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Abstract

I propose a common framework that combines three different paradigms in machine learning: gen-
erative, discriminative and imitative learning. A generative probabilistic distribution is a principled
way to model many machine learning and machine perception problems. Therein, one provides do-
main specific knowledge in terms of structure and parameter priors over the joint space of variables.
Bayesian networks and Bayesian statistics provide a rich and flexible language for specifying this
knowledge and subsequently refining it with data and observations. The final result is a distribution
that is a good generator of novel exemplars.

Conversely, discriminative algorithms adjust a possibly non-distributional model to data optimizing
for a specific task, such as classification or prediction. This typically leads to superior performance
yet compromises the flexibility of generative modeling. I present Maximum Entropy Discrimination
(MED) as a framework to combine both discriminative estimation and generative probability den-
sities. Calculations involve distributions over parameters, margins, and priors and are provably and
uniquely solvable for the exponential family. Extensions include regression, feature selection, and
transduction. SVMs are also naturally subsumed and can be augmented with, for example, feature
selection, to obtain substantial improvements.

To extend to mixtures of exponential families, I derive a discriminative variant of the Expectation-
Maximization (EM) algorithm for latent discriminative learning (or latent MED). While EM and
Jensen lower bound log-likelihood, a dual upper bound is made possible via a novel reverse-Jensen
inequality. The variational upper bound on latent log-likelihood has the same form as EM bounds,
is computable efficiently and is globally guaranteed. It permits powerful discriminative learning
with the wide range of contemporary probabilistic mixture models (mixtures of Gaussians, mixtures
of multinomials and hidden Markov models). We provide empirical results on standardized data
sets that demonstrate the viability of the hybrid discriminative-generative approaches of MED and
reverse-Jensen bounds over state of the art discriminative techniques or generative approaches.

Subsequently, imitative learning is presented as another variation on generative modeling which also
learns from exemplars from an observed data source. However, the distinction is that the generative
model is an agent that is interacting in a much more complex surrounding external world. It is not
efficient to model the aggregate space in a generative setting. I demonstrate that imitative learning
(under appropriate conditions) can be adequately addressed as a discriminative prediction task
which outperforms the usual generative approach. This discriminative-imitative learning approach
is applied with a generative perceptual system to synthesize a real-time agent that learns to engage
in social interactive behavior.
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Chapter 1

Introduction

It is not knowledge, but the act of learning,... which grants the greatest enjoyment.

Karl Friedrich Gauss, 1808.

The objective of this thesis is to propose a common framework that combines three different
paradigms in machine learning: generative, discriminative and imitative learning. The resulting
mathematically principled framework 1 suggests that combined or hybrid approaches provide supe-
rior performance and flexibility over the individual learning schemes in isolation. Generative learning
is at the heart of many approaches to pattern recognition, artificial intelligence, and perception and
provides a rich framework for imposing structure and prior knowledge on a given problem. Yet recent
progress in discriminative learning has demonstrated that superior performance can be obtained by
avoiding generative modeling and focusing on the given task. A powerful connection will be pro-
posed between generative and discriminative learning to combine the complementary strengths of
the two schools of thought. Subsequently, we propose a connection between discriminative learning
and imitative learning. Imitative learning is an automatic method for learning behavior in an inter-
active autonomous agent. This process will be cast and augmented with a discriminative learning
formalism.

In this chapter, we begin by discussing motivation for machine learning in general. There we draw
upon applied examples from pattern recognition, various AI domains and machine perception. These
communities have identified various generative models specifically designed and honed to reflect the
prior knowledge in their respective domains. Yet these generative models must often be discarded
when one considers a discriminative approach which ironically provides superior performance despite
its naive models. This motivates the need to find common formalisms that synergistically combine
the different schools of thought in the community. We then describe an ambitious instance of ma-
chine learning, namely imitative learning which attempts to learn autonomous interactive agents
directly from data. This form of agent learning can also benefit from being cast into a discrimina-
tive/generative paradigm. We end the chapter with a summary of the objectives and scope of this
work and provide a brief overview of the rest of the chapters in this document.

1 In the process of constructing such a framework we will expose important mathematical tools which are valuable
in their own right. These include a powerful reversal of the celebrated Jensen inequality, projection approaches to
learning and more.

14
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1.1 Learning and Generative Modeling

While science can sometimes provide exact deterministic models of phenomena (i.e. in domains such
as Newtonian physics), the mathematical relationships governing more complex systems are often
only (if at all) partially specifiable. Furthermore, aspects of the model may have uncertainty and
incomplete information. Machine learning and statistics provide a formal approach for manipulating
nondeterministic models by describing or estimating a probability density over the variables in
question. Within this generative density, one can specify a priori partial knowledge and refine the
partially specified model using empirical observations and data. Thus, given a system with variables
x1, . . . , xT , a system can be specified through a joint probability distribution over all the significant
variables within it p(x1, . . . , xT ). This is known as a generative model since given this probability
distribution, we can generate samples of various configurations of the system. Furthermore, given
a full generative model, it is straightforward to condition and marginalize over the joint density to
make inferences and predictions.

In many domains, greater sophistication and more ambitious tasks have made problems so intricate
that complete models, theories and quantitative approaches are difficult to construct manually.
This, combined with the greater availability of data and computational power have encourage many
of these domains to migrate away from rule-based and manually specified models to probabilistic
data-driven models. However, whatever partial amounts of domain knowledge are available are still
used to seed a generative model. Developments in machine learning and Bayesian statistics have
provided a more rigorous formalism for representing prior knowledge and combining it with observed
data. Recent progress in graphical generative models or Bayesian networks [149] [118] [98] [104] has
permitted prior knowledge to be specified structurally by identifying conditional independencies
between the variables as well as parametrically by providing prior distributions over them. This
partial domain knowledge 2 is then combined with observed data resulting in a more precise posterior
generative model.

T=1 T=2 T=3 T=4 T=5

S1 S2 S3 S4 S5

O1 O2 O3 O4 O5 G1 G2 Y

X

(a) (b) (c)

Figure 1.1: Examples of Generative Models.

In Figure 1.1, we can see two different examples of generative models. A hidden Markov model
[104] [156][13] is depicted in Figure 1.1(a) as a directed graph which identifies high level conditional
independence properties. These specify a Markov structure where states only depend on their
predecessors and outputs only depend on the current state. A hierarchical mixture of experts [105]
is portrayed in Figure 1.1(b). Similarly, a mixture model [20] is shown in Figure 1.1(c) which can
also be seen as a graphical model where are parent node selects between two possible Gaussian
emission distributions. The details and formalism underlying generative models will be presented
in the next chapter. For now, we provide background motivation through examples from multiple
applied fields where these generative models have become increasingly popular. 3.

2A further caveat will be addressed in the following sections which warns that even the partially specified aspects
of a model will often be inaccurate and suspect.

3This is just a small collection examples of generative models in the various fields and is by no means a complete
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In the area of natural language processing, for instance, traditional rule-based or boolean logic sys-
tems (such as Dialog and Lexis-Nexis) are giving way to statistical approaches [37] [33] [122] such as
Markov models which establish independencies in a chain of successive events. In medical diagnos-
tics, the Quick Medical Reference knowledge base, initially a heuristic expert system for reasoning
about diseases and symptoms has been augmented with a statistical, decision-theoretic formulation
[175] [80]. This new formulation structures a diagnostics problem with a two layer bipartite graph
where diseases are parents of symptoms. Another recent success of generative probabilistic models
lies in genomics and bioinformatics. Once again, traditional approaches for modeling genetic regula-
tory networks used boolean approaches or differential equation-based dynamic models which are now
being challenged by statistical graphical models [67]. Here, a model selection criterion identifies the
best graph structure that matches training data. In addition, for visualization of interdependencies
between variables graphical models have given a principled formalism which has proven superior to
their heuristic counterparts [70] [69].

1.1.1 Learning and Generative Models in AI

In the artificial intelligence (AI) area in general, we see a similar migration from rule-based expert
systems to probabilistic generative models. For example, in robotics, traditional dynamics and
control systems, path planning, potential functions and navigation models are now complemented
with probabilistic models for localization, mapping and control [106] [186]. Multi-robot control has
also been demonstrated using a probabilistic reinforcement learning approach [193]. Autonomous
agents or virtual interactive characters are another example of AI systems. From the early days of
interaction and gaming, simple rule-based schemes were used, such as in in Weizenbaum’s Eliza [200]
program, where natural language rules were used to emulate a therapy session. Similarly, graphical
virtual worlds and characters have been generated by rules, cognitive models, physical simulation,
kinematics and dynamics [205] [176] [60] [11] [7] [184] [51] [36]. These traditional approaches are
currently being combined with statistical machine learning techniques [23] [210] [27].

1.1.2 Learning and Generative Models in Perception

In machine perception, generative models and machine learning have become prominent tools in
particular because of the complexity of the domain and sensors. In speech recognition, hidden
Markov models are [156] are the method of choice due to their probabilistic treatment of acoustic
coefficients and the Markov assumptions necessary for time varying signals. Even auditory scene
analysis and sound texture modeling has been cast into a probabilistic learning framework with
independent component analysis [14] [15]. Word distributions have also been modeled using bigrams,
trigrams or Markov models and topic modeling often uses multinomial distributions. A topic spotting
system is shown in Figure 1.2(c) which tracks the conversation of multiple speakers and displays
related material for the users to read [89].

A similar emergence of generative models can also be found in the computer vision domain. Tech-
niques such as physics based modeling [42], structure from motion and epipolar geometry [54] ap-
proaches have been complemented with probabilistic models such as Kalman filters [4] [87] to prevent
instability and provide robustness to sensor noise. Figure 1.2(a) depicts a system that probabilisti-
cally fuses 2D motion estimates into an extended Kalman filter to obtain a rigid 3D face structure
and pose estimate [91]. Multiple hypothesis filtering and tracking in vision have also used a genera-
tive model and Markov chain Monte Carlo via the Condensation algorithm [79]. More sophisticated
probabilistic formulations in computer vision include the use of Markov random fields and loopy

survey.
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belief networks to perform super-resolution [56]. Generative models and structured latent mixtures
are used to compute transformations and invariants in a face tracking applications [59]. Other dis-
tributions, such as eigenspaces [137] and mixture models have also been used for skin color modeling
[172] and image manifold modeling [30]. For instance, in Figure 1.2(b) an eigenspace over 2D photos
and 3D face scans is formed and then a generative model between the two spaces can regress 3D face
shapes from 2D images in real-time [95]. Color modeling can be done with a mixture of Gaussian
models to permit billiards tracking for augmented reality applications as in Figure 1.2(c) [88]. Ob-
ject recognition and feature extraction has also benefited greatly from a probabilistic interpretation
[171]. For example, in Figure 1.2(e), histograms of convolution operations on images provide reliable
recognition for, eg. real-time augmented reality [96].

(a) (b)

(c) (d)

(e)

Figure 1.2: Probabilistic Perception Systems.

1.1.3 Learning and Generative Models in Temporal Behavior

Simultaneously, an evolution has been proceeding in the field as vision techniques transition from low
level static image analysis to dynamic and high level video interpretation. These temporal aspects of
vision (and other domains) have relied extensively on generative models, and dynamic Bayesian net-
works in particular. Temporal tracking has also benefited from generative models such as extended
Kalman filters [5]. In tracking applications, hidden Markov models are frequently used to recognize
gesture [204] [179] as well as spatiotemporal activity [61]. The richness of graphical models permit
straightforward combinations of hidden Markov models with Kalman filters for switching between
linear dynamical systems in modeling gaits [29] or driving maneuvers [151]. Further variations in the
graphical models include coupled hidden Markov models which are appropriate for modeling inter-
acting processes such as vehicle or pedestrian in traffic [145] [139] [141]. Bayesian networks have also
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been used in multi-person interaction modeling, eg. in classifying football plays [78]. Forecasting
temporal activity has also been reviewed in the Santa Fe competition [62] where various approaches
including hidden Markov models are compared.

1.2 Why a Probability of Everything?

Is it efficient to create a probability distribution over all variables in this ’generative’ way? The
previous systems make no distinction between the roles of different variables and are merely trying
to model the whole phenomenon. This can be inefficient if we are simply trying to learn one (or a
few) particular tasks that need to be solved and are not interested in characterizing the behavior of
the complete system.

An additional caveat is the generative density estimation is formally an ill-posed problem. Density
estimation, under many circumstances, can be a cumbersome intermediate step to forming a mapping
between variables (i.e. from input to output). This dilemma will be further explicated in Chapter 2.
Moreover, another issue is the difficulty of density estimation in terms of sample complexity and that
a large amount of data may be necessary to obtain a good generative model of a system as a whole
but we may only need a small sample to learn the required input-output sub-task discriminatively.

Furthermore, all the above AI and perceptual systems work well because of the structures, priors,
representations, invariants and background knowledge designed into the system by a domain expert.
This is not just due to the learning power of the estimation algorithms but that they are also seeded
with the right framework and a priori structures for learning. Can we alleviate the amount of
manual effort in this process and take some of the human knowledge engineering out of the loop?
One way is to not require a very accurate generative model to be designed and not require as much
domain expertise up-front. If we had discriminative learning algorithms that were more powerful, the
learning would be robust to more errors in the design process and remain effective despite incorrect
modeling assumptions.

1.3 Generative versus Discriminative Learning

The previous applications we described present compelling evidence and strong arguments for using
generative models where a joint distribution is estimated over all variables. Ironically, though,
these flexible models have been recently outperformed in many cases by relatively simpler models
estimated with discriminative algorithms.

Unlike a generative modeling approach where modeling tools are available for combining structure,
priors, invariants, latent variables and data to form a good joint density tailored to the domain
at hand, discriminative algorithms directly optimize a relatively less domain-specific model for the
classification or regression task at hand. For example, support vector machines [196] [35] directly
maximize the margin of a linear separator between two sets of points in a Euclidean space. While
the model is simple (linear), the maximum margin criterion is more appropriate than maximum
likelihood or other generative model criteria.

In the domain of image-based digit recognition, support vector machines (SVMs) have produced
state of the art classification performance [196] [197]. In regression [178] and time series prediction
[140], SVMs improved upon generative approaches, maximum likelihood and logistic regression. In
text classification and information retrieval support vector machines [48] [161] and transductive
support vector machines [100] surpassed the popular naive Bayes and generative text models. In
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computer vision, person detection/recognition [148] [52] [142] [71] and gender classification have
been dominated by SVM frameworks which surpass maximum likelihood generative models and
approach human performance [138]. In genomics and bioinformatics, discriminative systems play a
crucial role [202] [208] [81]. Furthermore, in speech recognition, discriminative variants of hidden
Markov models have recently demonstrated superior large corpus classification performance [158]
[159] [207]. Despite the more ambiguous models used in these systems, the discriminative estimation
process yields improvements over the sophisticated4 models that have been tailored for the domain
in generative frameworks.

Figure 1.3: Examples of a Discriminative Classifier.

There are deeply complementary advantages in both the generative and discriminative approaches
yet, algorithmically, they are not directly compatible. Within the community, one could go so
far as to say that there exist two somewhat disconnected camps: the ’generative modelers’ and
the ’discriminative estimators’ [167] [83]. We now quickly discuss the general aspects of these two
schools of thought (Chapter 2 further details the two approaches and previous efforts to bridge
them in the machine learning literature). Generative models provide the user with the ability to
seed the learning algorithm with knowledge about the problem at hand. This is given in terms of
structured models, independence graphs, Markov assumptions, prior distributions, latent variables,
and probabilistic reasoning [25] [149]. The focus of generative models is to describe a phenomenon
and to try to resynthesize or generate configurations from it. In the context of building classifiers,
predictors, regressors and other task-driven systems, density estimation over all variables or a full
generative description of the system can often be an inefficient intermediate goal. Clearly, therefore,
the estimation frameworks in probabilistic generative models do not optimize parameters for a
given specific task. These models are marred by generic optimization criteria such as maximum
likelihood which are oblivious to the particular classification, prediction, or regression task at hand.
Meanwhile, discriminative techniques such as support vector machines have little to offer in terms
of structure and modeling power yet achieve superb performance on many test cases. This is due
to their inherent and direct optimization of a task-related criterion. For example, Figure 1.3 shows
an appropriate criterion for binary classification: the largest margin separation boundary (for a 3rd
order polynomial model). The focus here is on classification as opposed to generation thus properly
allocating computational resources directly for the task required.

Nevertheless, as previously mentioned, there are some fundamental differences in the two approaches
making it awkward to combine their strengths in a principled way. It would be of considerable value
to propose an elegant framework which would subsume and unite both schools of thought and thus
will be one challenge undertaken in this thesis.

4Here, we are using the term ’sophisticated’ to refer to the extra tailoring that the generative model traditionally
obtains from the user to incorporate domain-specific knowledge about the problem at hand (in terms of priors,
structures, etc.). Therefore, this is not a claim about the relative mathematical sophistication between generative and
discriminative models.
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1.4 Imitative Learning

So far, we have provided motivation using multiple instantiations of machine learning and generative
models in the applied domains of perception, temporal modeling and autonomous agents. Due to the
common probabilistic platform threading across these domains, it is natural to consider combinations
and couplings between these systems. One of the platforms we will investigate for combining these
synergistic approaches to learning is imitative learning. The imitative learning will be used to
learn an autonomous agent which exhibits interactive behavior. Imitative learning provides an easy
approach 5 for learning agent behavior by providing real examples of agents interacting in a world
that can be learned from and generalized. The two components of this process, passively perceiving
real world behavior and learning from it are portrayed in Figure 1.4. The basic notion is to have a
generative model at the perceptual level to be able to regenerate or resynthesize virtual characters
while keeping a discriminative model on the temporal learning to focus resources on the prediction
task necessary for action selection. This conceptual loop and its implementation will be elaborated
in Chapter 8. For now, we will briefly situate imitative learning in the context of other agent learning
approaches and motivate it with background and related work.

Discriminative
Learning / Prediction

Imitation

Generative
Perception / Synthesis

Figure 1.4: Imitative Learning through Discrimination and Probabilistic Perception.

