provides a sort of normal form: as long as a valid kernel

function can be defined on a given data type, then any such dataset

can be represented as a kernel matrix. Kernel methods are algo-

rithms that operate on kernel matrices, rather than on the raw data

objects themselves.

By far the best-known kernel method is the support vector

machine (SVM) algorithm (Boser et al., 1992; Vapnik, 1998;

Cristianini and Shawe-Taylor, 2000). The SVM is a supervised

classification algorithm that learns by example to discriminate

among two or more given classes of data. Within computational

biology, SVMs have been applied to an increasing variety of

problems, including remote protein homology detection, various

types of gene expression analyses, splice site and alternative

splicing detection, tandem mass spectrometry analysis, etc.

(Noble, 2004).

In order to apply an SVM to a heterogeneous dataset, kernels

must be defined for each data type and the kernel matrices must be

combined algebraically. For example, Pavlidis et al. used this

approach to combine microarray gene expression data and phylo-

genetic profiles in an unweighted fashion, applying mathematical

operators to focus the SVM on within-dataset correlations among

features while ignoring correlations between datasets (Pavlidis

et al., 2001, 2002). An unweighted sum of kernels has also been

used successfully in the prediction of protein-protein interactions

(Ben-Hur and Noble, 2005).

Recently, several research groups have proposed multiple kernel

learning (MKL) methods that combine kernels within the SVM

algorithm itself (Lanckriet et al., 2002; 2004c; Bach et al., 2005;

Sonnenburg et al., 2006a; Jebara, 2004). These methods formulate a

single optimization procedure that simultaneously finds the SVM

classification solution as well as weights on the individual data types

in the heterogeneous set. Lanckriet et al. (2002) formulate the

problem using semidefinite programming, whereas Sonnenburg

et al. (2006b) formulate the problem using semi-infinite linear

programming. These approaches have been successful in various�To whom correspondence should be addressed.
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bioinformatics tasks, including yeast protein functional classifica-

tion (Lanckriet et al., 2004a,b), protein structure classification

(Borgwardt et al., 2005), protein subcellular localization (Zien

and Ong, 2006) and alternative splicing recognition (Sonnenburg

et al., 2006b).

In general, MKL methods that assign weights to individual data

types have some practical disadvantages. The SDP approach of

Lanckriet et al. requires large amounts of memory. This problem

was essentially solved by Bach et al. (2004a), but the resulting

algorithm is still quite slow. For the SDP approach, the running

time is OðK2n3Þ for K kernels and n examples (Lanckriet et al.,
2002). In contrast, the SVM with unweighted combination of ker-

nels requires only Oðn3Þtime. Other MKL methods are faster

(Sonnenburg et al., 2006c), but all such methods are slower than

solving a single SVM. Furthermore, all of these algorithms are more

complicated to program than a simple SVM.

The current work aims to answer the question: are MKL methods

worth the additional effort, relative to using an unweighted sum-of-

kernels? Furthermore, if MKL methods are useful, then we would

like to be able to characterize the situations in which they should be

used. One motivation for this study is given in Figure 1. The figure

compares the published SDP results from (Lanckriet et al., 2004b)

with results from an SVM trained using an unweighted average

of the same kernels. Across all thirteen classes, the two methods

perform nearly identically.

In this work, we focus on a particular task: predicting Gene

Ontology (GO) terms using a combination of amino acid sequence

and protein structural information. This task has intrinsic interest:

considering the amount of effort currently being expended on

inferring protein structures, it is interesting to quantify the extent

to which protein structure improves upon our ability to draw

inferences about proteins, relative to inferences drawn from

sequence alone. Furthermore, the problem has two characteristics

that are useful in the context of this study. First, by restricting

ourselves to two kernels, it is possible to explore systematically

the space of possible linear combinations. Second, since we know

that structure is generally more informative than sequence, we can

expect reasonably consistent behavior of our kernel combinations

across a wide variety of classification tasks.

Our experiments show, first, that protein structure is more

informative than protein sequence. The structure kernel that we

employ uses MAMMOTH (Ortiz et al., 2002), which is a structural

alignment algorithm that considers only the protein backbone,

ignoring the side chains that differ among amino acids. Hence,

this kernel, by its design, is fairly independent of the sequence

kernel. Nonetheless, even without side chain information, the struc-

ture kernel provides better recognition performance than the

sequence kernel on all 56 GO terms that we considered. These

terms come from all three GO hierarchies—molecular function

(MF), BP and cellular compartment (CC).

