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Abstract

A fundamental problem underlying location-based
tasks is to construct a complete profile of users’
spatiotemporal patterns. In many real-world set-
tings, the sparsity of location data makes it diffi-
cult to construct such a profile. As a remedy, we
describe a Bayesian probabilistic graphical model,
called Collaborative Place Model (CPM), which in-
fers similarities across users to construct complete
and time-dependent profiles of users’ whereabouts
from unsupervised location data. We apply CPM
to both sparse and dense datasets, and demonstrate
how it both improves location prediction perfor-
mance and provides new insights into users’ spa-
tiotemporal patterns.

1 Introduction'

During the last couple of years, positioning devices that mea-
sure and record our locations have become ubiquitous. The
most common positioning device, the smartphone, is pro-
jected to be used by a billion people in the near future [Davie,
2012]. This surge in positioning devices has increased the
availability of location data, and provided scientists with new
research opportunities, such as building location-based rec-
ommendation systems [Hao er al., 2010; Zheng et al., 2010;
2009], analyzing human mobility patterns [Brockmann e al.,
2006; Gonzalez et al., 2008; Song et al., 2010], and modeling
the spread of diseases [Eubank et al., 2004].

A fundamental problem underlying many location-based
tasks is modeling users’ spatiotemporal patterns. For exam-
ple, a navigation application that has access to traffic condi-
tions can warn the user about when to depart, without requir-
ing any input from the user, as long as the application can
accurately model user’s destination. Similarly, a restaurant
application can provide a list of recommended venues, even
reserve them while space is still available, by modeling the
probable locations the user might visit for lunch.

One of the challenges in building such models is the
sparsity of location datasets. Due to privacy considerations
[Wernke er al., 2012] and high energy consumption of posi-
tioning hardware [Oshin et al., 20121, location datasets con-
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Figure 1: Number of observations per user. The left plot represents
a dense mobile carrier dataset and the right plot represents a sparse
mobile ad exchange dataset. The dense dataset has 15 times more
observations per user than the sparse dataset.

tinue to grow larger while remaining relatively sparse per
user. For example, most mobile phone operating systems only
allow applications to log users’ locations when the applica-
tion is active, but not when it is running in the background.
As a result, many location datasets have very little informa-
tion per user. In Figure 1, we compare a sparse dataset that is
retrieved from a mobile ad exchange and a dense dataset that
is retrieved from a cellular carrier. The sparse dataset has 15
times less observations per user than the dense dataset, which
makes it harder to infer its spatiotemporal patterns.

In the past, there has been some work on spatiotempo-
ral modeling as it pertains to location prediction. Cho et
al. [Cho er al., 2011] proposed a two-state mixture of Gaus-
sians that leverages the social relationships between users,
but they limited their model to only represent “home” and
“work”. Gao et al. [Gao et al., 2012] designed a Markov
model that takes temporal context into account in order to pre-
dict the user’s location in the immediate future. De Domenico
et al. [De Domenico et al., 2012] presented a location predic-
tion algorithm where the dataset consisted of tens of thou-
sands of GPS observations, collected every few minutes and
over the span of a year. Their algorithm exploited the high
density of the location dataset, as well as the social relation-
ships between users, by predicting the user’s geographic co-
ordinates in the immediate future based on the similarities be-
tween the user’s most recent trajectory and all of his previous
trajectories.

In most of these studies, the proposed models were de-
signed for near-term forecasts, and they relied on making



predictions based on the most recent observations. However,
there are many real-world applications where the test exam-
ple and the most recent training example are temporally apart,
and for all purposes, statistically independent. For such pre-
dictions, a model that relies on the most recent observations
would not suffice; instead, the model would need to make pre-
dictions based on the user’s global spatiotemporal patterns.

In addition to the work listed above, researchers have also
studied spatiotemporal modeling as it pertains to the detection
of significant places and routines. Eagle and Pentland [Ea-
gle and Pentland, 2009] applied eigendecomposition to the
Reality Mining dataset, where all locations were already la-
beled as “home” or “work™, and extracted users’ daily rou-
tines. Farrahi and Gatica-Perez [Farrahi and Perez, 2011]
used the same dataset, but extracted the routines using Latent
Dirichlet Allocation (LDA) instead of eigendecomposition.
Liao et al. [Liao ef al., 2005; 2007] proposed a hierarchical
conditional random field to identify activities and significant
places from the users’ GPS traces, and since their algorithm
was supervised, it required locations to be manually labeled
for training. In contrast to previous work, our model does
not require labeled data; instead, it relies only on user IDs,
latitudes, longitudes, and time stamps.