Various approaches have been proposed for learning autonomous agents in domains such as robotics
and interactive graphics. While some utilize rule-based, discriminative, or generative models, we
can also distinguish among them in the manner in which the learning process is cast within the
overall agent behavior model. For example, how will data be acquired, how will data be organized,
how will it be labeled, what will be the task(s) of the agent, how will it generalize, and so forth.
Traditional, rule-based systems for agent modeling require a cumbersome enumeration of decisions
[36]. A simpler alternative is supervised learning where a teacher provides a few exemplars of the
optimal behavior for a given context and a learning algorithm generalizes from the samples [160]
[181] [20] [187]. Even less supervision is required in reinforcement learning [107]. This remains
one of the most popular approaches to agent learning in part due to its strong ethological and
cognitive science roots. Therein, an agent explores its action space and is rewarded for performing
appropriate actions in the appropriate context. Thus, supervision is minimized due to the simplicity
in providing only a reward signal and the supervision process can be done in an active online setting.
Imitative learning [169] is in a sense a combination of supervised and unsupervised (i.e. no teacher)
learning. While we collect data of real people interacting with the real world, we are shown many
exemplars of appropriate reactionary behavior in response to the current context. Thus, the data
is already labeled and needs no teaching effort for the supervision. This, of course, assumes that

5As Confucius says, there are 3 types of learning, “by reflection, which is noblest; Second, by imitation, which is
easiest; and third by experience, which is the bitterest”.
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perceptual techniques can record and represent natural real-world activity automatically. In such
an incarnation, imitative learning only involves data collection and avoids manual supervision. It
is for this reason that we will investigate it further and implement it with the discriminative and
generative models we will propose. While ideally, an agent would utilize a mixture of all learning
methodologies and use multiple learning scenarios to introspect and bootstrap each other in a meta-
learning approach [187], such an undertaking would be too ambitious. We leave the learning to learn
aspect of agent behavior as an interesting topic for future research. At this point, we quickly motivate
some background in imitation learning which spans multiple fields (cognitive sciences, philosophy,
psychology, neuroscience, robotics, etc.) and a full survey of which would be beyond the scope of
this thesis.

Early research in behavior and cognitive sciences exhibited strong interest in the role of imitative
learning. However, ground breaking works of Thorndike [185] and Piaget [153] were followed by a
lull in the area of movement imitation. This was in part due to the presumption that imitation or
mimicry in an entity was not necessarily the sign of higher intelligence and therefore not critical
to development. This prejudice slowly faded with the arrival of several studies by Meltzoff and
Moore that indicated infants’ ability to perform facial/manual gesture imitation from ages 12-21
days old and in some cases at an hour old [130] [131] [132] [133]. Imitative learning began to
be seen as an almost innate mechanism to help the development of humans and certain species
[192]. Furthermore, it was demonstrated to be absent in other, lower-order animals [191], or very
limited in others [190]. In addition, through recent discoveries of mirror neurons, action-perception
pathways and functional magnetic resonance imaging results [2] [157] [77] [165], a neural basis for
imitative learning has been recently hypothesized 6. Certain experiments indicated consistent firings
in a mirror neuron either when an action was performed by a subject or when another individual
was perceived performing the same action. In addition, imitation has also been suggested as a
possible basis for language learning [164]. These results have spurred applied efforts in imitative
approaches to robotics by Mataric [123], Brooks [31], etc. where imitation has gained visibility and
complemented reinforcement learning [107]. Further arguments for imitation based learning include
improved acquisition of complex visual gestures in human subjects [39].

However, these domains have predominantly focused on uncovering direct mappings between action
and perception [169] [123]. It is through such a mapping that the imitation learning problem can be
translated into a direct supervised learning one. This complex mapping is to a certain extent the
Achilles’ heel of imitation learning. Much of the effort of humanoid robot imitation rests in resolving
Meltzoff and Moore’s ’Active Intermodal Mapping’ (AIM) problem. That is, the creation of a
mapping of the visual perception of a teacher’s movement to high-level representations that can then
be matched to other high-level representations of the learner’s action space and proprioceptive senses
(see Figure 1.5). Effectively, the AIM problem is a change-of-coordinates task where intermediate
representations allow a mapping of the learner’s action space to various perceived situations and
various teachers. This key challenge has driven a substantial effort in the area of humanoid robotics.
Various simplifications to the AIM problem can be made to permit implementation of faster learning
of robot behavior, however, many of these result in over-simplification of action and perception spaces
and consequently generate uninteresting robot behavior. For example, Billard [19] over-simplifies
action spaces and perception spaces into a low-dimensional discrete representation and then has a
simple learning mechanism (not much more than a rote learner) to resolve the one-to-one mapping.

An alternative approach is to do away with the AIM problem altogether by either providing the
teacher’s perceptual data in terms of the action-space of the learner [201] [124] or by only considering
virtual characters [74] [61] [101] [93] whose action space is in the perceptual space. For example,

6The discovery of imitation neurons has recently generated extreme enthusiasm in psychology and has been pre-
dicted to provide that field with a leap forward equivalent to the progress in biology obtained from work in DNA
[157]. It is also suggested that dysfunctional mirror neurons may explain certain phenomena such as autism.
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Figure 1.5: The AIM mapping from action to perception.

Weng [201] describes a human pushing a robot down a hallway while the robot collects images
of its context. The actuators in the robot (not its cameras) measure the human’s displacement
and therefore to imitate the human, the displacement values need only be regurgitated (under
the appropriate visual context). Hogg [101] alternatively describes a vision system which obtains
perceptual measurements and needs only resynthesize behavior in the visual space to generate an
action virtually. Both methods cleverly avoid a direct mapping of the perception of a teacher’s
activity into the learner’s action-space.

Clearly, the lack of a higher-order representation of the perception and action requires some extra
care. Changes in the coordinate system are not abstracted away and must be dealt with up front.
Thus, the actuators in Weng’s robot can not be replaced by a totally different motor system and
the vision system in Hogg’s virtual characters can not be pointed to a radically new scene. One
way to side-step the lack of an abstraction layer is to lock the perceptual (or action) coordinate
system. This may seem difficult if the learner has to acquire lessons from multiple teachers in
multiple contexts and therefore prevents many types of long-term training (or developmental [126])
data scenarios. Furthermore, in a long-term training scenario, it is important to weed out irrelevant
data and outliers in the behavioral data and to focus resources discriminatively on the defining
exemplars in the training data.

Thus, the second challenge of this thesis is to implement imitative learning and show that it can
be cast into the discriminative and generative formalisms described previously. This extends the
theoretical combination of discriminative and generative learning to a practical applied task of
imitation-based learning.

1.5 Objective

Therefore, we pose the following two main challenges. We will seek a combined discriminative and
generative framework which extends the powerful generative models that are popular in the machine
learning community into discriminative frameworks such as those present in support vector machines.
We will also seek an imitative learning approach that casts interactive behavior acquisition into the
discriminative and generative framework we propose. There are many features and subgoals within
these two large contributions which we will also strive for. The following list enumerates some of
these in further detail.

• Combined Generative and Discriminative Learning

Ideally, the combination of generative and discriminative learning should be done at a formal
level so that it is easily extensible and can be related to other domains and approaches. We
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will provide a discriminative classification framework that retains much of the formalism of
Bayesian generative modeling via an appeal to maximum entropy which already has many
connections to Bayesian approaches. The formalism also has powerful connections to regular-
ization theory and support vector machines, two important and principled approaches in the
discriminative school of thought.

• Formal Generalization Guarantees

While empirical validation can support the combined generative-discriminative framework,
we will also refer the reader to formal generalization guarantees from different perspectives.
Various arguments from the literature such as sparsity, VC-dimension and PAC-Bayes gener-
alization bounds will be compatible with the framework.

• Applicability to a Spectrum of Bayesian Generative Models

To span a wide variety generative models we will focus on the exponential family which is
central to much of statistics and maximum likelihood estimation. The discriminative methods
will be consistently applicable to this large family of distributions.

• Ability to Handle Latent Variables

While the strength of most generative models lies in the their ability to handle latent variables
and mixture models, we will ensure that the discriminative method can also span these higher
order multimodal distributions. Through novel bounds, we will extend beyond the classical
Jensen inequality that permits much of generative modeling to apply to mixtures.

• Analytic Reversal of Jensen’s Inequality

We will present an analytic reversal of Jensen’s inequality which is useful in statistics and pro-
vides a new mathematical tool. This reversal will permit various important manipulations in
particular the use of discriminative estimation on latent generative models. The mathematical
tool also permits dual sided bounds on many probabilistic quantities which otherwise only had
a single bound.

• Computational Efficiency

Throughout the development of the discriminative, generative and imitative learning pro-
cedures, we will consistently discuss issues of computational efficiency and implementation.
These frameworks will be shown to be viable in large data scenarios and computationally as
tractable as their traditional counterparts.

• Extensibility

Many extensions will be demonstrated in the hybrid generative discriminative approach which
will justify its usefulness. These include the ability to handle regression, multiclass classi-
fication, transduction, feature selection, structure learning, exponential family models and
mixtures of the exponential family.

• Casting Imitative Learning into a Generative/Discriminative Framework

We will bring imitative learning into a generative/discriminative setting by describing gen-
erative models over the perceptual domain and over the temporal domain. These will be
augmented by discriminatively learning a prediction model to synthesize interactive behavior
in an autonomous agent.

• Combining Perception, Learning and Behavior Acquisition

We will demonstrate a real-time system that performs perception, learning and acquires and
synthesizes real-time behavior. This closes the loop we proposed and shows how a common
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discriminative and probabilistic framework can be extended throughout the multiple facets of
a large system.

1.6 Scope

This thesis focuses on computational and statistical aspects of machine learning and machine per-
ception. Therein, discussions of different types of learning (discriminative, generative, conditional,
imitative, reinforcement, supervised, unsupervised, etc.) refer primarily to the computational and
mathematical aspects of these terms. Connections to the large bodies of work in the cognitive sci-
ences, psychology, neuroscience, philosophy, ethology, and so forth will invariably arise however these
are brought in for motivation and implementation purposes and should not necessarily be taken as
a direct challenge to the conventional wisdoms in those fields.

1.7 Organization

The thesis is organized as follows:

• Chapter 2

The complementary advantages of discriminative and generative learning are discussed. We for-
malize the many models and methods of inference in generative, conditional and discriminative
learning. The various advantages and disadvantages of each are enumerated and motivation
for methods for fusing them is given.

• Chapter 3

The Maximum Entropy Discrimination formalism is introduced as the method of choice for
combining generative models in a discriminative estimation setting. The formalism is presented
as an extension to regularization theory and shown to subsume support vector machines. A
discussion of margins, bias and model priors is presented. The MED framework is then ex-
tended to handle generative models in the exponential family. Comparisons are made with sate
of the art support vector machines and other learning algorithms. Generalization guarantees
on MED are then provided by appealing to recent results in the literature.

• Chapter 4

Various extensions to the Maximum Entropy Discrimination formalism are proposed and elab-
orated. These include multiclass classification, regression and feature selection. Furthermore,
transduction is discussed as well as optimization issues. The chapter then motivates the need
for latent models in MED and for mixtures of the exponential family. Comparisons are made
with sate of the art support vector machines and other learning algorithms.

• Chapter 5

Latent learning is motivated in a discriminative setting via reverse-Jensen bounds. The so-
called Conditional Expectation Maximization framework is then proposed for latent condi-
tional and discriminative (MED) problems. Bounds are given for exponential family mixture
models and mixing coefficients. Comparisons are made with the state of the art Expectation-
Maximization approaches.
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• Chapter 6

We consider the case of discriminative learning of structured mixture models where the mixture
is not flat but has some additional complications that generate an intractable number of latent
configurations. This is the case for many Bayesian networks and generally prevents a tractable
computation of the reverse-Jensen bounds. We show how the reverse-Jensen bounds can be
computed efficiently in some of these circumstances and therefore extend the applicability of
latent discrimination and CEM to structured mixture models such as hidden Markov models
and mixture models over an aggregated data set.

• Chapter 7

This chapter begins with a brief discussion of work in the mathematical inequalities community
including prior reversals and converses of Jensen’s inequality. Then, a derivation of the reverse-
Jensen inequality for use in discriminative learning is performed to justify its form and give
global guarantees on the bounds.

• Chapter 8

Imitative learning is cast as a discriminative temporal prediction problem where an agent’s
next action is predicted from his previous state and the world state. The implementation
details for the hardware and the perceptual systems are discussed. A generative model for the
audio, images and temporal structure is then presented and provides the representations for
the discriminative prediction problem. Synthesized behavior is then demonstrated as well as
some quantitative measurement of performance.

• Chapter 9

The advantage of a joint framework for generative, discriminative and imitative learning is
reiterated. The various contributions of the thesis are summarized. Future extensions and
elaborations are proposed.

• Chapter 10

This appendix gives a few standard derivations that are called upon in the main body of
the thesis. This includes a brief discussion of convex duality as well as details of numerical
procedures mentioned in Chapter 7.



Chapter 2

Generative vs. Discriminative
Learning

All models are wrong, but some are useful 1.

George Box, 1979

In this chapter, we will situate discriminative and generative learning more formally in the context of
their estimation algorithms and the criteria they optimize. A natural intermediate between the two is
conditional learning which helps to visualize a coarse continuum between these extremes. Figure 2.1
describes a panorama of approaches as we go horizontally from the extreme of generative criteria to
discriminative criteria. Similarly, another scale of variation (vertical) can be seen in the estimation
procedures as we go from direct optimizations of the criteria on training data to regularized ones
and finally to fully averaged ones which attempt to better approximate the behavior of the criteria
on future data without overfitting.

In this chapter we begin with a sample of generative and discriminative techniques and then explore
the entries in Figure 2.1 in more detail. The generative models at one extreme attempt to estimate a
distribution over all variables (inputs and outputs) in a system. This is inefficient since we only need
conditional distributions of output given input to perform classification or prediction and motivates
a more minimalist approach: conditional modeling. However, in many practical systems, we are
even more minimalist than that since we only need a single estimate from a conditional distribution.
So, even conditional modeling may be inefficient which motivates discriminative learning since it
only considers the input-output mapping. We conclude with some hybrid frameworks for combining
generative and discriminative models and point out their limitations.

1At the risk of misquoting what Box truly intended to say about robust statistics, we shall use this quote to motivate
combining the usefulness of generative models with the robustness, practicality and performance of discriminative
estimation.

26
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Figure 2.1: Scales of Discrimination and Integration in Learning.

2.1 Two Schools of Thought

We next present what could be called two schools of thought: discriminative and generative ap-
proaches. Alternative descriptions of the two formalisms include “discriminative versus informative”
approaches [167]. Generative approaches produce a probability density model over all variables in
a system and manipulate it to compute classification and regression functions. Discriminative ap-
proaches provide a direct attempt to compute the input to output mappings for classification and
regression and eschew the modeling of the underlying distributions. While the holistic picture of
generative models is appealing for its completeness, it can be wasteful and non-robust. Furthermore,
as Box says, all models are wrong (but some are useful). Therefore, the graphical models and the
prior structures that we will enforce on our generative models may have some useful elements yet
should always be treated cautiously since in real-world problems, the true distribution almost never
coincide with the one we have constructed. In fact, Bayesian inference does not guarantee that we
will obtain the correct posterior estimate if the class of distributions we consider do not contain the
true generator of the data we are observing. Here we show examples of the two schools of thought
and then elaborate on the learning criteria they use in the next section.

2.1.1 Generative Probabilistic Models

In generative or Bayesian probabilistic models, a system’s input (covariate) features and output
(response) variables (as well as unobserved variables) are represented homogeneously by a joint
probability distribution. These variables can be discrete or continuous and may also be multidimen-
sional. Since generative models define a distribution over all variables, they can also be used for
classification and regression [167] by standard marginalization and conditioning operations. Gen-
erative models or probability densities in current use typically span the class of exponential family
distributions and mixtures of the exponential family. More specifically, popular models in various
domains include Gaussians, naive Bayes, mixtures of multinomials, mixtures of Gaussians [20], mix-
tures of experts [105], hidden Markov models [156], sigmoidal belief networks, Bayesian networks
[98] [118] [149], Markov random fields [209], and so forth.

For N variables of the form (x1, . . . , xn), we therefore have a full joint distribution of the form:
p(x1, . . . , xn). Given a good joint distribution that accurately captures the (possibly nondetermin-
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istic) relationships between the variables, it is straightforward to use it for inference and to answer
queries. This is done by straightforward manipulations of the basic axioms of probability theory
such as marginalizing, conditioning and using Bayes’ rule:

p(xj) =
∑

∀xi,i 6=j

p(x1, . . . , xn)

p(xj |xk) =
p(xj , xk)

p(xk)

p(xj |xk) =
p(xk|xj)p(xj)

p(xk)

Thus, through conditioning a joint distribution, we can easily form classifiers, regressors and pre-
dictors in a straightforward manner which map input variables to output variables. For instance,
we may want to obtain an estimate of the output x̂j (which may be a discrete class label or a
continuous regression output) from the input x̂k using the conditional distribution p(xj |xk). While
a purist Bayesian would argue that the only appropriate answer is the conditional distribution itself
p(xj |xk), in practice we must settle for an approximation to obtain an x̂k. For example, we may
randomly sample from p(xj |xk), or compute the expectation of p(xj |xk) or find the mode(s) of the
distribution, i.e. argmaxxj

p(xj |xk).

X1

X2 X3

X4 X5 X6 X7

Figure 2.2: Directed Graphical Models.

There are many ways to constrain this joint distribution such that it has fewer degrees of freedom
before we directly estimate it from data. One way is to structurally identify conditional independen-
cies between variables. This is depicted, for example, with the directed graph (Bayesian network)
in Figure 2.2. Here, the graph identifies that the joint distribution factorizes into a product of con-
ditional distributions over the variables given their parents (here πi are the parents of the variable
xi or node i):

p(x1, . . . , xn) = Πn
i=1p(xi|xπi

)

Alternatively, we can parametrically constrain the distribution by giving prior distributions over the
variables and hyper-variables that affect them. For example, we may restrict two variables (xi, xk)
to be jointly a mixture of Gaussians with unknown means and a covariance equal to identity:

p(xi, xk) = αN
([

xi

xk

]
;µ1, I

)
+ (1− α)N

([
xi

xk

]
;µ2, I

)

Other types of restrictions exist, for example those related to sufficiency and separability [152] where
a conditional distribution might simplify according to a mixture of simpler conditionals as in:

p(xi|xj , xk) = αp(xi|xj) + (1− α)p(xi|xk)
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Thus, a versatility is inherent in working in the joint distribution space since we can insert knowledge
about the relationships between variables, invariants, independencies, prior distributions and so
forth. This includes all variables in the system, unobserved, observed, input or output variables.
This makes generative probability distributions a very flexible modeling tool.

Unfortunately, the learning algorithms used to combine such models with the observed data and
produce a final posterior distribution can sometimes be inefficient. Finding the ideal generator
of the data (combined with the prior knowledge) is only an intermediate goal in many settings.
In practical applications, we wish to use these generators for the ultimate tasks of classification,
prediction and regression. Thus, in optimizing for an intermediate generative goal, we sacrifice
resources and performance on these final discriminative tasks. Section 2.2 we discuss techniques for
learning from data in generative approaches.

2.1.2 Discriminative Classifiers and Regressors

Discriminative approaches make no explicit attempt to model the underlying distributions of the
variables and features in a system and are only interested in optimizing a mapping from the inputs
to the desired outputs (say a discrete class or a scalar prediction) [167]. Thus, only the resulting
classification boundary (or function approximation accuracy for regression) are adjusted without the
intermediate goal of forming a generator that can model the variables in the system. This focuses
model and computational resources on the given task and provides better performance. Popular
and successful examples include logistic regression [76] [68], Gaussian processes [65], regularization
networks [66], support vector machines [196], and traditional neural networks [20].