Perhaps more surprisingly, we find that, for this two kernel task,

the unweighted average of kernels performs slightly better than a

more sophisticated method that assigns weights to the kernels.

Indeed, by systematically considering various relative weights,

we are able to demonstrate that, for this particular task, no kernel-

weighting scheme can perform much better than the simple

unweighted sum of kernels.

On the other hand, in a follow-up experiment, we demon-

strate that MKL is indeed helpful in some circumstances.

Specifically, we consider the case in which additional, noisy kernels

are added to the sequence and structure kernels. As we add

more noise to the system, the performance of the unweighted

average deteriorates. In contrast, the weighted kernel approach

learns to down-weight the noise kernels and hence continues to

work well.

Finally, in a separate experiment, we investigate the performance

of both kernel combination methods in the presence of missing

data. In practice, we have sequence information for many more

proteins than structure information. Such missing data are common

in genome-wide datasets and the probability that any one gene or

protein will have missing data increases as we include more data

types in a single classification experiment. Hence, it is interesting to

ask how well an SVM performs when one of the kernels in the

combination contains missing data. In general, however, SVMs do

not provide a mechanism for handling missing data. We consider

three simple techniques for representing missing examples in a

kernel matrix. Our experiments do not definitely show that one

of these three techniques is best; however, we do demonstrate

that, using any of the three proposed methods for handling missing

data and using either a weighted or unweighted kernel combination,

the SVM performance degrades fairly gradually as the percentage of

missing data in the structure kernel increases.

This empirical study aims to provide guidance to users of SVM

classifiers, as well as to suggest avenues for further research.

Perhaps our most important practical conclusion is that the simple,

unweighted sum of kernels can provide remarkably robust classi-

fication performance. Only when used with a relatively large col-

lection of kernels, with some data which were less relevant to the

task at hand, did a weighted kernel combination method add value.

Our results also suggest caution in interpreting the specific weights

assigned to each data type by a weighted kernel approach, since the

SVM performance does not vary dramatically as the kernel weights

change.
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Fig. 1. Comparison of two kernel combination methods for prediction

of yeast MIPS classifications. The figure shows, for thirteen one-versus-

all classification tasks, the area under the ROC curve from a 5-fold

cross-validated SVM experiment. Error bars represent standard error. The

results labeled ‘SDP’ are from Lanckriet et al. (2004b) (Supplementary

Table 7). The results labeled ‘Average’ were computed using an unweighted

average of the same five kernels. The figure clearly shows that, for each

classification task, the SDP and unweighted average approaches perform

comparably.
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2 ALGORITHMS

We provide here a brief, non-technical overview of the SVM,

followed by descriptions of the two methods for handling hetero-

geneous data. More detail on SVMs and kernel methods can be

found in, e.g. (Cristianini and Shawe-Taylor, 2000; Schölkopf et al.,
1999).

2.1 Support vector machines

Applying an SVM to a classification problem consists of two

phases: training and prediction. During training, the SVM takes

as input a dataset in which each example is a fixed-length vector.

Furthermore, each example must have an associated binary label.

We use ‘+1’ to denote the positive class and ‘�1’ to denote the

negative class. If each vector contains m values, then we say that the

data resides in an m-dimensional space called the input space.

The SVM training algorithm searches for a plane (or, when m > 3,

a hyperplane) in the input space that separates the positive from the

negative examples. Learning theory suggests that, when many such

hyperplanes exist, an optimal procedure selects the hyperplane that

is farthest from any training example. This particular hyperplane is

known as the maximum margin hyperplane. The problem of select-

ing, for a given dataset, the maximum margin hyperplane can be

formulated and solved efficiently using quadratic programming.

This optimization constitutes the SVM training phase.

Having identified this separating hyperplane, the prediction phase

takes as input a second dataset of length-m vectors. The goal of this

phase is to predict the associated +1/�1 label for each of the test

examples. Prediction is accomplished by asking on which side of the

separating hyperplane each test example falls.