In this paper, we propose a new Bayesian probabilistic
graphical model, called Collaborative Place Model (CPM),
which recovers the latent spatiotemporal structure underly-
ing unsupervised location data by analyzing patterns shared
across all users. CPM is a generalization of the Bayesian
Gaussian mixture model (GMM), and assumes that each user
is characterized by a varying number of place clusters, whose
spatial characteristics, such as their means and covariances,
are determined probabilistically from the data. However, un-
like GMM, CPM also assigns users weakly similar temporal
patterns; ones which do not force different users to have the
same place distribution during the same weekhour.

The spatiotemporal patterns extracted by CPM are helpful
in leveraging both sparse and dense datasets. In case of sparse
data, the model infers a user’s place distribution at a particu-
lar weekhour, even if the user has not been observed during
that weekhour before. In case of dense data, sampling bias
usually yields fewer observations for certain hours (e.g. users
make more phone calls during day time than after midnight),
and the model successfully infers the user’s behavior during
these undersampled hours. In both cases, the model combines
the globally shared temporal patterns with user’s own spa-
tiotemporal patterns and constructs a customized, complete,
and time-dependent profile of the user’s locations.

Aside from its quantitative benefits, CPM also provides
qualitative insights about the universal temporal patterns of
human populations. Even though the model is given no prior
information about the relationship between weekhours, it suc-
cessfully extracts temporal clusters such as the hours spent
during morning commute, work, evening commute, leisure
time after work, and sleeping at night.

The paper proceeds as follows. In Section 2, we provide a
formal description of CPM. In Section 3, we derive the infer-
ence algorithms. In Section 4, we demonstrate our model on
two real location datasets. We conclude in Section 5.
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Figure 2: Graphical models. An earlier prototype we built is rep-
resented on the left and CPM is represented on the right. The geo-
graphic coordinates, denoted by £, are the only observed variables.

2 Collaborative Place Model

In this section, we provide a formal description of CPM and
describe its generative process. CPM comprises a spatial part,
which represents the inferred place clusters, and a temporal
part, which represents the inferred place distributions for each
weekhour. The model is depicted on the right side of Figure
2.

The temporal part of CPM assumes that, for each user u
and weekhour w, the corresponding place distribution is a
convex combination of F' factorized place distributions, each
of which is represented by 05. These factorized place distri-
butions are dependent on the user, but they are independent
of the weekhour. In contrast, the coefficients of the convex
combination, represented by ~,,, are shared across all users.
Using this factorization, CPM combines global temporal pat-
terns with user-specific spatiotemporal patterns and infers
each user’s place distribution even for weekhours where the
user has not been observed before. Furthermore, by not re-
stricting each user to have the same number of places or each
weekhour to have the same distribution over places, CPM al-
lows a realistic and flexible representation of the users’ loca-
tion profiles.

The flexible temporal representation provided by CPM
turns out to be essential for our problem. Early in the project,
we have built a simpler prototype, depicted on the left side
of Figure 2, which constrained all users to have the same
weekhour distribution. However, it performed even worse
than the baseline model with respect to the usual metrics (i.e.
held-out log-likelihood), so we abandoned it. In contrast to
this prototype, CPM allows us both to share temporal infor-
mation across users and to provide a more flexible temporal
representation for each user.

Let u represent a user, ranging from 1 to U, and let f rep-
resent a factor index, ranging from 1 to F'. For each user
u and factor index f, let ) € RXw denote the Dirichlet
random variable that represents the corresponding factorized
place distribution, where K, denotes the number of places
for each user u. Intuitively, 05 € R&w describes the build-
ing blocks of user’s place preferences. Furthermore, let w
denote a weekhour, ranging from 1 to W. The Dirichlet ran-
dom variable v,, € R¥ denotes the factor weights, which
when combined with the user’s factorized place distributions,



yields the user’s place distribution for weekhour w.

At a high level, the generative process proceeds as follows.
The variable ~,, generates ¥, ., », the factor assignment for
user u and observation n at weekhour w, and the factor as-
signment generates the place assignment z,, ,,,, from the fac-
torized place distribution 8%*:". The place assignment is in
turn used to sample the observed coordinates £, ,, ,, from the
corresponding place cluster.