Robust (discriminative) classification and regression methods have been successful in many areas
ranging from image and document classification[100] [161] to problems in biosequence analysis[82]
[202] and time series prediction[140]. Techniques such as Support vector machines[197], Gaussian
process models[203], Boosting algorithms[57, 58], and more standard but related statistical methods
such as logistic regression, are all robust against errors in structural assumptions. This property
arises from a precise match between the training objective and the criterion by which the methods
are subsequently evaluated. There is no surrogate intermediate goal to obtain a good generative
model.

However, the discriminative algorithms do not extend well to classifiers and regressors arising from
generative models and the resulting parameter estimation is hard [167]. The models discriminative
techniques use (parametric or otherwise) often lack the elegant probabilistic concepts of priors,
structure, uncertainty, and so forth that are so beneficial in generative settings. Instead, alternative
notions of penalty functions, regularization, kernels and so forth are used. Furthermore, learning
(not modeling) is the focus of discriminative approaches which often lack flexible modeling tools and
methods for inserting prior knowledge. Thus, discriminative techniques feel like black-boxes where
the relationships between variables is not as explicit or visualizable as in generative models.

Furthermore, discriminative approaches may be inefficient to train since they require simultaneous
consideration of all data from all classes. Another inefficiency arises in discriminative techniques
since each task a discriminative inference engine needs to solve requires a different model and a new
training training session. Various methods exist to alleviate the extra work arising in discriminative
learning. These include online learning which can be easily applied to, eg. boosting procedures [147]
[55][58]. Moreover, it is not always necessary to construct all possible discriminative mappings in
a system of variables which would require exponential number of models [64]. Frequent tasks, i.e.
canonical classification and regression objectives can be targeted with a handful of discriminative
models while a generative model can be kept around for handling occasional missing labels, unusual
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types of inference and so forth. Section 2.4 will discuss techniques for learning from data techniques
in discriminative approaches.

2.2 Generative Learning

There are many variations for learning generative models from data. These many approaches,
priors and model selection criteria include minimum description length [163], Bayesian information
criterion, Akaike information criterion, entropic priors, and so on, and a survey is beyond the scope
of this thesis. We will instead quickly discuss the popular classical approaches that include Bayesian
inference, maximum a posteriori and maximum likelihood estimation. These can be seen as ranging
from a scale of a fully weighted averaging over all generative model hypothesis (Bayesian inference),
to more local computation with simple regularization/priors (maximum a posteriori) to the simplest
maximum likelihood estimator which only considers performance on training data.

2.2.1 Bayesian Inference

In Bayesian inference [20] [120] [25] [135] [22] [167], the probability density function vector z is
typically estimated from a training set of such vectors Z. More generally, z need not be a vector
but could correspond to multiple observable variables that are both continuous or discrete. We will
assume they are vectors here without loss of generality. The (joint) Bayesian inference estimation
process is shown in Equation 2.1.

p(z|Z) =
∫

p(z,Θ|Z)dΘ =
∫

p(z|Θ,Z)p(Θ|Z)dΘ (2.1)

By integrating over Θ, we are essentially integrating over all the pdf (probability density function)
models possible. This involves varying the families of pdfs and all their parameters. However, often,
this is impossible and instead a sub-family is selected and only its parameterization Θ is varied.
Each Θ is a parameterization of a pdf over z and is weighted by its likelihood given the training set.

Having obtained a p(z|Z) or, more compactly a p(z), we can compute the probability of any point z
in the (continuous or discrete) probability space2. However, evaluating the pdf in such a manner is
not necessarily the ultimate objective. Often, some components of the vector are given as input (x)
and the learning system is required the estimate the missing components as output3 (y). In other
words, z can be broken up into two sub-vectors x and y and a conditional pdf is computed from the
original joint pdf over the whole vector as in Equation 2.2. This conditional pdf is p(y|x)j with the
j superscript to indicate that it is obtained from the previous estimate of the joint density. When
an input x′ is specified, this conditional density becomes a density over y, the desired output of the
system. The y element may be a continuous vector, a discrete value or some other sample from the
probability space p(y). If this density is the required function of the learning system and if a final
output estimate ŷ is need, the expectation or arg max of p(y|x′) is used.

p(y|x)j =
p(z)∫
p(z)dy

=
p(x,y)∫
p(x,y)dy

=
p(x,y)
p(x)

=
∫

p(x,y|Θ)p(Θ|X ,Y)dΘ∫
p(x|Θ)p(Θ|X ,Y)dΘ

(2.2)

In the above derivation, we have deliberately expanded the Bayesian integral to emphasize the .
2This is the typical task of unsupervised learning.
3This is the typical task of supervised learning.
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This is to permit us to differentiate the above joint Bayesian inference technique from its conditional
counterpart, conditional Bayesian inference.

2.2.2 Maximum Likelihood

Traditionally, computing the integral in Equation 2.1 is not always straightforward and Bayesian
inference is often approximated via maximum a posteriori (MAP) or maximum likelihood (ML)
estimation as in Equation 2.3. [47] [129].

p(z|Z) ≈ p(z|Θ∗,Z) where Θ∗ =
{

arg max p(Θ|Z) = arg max p(Z|Θ)p(Θ) MAP
arg max p(Z|Θ) ML (2.3)

Under iid (independent identically distributed data) conditions, it is easier to instead compute
maximum of the logarithm of the above quantities (which results in the same arg max). Thus we
expand the above for the maximum likelihood case as follows:

log p(Z|Θ) =
∑

t

log p(Zt|Θ)

The above optimization of joint likelihood is thus additive in the sense that each data points con-
tributes to it in an additive way (after the logarithm) which facilitates optimization for eg. expo-
nential family distributions.

Thus, maximum likelihood and maximum a posteriori can be seen as approximations to Bayesian
inference where the integral over a distribution of models is replaced with the mode. The a posteriori
solution allows the use of a prior to regularize the estimate while the maximum likelihood approach
merely optimizes the model on the training data alone which may cause overfitting. Thus, MAP also
permits the user to insert prior knowledge about the parameters of the model and bias it towards
solutions that are more likely to generalize well. For example, one may consider priors that favor
simpler models and therefore avoid overfitting [188] or entropic priors that sparsify the model [26].
Meanwhile, the maximum likelihood criterion only considers the training examples and optimizes
the model specifically for them. This is guaranteed to converge to the model for the true distribution
as we obtain more and more samples yet can also overfit and show poor generalization when limited
samples are available. Thus, ML is a more local solution than MAP since it is tuned only to the
training data while MAP is tuned to the data as well as the prior (and approximates the weighted
averaging of all models in the Bayesian inference solution more closely).

Furthermore, an important duality between ML/MAP approximations and maximum entropy also
exists [102]. Standard maximum entropy approaches solve for a distribution that is closest to uniform
(in a Kullback-Leibler divergence sense) which also has the same moments as the empirical distribu-
tion (i.e. entropy projection with moment constraints). Moreover, maximum likelihood and MAP
have extensive asymptotic convergence properties, are efficient and straightforward to compute for
exponential family distributions without latent variables, i.e. the complete data case. For the case
of incomplete data, mixture models and more sophisticated generative models, maximum likelihood
and MAP estimates are not directly computable, however and there exist many local maxima in the
objective function. In those situations, it is standard to use iterative algorithms such as Expectation
Maximization (EM) or variants.

The EM algorithm is frequently utilized to perform these maximization of likelihood for mixture
models due to its monotonic convergence properties and ease of implementation [13] [12] [44] [134]
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[117]. The Expectation (E) step consists of computing a bound on the log likelihood using a straight-
forward application of Jensen’s inequality [99] [150]. The Maximization (M) step is then the usual
maximum likelihood step that would be used for a complete data model. Furthermore, various gen-
eralizations of EM have also been proposed [41] [1] [144] which bring deep geometric concepts and
simplifying tools to the problem. For mixture models in a Bayesian inference setting, maximization
is not appropriate. However, the Jensen bounds that EM uses can be used to bound the integration.
This process is known as variational Bayesian inference [3] [63] [84] which provides a more precise
approximation to Bayesian inference while making computation tractable for latent models.

2.3 Conditional Learning

While generative learning seeks to estimate an probability distribution over all the variables in the
system, including both inputs and outputs, it is possible to be more efficient if the task we are
trying to solve is made explicit. If we know precisely what conditional distributions will be used,
it is more appropriate to directly optimize the conditional distributions instead of the generative
model as a whole. Since we will be using our probability model almost exclusively to compute
the conditional over the outputs (response) variables given the inputs (covariates), we can directly
optimize parameters and fit the model to data such that this task is done optimally. This is not quite
discriminative learning since we are still fitting a probability density in the output distribution and
we have a generative model of the outputs given the inputs, i.e. p(y|x). In a purist discriminative
setting, we would only consider the final estimate ŷ and extract that from the distribution in a
winner-take-all type of scenario. Thus, we can view conditional learning as an intermediate between
discriminative and generative learning. We are still optimizing a probability distribution, but only
the one that we will ultimately use for classification or regression purposes. Thus, in the spirit of
minimalism, we do away with the need to learn the joint generative model, say p(x, y) and focus
only on the conditional distribution p(y|x).

2.3.1 Conditional Bayesian Inference

Obtaining a conditional density from the unconditional (i.e. joint) probability density function in
Equation 2.1 and Equation 2.2 is roundabout and can be shown to be suboptimal. However, it has
remained popular and is convenient partly because of the availability of powerful techniques for joint
density estimation (such as EM). If we know a priori that we will need the conditional density, it
is evident that it should be estimated directly from the training data. Direct Bayesian conditional
density estimation is defined in Equation 2.4. The vector x (the input or covariate) is always given
and the y (the output or response) is to be estimated. The training data is of course also explicitly
split into the corresponding X and Y vector sets. Note here that the conditional density is referred
to as p(y|x)c to distinguish it from the expression in Equation 2.2.

p(y|x)c = p(y|x,X ,Y)
=
∫

p(y,Θc|x,X ,Y)dΘc

=
∫

p(y|x,Θc,X ,Y)p(Θc|x,X ,Y)dΘc

=
∫

p(y|x,Θc)p(Θc|X ,Y)dΘc

(2.4)

Here, Θc parameterizes a conditional density p(y|x). Θc is exactly the parameterization of the
conditional density p(y|x) that results from the joint density p(x,y) parameterized by Θ. Initially,
it seems intuitive that the above expression should yield exactly the same conditional density as
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before. It seems natural that p(y|x)c should equal p(y|x)j since the Θc is just the conditioned
version of Θ. In other words, if the expression in Equation 2.1 is conditioned as in Equation 2.2,
then the result in Equation 2.4 should be identical. This conjecture is wrong.

Upon closer examination, we note an important difference. The Θc we are integrating over in
Equation 2.4 is not the same Θ as in Equation 2.1. In the direct conditional density estimate
(Equation 2.4), the Θc only parameterizes a conditional density p(y|x) and therefore provides no
information about the density of x or X . In fact, we can assume that the conditional density
parameterized by Θc is just a function over x with some parameters. Therefore, we can essentially
ignore any relationship it could have to some underlying joint density parameterized by Θ. Since
this is only a conditional model, the term p(Θc|X ,Y) in Equation 2.4 behaves differently than the
similar term p(Θ|Z) = p(Θ|X ,Y) in Equation 2.1. This is illustrated in the manipulation involving
Bayes rule shown in Equation 2.5.

p(Θc|X ,Y) = p(Y|Θc,X )p(Θc,X )
p(X ,Y)

= p(Y|Θc,X )p(X|Θc)p(Θc)
p(X ,Y)

= p(Y|Θc,X )p(X )p(Θc)
p(X ,Y)

(2.5)

In the final line of Equation 2.5, an important manipulation is noted: p(X|Θc) is replaced with
p(X ). This implies that observing Θc does not affect the probability of X . This operation is invalid
in the joint density estimation case since Θ has parameters that determine a density in the X
domain. However, in conditional density estimation, if Y is not also observed, Θc is independent
from X . It in no way constrains or provides information about the density of X since it is merely a
conditional density over p(y|x). This independence property does not always hold however here we
are strictly assuming that the parameterization Θc is such that there is only a conditional functional
dependence between the parameters and the input variables (i.e. no marginal distribution over X
should be induced from Θc). The graphical models in Figure 2.3 depict the difference between joint
density models and conditional density models using a directed acyclic graph [118] [98]. Note that
the Θc model and the X are independent if Y is not observed in the conditional density estimation
scenario. In graphical terms, the Θ joint parameterization is a parent of the children nodes X and Y.
Meanwhile, the conditional parameterization Θc and the X data are co-parents of the child Y (they
are marginally independent). Equation 2.6 then finally illustrates directly estimated conditional
density solution p(y|x)c.

θ

X
Z

Y

θ X

Y
(a) Joint Density Estimation (b) Conditional Density Estimation

Figure 2.3: The Graphical Models

p(y|x)c =
∫

p(y|x,Θc)p(Θc|X ,Y)dΘc

=
∫

p(y|x,Θc)p(Y|Θc,X )p(X )p(Θc)
p(X ,Y) dΘc

=
∫

p(y|x,Θc)p(Y|Θc,X )p(Θc)dΘc / p(Y|X )
(2.6)

If a conditional density is required, it appears superior to perform conditional Bayesian inference
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than to perform joint Bayesian inference and subsequently condition the answer. This is illustrated
with an example below.

Example: Joint versus Conditional Bayesian Inference

In the following, we present a specific example to demonstrate this difference and to
argue in favor of the conditional estimate p(y|x)c versus the conditioned joint estimate
p(y|x)j (more details are in the Appendix of [97]). We demonstrate this with a simple
2-component 2D Gaussian mixture model with identity covariance and equal mixing
proportions as shown in Figure 2.4(a). The likelihood for a data point z = (x, y) is:
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Figure 2.4: Conditioned Bayesian inference vs. conditional Bayesian inference.

p(z|Θ) = 1/2N (z; ~µ) + 1/2N (z;~ν). The prior p(Θ) over the parameters (i.e. the two
means Θ = {~µ, ~ν}) is a wide zero-mean, spherical Gaussian distribution (with very large
covariance σ2). Thus we can infer the standard joint Bayesian distribution from a total
of T training data points by Equation 2.9.

p(x, y) ∝
∫

p(x, y|Θ)p(X ,Y|Θ)p(Θ)dΘ (2.7)

∝
∫

p(x, y|Θ)ΠT
i=1p(xi, yi|Θ)p(Θ)dΘ (2.8)

∝
∫

p(x, y|Θ)ΠT
i=1 (1/2N (zi; ~µ) + 1/2N (zi;~ν)) p(Θ)dΘ (2.9)

Equation 2.9 can be solved exactly if we expand the products over the two terms in the
mixture model. Unfortunately, these grow exponentially fast at 2T (from all possible
assignments of the data points to the two Gaussians) but can be computed for small
data sets. For the 4-point data set in Figure 2.4(b), we compute the joint Bayesian
inference and plot p(x, y) as shown in Figure 2.4(c). Conditioning this p(x, y) on x gives
us the conditional p(y|x)j (the superscript j shows that this conditional came from the
joint Bayesian inference). The function p(y|x)j is plotted in Figure 2.4(d) for the value
x = −5. We then proceed to compute p(y|x)c directly using another integration, the
conditional Bayesian inference as in Equation 2.12. The resulting function p(y|x)c is
different from p(y|x)j and is plotted in Figure 2.4(e). Note how conditional Bayesian
inference captures the bimodality of the data which was lost with the regular Bayesian
inference.

p(y|x) ∝
∫

p(y|x,Θ)p(Y|Θ,X )p(Θ)dΘ (2.10)

∝
∫

p(y|x,Θ)ΠT
i=1p(yi|xi,Θ)p(Θ)dΘ (2.11)

∝
∫

p(x, y|Θ)∫
y
p(x, y|Θ)dy

ΠT
i=1

p(xi, yi|Θ)∫
y
p(xi, y|Θ)dy

p(Θ)dΘ (2.12)
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2.3.2 Maximum Conditional Likelihood

As in Bayesian inference, integration in conditional Bayesian inference (Equation 2.6) is typically
intractable to evaluate in closed form. To approximate the average over many models, we will often
simply pick one model at the mode of the integral. This results in the corresponding maximum
conditional a posteriori (MAP c) and maximum conditional likelihood (MLc) solutions as shown in
Equation 2.13. The a posteriori solution allows the use of a prior to regularize the estimate while
the conditional likelihood approach merely optimizes the model on the training data alone which
may cause overfitting.

p(y|x)c ≈ p(y|x,Θ∗) where Θ∗ =
{

arg max p(Y|Θc,X )p(Θc) MAPc

arg max p(Y|Θc,X ) MLc (2.13)

We typically find the maximum of the logarithm of the above quantities (which results in the same
arg max). Thus we expand the above for the maximum conditional likelihood case as follows:

log p(Y|Θc,X ) =
∑

t

log p(yt|Xt,Θc)

=
∑

t

log
p(yt, Xt,Θc)

p(Xt|Θc)

=
∑

t

log (p(yt, Xt,Θc))−
∑

t

log
(∫

y

p(y, Xt|Θc)dy

)

The above optimization of conditional likelihood is very similar to the one for maximum likelihood
except for the extra negative term which is often referred to as the background probability since it
is a marginal over the input distribution. Thus, we are trying to maximize the joint likelihood of
input and output while minimizing the marginal likelihood over the input data. This sets up an
interesting metaphor where a class conditional model is attracted to data it should fit through the
joint likelihood but repelled by the background or data that does not belong to the model’s class.
Many other criteria are actually conditional likelihood in disguise which sometimes causes confusion.
For example, in the speech recognition literature, conditional maximum likelihood is referred to as
maximum mutual information [158]. Currently, hidden Markov models in the speech community are
being trained with these conditional criteria [158] [207] to obtain state of the art performance on
large corpus data sets.

Unlike maximum likelihood which has been able to handle incomplete and latent models for years
with the EM algorithm, conditional likelihood has been traditionally difficult to maximize, especially
in a mixture model scenario. In fact, maximizing conditional likelihood in non-latent models will
still give rise to computational difficulties since the background probability involves a log of a sum
or a log of an integral over the outputs (classes or scalars) which might break concavity. Most
approaches have to resort to gradient descent [20] [105]. Other variants of gradient descent and line
search are also emerging in statistics [50]. Recently, the conditional version of the EM algorithm
has been proposed in the CEM algorithm [92] [94] (and will be discussed further Chapter 5). As
in EM, Conditional Expectation Maximization (CEM) iterates between bounding the conditional
likelihood and solving the resulting simpler complete data maximization. This converges iteratively
and monotonically to a maximum conditional likelihood solution. As in variational Bayes, a similar
use of the CEM bounds on conditional posteriors and conditional likelihoods prior to integration can
result in a better and tractable approximation to the conditional Bayesian inference. This would
provide a generative model that is more optimized for the task at hand while still relying on a fully
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Bayesian formalism. We leave this variational conditional Bayesian inference as an interesting future
direction to apply the novel bounds.