This description of the SVM algorithm leaves out many details,

but should be sufficient for our subsequent discussion. Most

notably, we have not described how the SVM works when no

separating hyperplane exists. Briefly, this situation is handled in

two ways. The first solution involves introducing a so-called ‘soft

margin,’ which allows a subset of the training data to fall on the

‘wrong’ side of the hyperplane; e.g. a few examples labeled ‘+1’

might lie on the ‘�1’ side of the hyperplane and vice versa. The

second solution involves introducing a kernel function, which we

describe next.

2.2 Kernel methods

Generically, a kernel function defines the similarity between a given

pair of objects. Denoted K(x,y), a large value indicates that x and y
are similar and a small value indicates that they are dissimilar. In the

context of kernel methods in machine learning, the kernel function

must be symmetric and positive semidefinite. The latter means that,

for all possible datasets, the matrix of all-versus-all kernel values

must have non-negative, real eigenvalues.

The fundamental idea of a kernel method is simple but somewhat

subtle. Say that you have a collection of n vectors, each of length m.

This data can be written as an m · n matrix. Given a kernel function

K(·,·), we can compute the similarity between all pairs of vectors in

the dataset. These kernel values can then be written as an n· n
matrix, called the kernel matrix. For an algorithm to be a kernel

method, it must be possible to show that the kernel matrix is a

sufficient representation of the data. In other words, if an algorithm

is a kernel method, then it should be possible to discard the original

data matrix and still run the algorithm, using only the kernel matrix.

The canonical kernel function is the scalar product (a.k.a. the dot

product or vector product) Kðx‚yÞ ¼
P

i xiyi. Thus, a kernel

method is an algorithm that can be written down in such a way

that all data vectors appear within a scalar product operation. To

‘kernelize’ the algorithm, we then simply replace the scalar product

operation with the kernel function K.

Substituting the kernel function for the scalar product operation

is useful because it is mathematically equivalent to projecting

the dataset into a different space. Say that the input space has

m dimensions, but we use a quadratic kernel function defined as

Kðx‚yÞ ¼ ð
P

i xiyiÞ
2
. In this case, we are implicitly working in a

space of Oðm2Þ dimensions. This higher-dimensional space is called

the feature space and in this example, it contains one dimension

for every pair of dimensions in the input space. This kernel can thus

capture pairwise correlations between input variables. A kernelized

version of the SVM algorithm finds the maximum margin

hyperplane in the feature space, simply by solving the original

optimization problem using a different kernel function.

2.3 Combining kernels

Kernels are useful because they often (though not always) allow the

SVM to find a separating hyperplane in a dataset that was previously

inseparable. Kernels may also allow us to encode prior knowledge

about the data, such as the knowledge that pairwise correlations are

important. In the current work, however, we are particularly inter-

ested in the kernel function as a way to encode similarities among

non-vector and heterogeneous datasets.

First, we note that although the discussion thus far has focused on

vector data, a kernel function can be defined for any arbitrarily

complex data object. Thus, kernels have been defined for DNA

and protein sequences, protein–protein and metabolic networks,

phylogenetic trees, etc. (Noble, 2004) As long as our collection

of data can be represented as a square kernel matrix, then any kernel

method can be applied to the data. The kernel matrix is thus a sort of

normal form for representing diverse types of data.

Second, the mathematics of kernels allows us to derive new

kernels by combining two or more kernel functions. Many mathe-

matical operations are closed under positive semidefiniteness. The

most important such operation is addition: if K1 and K2 are

both kernel functions, then we can prove that Kðx‚yÞ ¼
K1ðx‚yÞ þ K2ðx‚yÞis a kernel. This operation is mathematically

equivalent to concatenating the vector representations of the two

data points in the feature spaces defined by K1 and K2. For

positive coefficients, a weighted combination of kernels

(m1K1ðx‚yÞ þ m2K2ðx‚yÞ) also preserves the kernel property.

This mathematical formalism provides us with a straightforward

way to combine heterogeneous data. Given a set of proteins rep-

resented as sequences and structures, we compute a kernel matrix Kq

from the sequences and a kernel matrix Kr from the structures. The

sum of these two kernel matrices is a new kernel that simultaneously

represents the protein sequences and structures.