The place clusters, whose means and covariances are
unique to each user, are modeled by the spatial part of CPM.
Intuitively, we expect each place cluster to correspond to lo-
cations such as “home”, “work”, and “gym”. Given a user u
and a place index k, each place cluster is characterized by a
bivariate normal distribution, with mean c;Sﬁ and covariance

X%, The observed coordinates £ are considered to be noisy
observations sampled from these place clusters.

Our model uses conjugate priors because of the compu-
tational advantages they provide in Bayesian inference. For

the random variables 0{; and -,,, the prior is a symmet-
ric Dirichlet with concentration parameter @ > 0, where

Dirichletx («) denotes the K -dimensional distribution. For
the random variables associated with the place clusters, d)ﬁ
and Eﬁ’, the prior is a normal-inverse-Wishart (NIW) distri-
bution. A € R2*2 is a positive definite scale matrix, v>1
indicates the degrees of freedom, and together they define the
distribution over the covariance matrix. The parameter p,, is
customized for each user v and is computed as the mean of
the user’s historical locations. The parameter pj’ is set such
that the prior covariance of the place mean (i.e. prior covari-
ance of ¢>1’j) is very large.

In location datasets, a user sometimes logs locations that
are one-offs and are not representative of the user’s regular lo-
cation profile. To ensure that such outliers do not affect how
the model infers the user’s regular place clusters, we desig-
nate the last place, place K, as a special outlier place and set
its covariance’s prior mean (i.e. prior mean of Ef“), as de-
termined by A, to be very large. As for the covariance of
regular clusters, we set the remaining scale matrices, A_g,
such that each coordinate of the covariance’s prior mean has
a standard deviation of 150 meters. This is a reasonable size
for a place cluster, as it is large enough to encapsulate both
the potential inaccuracies of location hardware and the inher-
ent noise in the users’ locations, but small enough to ensure
that each place cluster corresponds to a single intuitive place,
such as “home” or “work”.

Let NV denote the normal distribution and ITV denote the
inverse-Wishart distribution. Let Dirichletx (-) denote a sym-
metric Dirichlet if its parameter is a scalar and a general
Dirichlet if its parameter is a vector. The generative process
of CPM is described in more formal terms below. Further
technical details about the distributions we use in our model
can be found in the supplement.

1. For each weekhour w, draw a distribution over factors
7., ~ Dirichletg (3).

2. For each user u and factor f, draw a factorized place
distribution 8/ ~ Dirichletr, ().

3. For each user v and place k,

(a) Draw a place covariance =F ~ ITW (A, v).
k
(b) Draw a place mean ¢~ ~ N (uu, %)
k
4. For each user u, weekhour w, and observation index n,

(a) Draw a factor assignment
Yu,w,n ~ Categorical(y,, ).

(b) Draw a place assignment
Zu,w,n ~ Categorical(@%m).

(c) Draw a location

~ N ((pfbu,w,n 7 Eiu,w,n).

Eu,,w,n

3 Inference

In this section, we derive our inference algorithm, and we
present our derivation in multiple steps. First, we derive a
collapsed Gibbs sampler to sample from the posterior distri-
bution of the categorical random variables conditioned on the
observed geographic coordinates. Second, we derive the con-
ditional likelihood of the posterior samples, which we use
to determine the sampler’s convergence. Third, we derive
formulas for approximating the posterior expectations of the
non-categorical random variables conditioned on the poste-
rior samples. Finally, in the last step, we combine all the
previous derivations to construct a simple algorithm for ef-
ficient posterior inference. We state the main results below.
The proofs are provided in the supplement.

In Lemmas 1 and 2, we describe the collapsed Gibbs sam-
pler for variables z and y, respectively. Given a vector  and
an index k, let _; indicate all the entries of the vector ex-
cluding the one at index k. We assume that i = (u,w,n)
denotes the index of the variable that will be sampled. First,
we state the posterior probability of z.

Lemma 1. The unnormalized probability of z; conditioned
on the observed location data and remaining categorical
variables is

p(zi=k|yi=fz_i,y_i )
) —’il(m‘f‘l) =k f
X t'U;:_l | l"’k:? ~k (ﬁk o 1) (G{ + mu7- ) .

w ~u XK ~ .
The parameters U}, iy, A, and p}: are defined in the proof. t
denotes the bivariate t-distribution and mﬁ;f denotes counts,
both of which are defined in the supplement.