2.3.3 Logistic Regression

Maximum conditional likelihood (and in a sense maximum likelihood) is also very closely related to
logistic regression, a popular technique in the statistics community [76] [127] [68]. Logistic regression
is a conditional distribution of a binary output variable y given a input vector x. Typically, the
conditional model is given by the following formula (where θ is a parameter vector) p(y = 1|x) =
1/(1 + exp(−θT x)). This generates a linear classifier which is varied by the parameter vector θ and
is also referred to as a generalized linear model. There are various ways to augment the framework
by computing higher order features from a given x vector. These include handling discrete x values
by considering indicator features as in [43] [115].

2.4 Discriminative Learning

Discriminative learning goes beyond the conditional learning perspective and is even more minimal-
ist. Here, only the final mapping from an input (x) to output (y) is important and the final estimate
ŷ that will be produced is considered [167]. Thus, the estimation of a conditional distribution p(y|x)
is also viewed as an unnecessary intermediate step just as we previously argued that the estimation
of a joint distribution p(x, y) was also deemed inefficient 4. Alternatively, we may consider other
quantities resulting from the classifier, for example margin distances from the decision boundary
to the nearest exemplars. Thus, discriminative techniques only consider the decision boundary or
the regression function approximation in evaluating the parameters for a model. Since our learning
algorithm is so closely matched with the final task of the system, discriminative learning techniques
will not squander resources on an intermediate goal like generative modeling. The resulting perfor-
mance of the classifier and regressor will therefore be improved. Since we can no longer consider a
distribution-based criterion, Bayesian and likelihood-based learning techniques are not immediately
applicable.

2.4.1 Empirical Risk Minimization

As opposed to the previous sections where we started with the averaging based solutions (Bayesian
integration) and moved to more empirical or local approximations (maximum likelihood), we begin
here with an empirical approach to optimizing a discriminative classifier or regressor (and we will
show averaging and regularization subsequently). Empirical risk minimization (ERM) is a discrim-
inative estimation criterion which does not make assumptions about the distribution of the input
or the output [129] [35] [196] [195] [197]. In ERM, we are typically given a loss function of the
form l(xt, yt,Θ) which measures the penalty incurred for a data point (where xt is input and yt is
desired output) when assigning the parameter Θ to our model. If we only concern ourselves with
an empirical local solution, we will minimize this loss function on the training data set (which has
a total of T training data points). This average loss is also called the empirical risk:

Remp(Θ) =
1
T

T∑
t=1

l(xt, yt,Θ)

4This distinction between conditional learning and discriminative learning is not currently a well established con-
vention in the field.
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This is meant to be a coarse approximation of the true loss of a classifier on the unknown distribution
of the samples, also known as the expected risk:

R(Θ) =
∫

x×y

P (x, y)l(x, y,Θ)dxdy

In the limit of infinite data, the above loss functions will become almost equal for a given Θ value.
Here, Θ specifies a mapping which will produce an estimated ŷt from the input xt. The loss function
measures the level of disagreement between yt and ŷt. Possible choices are quadratic loss, i.e. ‖yt−ŷt‖
or even a binary, winner take all, loss for classification. Although one can often reinterpret a loss
functions as corresponding to the likelihood under a specific choice of conditional output distribution,
this may be sometimes awkward. The important aspect is ERM’s emphasis on the actual output
and the resulting deterministic classification boundary that will be formed. For example, we may
choose to compute the classification result in a winner take all sense in which case the loss will be 0 if
we select the class appropriately and the loss will be 1 if we do not. This type of hard classification
is fundamental to discriminative estimation. It would be awkward to represent as a conditional
distribution (or logistic regressor) but one possibility might be a very sharp version of the logistic
function, i.e.:

p(y = 1|x) =
{

1 if x > 0
0 if x ≤ 0 (2.14)

2.4.2 Structural Risk Minimization and Large Margin Estimation

Since ERM is only locally attempting to optimize the model to the training data, it does not
necessarily coincide well with the true expected risk and thus may not exhibit good generalization
behavior to future data. An alternative is to consider augmenting the local solution with a prior
or regularizer that favors estimates that are more likely to agree with future data and are based
on a measure of the model capacity. This form of regularized ERM has been called structural risk
minimization (SRM) where the capacity is measured in terms of the so-called Vapnik-Chervonenkis
dimension [196] [195] [197] [35] [109]. SRM will not perform as well on the training data as ERM
but should generalize better to future data.

The risk or ’expected loss’ (for samples outside of the training set) is then bounded above by the
empirical risk plus a term that depends only on the size of training set, T and the VC-dimension
of the classifier, h. This non-negative integer quantity measures the capacity of a classifier and is
independent of the distribution of the data. The following bound on the expected loss holds with
probability 1− δ:

R(Θ) ≤ Remp(Θ) +

√
h(log(2T/h) + 1)− log(δ/4)

T

The SRM principle suggests that we minimize the upper bound on R(Θ) to minimize the expected
risk itself. Thus we seek to minimize a combination of the expected risk and the VC-dimension h.
For linear classifiers, this motivates the use of a classifier that fits data and also has large margin.
Large margins mean that we also try to maximize the minimum distance from the points to the
decision boundary that separates them. These principles give rise to the support vector machine
(SVM). SVMs are particularly important in contemporary machine learning since they have recently
provided state of the art classification and regression performance. In many senses, these are the
current workhorses of discriminative estimation. However, due to their fundamentally discriminative
formalism, they don’t enjoy the flexibility of generative modeling (priors, invariants, structure, latent
variables, etc.) which limits their applicability.
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2.4.3 Bayes Point Machines

An alternative to the SRM or SVMs is to not only consider a single solution that fits to the data in
conjunction with a helpful regularizer or prior but to consider a weighted combination of all possible
models. Thus, as in Bayesian inference, for better generalization properties, we will consider a
discriminative averaging classifier. For instance, we may attempt to average all linear classifiers
that perfectly classify the training data (such hard classification is mainly a discriminative concept).
This problem can be cast in the framework of Bayesian inference (or more specifically a conditional
Bayesian inference problem). One popular approximation to the true Bayesian inference is called
the Bayes point machine (BPM) [72] [199] [135] [168]. For tractability reasons, the BPM is not the
true result of Bayesian inference but rather a single point approximation. Instead of summing the
effect of all linear classifier models, the BPM uses a single model that is the closest to the mean over
the continuous space of valid models (i.e. the linear classifiers with perfect classification accuracy
on training).

Thus, in a Bayesian way, we would like to average over all linear models. However this averaging is
not a soft probabilistic weighting but is done according to a discriminative criterion which makes a
binary decision: only count the classifiers that perfectly separates the training data. This corresponds
to the conditional distribution in Equation 2.14. The averaging over models does bring forth slightly
better generalization properties for the Bayes point machine (BPM). Unfortunately, in practice, the
performance does not exceed that of SVMs in a consistent manner. Furthermore, the BPM does
not easily handle non-separable data sets where averaging multiple models according to perfect
classification would yield no feasible solution whatsoever. Also, a practical consideration is that
the BPM is very difficult to compute requiring computational effort that far surpasses generative
modeling approaches as well as SVMs (if the latter are implemented efficiently as in [154]).

Our main concern is that the BPM and its counterparts were really designed to handle linear
models or kernel-based nonlinearities. Therefore, they are not easily computable for classifiers arising
from the large spectrum of generative models. For instance, exponential family and mixtures of
the exponential family cannot be easily estimated in a BPM framework. Thus, they don’t enjoy
the flexibility of generative modeling (priors, non-separability, invariants, structured models, latent
variables, etc.) which limits their applicability. Another discriminative averaging framework that
addresses these limitations is Maximum Entropy Discrimination (MED) and will be introduced in
the following chapter.

2.5 Joint Generative-Discriminative Learning

After having explored the spectrum of discriminative and generative modeling, we see a strong argu-
ment for a hybrid approach that combines these deeply complementary schools of thought. Fusing
the versatility and flexibility of generative models with the power of a discriminative framework that
focuses resources on the given task would be extremely valuable. Furthermore, as argued through-
out, an averaging based approach (as opposed to local or a regularized local fit to training data)
promises better generalization and a more principled Bayesian treatment.

Several approaches have been recently proposed for combining the generative and discriminative
methods. These include Bayesian estimation with special priors such as automatic relevance de-
tection [188]. However, these have only explored discriminative learning in the context of simple
linear or kernel-based models and have yet to show applicability to the large spectrum of generative
models.

An alternative technique involves modular combination of generative modeling with subsequent
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SVM classification using Fisher kernels [83]. This technique is readily applicable to a large spectrum
of generative models which are first easily estimated with maximum likelihood and then mapped
into features/kernels for training in an SVM. However, the piece-meal cascaded approach of maxi-
mum likelihood followed by large margin estimation does not fully take advantage of the power of
both techniques. For example, since the generative models are first estimated by maximum likeli-
hood, this non-discriminative criterion might collapse important aspects of the model and sacrifice
modeling power (particularly under latent situations). For example, due to a model-mismatch, the
pre-specified class of generative model may not have enough flexibility to capture all the information
in the training data. It then becomes possible that the model’s resources will be misused and encode
aspects of the data that are irrelevant for discrimination (instead of task-related information). This
ultimately results in a loss of valuable modeling power before we feed into the subsequent SVM
layer making it too late to exploit some aspects of the generative model for discrimination. For
instance, a maximum likelihood HMM trained on speech data may focus all modeling power on
the vowels (which are sustained longer than consonants) preventing a meaningful set of features for
discrimination in the final SVM stage. In other words, there is no iteration between the generative
modeling and the discriminative learning since the maximum likelihood estimate is not adjusted in
response to the SVM’s criteria. Thus, a simultaneous computation of the generative model with a
discriminative criterion would improve on this technique 5.

In the next chapter, we will present the Maximum Entropy Discrimination formalism as a hybrid
generative-discriminative model with many of the desirable qualities we have so far motivated.
The proposed MED framework is a principled averaging technique which is be able to span the
large spectrum of generative models and simultaneously perform estimation with a discriminative
criterion.

5This method in [83] was also formally encompassed by the Maximum Entropy Discrimination technique in [85].



Chapter 3

Maximum Entropy Discrimination

It is futile to do with more what can be done with fewer 1.

William of Ockham, 1280-1349

Is it possible to combine the strongly complementary properties of discriminative estimation with
generative modeling? Can eg. support vector machines and the performance gains they provide be
combined elegantly with flexible Bayesian statistics and graphical models? This chapter introduces a
novel technique called Maximum Entropy Discrimination (MED) which provides a general formalism
for marrying both methods [85].

The duality between maximum entropy theory [86] and maximum likelihood is well known in the
literature [113]. Therefore, the connection between generative estimation and classical maximum
entropy already exists. MED brings in a novel discriminative aspect to the theory and forms a
bridge to contemporary discriminative methods. MED also involves another twist on the usual
maximum entropy paradigm in that it considers distributions over model parameters instead of
only distributions over data. Although other possible approaches for combining the generative and
discriminative schools of thought exist [83, 92, 188, 72], the MED formalism has distinct advantages.
For instance, MED naturally spans both ends of the discriminative-generative spectrum: it subsumes
support vector machines and extends their driving principles to a large majority of the generative
models that populate the machine learning community.

This chapter is organized as follows. We begin by motivating the discriminative maximum entropy
framework from the point of view of regularization theory. Powerful convexity, duality and geometric
properties are elaborated. We then explicate how to solve classification problems in the context of
the maximum entropy formalism. The support vector machine is then derived as a special case.
Subsequently, we extend the framework to discrimination with generative models and prove that
the whole exponential family of generative distributions is immediately estimable within the MED
framework. Generalization guarantees are then presented.

Further MED extensions such as transductive inference, feature selection, etc. are elaborated in
the following chapter (Chapter 4). To make the MED framework applicable to the wide range

1At the risk of misquoting what Ockham truly intended to say, we shall use this quote to motivate the sparsity
which arises from a constraint-based discriminative learner such as the Maximum Entropy Discrimination formalism.

40
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of Bayesian models, latent models are also considered. These mixtures of the exponential family
deserve special attention and their development in the context of MED is deferred to Chapter 5.

3.1 Regularization Theory and Support Vector Machines

We begin by developing the maximum entropy framework from a regularization theory and support
vector machine perspective (this derivation was first described in [90]). For simplicity, we will only
address binary classification in this chapter and defer other extensions to Chapter 4. Regularization
theory is a field in its own right with many formalisms (the approach we present is only one of many
possible developments). A good contact point for the machine learning reader to regularization
theory can be found in [66] [155].

We begin with a parametric family of decision boundaries: L(X; Θ) which we shall call discriminant
functions. Each discriminant function (given a specific parameter Θ) takes an input X and produces
a scalar output. The sign (±1) of the scalar value will indicate which class the input X will be
assigned to. For example, a simple type of decision boundary is the linear classifier. The parameters
of this classifier Θ = {θ, b} are the concatenation of a linear parameter vector θ and the scalar bias
b. This generate the following linear classifier:

L(X; Θ) = θT X + b (3.1)

To estimate the optimal Θ̂, we are given a set of training examples {X1, . . . , XT } and the corre-
sponding binary (±1) labels {y1, . . . , yT }. We would like to find a parameter setting for Θ that will
minimize some form of classification error. Once we have found the best possible Θ̂, we can use our
classifier to predict the labels of future input examples via:

ŷ = signL(X; Θ̂) (3.2)

We will form a measure of classification error based loss functions L() for each data point which
will depend on our parameter Θ only through the classification margin. The margin 2 is defined as
yt L(Xt; Θ) and is large and positive whenever the label yt agrees with the scalar valued prediction
L(Xt; Θ) and negative when they disagree. We shall further assume that the loss function, L :
< → <, is a non-increasing and convex function of the margin. Thus a larger margin results in a
smaller loss. We also introduce a regularization penalty R(Θ) on the models, which favors certain
parameters over others (like a prior).

The optimal parameter setting Θ̂ is computed by minimizing the empirical loss and regularization
penalty:

min
Θ

{
R(Θ) +

∑
t

L ( yt L(Xt; Θ) )

}

A more straightforward solution for Θ̂ is achieved by recasting the above as a constrained optimiza-
tion:

min{Θ, γt ∀t} R(Θ) +
∑

t L(γt)
subject to yt L(Xt; Θ)− γt ≥ 0, ∀t (3.3)

2It should be noted that regularization theory is not limited to margin-based concepts. In general the penalty
function or stabilizer terms may depend on many other regularization criteria through a wide area of possible norms
and semi-norms. One interpretation of regularization theory is as an approach to solving inverse problems. It spans
applications in spline-fitting to pattern recognition and employs many sophisticated mathematical constructs such as
reproducing kernel Hilbert spaces [53].
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Here, we have also introduced the margin quantities: γt as slack variables in the optimization which
represent the minimum margin that ytL(Xt; Θ) must satisfy. The minimization is now over both
the parameters Θ and the margins γt.

A (linear) support vector machine can be seen as a particular example of the above formulation.
There, the discriminant function is a linear hyper-plane as in Equation 3.1. Furthermore, the
regularization penalty is R(Θ) = 1

2θT θ, i.e. the norm of the parameters to encourage large margin
solutions. The slack variables provide the SVM with a straightforward way to handle non-separable
classification problems. Thus, for the (primal) SVM optimization problem, we have:

min{θ, γt ∀t}
1
2θT θ +

∑
t L(γt)

subject to yt (θT Xt + b)− γt ≥ 0, ∀t

At this point, we will focus on the optimization over Θ alone and ignore the optimization over the
slack variables γt. The effect of the restriction is that the resulting classifier (or support vector
machine) will require linearly separable data. In practice, we will assume the slack variables are to
be held constant and set them manually to, eg. unity, γt = 1∀t. This restrictive assumption is made
to simplify the following derivations and does not result in a loss of generality. The restriction will
be loosened subsequently permitting us to consider non-separable cases as well.

3.1.1 Solvability

At this point, it is crucial to investigate under what conditions the above constrained minimization
problem in Equation 3.3 is solvable. For instance, can the above be cast as a convex program or can
Θ̂ be computed uniquely?

A convex program typically involves the minimization of a convex cost function under a convex hull of
constraints. Under mild assumptions, the solution is unique and a variety of strategies will converge
to it (i.e. axis-parallel optimization, linear-quadratic-convex programming, etc.). In Figure 3.1, var-
ious constrained optimizations scenarios are presented. Figure 3.1(a) depicts a convex cost function
with a convex hull of constraints arising from the conjunction of multiple linear constraints. this
leads to a valid convex program.

R(Θ)

Θ1

Θ2

R(Θ)

Θ1

Θ2

R(Θ)

Θ1

Θ2

(a) Valid Convex Program (b) Non-Convex Constraints (c) Non-Convex Cost Function

Figure 3.1: Convex cost functions and convex constraints.

In Figure 3.1(b) the situation is not as promising. Here, several nonlinear constraints are combined
and therefore the searchable space forms a non-convex hull. This prevents guaranteed convergence



CHAPTER 3. MAXIMUM ENTROPY DISCRIMINATION 43

and yields a non-convex program. Similarly, in Figure 3.1(c), we do not have a convex program.
However, here the culprit is a non convex cost function (i.e. R(Θ) is not convex).

Therefore, for a solution to Equation 3.3, we must require that: the penalty function R(Θ) is convex,
and that the conjunction of the classification constraints ∀t form a convex hull. The intersection of
linear constraints (under mild conditions) will always form a convex hull. In addition, it should be
evident that it is unlikely that the intersection of multiple nonlinear constraints will form a convex
hull. Therefore, it is clear that the classification constraints in the regularization framework need to
be linear or at least consistently mappable to a space where they become linear.

3.1.2 Support Vector Machines and Kernels

Inspecting a support vector machine, we can immediately see that the penalty function, i.e. R(Θ) =
1
2θT θ is convex and that the a linear hyper-plane discriminant will give rise to linear constraints and
a convex hull. Thus, as is well known, the SVM is solvable via a convex program (actually more
simply as a quadratic program [35]) or sequential minimal optimization [154].

But, what do we do when L(Xt; Θ) is nonlinear? For example, we may wish to deal with decision
boundaries that arise from generative models. These can be computed via the log-likelihood ratio
of two generative models P (X|θ+) and P (X|θ−) (one for each class). Here the parameter space
includes the concatenation of the positive generative model, the negative one and a scalar bias
Θ = {θ+, θ−, b}. This gives rise to the following nonlinear discriminant functions:

L(X; Θ) = log
P (X|θ+)
P (X|θ−)

+ b (3.4)

Unfortunately, these nonlinear decision boundaries generate a search space for Θ that is no longer a
convex hull (compromising the uniqueness and solvability of the problem).