In the current work, we contrast the simple sum-of-kernels

approach with a more sophisticated method that introduces weights

on each kernel. Using one of various optimization methods, we can

simultaneously find a separating hyperplane and find weights on

each individual kernel. The weights are chosen so as to maximize

the margin between the two classes. This approach corresponds to

learning, e.g. that the sequence kernel is not as informative as the

structure kernel for a given classification task. Geometrically, the

SVM learning from sequence and structure
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kernel weight rescales each dimension of a given kernel. Thus, in

the feature space corresponding to K ¼ K1 þ 2K2, each of the

dimensions from K2 is scaled by a factor of 2.

3 METHODS

3.1 GO classes

The GO (Gene Ontology Consortium, 2000) is a diverse catalog of gene

(protein) annotations, which includes information about protein function and

localization. We define a GO term prediction benchmark by starting with a

set of 8363 PDB structures, pruned so that no two sequences share >50%

sequence identity (Li et al., 2001). Among these proteins, 5325 have GO

annotations, downloaded from www.geneontology.org. For each GO term T,

we partitioned the list of proteins into three sets. First, all proteins that are

annotated with T are labeled as ‘positive’. Next, we traverse from T along all

paths to the root of the GO graph. At each GO term along this path, we look

for proteins that are assigned to that term and not to any of that term’s

children. We consider that such proteins might be properly assigned to T and

so we label those proteins as ‘uncertain’ and ignore them during both training

and testing. Finally, all proteins that are not on the path from T to the root are

labeled as ‘negative’.

After this labeling procedure, we eliminated all GO terms with fewer than

100 ‘positive’ proteins. In order to avoid redundancy, we then selected only

the most specific of the remaining GO terms, i.e. the leaf nodes of the

remaining hierarchy. This procedure yielded a total of 56 GO terms: 27

MF terms, 22 BP terms and 7 CC terms. All 56 terms are listed in the online

supplement.

For each GO term, the number of negative examples far exceeds the

number of positive examples. For efficiency, we randomly select a subset of

the negative examples so that the ratio of positives to negatives is one-to-one.

3.2 Kernels

To represent protein sequences, we use the mismatch kernel (Leslie et al.,

2003). This kernel generalizes upon the simpler, spectrum kernel (Leslie

et al., 2002), which represents a string as a vector of counts of all possible

substrings of a fixed length k. The mismatch kernel generalizes upon the

spectrum kernel by incrementing, for each observed k-length string (k-mer),

the corresponding count as well as the counts of all k-mers that differ from

the observed k-mer by at most M mismatches. In this work, we use a mis-

match spectrum kernel with K ¼ 4 and M ¼ 1. The final mismatch spectrum

vector has 204 ¼ 160 000 bins. The mismatch spectrum captures sequence

similarity and has been shown to provide good performance in classifying

SCOP superfamilies (Leslie et al., 2003).

Insofar as a kernel function defines the similarity between pairs of objects,

the most natural place to begin defining a protein structure kernel is with

existing pairwise structure comparison algorithms. Many such algorithms

exist, including CE (Shindyalov and Bourne, 1998), DALI (Holm and

Sander, 1993) and MAMMOTH (Ortiz et al., 2002). Most of these

algorithms attempt to create an alignment between two proteins and then

compute a score that reflects the alignment’s quality. In this work, we use

MAMMOTH (Ortiz et al., 2002), which is efficient and produces high

quality alignments.

Unfortunately, the alignment quality score (i.e. the E-value) returned by

MAMMOTH cannot be used as a kernel function directly, because the score

is not positive semidefinite. We therefore employ the so-called ‘empirical

kernel map’ (Tsuda, 1999) to convert this score to a kernel: for a given

dataset of structures X ¼ x1‚ . . . xn, a structure xi is represented as an

n-dimensional vector, in which the j-th entry is the MAMMOTH score

between xi and xj. The SVM then uses this vector representation directly.

This method has been used successfully in the SVM-pairwise method of

remote protein homology detection (Liao and Noble, 2002), in which a

protein is represented as a vector of log E-values from a pairwise sequence

comparison algorithm, such as Smith-Waterman (Smith and Waterman,

1981). In our experiments, we use the log of the E-value returned by

MAMMOTH. The resulting MAMMOTH kernel incorporates information

about the alignability of a given pair of proteins.