Next, we state the posterior probability of y.

Lemma 2. The unnormalized probability of y; conditioned
on the observed location data and remaining categorical
variables is

p (yl = f ‘ Zi = k7y77;7z7i7£)

k.f
o+ My
x ———— (B +m’{
Koz—&—mdf(wf “)’

where the counts mu’f , mu’f , and m. ’{f, are defined in the

supplement.



In Lemma 3, we describe the conditional log-likelihoods of
the posterior samples conditioned on the observed geograph-
ical coordinates. We use these conditional log-likelihoods
to determine the sampler’s convergence. Later in the paper,
when we present the algorithm for posterior inference, we
will use these conditional likelihoods to determine the algo-
rithm’s convergence. Let I' denote the gamma function, let
T's denote the bivariate gamma function, and let |-| denote the
determinant.

Lemma 3. The log-likelihood of the samples z and y condi-
tioned on the observations £ is

logp(z,y €)= ZZlogI‘ Bwf+m’f)
U F
+ [ D0 —logT (aK, +m;))
u=1 f=1

logT’ (a + mﬁf)

U K, u
+ (Z (1ogF2 (2‘) — mﬁ’,i 10gﬂ')>
=1
— log py; )) +C,
f

where C denotes the constant terms. The counts mﬁ:{v, my).,
k,f

mﬁ ., and mu are defined in the supplement. The parame-

ters vy, Au, and p;; are defined in the proof.

In Lemmas 1 and 2, we described a collapsed Gibbs sam-
pler for sampling the posteriors of the categorical random
variables. In Lemma 4, we show how these samples, denoted
as y and z, can be used to approximate the posterior expecta-
tions of ~, 6, ¢, and X.

Lemma 4. The expectations of v, 0, ¢, and 3 given the
observed geographical coordinates and the posterior samples
are

. Buw,s + mfjf
Yw,f = E [’Y’unf | Y, 272] = et 1~Uf ’
> (ﬁw,f + m-iw)
f
= y) z7 = 7’
u,k u,k KuOé + muf

b =E [} | y,2,€] = i,
k

U
AU .
oy — 3

) (S5 | y.2.0) =

of k. f

Counts m.y, My, and my, ’f

are defined in the supplement.
Parameters [u},, Au, and v} are defined in the proof.

Finally, we combine our results to construct an algorithm
for efficient posterior inference. The algorithm uses Lemmas

Algorithm 1 Collapsed Gibbs sampler for CPM.

Input: Number of factors F', number of places K,,, hyperpa-
rameters «, 3, v, pr, Ak, and p,,.

1: Initialize y and 2z uniformly at random

2: Initialize mu’f, mu’f, m. :{L, mu -, S, and P}, based on

y and z.
3: while the log-likelihood in Lemma 3 has not
converged do
4:  Choose index i = (u, w,n) uniformly at random.
5: mz“yl — mz“y’ 1, my ’y’ — mdyl -1,
mo e miY - 1
6:  Sample y; with respect to Lemma 2.
7: miﬁ’yl —m L, mgY — mgY
my — m. % +1.
8 Choose index i = (u, w,n) uniformly at random.
9: mzl Wi mz“y’ 1, mz“ — mfj’ -1,
SY «+ 8% — 4, P! «+ P! — 48] .
10:  Sample z; with respect to Lemma 1.
1 meY = mgY + 1, my —my + 1,
SU 8% + £, P" « P" 1 0,47
12: Compute 'y, 0, (;5 and 3 using Lemma 4.
13: return +, 0, d), and 3.

1 and 2 to implement the collapsed Gibbs sampler, Lemma 3
to determine convergence, and Lemma 4 to approximate the
posterior expectations. The sufficient statistics are defined in
the supplement.

4 Experiments

In this section, we demonstrate the performance of CPM
on two real-world location datasets, a dense cellular carrier
dataset and a sparse mobile ad exchange dataset, both of
which are depicted in Figure 1.

We start by describing how we set up the experiments.
Each data point consists of a user ID, a local time, and ge-
ographic coordinates represented as latitudes and longitudes.
First, we check if a user has logged multiple observations dur-
ing the same hour, and if so, we replace these observations
with their geometric median, computed using Weiszfeld’s al-
gorithm. Since geometric median is a robust estimator, this
step removes both noisy and redundant observations. Then,
we sort the datasets chronologically, and for each user, split
the user’s data points into 3 partitions: earliest 60% is added
to the training data, middle 20% to the validation data, and
final 20% to the test data. After preprocessing, both datasets
contain approximately 2 million data points, the dense dataset
contains 1394 users, and the sparse dataset contains 19247
users. Furthermore, since the temporal gap between the train-
ing data and the test data ends up being at least a week apart,
our datasets become inappropriate for models that make near-
term forecasts based on the most recent observations.