In some cases, nonlinear decision boundaries (i.e. nonlinear SVMs), can be handled via the so-called
’kernel trick’. If a decision boundary is nonlinear, one can consider a mapping of the data through
Φ(Xt) into a higher dimensional ’feature’ space. Therein, the Θ parameter vector parameterizes a
higher dimensional hyper-plane effectively mimicking the nonlinearity in the original low dimensional
space. Furthermore, the constraints too become linear and the search space forms a convex hull.

One subtlety here, however, is that regularization penalty is now different in the feature space
than in the original space. Therefore, if we had a quadratic R(Θ) penalty function in the original
space, we would obtain some possibly complicated expression for it in the feature space. This is
reasonable in the case of SVMs since the VC-dimension generalization guarantees hold at the level
of the feature space. This permits us to artificially preserve a quadratic penalty function in the
feature space (which would map to a quite complicated one in the original space). The term ’kernel’
simply arises since optimizing a quadratic penalty function in the feature space only requires inner
products between the high dimensional vectors Φ(Xt) and these are implicitly computable using
kernels k(Xt, Xt′) without the explicit mapping Φ(Xt).

However, more generally, we may have a specific regularization penalty in mind at the level of
the original space and/or nonlinearities in the classifier that prevent us from considering the high-
dimensional mapping ’trick’. This problematic situation is often the case for generative models and
motivates an important extension (MED) to the regularization theory so far discussed.
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3.2 MED - Distribution over Solutions

We will now generalize this regularization formulation by presenting the maximum entropy discrim-
ination framework [85] [90]. First, we begin by noting that it is not necessarily ideal to solve for a
single optimal setting of the parameter Θ when we could instead consider solving for a full distribu-
tion over multiple Θ values (i.e. give a distribution of solutions). The intuition is that many different
settings of Θ might generate relatively similar classification performance so it would be better to
estimate a distribution P (Θ) that preserves this flexibility instead of a single optimal Θ̂. Clearly,
with a full distribution P (Θ) we can subsume the original formulation if we choose P (Θ) = δ(Θ, Θ̂)
where the delta function can be seen as point-wise probability mass concentrated where Θ = Θ̂. So,
this type of probabilistic solution is a superset of the direct optimization 3. Here, we would like our
P (Θ) to be large when Θ-values yield good classifiers and to be close to zero at Θ-values that yield
poor classifiers. This probabilistic generalization will facilitate a number of extensions to the basic
regularization/SVM approach. We modify the regularization approach as follows.

Given a distribution over P (Θ), we can easily modify the regularization approach for predicting a
new label from a new input sample X that was shown in Equation 3.2. Instead of merely using
one discriminant function at the optimal parameter setting Θ̂, we will integrate over all discriminant
functions weighted by P (Θ):

ŷ = sign
∫

Θ

P (Θ)L(X; Θ)dΘ (3.5)

How do we estimate P (Θ)? Again we consider an expectation form of the previous approach and
cast Equation 3.3 as an integration. The classification constraints will also be applied in an ex-
pected sense. It is inappropriate to directly apply the R(Θ) arbitrary penalty function to infinite
dimensional probability density functions such as P (Θ). Instead of considering an expectation of
penalty functions, we will apply a canonical penalty function for distributions, the negative entropy.
Minimizing the negative entropy is equivalent to maximizing the entropy. ’Maximum Entropy’ the-
ory was pioneered by Jaynes and others [119] to compute distributions with moment constraints.
In the absence of any further information, Jaynes argues that one should satisfy the constraints
in a way that is least committal or prejudiced. This gives rise to the need for a maximum en-
tropy distribution, one that is as close to uniform as possible. Here, we assume Shannon Entropy
defined as H(P (Θ)) = −

∫
P (Θ) log P (Θ)dΘ. Traditionally in the Maximum Entropy community,

distributions are computed subject to moment constraints (i.e. not discrimination or classification
constraints). Here, the ’Discrimination’ term is added to specify that our framework borrows from
the concepts of regularization/SVM theory and is satisfying discriminative classification constraints
(based on margin).

This gives us the following novel MED formulation4 for finding a distribution P (Θ) over the param-
eters Θ:

minP (Θ) −H(P (Θ))
subject to

∫
P (Θ) [ytL(Xt,Θ)− γt]dΘ ≥ 0 ∀t

At present, negative entropy is not a very flexible as a surrogate penalty function. To generalize,
cast negative entropy as a Kullback-Leibler divergence from P (Θ) to a target uniform distribution:

3In practice, though, other (possibly parametric) restrictions may arise on P (Θ) that prevent us from generating
arbitrary delta functions in this manner.

4At this point we have assumed that the margins γt and their loss functions are held fixed (these are typically set
to γt = 1 ∀t). This assumption will be relaxed subsequently.
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−H(P (Θ)) = KL(P (Θ)‖Puniform(Θ)). Kullback-Leibler divergence is defined as follows5:

KL(P (Θ)‖Q(Θ)) =
∫

P (Θ) log
P (Θ)
Q(Θ)

dΘ

If we have prior knowledge about the desired shape of P (Θ), we may not necessarily want to favor
high entropy uniform solutions. Instead we can customize the target distribution and use a non-
uniform one. Thus we replace our penalty function with the Kullback-Leibler divergence to any
prior, KL(P (Θ)‖P0(Θ)). This gives us our more general Minimum Relative Entropy Discrimination
(MRE or MRED) formulation:

Definition 1 Find a distribution P (Θ) over the parameters Θ that minimizes KL(PΘ‖P 0
Θ) subject

to
∫

P (Θ, γ) [ytL(Xt,Θ)−γt]dΘ ≥ 0 ∀t. Here P 0
Θ is the prior distribution over the parameters. The

resulting decision rule is given by ŷ = sign(
∫

P (Θ)L(X; Θ)dΘ).

It is traditional to continue to refer to minimum relative entropy approaches as maximum entropy.
Therefore, at the risk of confusion, we shall adopt this convention in the nomenclature and refer to
Definition 1 as ’Maximum Entropy Discrimination’. At this point, we evaluate the solvability of our
formulation.

Figure 3.2 depicts the problem formulation. We note that now we are dealing with a possibly
infinite-dimensional space since instead of solving for a parameter vector Θ, we are solving for P (Θ),
a probability distribution. In the figure, the axes represent variation of two coordinates of the
possibly continuous distribution, P (Θ) and P (Θ′). Instead of R(Θ), a penalty function, we have the
KL-divergence which is a convex function of P (Θ). Furthermore, the constraints are expectations
with respect to P (Θ) which means they are linear in P (Θ). These linear constraints are guaranteed
to combine into a convex hull for the search space of P (Θ) regardless of the nonlinearities in the
discriminant function!

KL( P(Θ) || P0(Θ) )

P(Θ)

P(Θ’)

Figure 3.2: MED Convex Program Problem Formulation.

Therefore, the solution to Definition 1 is given by a valid convex program. In fact, the solution
to the MED classification problem in Definition 2 is directly solvable using a classical result from
maximum entropy:

5Often, the KL-divergence KL(P‖Q) will also be written as D(P‖Q).
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Theorem 1 The solution to the MED problem for estimating a distribution over parameters has
the following form (cf. Cover and Thomas [40]):

P (Θ) =
1

Z(λ)
P0(Θ) e

∑
t

λt[ ytL(Xt|Θ)−γt]

where Z(λ) is the normalization constant (partition function) and λ = {λ1, . . . , λT } defines a set of
non-negative Lagrange multipliers, one per classification constraint. λ are set by finding the unique
maximum of the jointly concave objective function

J(λ) = − log Z(λ) (3.6)

The above solution arises as the dual problem to constrained optimization in Definition 1 (the primal
problem) via the Legendre transform. Under mild conditions, a solution always exists and if so then
it is unique. Occasionally, the objective function J(λ) may grow without bound and prevent the
existence of a unique solution however this situation is rare in practice. Furthermore, it is typically
far easier to solve the dual problem since the complexity of the constraints is alleviated. It is obvious
that the constraints on the Lagrange multipliers, (i.e. non-negativity) are more straightforward to
realize than constraints on the possibly infinite dimensional distribution P (Θ) in the primal problem.
The non-negativity of the Lagrange multipliers arises in maximum entropy problems when inequality
constraints are present in the primal problem (such as those representing our classification constraints
in Definition 1) 6. At this point, we shall loosen the constraint that the margins are fixed and allow,
eg. classification scenarios which are non-separable.

3.3 MED - Augmented Distributions

The MED formulation so far has made the assumption that the margin values γt are pre-specified and
held fixed. Therefore, the the discriminant function must be able to perfectly separate the training
examples with some pre-specified margin value. This may not always be possible in practice (i.e.
for non-separable data sets) and will generate an empty convex hull for the solution space. Thus,
we need to revisit the setting of the margin values and the loss function upon them. First, recall
that we had so far ignored the loss function in the regularization framework as we derived the MED
technique since we held the margins fixed. However, the choice of the loss function (penalties for
violating the margin constraints) also admits a more principled solution in the MED framework.

As we had shown earlier for the case of the parameters, let us also now consider a distribution over
margins, eg. P (γ) in the MED framework [85]. Typically, for good classification (VC-dimension
generalization guarantees encourage large margin solutions) performance, we will choose margin
distributions that favor larger margins. Furthermore, by varying our choice of distribution we can
effectively mimic or consider various loss functions associated with γ. Also, by choosing priors that
allow a non-zero probability mass for negative margins, we can permit non-separable classification
(without ad-hoc slack variables as in SVMs). This will ensure that the classification constraints
will never give rise to an empty admissible set. The MED formulation will then give a solution
over the joint distribution, namely P (Θ, γ). This gives a weighted continuum of solutions instead
of specifying a single optimal value for each as in the regularization approach. There is a caveat,
however, since the MED constraints apply only through expectations over the margin values. We are
now satisfying a looser problem than when the margin values were set and thus this transition from
margin values to margin distributions is less natural than the previous transition from parameter

6Equality constraints in the primal problem would generate Lagrange multipliers that are arbitrary scalars in
(−∞,∞)
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extrema to parameter distributions. Since there are multiple margin values (one for each training
data instance t), P (γ) is an aggregate distribution over all margins and will typically be factorized
as P (Θ, γ) = P (Θ)ΠtP (γt). This leads to the following more general MED formulation:

Definition 2 The MED solution is the P (Θ, γ) over the parameters Θ and the margin variables
γ = [γ1, . . . , γT ] that minimizes KL(PΘ‖P 0

Θ) +
∑

t KL(Pγt
‖P 0

γt
) subject to

∫
P (Θ, γ) [ytL(Xt,Θ)−

γt]dΘdγ ≥ 0 ∀t. Here P 0
Θ is the prior distribution over the parameters and and P 0

γ is the prior over
margin variables. The resulting decision rule is given by ŷ = sign(

∫
P (Θ)L(X; Θ)dΘ).

Once again, the above solution exists under mild assumptions and is unique. Here, though, the
constraints are now not just expectation constraints over the parameter distribution but also over
an expectation on the margin distribution. This relaxes the convex hull since the constraints do
not need to hold for a specific margin. The constraints need only hold over a distribution over
margins that can include negative margins, thus permitting us to consider non-separable classification
problems. Furthermore, in applying MED to a problem, we no longer specify ad-hoc regularization
penalty (the R(Θ)) and margin penalty functions (the L(γt) loss-functions) but instead specify
probability distributions. These distributions can sometimes be more convenient to specify and
then automatically give rise to penalty functions for the model and the margins via KL-divergences.
More specifically, the model distribution will give rise to the divergence term KL(PΘ, P 0

Θ) and
the margin distribution will give rise to a divergence term KL(Pγt

‖P 0
γt

) which correspond to the
regularization penalty and the loss functions respectively. Since both terms are based on probability
distributions and KL-divergence, the trade off between classification loss and regularization now on
a common probabilistic scale.

The solution to the non-separable MED classification problem in Definition 2 is solved as follows:

Theorem 2 The solution to the MED problem for estimating a distribution over parameters and
margins (as well as further augmentations) has the following general form (cf. Cover and Thomas
1996):

P (Θ, γ) =
1

Z(λ)
P0(Θ, γ) e

∑
t

λt[ ytL(Xt|Θ)−γt]

where Z(λ) is the normalization constant (partition function) and λ = {λ1, . . . , λT } defines a set of
non-negative Lagrange multipliers, one per classification constraint. λ are set by finding the unique
maximum of the jointly concave objective function

J(λ) = − log Z(λ) (3.7)

Further details for the choices of the priors for the parameters and margins as well as other distri-
butions will be elaborated in the following sections. It is always possible to recast the optimization
problem the maximum entropy formulation has generated back into the regularization form and in
terms of loss functions and regularization penalties [90]. However, MED’s probabilistic formulation,
is intuitive and provides more flexibility. For instance, we can continue to augment our solution
space with distributions over other entities and maintain the convex cost function with convex con-
straints. For example, one could include a distribution over unobserved labels yt or unobserved
inputs Xt in the training set. Or, we could introduce further continuous or discrete variables into
the discriminant function that are unknown and integrate over them. Thus, the distribution P (Θ)
could effectively become P (Θ, γ, y, X, . . .) and in principle, we will still maintain a similar convex
program structure and the dual solution posed as portrayed in Theorem 2. These types of extensions
will be elaborated further in Chapter 4. One important caveat remains, however, when we augment
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distributions: we should maintain a balance between the various priors we are trying to minimize
KL-divergence to. If a prior over models P0(Θ) is too strict, it may overwhelm a prior over other
quantities such as margins, P0(γ) and vice-versa. Therefore, the minimization of KL-divergence will
be skewed more towards one prior than the other.

3.4 Information Theoretic and Geometric Interpretation

There is an interesting geometric interpretation for the MED solution which can be described as a
type of information projection. This projection is depicted in Figure 3.3 and is often referred to as
a relative entropy projection or e-projection as in [1]. The multiple linear constraints form a convex
hull that generates an admissible set called P. This convex hull is also referred to as an ’m-flat
constraint set’. The MED solution is the point in the admissible set that is closest in terms of
divergence from the prior distribution P0(Θ). This analogy extends to cases where the distributions
are also over margins, unlabeled exemplars, missing values, structures, or other probabilistic entities
that are introduced when designing the discriminant function.

*
K

L(
 P

(Θ
) |

| P
0(

Θ)
 )

P(Θ)

P0(Θ) 

*
P

Figure 3.3: MED as an Information Projection Operation.

The MED probabilistic formalism also has interesting conceptual connections to other recent infor-
mation theoretic and boosting works. One point of contact is the entropy projection and boosting
(Adaboost) framework developed in [170] and [110]. Boosting uses a distribution that weights each
data point in a training set and forms a weak learner based upon it. This process is iterated, up-
dating the distribution over data and the weak learner for t = 1 . . . T iterations. All hypothesis are
then combined in a weighted mixture of weak learners called the final master algorithm. Effectively,
each boosting step estimates a new distribution P t+1 over the training data that both minimizes the
relative entropy to a prior distribution P t and is orthogonal to a ’performance vector’ denoted U t.
The performance vector U t is of the same cardinality as P t and has values ranging between [−1, 1].
If the previous ’weak learner’ given by prior probability distribution correctly classifies a data point,
then the U vector at that training datum’s index has a value close to 1 (i.e. U t

i = 1). If the datum
is poorly classified, then U t

i is −1 at the corresponding index. Therefore, we update the distribution
using the following exponential update rule (which follows directly from classical maximum entropy
results):

P t+1
i ∝ P t

i exp(−αU t
i )

Instead of considering an iterative approach where individual corrective updates are made, we may
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enforce all the the orthogonality constraints we have up until now and generate a full convex hull to
constrain the entropy projection [110]:

P t+1
i ∝ P t

i exp(−
t∑

q=1

αt,qU
q
i )

Kivenen and Warmuth [110] argue that each new distribution should provide information not present
in the current weak hypothesis given the individual orthogonality constraint. When we simultane-
ously consider all orthogonality constraints up until time t, the new hypothesis should provide new
information that is uncorrelated from all previous hypotheses. The convex hull of constraints results
in the exponentiated

∑t
q=1 αt,qU

q
i terms in the above equation which are strongly reminiscent of the

MED formulation’s exponentiated classification constraints (and their Lagrange multipliers). We
can therefore interpret the MED formulation as minimizing a divergence to a prior while extracting
as much information as possible from the training data.

Another information-theoretic point of contact can be found in the work of Tishby and others
[189] [177]. Here, the authors propose minimizing the lossy coding of input data X via a compact
representation X̃ while maintaining a constraint on the mutual information between the coding
and some desired output variable Y , I(X̃;Y ). This information-theoretic setting gives rise to the
Lagrangian optimization I(X; X̃)− βI(X̃;Y ). The result is an efficient representation of the input
data X which extracts as much information as possible (in terms of bits to encode) from the relevance
output variable. A loose analogy can be made to the MED framework which solves for a solution
distribution P (Θ) which minimally encodes the prior distribution P0(Θ) (analogous to the input
vectors X̃ and X respectively) such that the classification constraints due to the training data
(analogous to the relevance variables) are satisfied and provide as much information as possible.

An important connection also lies between MED and Kullback’s early work on the so-called Mini-
mum Discrimination Information method [113]. The definition Kullback adopts for ’discrimination’
is slightly different from the one we are discussing here. It mainly involves discrimination between two
competing hypotheses based on an information metric where one hypothesis has to satisfy some addi-
tional constraints while being as close to the prior hypothesis as possible. The mechanism proposed
by Kullback is therefore very similar to the maximum entropy formalism that Jaynes proposes[86]
and he even describes connections to Shannon’s theory of communication [174]. Kullback points
out various important elaborations to both these yet ultimately the Minimum Discrimination In-
formation method once again finds a distribution that is as close as possible to a prior in terms of
KL-divergence subject to various moment constraints. The information between hypothesis involves
distributions over the measurable space as opposed to distributions over parameters as in MED.
Furthermore, the constraints used are not margin-based (or even classification-based) as in MED
and thus do not give rise to a discriminative classifier (or regressor). Nevertheless, MED seems to
be a natural continuation of the Kullback’s approach and can be seen as contemporary effort to
combine it with the current impetus towards discriminative estimation as in the SVM literature (as
well as the corresponding generalization arguments).

3.5 Computing the Partition Function

Ultimately, implementing the MED solution given by Theorem 2 hinges on our ability to perform the
required calculations. For instance, we need to maximize the concave objective function to obtain
the optimal setting of the Lagrange multipliers λ:

J(λ) = − log Z(λ)
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Ideally, therefore, we would like to be able to evaluate the partition function Z(λ) either analytically
or at least efficiently. More precisely, the partition function is given by:

Z(λ) =
∫

P0(Θ, γ)e
∑

t
λt[ytL(Xt;Θ)−γt]dΘdγ (3.8)

Given a closed form partition function permits us to have a convenient concave objective function
that can then be optimized by standard techniques. Possible choices herein include convex program-
ming, first and second order methods as well as axis-parallel methods. Implementation details as
well as some novel speed improvements (such as learning which Lagrange multipliers are critical to
maximization) for optimizing J(λ) are provided in the Appendix Section 10.1.