Prior to summation, each kernel is first centered around the origin in the

feature space, and each data point is projected onto the unit sphere using

K̂Kðx‚yÞ ¼ Kðx‚yÞ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx‚xÞKðy‚yÞ

p
.

3.3 Experimental framework

All SVM experiments were performed using our own code, which is a

combination of C++ and Matlab. To compute weighted kernel combinations

we use semidefinite programming, as described in Lanckriet et al. (2002).

SVMs were tested using 5-fold cross-validation, repeated three times

(3·5cv). We use a fixed value of the SVM regularization parameter C ¼
10. We measure classification performance using the area under the receiver

operating characteristic (ROC) curve, which plots the rate of true positives as

a function of the rate of false positives for varying classification thresholds.

We report means and standard deviations of the area under the ROC curve

(the ROC score) with respect to the fifteen 3 · 5cv splits.

4 RESULTS

We present our results as a series of four experiments. The first

experiment is a direct comparison of the unweighted and weighted

kernel combination methods across all 56 GO terms in our bench-

mark. The results show that the structure kernel consistently out-

performs the sequence kernel and that the unweighted combination

generally performs better than the weighted combination. In the

second experiment, we systematically vary the relative kernel

weight on a subset of 10 GO terms and we show that, for this

task, the unweighted sum-of-kernels performs nearly optimally.

The third experiment introduces artificial noise into the dataset.

In this scenario, the weighted kernel approach is useful and per-

forms better than the unweighted approach as the amount of noise

increases. Finally, in a fourth experiment, we demonstrate the

robustness of both the kernel combination methods in the presence

of missing data.

4.1 Experiment 1: comparison of kernel combination

methods

In this experiment, we performed cross-validated testing of four

types of SVMs, using sequence alone, structure alone, an

unweighted combination of kernels and a weighted combination

of kernels. Table 1 shows a subset of these results. The complete

set of results are available in the online supplement. Not surpris-

ingly, the MAMMOTH kernel frequently provides better classifica-

tion performance: in 55 out of 56 classes, the difference between the

mean structure ROC score and the mean sequence ROC score is

greater than the sum of the two corresponding standard errors.

An alternate representation of these results, for all 56 terms, is

shown in Figure 2A. Qualitatively, the figure shows that the

sequence kernel performs far worse than any method that uses

the structure kernel. Furthermore, we computed a Wilcoxon signed-

rank test between all four pairs of methods. The results yield the

following best-to-worst ranking of methods: unweighted sum of

kernels, structure kernel alone, weighted sum-of-kernels and

sequence kernel alone. In this ranking, the largest (i.e. least signi-

ficant) P-value is 0.007 between the structure kernel alone and the

weighted sum-of-kernels. Thus, it appears that combining sequence

and structure can be helpful, but only when using the unweighted

sum of kernels.

D.P.Lewis et al.
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4.2 Experiment 2: varying relative kernel weight

The previous result—that the weighted sum-of-kernels performs

worse than the unweighted sum—is surprising, not least because

considerable effort has been expended by various research groups to

develop the optimization technology to solve this type of MKL

problem. Therefore, we selected a subset of the terms from our

benchmark and subjected them to further investigation. Specifically,

we selected the 10 terms for which the difference in ROC score

between the structure-only and sequence-only SVMs is largest. For

each of these terms, we systematically varied the relative kernel

weights and performed cross-validated testing of the resulting SVM.

The results are shown in Figure 2B.

The most striking aspect of Figure 2B is the qualitative similarity

of all ten series in the figure. For each GO term, the performance of

the SVM stays roughly the same for all kernel combinations that

assign larger weight to the structure kernel. When more weight is

assigned to the sequence kernel, the performance degrades gradu-

ally, with a rapid degradation only when the structure kernel

receives very small weight. This result shows that the SVM is

quite robust in the presence of variation in the relative scales of

the two datasets.

A second observation is the placement of the green dots, indi-

cating the choice of kernel weights made by the SDP optimization.