We train our model in two stages. In the first stage, we de-
termine both the optimal number of places for each user (i.e.
K,,) and the optimal setting for each spatial hyperparameter
(ie. v, pg, Ak, and p,). To do so, we extract the spatial
part of CPM into a GMM and train a different GMM for all
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Figure 3: Comparison of CPM and GMM on held-out data. The left and middle plots represent the held-out log-likelihoods on dense and
sparse datasets, respectively. In these plots, GMM is represented as a CPM with a single factor. The right plot shows the percentage of
predictions that have distance errors less than a given threshold. In general, CPM performs better than GMM.

combinations of users, number of places, and spatial hyper-
parameter settings. Then, for each hyperparameter setting,
we iterate over all users, and assign each user to a number of
place that minimizes the user’s validation log-likelihood. The
final spatial hyperparameter setting we output is the one that
minimizes the total validation log-likelihood summed across
all users.

In the second stage, we use the assignments obtained in
the previous stage, train a different CPM for each non-spatial
hyperparameter setting (i.e. F, «, (), and again use the
validation log-likelihood to select the best model. We set
the hyperparameters by choosing the number of factors from
F € {1,...,10} and the Dirichlet parameters from «, 5 €
{0.01,0.1,1, 10}.

We evaluate how well our model fits the data by measur-
ing the held-out test log-likelihood. The results for GMM
and CPM are displayed in Figure 3. Since GMM is equiva-
lent to a CPM with a single factor, the log-likelihood plots
compare the held-out performance of the two models and
demonstrate the advantages of temporal factorization. As the
number of factors increases, the held-out log-likelihood also
increases, illustrating how CPM can represent increasingly
complex temporal patterns without overfitting. Once we con-
vert log-likelihood to likelihood, we observe that CPM im-
proves performance by 8% for both sparse and dense datasets.

An alternative way to evaluate model performance is to
measure the distance between predicted coordinates and ob-

served coordinates. Let 4, 0, (}, and 3 be the posterior expec-
tations computed in Section 3. Both GMM and CPM can use
these posteriors to estimate a maximum a posteriori (MAP)
location for user u at weekhour w. In Figure 3, we use these
location estimates to plot the percentage of predictions that
have distance errors less than a given threshold. Again, CPM
outperforms GMM, and the difference in accuracy grows as
the distance threshold increases. Note that compared to eval-
uations based on log-likelihoods, evaluations based on point
estimates do not capture the full extent of information en-
coded by our models, since they ignore the probabilities as-
signed to places other than the highest weighted ones.

The spatiotemporal patterns extracted by CPM not only fit
the data well, but also provide qualitative insights about lo-
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factors and they capture the latent temporal patterns that are shared

across all users. The weights learned from the dense dataset are on

the left and from the sparse dataset are on the right.

cation data. In Figure 4, we plot 4, which represents the
time-dependent posterior weights associated with the factor-
ized place distributions. Intuitively, we would expect these
weights to capture the latent temporal patterns that are shared
across all users. CPM has no prior notion of how weekhours
are related to one another, nor does it have any explicit se-
quential constraints; nevertheless, it is able to extract these
temporal patterns from raw location data alone. Furthermore,
even though it looks like we haven’t encoded any temporal
dependencies in our model, an application of Bayes ball algo-
rithm reveals that -, are actually dependent on one another
conditioned on the observed data. In fact, we observe this
temporal dependency in Figure 4.