An additional use of the partition function comes from a powerful aspect of maximum entropy (and
exponential family distributions) which is inherited by MED. The property states that gradients
(of arbitrary order) of the log-partition log Z(λ) with respect to a given variable λt, are equal to
the expectations (of arbitrary order) of the corresponding moment constraints with respect to the
maximum entropy distribution. This permits us to easily compute the expectations and variances
over P (Θ, γ) of the MED constraints by taking first and second derivatives of log(Z). Therefore,
given a closed-form MED partition function, we can conveniently obtain these expectations as follows
[10] [113]:

∂ log Z(λ)
∂λt

= EP (Θ,γ) {ytL(X; Θ)− γt}

∂2 log Z(λ)
∂2λt

= V arP (Θ,γ) {ytL(X; Θ)− γt}

Unfortunately, integrals are required to compute this critical log-partition function which may not
always be analytically solvable. If it is indeed solvable, various strategies can then be used to optimize
J(λ). For instance, axis-parallel techniques will iteratively converge to the global maximum. In
certain situations, J(λ) may even be maximized using eg. quadratic programming. Furthermore,
online evaluation of the decision rule after training from data also requires an integral followed
by a sign operation which may not be feasible for arbitrary choices of the priors and discriminant
functions. However, this is usually less cumbersome than actually computing the partition function
to obtain the optimal Lagrange multipliers.

In the following sections we shall specify under what conditions the computations will remain
tractable. These will depend on the specific configuration of the discriminant function L(X; Θ)
as well as the choice of the prior P0(Θ, γ). In the following section, we discuss various choices of
margin priors, bias priors, model priors and discriminant functions.

3.6 Margin Priors

We can mathematically expand the partition function in Equation 3.8 by noting that the distribution
factorizes as follows:

Z(λ) =
∫

P0(Θ, γ) e
∑

t
λt[ytL(Xt;Θ)−γt]dΘdγ

=
∫

P0(Θ)ΠtP0(γ) e
∑

t
λt[ytL(Xt;Θ)−γt]dΘdγ

=
∫

P0(Θ) e
∑

t
λtytL(Xt;Θ)dΘ × Πt

∫
P0(γ) e−λtγtdγt

= ZΘ(λ)×ΠtZγt
(λt)
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Recall that our optimization function, J(λ) was expressed as the negated logarithm of the partition
function:

J(λ) = − log(Z(λ))

= − log(ZΘ(λ))−
∑

t

log(Zγt
(λt))

= JΘ(λ) +
∑

t

Jγt
(λt)

These Jγt(λt) behave very similarly to the loss functions L(γt) in the original regularization theory
approach (actually, they are negated versions of the loss functions). We now have a direct way of
finding penalty terms −Jγt

(λt) from margin priors P0(γt) and vice-versa. Thus, there is a dual rela-
tionship between defining an objective function and penalty terms and defining a prior distribution
over parameters and prior distribution over margins.

For instance, consider the following margin prior distribution:

P (γt) = ce−c(1−γt), γt ≤ 1 (3.9)

Integrating, we get the penalty function (Figure 3.4):

log Zγt
(λt) = log

∫ 1

γt=−∞
ce−c(1−γt)e−λtγtdγt

= −λt − log(1− λt/c)

In this case, a penalty is incurred for margins smaller than the prior mean of γt which is 1 − 1/c.
Margins larger than this quantity are not penalized and the associated classification constraint
becomes irrelevant (i.e. the corresponding Lagrange multiplier could possibly vanish to 0). Increasing
the parameter c will encourage separable solutions and when c → ∞, the margin distribution
becomes peaked at the setting γt = 1 which is equivalent to having fixed margins as in the initial
MED Definition 1. The choice of the margin distribution will correspond closely to the use of slack
variables in the SVM formulation as well as the choice of different loss functions in the regularization
theory approach. In fact, the parameter c will play an almost identical role here as the regularization
parameter c which upper bounds the Lagrange multipliers in the slack variable SVM solution.

Figure 3.4(a) shows the above prior and its associated potential term (the negated penalty term
above). Various other classification margin priors and penalty terms that are analytically computable
are given in Table 3.1 and Figure 3.4. Furthermore, in the figure, the dotted green line indicates the
potential function that arises when the margins are fixed at unity (which assumes separability). For
all plots, the value c = 3 was used.

Margin prior P0(γt) Dual potential term Jγt
(λt)

a) P0(γ) ∝ e−c(1−γ), γ ≤ 1 λ + log(1− λ/c)
b) P0(γ) ∝ e−c|1−γ| λ + 2 log(1− λ/c)
c) P0(γ) ∝ e−c2(1−γ)2/2 λ− (λ/c)2

Table 3.1: Margin prior distributions and associated potential functions.

Note that all these priors form concave J() potential functions (or convex penalty functions) as
desired for a unique optimum in the Lagrange multiplier space. It should be noted that some
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Figure 3.4: Margin prior distributions (top) and associated potential functions (bottom).

potential functions will force an upper bound (via a barrier function) on the λt while others will
allow them to vary freely (as long as it is non-negative). may or may not set an upper bound on
the value of λt. Other priors and penalty functions are also possible, in particular for the regression
case which will be discussed later and which will require quite different margin configurations. We
now move to priors for the model, in particular, priors for the bias.

3.7 Bias Priors

Bias is merely a subcomponent of the model however due to its particular interaction with the
discriminant function, it will be treated separately here. More specifically, the bias, b, appears as
an additive scalar in the discriminant. Recall that Θ which can be seen as a concatenation of all
parameters and thus we can consider the breakdown: Θ = {Θ/b, b}. Recall the following form of
the discriminant functions from Equation 3.1 (or Equation 3.4):

L(X; Θ) = θT X + b

Such a bias term arises under not only in linear models but many other classification models,
including generative classification, multi-class classification, and even regression models. Evidently,
one can always set b to zero to remove its effect, or simply set b to a fixed constant, yet the MED
approach easily permits us to consider a distribution over b, namely P (b) and to tailor the solution
by specifying a prior P0(b). Here, we consider two possible choices for the prior P0(b) (although
many others are possible): the Gaussian prior and the non-informative prior.

3.7.1 Gaussian Bias Priors

Consider the zero-mean Gaussian prior for P0(b) given by:

P0(b) =
1√
2πσ

e−
b2

2σ2 (3.10)

This prior favors bias values that are close to zero and therefore a priori assumes an even balance
between the two binary classes in the decision problem. If we have a prior belief that the class



CHAPTER 3. MAXIMUM ENTROPY DISCRIMINATION 53

frequencies are slightly skewed, we may introduce a mean into the above prior which would then
favors one class over another. The resulting potential term Jb(λ) is:

Jb(λ) = − log Zb(λ)

= − log
∫ b=∞

b=−∞

1√
2πσ

e−
b2

2σ2 e
∑

t
ytλtbdb

= −σ2

2

(∑
t

ytλt

)2

The variance (or standard deviation) σ further specifies how certain we are that the classes are
evenly balanced. In terms of the potential function, it constrains with a quadratic penalty the
balance between Lagrange multipliers for the negative class and the positive class.

3.7.2 Non-Informative Bias Priors

Evidently, a Gaussian prior will favor values of b that are close to zero. However, in the absence of
any knowledge about the bias, it would be reasonable to permit any scalar value for b with equal
preference. This will give rise to a non-informative prior. This form of prior can be parameterized as
a Gaussian as in Equation 3.10 but with the variance approaching infinity, i.e. σ →∞. This stretches
out the Gaussian until it starts to behave like a uniform distribution on the axis b ∈ (−∞,∞).

The resulting potential term will naturally be:

Jb(λ) = lim
σ→∞

−σ2

2

(∑
t

ytλt

)2

Since we are to maximize the potential terms, if σ grows to infinity, the above objective function
will go to negative infinity unless the term in the parentheses

∑
t ytλt is exactly zero. Therefore, the

non-informative prior generates the extra constraint (in addition to non-negativity) on the Lagrange
multipliers requiring that

∑
t ytλt = 0:

Lemma 1 If the bias prior P0(b) is set to a non-informative infinite covariance Gaussian, the
(non-negative) Lagrange multipliers in the MED solution must also satisfy the following equality
constraint:

∑
t ytλt = 0

At this point, we have the defined the priors and the computational machinery necessary for the
MED formulation to give rise to support vector machines.

3.8 Support Vector Machines

As previously discussed, a support vector machine can be cast in the regularization theory framework
and is solvable as a convex program due to the fundamentally linear discriminant function it employs:

L(X; Θ) = θT X + b
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One can also interpret the linear decision boundary generatively by considering, for example, the
log-likelihood ratio of two Gaussian distributions (one per class) with equal covariance matrices.

L(X; Θ) = log
P (X|θ+)
P (X|θ−)

+ b

We shall adopt the first linear discriminant boundary since it has a more efficient parameterization
and with the choice of a simple prior will exactly synthesize a support vector machine. In particular if
we choose a Gaussian prior on the weights θ of our linear discriminant function, the MED formulation
will produce support vector machines:

Theorem 3 Assuming L(X; Θ) = θT X +b and P0(Θ, γ) = P0(θ)P0(b)P0(γ) where P0(θ) is N(0, I),
P0(b) approaches a non-informative prior, and P0(γ) is given by P0(γt) as in Equation 3.9 then the
Lagrange multipliers λ are obtained by maximizing J(λ) subject to 0 ≤ λt ≤ c and

∑
t λtyt = 0,

where

J(λ) =
∑

t

[λt + log(1− λt/c) ]− 1
2

∑
t,t′

λtλt′ytyt′(XT
t Xt′)

The above J(λ) objective function is strikingly similar to the SVM dual optimization problem. The
only difference between the two is the above formulation has an extra potential term log(1− λt/c)
which acts as a barrier function preventing the λ values from growing beyond c. In an SVM, the
Lagrange multiplier values are clamped to be no greater than c explicitly as an extra constraint
in the convex program. In both formalisms, c plays an almost identical role by varying the degree
of regularization and upper bounding the Lagrange multipliers. Typically, low c values increase
regularization, vary the sensitivity of the solution to classification errors, robustness to outliers and
permit non-separable classification problems. However, in an SVM, the c-regularization parameter
arises from an ad-hoc introduction of slack variables to permit the SVM to handle non-separable
data. If we let c→ infty, the potential term log(1− λt/c) vanishes and MED gives rise to exactly
an SVM (for separable data). In practice, even for finite c, the MED and SVM solutions are almost
identical.

3.8.1 Single Axis SVM Optimization

We can greatly simplify the support vector machine by avoiding the non-informative prior on the
bias. If we assume a Gaussian prior with finite covariance, the equality constraint

∑
t λtyt = 0 can

be omitted. The resulting convex program only requires non-negativity on the Lagrange multipliers
and the updated objective function becomes:

J(λ) =
∑

t

[λt + log(1− λt/c) ] − σ2

2

(∑
t

ytλt

)2

− 1
2

∑
t,t′

λtλt′ytyt′(XT
t Xt′)

Therefore, it is now possible to update a single Lagrange multiplier at a time in an axis-parallel
manner. In fact, the update for each axis is analytic (even with the MED logarithmic barrier
function in the non-separable case). The minimal working set in this case is 1 while in the SVM,
updates to increase the objective must be done simultaneously on at least 2 Lagrange multipliers
as in the Sequential Minimal Optimization (SMO) technique proposed by Platt [154]. This gives
the MED implementation a simpler optimization problem which lead to gains in computational
efficiency without any significant change from the solution produced under non-informative priors.
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3.8.2 Kernels

The MED formulation for SVMs also readily extends to the Kernel case where nonlinearities (of the
Kernel type) can be immediately folded in by an implicit mapping to a higher dimensional space.
The updated MED objective function merely becomes:

J(λ) =
∑

t

[λt + log(1− λt/c) ] − σ2

2

(∑
t

ytλt

)2

− 1
2

∑
t,t′

λtλt′ytyt′K(Xt, Xt′) (3.11)

In the above, our standard inner products of the input vectors XT
t Xt′ are replaced with a kernel

function of the vectors K(Xt, Xt′) as is done in the SVM literature. The MED computations
remain relatively unchanged since (in the linear discriminant case) all calculations only involve inner
products of the input vectors.

3.9 Generative Models

At this point we consider the use of generative models in the MED framework. This fundamen-
tally extends the regularization and SVM discriminative frameworks to the powerful modeling in
Bayesian generative models. Herein lies the strength of the MED technique as a bridge between
two communities with mutually beneficial tools. Consider a two class problem where we have a
generative model for each class, namely P (X|θ+) and P (X|θ−). These two generative models can
be directly combined to form a classifier by considering their log-likelihood ratios as follows:

L(X; Θ) = log
P (X|θ+)
P (X|θ−)

+ b (3.12)

Here, the aggregate parameter set is Θ = {θ+, θ−, b} which includes both generative models as well
as a scalar bias. Thus, by merely changing the discriminant function, the MED framework can
be used to estimate generative models and guarantee that the decision boundary they give rise to
will be optimal in a classification setting. Naturally, the above discriminant function is generally
nonlinear and will give rise to a non-convex hull of constraints in a standard regularization setting.
However, in the MED framework, due to the probabilistic solution P (Θ), the above discriminant
functions still behave as a convex program.
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(a) (b)

Figure 3.5: Discriminative Generative Models. In (a) we show the standard maximum likelihood
estimation of two generative models from the data and the resulting poor classifier decision boundary
they generate. In (b), MED moves the generators slightly such that they combine to form an accurate
classification boundary.

Estimating P (Θ) using MED will ultimately yield P (θ+, θ−, b) which can be used to specify the
generative models for the data P (X|θ+) and P (X|θ−). These will be full generative models that



CHAPTER 3. MAXIMUM ENTROPY DISCRIMINATION 56

can be sampled from, integrated, conditioned, etc. yet unlike a direct Bayesian framework, these
generative models will be also combine to form a high-performance discriminative classifier when
plugged into the L(X; Θ) discriminant function. Figure 3.5(a) depicts the estimation of a maximum
likelihood generative model while MED moves the generators for each class (ellipses) such that the
decision boundary creates good classification separation in Figure 3.5(b).

Whether or not MED estimation is feasible once again hinges upon our ability to compute the log-
partition function Z(λ). We will show that it is possible to obtain the partition function analytically
whenever the generative models P (X|θ+) and P (X|θ−) are in the exponential family.

3.9.1 Exponential Family Models

We have argued that functions that can be efficiently solved within the MED approach include log-
likelihood ratios of the exponential family of distributions. Can we compute the partition function
efficiently to actually implement this estimation? First we give details on the exponential family
form [9] [32]. It is well known that such distributions have important properties in maximum like-
lihood estimation [9] [198]. This family subsumes a wide set of distributions and its members are
characterized by the following general structure (commonly referred to as the natural parameteriza-
tion):

p(X|θ) = exp(A(X) + XT θ −K(θ))

Where K(θ) is convex and the distribution is normalized over the space of X. Further details on
the exponential family and its many interesting properties can be found in Chapter 5 and [9] [32].
In addition, each exponential family member has a conjugate prior distribution given by:

p(θ|χ) = exp(Ã(θ) + θT χ− K̃(χ))

The conjugate distribution is itself in the exponential family and therefore, its K̃ is also convex.

Whether or not a specific combination of a discriminant function and an associated prior is estimable
within the MED framework depends on the computability of the partition function (i.e. the objective
function used for optimizing the Lagrange multipliers associated with the constraints). In general,
these operations will require integrals over the associated parameter distributions. In particular,
recall the partition function corresponding to the binary classification case. Consider the integral
over Θ in:

ZΘ(λ) =
∫

P0(Θ)e
∑

t
λtytL(Xt|Θ)dΘ

If we now separate out the parameters associated with the class-conditional densities as well as the
bias term (i.e. θ+, θ−, b) and expand the discriminant function as a log-likelihood ratio, we obtain
the following:

ZΘ =
∫

P0(θ+)P0(θ−)P0(b)e
∑

t
λtyt[log

P (X|θ+)
P (X|θ−)+b]

dΘ

The above factorizes as ZΘ = Zθ+Zθ−Zb. We can now substitute the exponential family forms for
the class-conditional distributions and associated conjugate distributions for the priors. We assume
that the prior is defined by specifying a value for χ. It suffices here to show that we can obtain
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Zθ+ in closed form. The derivation for Zθ− is identical. We will drop the “+” symbol from Zθ+ for
clarity. The problem is now reduced to evaluating:

Zθ(λ) =
∫

eÃ(θ)+θT χ−K̃(χ) e
∑

t
λtyt(A(Xt)+XT

t θ−K(θ))dθ

We have shown earlier (see Lemma 1) that a non-informative prior over the bias term b leads to the
constraint

∑
t λtyt = 0. Making this assumption, we get

Zθ(λ) = e−K̃(χ)+
∑

t
λtytA(Xt) ×

∫
eÃ(θ)+θT (χ+

∑
t

λtytXt)dθ

= e−K̃(χ)+
∑

t
λtytA(Xt) × eK̃(χ+

∑
t

λtytXt)

The last evaluation in above results from a natural property of the exponential family. The expres-
sions for A, Ã,K, K̃ are known for specific distributions in the exponential family and can easily
be used to complete the above evaluation, or realize the objective function (which holds for any
exponential-family distribution):

log Zθ(λ) = K̃(χ +
∑

t

λtytXt) +
∑

t

λtytA(Xt)− K̃(χ)

Therefore, it is clear that we can compute the objective function J(λ) for any discriminant function
arising from exponential family generative models. In fact, integration doesn’t even need to be
performed since we have an analytic expression of our objective function in terms of the natural
parameterization for all exponential family distributions. It should also be noted that the above
objective function often bears a strong resemblance to the evidence term in Bayesian inference
(i.e. Bayesian integration), where the Lagrange multipliers seem to act as weights on the Bayesian
inference. It is straightforward at this point to perform the required optimization and find the
optimal setting of the Lagrange multipliers that maximize the concave J(λ).

3.9.2 Empirical Bayes Priors

At this point, we have proven that it is feasible to estimate generative models in the exponential
family form under MED if we assume the priors are given by the conjugate distribution. However,
the parameters of the conjugate priors are still not specified and we still have quite some flexibility
in designing prior knowledge into the MED formulation. In the absence of any prior knowledge, and
whenever possible we recommend the default prior to be either a conjugate non-informative prior or
an Empirical Bayes prior.