In nearly every case, the SDP erroneously gives more weight to the

sequence kernel. This explains why the weighted kernel combina-

tion fares poorly on this benchmark. Apparently, for these tasks, the

sequence kernel yields an embedding with a larger margin than does

the structure kernel, even though the latter provides better gener-

alization performance. The apparent conflict with Experiment 1—in

that case the two kernel combination methods performed equally

well, whereas in this case, SDP does nearly uniformly worse—

arises because the second experiment focuses on the 10 classes

in which the difference between the two kernels is largest.

Finally, it is interesting to consider whether the unweighted

sum-of-kernels is optimal. For many of the GO terms in

Figure 2B, the highest ROC score is not achieved at a log ratio

of 0. However, in every case, the difference between the unweighted

sum ROC score and the best possible ROC score is quite small,

in the order of 0.01. Furthermore, for any fixed log ratio, there

are some terms that perform worse than the unweighted average

and some that perform better. Thus, Figure 2B suggests that

although an optimal learning procedure might be able to find better

kernel weights than the unweighted average, this hypothetical

method (1) like the SDP approach, would have to take into con-

sideration not just the kernel matrices but also the GO term labels

and (2) would still perform only slightly better than the unweighted

sum-of-kernels.

4.3 Experiment 3: multiple noisy kernels

The results from our first two experiments beg the question:

why bother with the computational overhead of weighted kernel

combinations when the unweighted sum of kernels performs better?

In the third experiment, we demonstrate via simulation a situation in

which the weighted sum is necessary.

To carry out this experiment, we created a collection of ‘noise’

kernels. These are simply copies of the structure kernel, with

permuted rows and corresponding columns. We then measured

how the performance of our two kernel combination methods

changes as the number of noise kernels increases.

The results are shown in Figure 2C. In the figure, green crosses

correspond to classifiers trained with no noise kernels. These points

were thus generated in our first experiment, described above, using

one sequence and one structure kernel. Most of the points fall below

the line y ¼ x, indicating clearly that the unweighted kernel

combination performs better than the weighted sum-of-kernels.

However, this result changes as soon as we introduce a single

noise kernel. In this case, the weighted sum performs better than

Table 1. Predicting GO terms from sequence or from structure. Each row in the table lists a GO term and description, the ontology from which it comes

(MF ¼ molecular function, CC ¼ cellular compartment and BP ¼ biological process), the number of positive examples associated with the term and the mean

and standard error ROC scores for 3 · 5cv SVM training using (1) the structure kernel, (2) the sequence kernel, (3) the unweighted sum of both the kernels and (4)

the weighted sum of the kernel. In the table, terms are sorted by the difference in ROC score between ‘Structure’ and ‘Sequence.’ From the entire set of 56 terms

that we considered, the table lists only the top 10 and the bottom 5

GO term Description Ont # Structure Sequence Average SDP

GO:0008168 Methyltransferase activity MF 108 0.941 ± 0.014 0.709 ± 0.020 0.937 ± 0.016 0.938 ± 0.015

GO:0005506 Iron ion binding MF 129 0.934 ± 0.008 0.747 ± 0.015 0.927 ± 0.012 0.927 ± 0.012

GO:0006260 DNA replication BP 109 0.885 ± 0.014 0.707 ± 0.020 0.878 ± 0.016 0.870 ± 0.015

GO:0048037 Cofactor binding MF 118 0.916 ± 0.015 0.738 ± 0.025 0.911 ± 0.016 0.909 ± 0.016

GO:0046483 Heterocycle metabolism BP 128 0.949 ± 0.007 0.787 ± 0.011 0.937 ± 0.008 0.940 ± 0.008

GO:0044255 Cellular lipid metabolism BP 101 0.891 ± 0.012 0.732 ± 0.012 0.874 ± 0.015 0.864 ± 0.013

GO:0016853 Isomerase activity MF 124 0.855 ± 0.014 0.706 ± 0.029 0.837 ± 0.017 0.810 ± 0.019

GO:0044262 Cellular carbohydrate metabolism BP 209 0.912 ± 0.007 0.764 ± 0.018 0.908 ± 0.006 0.897 ± 0.006

GO:0009117 Nucleotide metabolism BP 124 0.892 ± 0.015 0.748 ± 0.016 0.890 ± 0.012 0.880 ± 0.012

GO:0016829 Lyase activity MF 201 0.935 ± 0.006 0.791 ± 0.013 0.931 ± 0.008 0.926 ± 0.007