The left plot in Figure 4 corresponds to the dense dataset,
and it roughly clusters days into four groups: monday through
thursday, friday, saturday, and sunday. Factor 1 approximates
time spent at home, which is the dominant factor except be-
tween 8am and 8pm monday through thursday, between S8am
and 11pm friday, between noon and 10pm saturday, and be-
tween 1pm and 8pm sunday. The weekday hours between
8am and 6pm, which typically correspond to work hours, are
partitioned into three factors: factor 5 roughly corresponds to
amorning commute, factor 4 to an evening commute, and fac-
tor 3 to the work hours in between. Leisure time after work is
approximately represented by factor 2, and other than home,
it is the only factor which dominates a time segment during
each day: between 5pm and 8pm monday through thursday,
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Figure 5: Posterior and empirical place distributions for the dense
dataset. The left plot is the place distribution inferred by CPM and
the right plot is the empirical place distribution computed using a
GMM. The CPM distribution is much more smooth than the empir-
ical distribution computed using GMM, making it easier to visually
inspect the user’s temporal patterns. Note that, in contrast to Figure
4, these are distributions over a user’s place clusters, not factors.

between 6pm and 11pm on friday, between 5pm and 10pm
on saturday, and between 4pm and 8pm on sunday. Factor 6
only appears during weekends and dominates couple hours in
the early afternoon. All of these temporal patterns correspond
to intuitive temporal clusters and they are extracted from all
users in an unsupervised fashion.

The right plot in Figure 4 corresponds to the sparse dataset,
and due to scarcity of information per user, CPM chooses
a coarser temporal pattern: a split between work and non-
work hours with smooth transitions between them. As we
will demonstrate later, this temporal factorization allows us to
make predictions for weekhours where we have not observed
any data.

These temporal patterns do not necessarily mean that all
users are constrained to the same routine. In fact, one of the
key benefits of our model compared to the earlier prototype
in Figure 2 is that it allows each user a certain level of flex-
ibility, by allowing everyone to have their own distinct fac-
torized place distributions. In Figure 5, we show the final
place distribution of an arbitrarily chosen user from the dense
dataset, computed by combining the global factor weights in
the left plot of Figure 4 with user’s own factorized place dis-
tributions. In Figure 5, the left plot is the place distribution
inferred by CPM and the right plot is the empirical place dis-
tribution computed using a GMM. The difference in the tem-
poral patterns between left plots of Figures 4 and 5 demon-
strates how CPM successfully customizes global patterns to
each user. Furthermore, the distribution inferred by CPM is
much smoother than the empirical distribution computed us-
ing GMM, making it easier to visually inspect the user’s tem-
poral patterns.

In Figure 6, we continue analyzing the same user. The left
plot shows some of the places inferred by CPM. The circles
represent the training data, the colors represent the place as-
signments, and the pins represent the place cluster means. A
visual inspection of the temporal patterns in Figure 5 reveals
that Place 1 is user’s home. The right plot shows the empiri-
cal and inferred probability distributions over the weekhours,
assuming that the user is already at Place 1. The empirical
distribution is very noisy, and due to sampling bias, it shows
that user is not at home between midnight and 8am! The dis-

CPM
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Figure 6: Left plot shows some of the places inferred by CPM. The
circles represent the training data, the colors represent the place as-
signments, and the pins represent the place cluster means. Right plot
shows a comparison of the empirical and inferred probability distri-
butions over the weekhours given that the user is already at Place 1
(home). Note that, in contrast to Figure 5, this is a distribution over
weekhours.
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Figure 7: Posterior and empirical place distributions for the sparse
dataset. The left plot is the place distribution inferred by CPM and
the right plot is the empirical place distribution computed using a
GMM. The GMM distribution is sparse whereas the CPM distribu-
tion is both complete and clearly delineates home and work.

tribution inferred by CPM corrects that bias.

Lastly, in Figure 7, we show the final place distribution of
an arbitrarily chosen user from the sparse dataset, computed
by combining the global factor weights in the right plot of
Figure 4 with user’s own factorized place distributions. In
Figure 7, the left plot is the place distribution inferred by
CPM and the right plot is the empirical place distribution
computed using a GMM. In contrast to the sparse distribution
computed using GMM, CPM clearly delineates the temporal
cycles associated with home and work and is able to make
predictions for all weekhours.

5 Conclusion

In this paper, we present the Collaborative Place Model,
which recovers the latent spatiotemporal structure underly-
ing unsupervised location data by analyzing patterns shared
across all users. CPM combines population-wide inferences
with user-specific ones, allows users to have different num-
ber of places or weekhours to have different distributions over
places, and constructs a realistic and flexible representation of
users’ location profiles. We apply CPM to two real datasets,
one sparse and one dense, and demonstrate how it both im-
proves location prediction performance and provides new in-
sights into users’ spatiotemporal patterns.

For future work, we are interested in generalizing our



model using the hierarchical Dirichlet process, such that
training is simplified and the number of places for each user
is learned more efficiently.
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