Loosely put, the prior for P0(Θ), or more specifically for P0(θ+) and P0(θ−), we will use will be the
posterior distribution of the parameters given the data that Bayesian inference generates. Consider
the data set {X1, . . . , XT } with binary (±1) labels {y1, . . . , yT }. Thus, the inputs can be split into
the positive inputs {X1+, . . . , XT+} and the negative inputs {X1−, . . . , XT−}.

We now explicate the Bayesian inference procedure. To distinguish the resulting densities from those
that will be used in the MED formulation, here we will put a P̂ symbol on the Bayesian distributions.
In Bayesian inference, each class’s posterior distribution is estimated only from the positive input
exemplars {X1+, . . . , XT+} as follows:

P̂ (θ+) = P̂ (θ+|{X1+, . . . , XT+})
= P̂ ({X1+, . . . , XT+}|θ+)P̂ (θ+)
= Πt+P̂ (Xt+|θ+)P̂0(θ+)
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Similarly, the negative class’s generative Bayesian posterior model is estimated only from the negative
input exemplars {X1−, . . . , XT−} :

P̂ (θ−) = Πt−P̂ (Xt−|θ−)P̂0(θ−)

For this Bayesian estimate of the generative model of the data, a minimally informative prior P̂0(θ±)
should be used. The result is a distribution that is as good a generator as possible for the data set.

However, we don’t want just a good generator of the data, we also want a good discriminator.
Thus, we can use MED to satisfy the large-margin classification constraints. But, simultaneously,
the solution should be as close as possible to the generative model in terms of KL-divergence.
Therefore, we shall use the Bayesian posteriors as the MED priors!

P0(θ+) := P̂ (θ+)
P0(θ−) := P̂ (θ−)

Figure 3.6 depicts the information projection solution MED will generate from the Bayesian estimate.
Effectively, we will try solving for the distribution over parameters that is as close as possible to the
Bayesian estimate (which is often actually quite similar to the maximum likelihood estimate in the
case of the exponential family) but that also satisfies the classification constraints.

*

MED
 P(Θ)

BAYES
   P(Θ) 

*
P

Figure 3.6: Information Projection Operation of the Bayesian Generative Estimate.

The motivation here is that in the absence of any further discriminative information, we should have
as good a generator as possible. We now note a number of advantages for this type of empirical Bayes
prior, that include theoretical, conceptual and practical arguments.. First, an empirical Bayes prior
is a good precautionary measure to take because it allows more flexible use of MED’s discriminative
model as a generator whenever necessary. This may be the case when the discriminator has to
cope with missing data or noise. If, therefore, we are in a prediction setting where some input
variables are missing, we could reconstruct them (or integrate over them) by simply using the MED
discriminative model as a surrogate for a generator distribution.

Under sparse data situations a model may easily satisfy some given discrimination constraints and
many aspects of the model could remain ambiguous. In these cases, the empirical Bayesian prior
provides a backup generative criterion, which further constrains the problem (albeit in ways not
helpful to the task) and therefore can help consistent estimation. We also obtain an invariance in
using an empirical Bayes prior that we would not get if we assume a fixed prior. For example, a
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fixed zero-mean Gaussian prior would produce different MED solutions if we translate the training
data while an empirical Bayes prior would follow the translation of the data (with the Bayesian
generative model) and consistently setup the same relative decision boundary.

Furthermore, consistency is important under the (arguably over-optimistic) situation that the gen-
erative model we are using is exactly correct and perfectly matches the training data. In that case,
the Bayesian solution is optimal and MED may stray from it unless we have an empirical Bayes
prior, even if we obtain infinite training data. An interesting side note is that if we use the standard
margin prior distribution given by Equation 3.9, and obtain an upper bound on the Lagrange mul-
tipliers (i.e. they are < c), then as c→ 0, the MED solution uses the Bayesian posterior while as c
increases, we reduce regularization (and outlier rejection) in favor of perfect classification.

Finally, on a purely practical note, an empirical Bayes prior may provide better numerical stability,
for example. A discriminative MED model could put little probability mass on the training data
and return a very poor generative configuration while still perfectly separating the data. This would
be undesirable numerically since we would get very small values for, eg. P (X|θ+) and P (X|θ−).
During prediction, a new test point may cause numerical accuracy problems if it is far from the
probability mass in the MED discriminative solution. Therefore, whenever it does not result in a
loss of discriminative power, one should maintain the generative aspects of the model.

3.9.3 Full Covariance Gaussians

We now consider the case where the discriminant function L(X; Θ) corresponds to the log-likelihood
ratio of two Gaussians with different (and adjustable) covariance matrices. The parameters Θ in this
case are both the means and the covariances. These generative models are within the exponential
family and so the previous results hold. Thus, the prior of choice P0(Θ) must be the conjugate
to the full-covariance Gaussian which is the Normal-Wishart. We shall use N as shorthand for
the normal distribution and IW as shorthand for the inverse-Wishart. This choice of distributions
permits us to obtain closed form integrals for the partition function Z(λ). Here, we shall once again
breakdown the parameters into the two generative models and the bias as before. Thus, we have
P (Θ) = P (θ+)P (θ−)P (b). More specifically, the θ± will also be broken down into the mean and
covariance components of the Gaussian. Therefore, we have: P (Θ) = P (µ+,Σ+)P (µ−,Σ−)P (b)
which gives us a density over means and covariances (this notation closely follows that of [136]).

The prior distribution has the form

P0(θ+) = N (µ+|m+,Σ+/k) IW(Σ+|kV+, k)

Where the parameters that specify the prior, namely the scalar k, the vector m+, and the matrix
V+ can be imputed manually. Also, one may let k → 0 to get a non-informative prior.

We used the MAP values for k, m0 and V0 from the class-specific data which corresponds to the
posterior distribution over the parameters given the data under a Bayesian inference procedure (i.e.
an empirical Bayes procedure as described in the previous section). Integrating over the parameters,
we get the partition function which factorizes Z(λ) = Zγ(λ)Z+(λ)Z−(λ). For Z+(λ) we obtain the
following:

Z+(λ) ∝ N
−d/2
+ |πS+|−N+/2 Πd

j=1Γ
(

N+ + 1− j

2

)

In the above we have defined the following intermediate variables (the scalar N+, the vector X+ and
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the matrix S+) for brevity:

N+
∆=

∑
t

wt

X̄+
∆=

∑
t

wt

N+
Xt

S+
4
=

∑
t

wtXtX
T
t −N+X̄+X̄T

+

Here, wt is a scalar weight given by wt = u(yt) + ytλt for Z+(λ). To solve for Z−(λ) we proceed in
exactly the same manner as above however here, the weights are set to wt = u(−yt)−ytλt. The u(·)
is merely the step function. Given Z, updating λ is done by maximizing the corresponding negative
entropy J(λ) subject to 0 ≤ λt ≤ c and

∑
t λtyt = 0 where:

J(λ) =
∑

t

[lαλt + log(1− λt/c)]− log Z+(λt)− log Z−(λt)

The potential term above corresponds to integrating over the margin with a margin prior P0(γ) ∝
e−c(lα−γ) with γ ≤ s. We pick lα to be some α-percentile of the margins obtained under the standard
MAP solution.

Optimal Lagrange multiplier values are then found via a simple constrained gradient descent proce-
dure. The resulting MRE (normalized by the partition function Z(λ)) is a Normal-Wishart distri-
bution itself for each generative model with the final λ values set by the maximization of J(λ):

P (θ+) = N (µ+; X̄+,Σ+/N+) IW(Σ+;S+, N+)

Predicting the labels for a data point X under the final P (Θ) involves taking expectations of the
discriminant function under a Normal-Wishart. For the positive generative class, this expectation
is:

EP (θ+) [log P (X|θ+)] = constant− N+

2
(X − X̄+)T S−1

+ (X − X̄+)

The expectation over the negative class is similar. This gives us the predicted label quite simply as:

ŷ = sign
∫

P (Θ)L(X; Θ)dΘ

ŷ = sign EP (Θ)

[
log

P (X|θ+)
P (X|θ−)

+ b

]
ŷ = sign

(
EP (θ+) [log P (X|θ+)]− EP (θ−) [log P (X|θ−)] + EP (b) [b]

)
Computing the expectation over the bias is avoided under the non-informative case and the additive
effect it has is merely estimated as in an SVM via the Karush-Kuhn-Tucker conditions. We thus
obtain discriminative quadratic decision boundaries. These extend the linear boundaries without
(explicitly) resorting to kernels. Of course, kernels may still be used in this formalism, effectively
mapping the feature space into a higher dimensional representation. However, unlike linear dis-
crimination, the covariance estimation in this framework allows the model to adaptively modify the
kernel.

For visualization, we present the technique on a 2D set of training data in Figure 3.7. In Figure 3.7(a),
the maximum likelihood technique is used to estimate a 2 Gaussian discrimination boundary (bias is
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(a) ML & MED Initialization (b) MED Intermediate

(c) MED Intermediate (d) MED Converged

Figure 3.7: Classification visualization for Gaussian discrimination.

estimated separately) which has the flexibility to achieve perfect classification yet produces a classifier
whose performance is equal to random guessing. Meanwhile, the maximum entropy discrimination
technique places the Gaussians in the most discriminative configuration as shown in Figure 3.7(b)
without requiring kernels or feature space manipulations.

Experiments

In the following, we show results using the minimum relative entropy approach where the discrim-
inant function L(X, Θ) is the log-ratio of Gaussians with variable covariance matrices on standard
2-class classification problems (Leptograpsus Crabs and Breast Cancer Wisconsin). Performance is
compared to regular support vector machines, maximum likelihood estimation and other methods.

The Leptograpsus crabs data set was originally provided by Ripley [162] and further tested by
Barber and Williams [8]. The objective is to classify the sex of the crabs from 5 scalar anatomical
observations. The training set contains 80 examples (40 of each sex) and the test set includes 120
examples.

The Gaussian based decision boundaries are compared in Table 3.2 against other models from[8].
The table shows that the maximum entropy (or minimum relative entropy) criterion improves the
Gaussian discrimination performance to levels similar to the best alternative models. The bias was
estimated separately from training data for both the maximum likelihood Gaussian models and the
maximum entropy discrimination case. In addition, we show the performance of a support vector
machine (SVM) with linear, radial basis and polynomial decision boundaries (using the Matlab SVM
Toolbox provided by Steve Gunn). In this case, the linear SVM is limited in flexibility while kernels
exhibit some over-fitting.
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Method Training Testing
Errors Errors

Neural Network (1) 3
Neural Network (2) 3
Linear Discriminant 8
Logistic Regression 4
MARS (degree = 1) 4
PP (4 ridge functions) 6
Gaussian Process (HMC) 3
Gaussian Process (MAP) 3
SVM - Linear 5 3
SVM - RBF σ = 0.3 1 18
SVM - 3rd Order Polynomial 3 6
Maximum Likelihood Gaussians 4 7
MaxEnt Discrimination Gaussians 2 3

Table 3.2: Leptograpsus Crabs

Another data set which was tested was the Breast Cancer Wisconsin data where the two classes
(malignant or benign) have to be computed from 9 numerical attributes from the patients’ tumors
(200 training cases and 169 test cases). The data was first presented by Wolberg [206]. We compare
our results to those produced by Zhang [211] who used a nearest neighbor algorithm to achieve 93.7%
accuracy. As can be seen from Table 3.3, over-fitting prevents good performance from the kernel
based SVMs and the top performer here is the maximum entropy discriminator with an accuracy of
95.3%.

Method Training Testing
Errors Errors

Nearest Neighbor 11
SVM - Linear 8 10
SVM - RBF σ = 0.3 0 11
SVM - 3rd Order Polynomial 1 13
Maximum Likelihood Gaussians 10 16
MaxEnt Discrimination Gaussians 3 8

Table 3.3: Breast Cancer Classification

3.9.4 Multinomials

Another popular exponential family model is the multinomial distribution. We next consider the case
where the discriminant function L(X; Θ) corresponds to the log-likelihood ratio of two multinomials:

L(X; Θ) = log
P (X|θ+)
P (X|θ−)

− b

Where we have the generative models given by (if the X vector is consider as a set of counts):

P (X|θ+) =
( ∑K

k=1 Xk

X1 . . . XK

)
ΠK

k=1ρ
Xk

k (3.13)

In the above, we are using the superscript on Xk to index into the dimensionality of the vector (the
subscript will be used to index into the training set). The scalar term in the large parentheses is
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the multinomial coefficient (the natural extension of the binomial coefficient from coin tossing to
die tossing). This scalar term is unity if the X vector is zero everywhere except for one unit entry.
Otherwise it simply scales the probability distribution by a constant factor which can be rewritten
as follows for more clarity (the use of gamma functions permits us to also consider continuous X
vectors):

( ∑K
k=1 Xk

X1 . . . XK

)
=

(∑K
k=1 Xk

)
!

ΠK
k=1X

k!
=

Γ(1 +
∑K

k=1 Xk)
ΠK

k=1Γ(1 + Xk)

The generative distribution in Equation 3.13 parameterizes the multinomial with the ρ vector of
non-negative scalars that sum to unity, i.e.

∑
ρ = 1. The parameters Θ in this case are both the ρ

for the positive class and the negative class as well as the bias scalar b. These generative models are
within the exponential family and so the previous results hold. Thus, the prior of choice P0(Θ) must
be the conjugate to the multinomial which is the Dirichlet distribution. This choice of distributions
permits us to obtain closed form integrals for the partition function Z(λ). Here, we shall once again
breakdown the parameters into the two generative models and the bias as before. Thus, we have
P (Θ) = P (θ+)P (θ−)P (b), to distinguish the ρ for the positive class, we will denote the parameters
for the negative class as ρ̄. The prior Dirichlet distribution has the form

P0(θ+) =
Γ(
∑

k αk)
ΠkΓ(αk)

Πkραk−1
k

We typically assume that αk will be pre-specified manually (or given by an empirical Bayes pro-
cedure) and will satisfy αk > 1. The core computation involves computing the component of the
log-partition function that corresponds to the model (the computation for the bias and the margins
remain the same as all the previous cases). Thus, we need:

Zθ+(λ)Zθ−(λ) =
∫

P0(θ+)P0(θ−)e
∑

t
λtyt[log

P (Xt|θ+)
P (Xt|θ−) ]dθ+dθ−

It suffices to show how to compute Zθ+ :

Zθ+ =
∫

P0(θ+)e
∑

t
λtyt log P (Xt|θ+)dθ+

=
∫

Γ(
∑

k αk)
ΠkΓ(αk)

Πkραk−1
k e

∑
t

λtyt log

( ∑
k Xk

t

Xk
t . . . Xk

t

)
+
∑

t
λtyt log Πkρ

Xk
t

k

dρ

=
∫

Γ(
∑

k αk)
ΠkΓ(αk)

Πkραk−1
k e

∑
t

λtyt log Πkρ
Xk

t
k dρ × e

∑
t

λtyt log

( ∑
k Xk

t

X1
t . . . XK

t

)

=
∫

Γ(
∑

k αk)
ΠkΓ(αk)

Πkραk−1
k Πkρ

∑
t

λtytX
k
t

k dρ × e

∑
t

λtyt log

( ∑
k Xk

t

X1
t . . . XK

t

)

=
∫

Γ(
∑

k αk)
ΠkΓ(αk)

Πkρ
αk−1+

∑
t

λtytX
k
t

k dρ × e

∑
t

λtyt log

( ∑
k Xk

t

X1
t . . . XK

t

)

=
Γ(
∑

k αk)
Γ(
∑

k αk +
∑

tk λtytXk
t )

Πk
Γ(αk +

∑
t λtytX

k
t )

Γ(αk)
× e

∑
t

λtyt log

( ∑
k Xk

t

X1
t . . . XK

t

)
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We can thus form our objective function and maximize it to obtain the setting for the Lagrange
multipliers λ (subject to the constraint

∑
t λtyt = 0):

J(λ) = − log Zθ+(λ)− log Zθ−(λ)− log Zγ(λ)

The setting for the Lagrange multipliers permits us to exactly specify the final MED solution dis-
tribution P (Θ) which is used to compute the predictions for future classification:

ŷ = sign
∫

P (Θ)L(X; Θ)dΘ

3.10 Generalization Guarantees

We now present several arguments for MED in terms of generalization guarantees. While generative
frameworks have guarantees (asymptotic and otherwise) on the goodness of fit of a distribution
(i.e. Bayesian evidence score, Bayesian Information Criterion, Akaike Information Criterion, etc.),
they seldom have guarantees on the generalization performance of the models in a classification
or regression setting. Furthermore, the guarantees may be distribution dependent which might be
inappropriate if the true generative distribution of a data source is not perfectly known. Conversely,
discriminative approaches that specifically target the classification or regression performance can
have strong generalization arguments as we move from training data to testing data. These may also
be distribution independent. The MED framework, in its discriminative estimation approach, brings
classification performance guarantees to generative models. There are a number of arguments we will
make, including sparsity-based generalization, references to VC-dimension based generalization and
PAC-Bayesian generalization. Although generalization bounds can be quite loose for small amounts
of training data, they are better than no guarantees whatsoever. Furthermore, the ’shape’ of the
generalization bounds have been demonstrated empirically to be useful in a discriminative setting.
Finally, under large amounts of data, these bounds could be reasonably tight.

3.10.1 VC Dimension

Due to the ability of the MED framework to subsume SVMs (exactly generating the same equations
in the separable case), it too benefits from the generalization guarantees that accompany them.
These are of course the VC-dimension (Vapnik-Chervonenkis) bounds on the expected risk, R(Θ),
of a classifier. Assuming we have a [0, 1] loss function l(Xt, yt,Θ) and T training exemplars, the
empirical risk can be readily computed [35] [196] [197]:

Remp(Θ) =
1
T

T∑
t=1

l(Xt, yt,Θ)

The true risk (for samples outside of the training set) is then bounded above by the empirical plus
a term that depends only on the size of training set, T and the VC-dimension of the classifier, h.
This non-negative integer quantity measures the capacity of a classifier and is independent of the
distribution of the data. The following bound holds with probability 1− δ:

R(Θ) ≤ Remp(Θ) +

√
h(log(2T/h) + 1)− log(δ/4)

T

The VC-dimension of a set of hyper-planes in <n is equal n+1. This does not directly motivate the
use of large margin decision boundaries in an SVM. However, an SVM can be interpreted instead as
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a gap-tolerant classifier instead of a pure hyper-plane. A gap-tolerant classifier is a set of two parallel
hyper-planes with a sphere. All points outside the sphere and all points between the planes do not
contribute to the risk while points within the sphere and on either side of the planes are assigned
a class (i.e. ±1). Thus, if all points are within the sphere and outside of the two hyper-planes,
the VC-dimension can be upper bounded by the radius of the resulting sphere R and the margin
between the planes M . This gives the following upper bound on the VC-dimension, h, in an feature
space of <n:

h ≤ max
{

D2

M2
, n

}
+ 1

Thus, we have a ’plausible’ argument for maximizing margin with a linear classifier. Although this
does not translate immediately to nonlinear classifiers (if there is no direct kernel mapping back to
linear hyper-planes), the motivation for large-margin in SVMs still can be used to justify using large
margins in the MED formulation (namely with priors put large probability mass on larger margins
values). We now move to other formal arguments for MED generalization.