GO:0006732 Coenzyme metabolism BP 119 0.823 ± 0.011 0.781 ± 0.013 0.845 ± 0.011 0.828 ± 0.013

GO:0007242 Intracellular signaling cascade BP 140 0.898 ± 0.011 0.859 ± 0.014 0.903 ± 0.010 0.900 ± 0.011

GO:0005525 GTP binding MF 104 0.923 ± 0.008 0.884 ± 0.015 0.931 ± 0.009 0.931 ± 0.009

GO:0004252 Serine-type endopeptidase activity MF 140 0.937 ± 0.011 0.907 ± 0.012 0.932 ± 0.012 0.931 ± 0.012

GO:0005198 Structural molecule activity MF 179 0.809 ± 0.010 0.795 ± 0.014 0.828 ± 0.010 0.824 ± 0.011
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the unweighted sum for 55 out of the 56 terms. The effect becomes

even more pronounced in the presence of two noise kernels. A

Wilcoxon signed-rank test supports these conclusions with

extremely small P-values.

4.4 Experiment 4: kernels with missing examples

Finally, we consider a variant of our experimental design, in

which we focus on the problem of missing data. In particular,

we are interested in the extent to which we can combine incomplete

structural information with complete sequence information.

Thus, we simulate randomly deleting varying percentages of the

examples from the structure kernel matrix and measure the cross-

validated ROC score of the resulting classifier. A pseudocode

description of the experimental design is given in the online

supplement.

Because SVMs are not designed to handle missing data, it is not

obvious a priori how to represent missing examples in the kernel

matrix. Therefore we consider three alternative methods for filling

in missing kernel entries, all of which preserve positive semidefi-

niteness (see the Supplementary Data). The first strategy, ‘None,’

simply replaces the row and column corresponding to a missing

entry with all zeroes. This strategy allows the sequence kernel to

determine the weight assigned by the SVM to this example, ignoring

the structure kernel entirely. The second strategy (‘Self’) makes

each missing example similar only to itself by placing a one on

the diagonal of the (normalized) kernel matrix and zeroes else-

where. Finally, the ‘All’ strategy makes each missing example

similar to every other missing example, but different from all

non-missing examples. This is accomplished by placing ones in

the kernel matrix between all pairs of missing examples and

zeros between missing/non-missing pairs. The effect is to place

all missing examples in a single orthogonal dimension in feature

space. Effectively, all missing examples are co-located at a single

point, infinitely distant from the other data.

(A) Experiment 1

(C) Experiment 3

(B) Experiment 2

(D) Experiment 4
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Fig. 2. Summary of four experiments combining sequence and structure kernels. (A) Combining kernels: cumulative comparison across 56 GO terms. The figure

plots the number of GO terms (y-axis) for which a given SVM classifier achieves a specified mean ROC score (x-axis). Each series corresponds to an SVM that

uses sequence alone, structure alone, or combinations of kernels using an unweighted average or using SDP. (B) Varying relative kernel weight. The figure plots

mean ROC score as a function of the log2(mq/mr), where mq and mr are the weights assigned to the sequence and structure kernels, respectively. Each series

corresponds to one of the GO terms in Table 1. On each series, the large green circle indicates the log ratio of the weights selected by SDP. (C) Learning in the

presence of noisy kernels. The figure plots, for each GO term, the ROC score achieved by the SDP SVM as a function of the ROC score achieved by the

unweighted sum of kernels. Different point types correspond to training using zero, one or two noise kernels, as described in the text. (D) Combining kernels with

missing data. The figure plots, for a single GO term (GO:00008168—methyltransferase activity), the mean ROC score as a function of the percentage of missing

data in the structure kernel. The first six series correspond to the Average and SDP methods, with missing data affinity coded as ‘None’, ‘Self’ or ‘All’. The final

series is from an SVM trained from the structure kernel alone.
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Figure 2D shows the results of this experiment for a single GO

term. Similar plots for the first ten terms in Table 1 are shown in

the online supplement. Strikingly, none of the series deteriorates

dramatically as we introduce missing data. Indeed, most methods

perform better than the sequence kernel alone even when the struc-

ture kernel consists of 50% missing entries. Furthermore, for each of

the three strategies for handling missing data, we observed on

average a decrease in the weight assigned by SDP as the amount

of missing data increases.

Trends among the six methods that we considered—two kernel

combination methods and three methods for replacing missing

values—are not obvious from the figures. A Wilcoxon signed-

rank comparison of the data (see Supplementary Data) yields the

same ranking of methods at 10 or 20% missing data: all three

unweighted sum methods perform better than all three weighted

sum methods, and the best strategy for handling missing data

depends upon the kernel combination method. Using an unweighted

combination, the best-to-worst ranking is all–none–self. Con-

versely, using a weighted combination, the corresponding ranking

is self–none–all.

In short, this experiment does show convincingly that an SVM

can make accurate predictions in the presence of missing data;

however, the results are inconclusive with respect to the best

method for representing missing examples in the kernel matrices.

5 DISCUSSION

The primary conclusion from this empirical study is that using a

weighted sum of kernels in an SVM classifier does not always

improve upon the simpler, unweighted sum approach. In particular,

we have shown that, for a combination of sequence and structure

kernels in the prediction of GO terms, the weighted sum method

frequently selects a solution that is worse than the unweighted sum.

On the other hand, the weighted sum does appear to improve the

SVM’s robustness in the presence of noisy or irrelevant kernels.

From a practitioner’s point of view, these results suggest the value

of evaluating individual kernels with respect to any given classi-

fication task prior to applying a kernel combination method. In other

words, simply collecting a large variety of kernels and applying the

resulting combination of kernels to diverse classification tasks is not

likely to be as successful as a more directed approach, in which prior

knowledge of a particular kernel’s relevance guides its inclusion in

the training set.

Our results also suggest that the kernel weights assigned by an

MKL method may be difficult to interpret. A priori, it is clear that a

low weight may be assigned due either to noise in the kernel or

redundancy with another kernel in the collection. However, for

many of the classification tasks that we considered, a relatively

broad range of relative kernel weights often yielded quite similar

classification performance. Furthermore, in this particular case,

the size of the margin does not correlate well with optimal

generalization performance.

With respect to protein classification, it is perhaps not surprising

that structure is more informative than sequence. However, our

results with respect to missing data suggest that, even when

some structure data are not present, an SVM combination of

sequence and structure might be valuable.

The lower performance of the weighted kernel combination might

be due to overfitting and insufficient training data. Thus, larger

datasets might benefit from weighted combination when there is

sufficient data to reliably estimate kernel weights. Alternatively, we

might group multiple tasks and datasets to more reliably estimate a

single setting of the weights on kernels (Jebara, 2004).

Any empirical study necessarily leaves some questions unan-

swered: one could imagine a variety of modifications, extensions

or additional experiments to add to the four we described above.

These include, for example, investigating different types or a larger

number of kernels, modifying the SVM regularization parameter,

systematically adding noise to one or more kernels, etc. While some

of these experiments would likely be more informative than others,

we believe that our primary message—that combining kernels in a

weighted fashion is not always beneficial—would remain

unchanged. Further experiments would more precisely define the

situations in which weighting kernels is beneficial.

We did, inadvertently, perform one additional experiment that

was not reported above, and we believe that the result is instructive.

In setting up the experiment comparing kernel combination methods

across 56 GO terms, we first observed that the SDP method almost

uniformly gave a large weight to the sequence kernel and a small

weight to the structure kernel. Investigation of these results showed

that the sequence kernel margin was considerably larger simply

because we had normalized the kernels (i.e. projected all of the

data onto the unit sphere in the feature space) without first centering

the data around the origin. In both cases, the data were far from the

origin and so projection placed all of the data points onto a very

small area on the unit sphere. Centering before normalization, as

recommended by Lanckriet et al. (2002), leads to much better

conditioned matrices. This result illustrates that the weighted kernel

method depends upon characteristics of the various kernels in the

combination. One avenue for future work would identify charac-

teristics of ‘good’ kernels and propose methods for creating such

kernels.

A second area for future work is the development of alternate

kernel combination methods. For example, given the relatively

robust performance of SVMs with respect to gradations in relative

kernel weight, we believe that a combinatorial method which finds

binary kernel weights might be very successful. Unfortunately, it is

not obvious how to perform efficient optimization on discrete kernel

weights.
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