3.10.2 Sparsity

The MED solution involves a constraint-based optimization where a classification constraint is
present over each training data point to be classified. Each constraint is represented by the La-
grange multiplier associated with the given data point. In many cases, these constraints are likely
to be redundant. This is apparent since classifying one data point correctly might automatically
result in correct classification of several others. Therefore, the constraints involving some data points
will be obviated by others and their corresponding Lagrange multipliers will go to zero. As in an
SVM, points close to the margin (which have small margin values) have a critical role in shaping
the decision boundary and generate non-zero Lagrange multipliers. These are the support-vectors in
the standard SVM terminology. Meanwhile, other points that are easily correctly classified with a
large margin will have zero Lagrange multipliers. Thus, the MED solution only depends on a small
subset of the training data and will not change if the other data points were deleted. This gives rise
to a notion of sparsity and with it we can make some generalization arguments. One argument is
that the generalization error (denoted εg) is less than the expected percentage (ratio) of non-zero
Lagrange multipliers over all Lagrange multipliers.

εg ≤ E

[∑T
t=1 δ(λt > 0)

T

]

Thus, for T data points, we simply count the number of non-zero Lagrange multipliers (using the
δ function which is zero for Lagrange multipliers of value zero and unity for non-vanishing values).
However, the expectation is taken over arbitrary choices of the training set which means that the
upper bound on generalization error can only be approximated (using cross-validation or other
techniques as in [196] [83]). Alternatively, a coarse and riskier approximation to the expectation can
be done by simply counting the number of remaining non-zero Lagrange multipliers after maximizing
J(λ) on the training set in the MED solution.

3.10.3 PAC-Bayes Bounds

An alternative to VC dimension arguments for generalization includes PAC bounds (probably ap-
proximately correct, Valiant 1984). Recent contributions in terms of a PAC-Bayesian model selection
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criteria by McAllester [125] and Langford [116] have given theoretical generalization arguments that
directly motivate the MED approach (MED was actually developed prior to the generalization re-
sults). Essentially PAC-Bayesian approaches allow the combination of a Bayesian integration of
prior domain knowledge with PAC generalization guarantees without forcing the PAC framework
to assume the truthfulness of the prior. We loosely adapt and state the main results of [116] here
but further details are available from the original work as well as [125]. Effectively, the gener-
alization guarantees are for model averaging where a stochastic model selection criterion is given
in favor of a deterministic one. MED is a model averaging framework in that a distribution over
models is computed (unlike, eg. an SVM). Therefore, these new generalization results apply almost
immediately.

First, (as in MED) we assume a prior probability distribution P0(Θ) over a possibly uncount-
able (continuous) model class. We also assume our discriminant functions L(X; Θ) are bounded
real-valued hypotheses 7. Given a set T training exemplars of the form (Xt, yt) sampled from a
distribution D, we would like to compute the expected loss (i.e. the fraction of misclassifications)
over the true distribution D. Recall in MED that a correct classification of the data is given by:

yt

∫
P (Θ)L(Xt; Θ)dΘ ≥ 0

Meanwhile, incorrect classifications are of the form:

yt

∫
P (Θ)L(Xt; Θ)dΘ ≤ 0

A more conservative empirical misclassification rate (i.e. which over counts the number of errors)
can be made by also counting those errors below some positive margin threshold γ:

yt

∫
P (Θ)L(Xt; Θ)dΘ ≤ γ

If we compute the empirical number of misclassifications with this more conservative technique based
on the margin threshold, γ, we can upper bound the expected (standard) misclassification rate. The
expected misclassification rate has the following upper bound bound which holds with probability
1− δ:

ED

[
y

∫
P (Θ)L(X; Θ)dΘ ≤ 0

]
≤ 1

T

∑
t

[
yt

∫
P (Θ)L(Xt; Θ)dΘ ≤ γ

]

+O

(√
γ−2D(P (Θ)‖P0(Θ)) lnT + lnT + ln δ−1

T

)

Ideally, we would like to minimize the expected risk of the classifier on future data (left hand side).
Clearly, the bound above motivates forming a classifier that satisfies the empirical classification
constraints (encapsulated by the first term on the right hand side), while minimizing divergence to the
prior distribution (the second term on the right hand side). We also note that increasing the margin

7The generalization guarantees were actually originally for averaging binary discriminant functions, not real ones,
but can be extended to real ones in a straightforward manner. One may construct an MED classifier where the
discriminant function is, eg. sigmoidal, or binary and then satisfy the requirements for these bounds to hold. Alter-
natively, a trivial extension is to find a bound by considering a maximal sphere around all the data which implicitly
provides limits on the range of the discriminant function. This then permits a scaled version of the generalization
bound.
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threshold is also useful at minimizing the expected risk. These criteria are directly addressed by the
MED framework which strongly agrees with this theoretical motivation. Furthermore, increasing the
cardinality of the training data set will make the bound tighter independently of the distribution of
the data. Another point of contact is that [125] argues that the optimal posterior according to these
types of bounds is, as in the Maximum Entropy Discrimination solution, the Gibbs distribution.

3.11 Summary and Extensions

We have presented the Maximum Entropy Discrimination framework from a regularization theory
perspective and shown how it subsumes support vector machines. The solvability of the MED
solution has been demonstrated. We have also shown how MED can readily be used in a generative
framework where decision boundaries arise from exponential family distributions over the input
space. Finally, generalization guarantees provide the framework with a theoretical grounding that
reinforces its flexibility and generality. We next discuss the many extensions that can now be
cascaded into the MED formalism which further motivate the usefulness of the approach.



Chapter 4

Extensions to Maximum Entropy
Discrimination

Up to this point the MED formulation has already bridged generative modeling with the discrim-
inative performance of SVMs, for example. However, the MED method can be further elaborated
and spans a wide range of machine learning scenarios. In this chapter, we discuss various exten-
sions to the framework to demonstrate its flexibility and intuitive nature. One resounding them
in exploring extensions is to introduce further (possibly intermediate) variables in the discriminant
function L(X; Θ) and to solve for an augmented distribution P (Θ, . . .) that includes them. The
resulting partition function typically involves more integration yet if it is analytic and the number of
Lagrange multipliers and the optimization complexity will remain basically unchanged. Figure 4.1
depicts the common metaphor of augmenting the probability with further variables which will be
utilized. This follows the same principle used to augment the distribution with soft margin con-
straints as in Section 3.3. Once again, we note the caveat that as we add more distributions to the
prior, we should be careful to balance their competing goals (i.e. their variances) evenly so that
we still derive meaningful information from each component of the aggregate prior (i.e. the model
prior, the margin prior, and the many further priors we will introduce shortly).

*

P(Θ,γ,s,y,X,...)

P0(Θ,γ,s,y,X,...) 

*
P

Figure 4.1: Formulating extensions to MED.

Figure 4.2 depicts the many different scenarios the MED can handle. Some extensions such as
multi-class classification can be treated as several binary classification constraints [85] or through
error-correcting codes [45]. In this chapter we explicate the case where the labels are no longer
discrete but continuous, i.e. regression. Once again, for the case of regression (just as in binary

68
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classification) the SVM regression is subsumed. Subsequently, we discuss structure learning (as
opposed to parameter estimation) in particular for feature selection applications. Furthermore, we
discuss the use of partially labeled examples and transduction (for both classification and regression).
Finally, we lead into a very important generalization which requires special treatment on its own:
extension to mixture models (i.e. mixtures of the exponential family) and latent modeling (discussed
Chapter 5).
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Figure 4.2: Various extensions to binary classification.

4.1 MED Regression

The MED formalism is not restricted to classification. Here, we present its extension to the regres-
sion (or function approximation) case using the approach and nomenclature in [178]. Dual sided
constraints are imposed on the output such that an interval called an ε-tube around the function
is described 1. Suppose training input examples {X1, . . . , XT } are given with their corresponding
output values as continuous scalars {y1, . . . , yT }. We wish to solve for a distribution of parameters
of a discriminative regression function as well as margin variables:

Theorem 4 The maximum entropy discrimination regression problem can be cast as follows:

Find P (Θ, γ) that minimizes KL(P‖P0) subject to the constraints:∫
P (Θ, γ) [yt − L(Xt; Θ) + γt] dΘdγ ≥ 0, t = 1..T∫
P (Θ, γ) [γ′t − yt + L(Xt; Θ)] dΘdγ ≥ 0, t = 1..T

1An ε-tube (as in the SVM literature) is a region of insensitivity in the loss function which only penalizes approx-
imation errors which deviate by more than ε from the data.
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Figure 4.3: Margin prior distributions (top) and associated potential functions (bottom).

where L(Xt; Θ) is a discriminant function and P0 is a prior distribution over models and margins.
The decision rule is given by ŷ =

∫
P (Θ) L(X; Θ)dΘ. The solution is given by:

P (Θ, γ) =
1

Z(λ)
P0(Θ, γ)

e
∑

t
λt[ yt−L(Xt|Θ)+γt]

e
∑

t
λ′t[ yt−L(Xt|Θ)−γ′t]

where the objective function is again J(λ) = − log Z(λ).

Typically, we have the following prior for γ which differs from the classification case due to the
additive role of the output yt (versus multiplicative) and the two-sided constraints.

P0(γt) ∝
{

1 if 0 ≤ γt ≤ ε
ec(ε−γt) if γt > ε

}
(4.1)

Integrating, we obtain:

log Zγt(λt) = log
(∫ ε

0

eλtγtdγt +
∫ ∞

ε

ec(ε−γt)eλtγtdγt

)
= log

(
eλε

λ
− 1

λ
+

eλε

c− λ

)
= log

((
eλε

λ

)(
1− e−λε +

λ

c− λ

))
= ελt − log(λt) + log

(
1− e−λtε +

λt

c− λt

)

Figure 4.3 shows the above prior and its associated penalty terms under different settings of c and ε.
Varying ε effectively modifies the thickness of the ε-tube around the function. Furthermore, c varies
the robustness to outliers by tolerating violations of the ε-tube.

The above margin prior tends to produce a regressor which is insensitive to errors smaller than ε
and then penalizes errors by an almost linear loss thereafter (where c controls the steepness of the
linear loss).
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Figure 4.4: MED approximation to the sinc function: noise-free case (left) and with Gaussian noise
(right).

4.1.1 SVM Regression

If we assume a linear discriminant function for L (or linear decision after a Kernel), the MED
formulation generates the same objective function that arises in SVM regression [178]:

Theorem 5 Assuming L(X; Θ) = θT X +b and P0(Θ, γ) = P0(θ)P0(b)P0(γ) where P0(θ) is N(0, I),
P0(b) approaches a non-informative prior, and P0(γ) is given by Equation 4.1 then the Lagrange
multipliers λ are obtained by maximizing J(λ) subject to 0 ≤ λt ≤ c, 0 ≤ λ′t ≤ c and

∑
t λt =

∑
t λ′t,

where

J(λ) =
∑

t

yt(λ′t − λt)− ε
∑

t

(λt + λ′t) +
∑

t

log(λt)− log
(

1− e−λtε +
λt

c− λt

)
+
∑

t

log(λ′t)− log
(

1− e−λ′tε +
λ′t

c− λ′t

)
− 1

2

∑
t,t′

(λt − λ′t)(λt′ − λ′t′)(X
T
t Xt′)

As can be seen (and more so as c → ∞), the objective becomes very similar to the one in SVM
regression. There are some additional penalty functions (all the logarithmic terms) which can be
considered as barrier functions in the optimization to maintain the constraints.

To illustrate the regression, we approximate the sinc function, a popular example in the SVM
literature. Here, we sampled 100 points from the sinc(x) = |x|−1 sin |x| within the interval [-10,10].
We also considered a noisy version of the sinc function where Gaussian additive noise of standard
deviation 0.2 was added to the output. Figure 4.4 shows the resulting function approximation which
is very similar to the SVM case. The Kernel applied was an 8th order polynomial 2.

4.1.2 Generative Model Regression

As was the case for MED classification, we can also consider an MED regression scenario where the
regression model is not linear (or linear after some kernel manipulation) but actually the regression
model is given by a probability distribution. Thus, the regularization and epsilon-tube properties
of the SVM approach can be readily applied to the estimation of generative models in a regression
setting. Furthermore, these can be in the exponential family and also mixtures of the exponential

2A Kernel implicitly transforms the input data by modifying the dot-product between data vectors k(Xt, X′
t) =

〈Φ(Xt), Φ(X′
t)〉. This can also be done by explicitly remapping the data via the transformation Φ(Xt) and using the

conventional dot-product. This permits non-linear classification and regression using the basic linear SVM machinery.
For example, an m-th order polynomial expansion replaces a vector Xt by Φ(Xt) = [Xt; X2

t ; . . . Xm
t ].
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family as will be elaborated in the subsequent chapter. We begin by modifying the discriminant
function L(X; Θ) from its usual linear form.

Consider a two class problem where we have a generative model for each class, namely P (X|θ+) and
P (X|θ−). For example, these could each be a Gaussian distribution, or a mixture of Gaussians or
even a complex structured model such as a hidden Markov model. To form a regressor, we directly
combine two generative models by considering their log-likelihood ratios into a discriminant function
as follows:

L(X; Θ) = log
P (X|θ+)
P (X|θ−)

+ b

Here, the aggregate parameter set is Θ = {θ+, θ−, b} which includes both generative models as well
as a scalar bias. Thus, by merely changing the discriminant function, the MED framework can
be used to estimate generative models that form a regression function. If the two generators are
Gaussians with equal covariance, the regression function will effectively produce a linear regression.
However, the above discriminant function is generally nonlinear and will give rise to a non-convex
hull of constraints in a standard regularization setting. However, in the MED framework, due to
the probabilistic solution P (Θ), the above discriminant functions still behave as a convex program.
Furthermore, it is possible (through the iterative bounds and machinery in Chapter 5) to deal with
latent discriminant regression functions of the form:

L(X; Θ) = log
∑

m P (m,X|θ+)∑
m P (m,X|θ−)

+ b

4.2 Feature Selection and Structure Learning

The MED framework is not limited to estimating distributions over continuous parameters such as
Θ. We can also use it to solve for a distribution over discrete parameters and thus use it for structure
learning. One form of structure learning is feature selection. The feature selection problem can be
cast as finding the structure of a graphical model (as in [43]) or identifying a set of components of
the input examples that are relevant for a classification task. More generally, feature selection can be
viewed as a problem of setting discrete structural parameters associated with a specific classification
or regression method. We will use feature selection in the MED framework to ignore components of
the input space (i.e. the Xt vectors) that are not relevant to the given classification or regression
task. This will naturally provide computational advantages since the algorithm can ignore these
inputs during run-time. However, not only does feature selection reduce the input dimensionality,
we will also show that it helps improve generalization accuracy in both classification and regression
(cf. [111]). The omission of certain input dimensions permits better generalization and leads to a
further notion of sparsity in the input dimensionality (in addition to the sparsity from the support
vectors and Lagrange multipliers as discussed in Section 3.10.2) [90] [202]. This is often critical if
the input space has high dimensionality, many irrelevant features and the data set is small.

We will initially derive the feature selection in the MED framework as a feature weighting to permit a
probabilistic solution. Each feature or structural parameter is given a probability value. The feature
selection process then estimates the most discriminative probability distribution over the structural
parameters while it also estimates the most discriminative parameter model. Irrelevant features will
eventually receive extremely low probabilities of being selected. Since the feature selection process is
performed jointly and discriminatively together with model estimation and both specifically optimize
a classification or regression criterion, feature selection will usually improve results over, for example,
an SVM (up to a point where we start removing too many features).
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4.2.1 Feature Selection in Classification

The MED formulation can be extended to feature selection if we consider augmenting the distribu-
tion over models (and margins, bias, etc.) also with a distribution over feature selection switches.
This ’augmentation’ paradigm was initially discussed in Section 3.3 and under many conditions will
preserve the solvability of the MED projection. We will now consider augmenting a linear classi-
fier (such as an SVM) with feature selection. We first introduce extra parameters into our linear
discriminant function:

L(X; Θ) =
n∑

i=1

θisiXi + θ0

Here, the familiar θ1, . . . , θn correspond to the linear parameter vector while the θ0 is the bias
parameter (usually denoted b). In addition to the scalar θi parameters, we have also introduced
binary switches s1, . . . , sn which can only be 0 or 1. These are structural parameters and will
either completely turn off a feature Xi if si = 0 or leave it on if si = 1. If we were to solve for
the optimal feature selection in a brute-force method, we would have to try all 2n configurations
of the discrete switch variables. However, in the MED formulation, we can instead consider a
distribution over switches which will lead to tractable computation. The fact that now the switches
are discrete (instead of continuous like the θi parameters) does note violate the MED formulation
[85]. The partition function and the expectations over discriminant functions now also involve
summations over the si as well as integration over the continuous parameters. Therefore, now the
MED solution distribution P (Θ) includes the linear model, the switches and the bias, i.e. Θ =
{θ0, θ1, . . . , θn, s1, . . . , sn}.

We will now define a prior over the desired MED solution and then discuss how to solve for the
optimal projection. The prior will reflect some regularization on the linear SVM parameters as well
as the degree of feature selection we would like to enforce overall. In other words, we would like
to specify (in coarse terms) how many feature switches will be set to zero or remain active. One
possible prior for the solution is:

P0(Θ) = P0,θ0(θ0) P0,θ(θ)
n∏

i=1

Ps,0(si)

where P0,θ0 is an uninformative prior (a a zero mean Gaussian prior with infinite variance 3, Pθ,0(θ) =
N (0, I) the usual white Gaussian prior, and

Ps,0(si) = ρsi (1− ρ)1−si

where ρ controls the overall prior probability of including a feature. Thus the prior over each feature
is merely a Bernoulli distribution. The user selects ρ where a setting of ρ = 1 will produce the
original linear classifier problem without feature selection. By decreasing ρ, more features will be
removed. Given a prior distribution over the parameters in the MED formalism and a discriminant
function, we can now readily compute the partition function (cf. Equation 3.8). Solving the integrals
and summations, we obtain the following objective function:

J(λ) =
∑

t

[λt + log(1− λt/c)]−
n∑

i=1

log
[
1− ρ + ρe

1
2 (
∑

t
λtytXt,i)

2
]

3Alternatively, we can use a finite-variance Gaussian which will give a quadratic penalty term on the final objective
function of −0.5σ(

∑
t
λtyt)2 instead of the hard equality constraint.
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Figure 4.5: ROC curves on the splice site problem with feature selection ρ = 0.00001 (solid line)
and without ρ = 0.99999 (dashed line).

which we maximize subject to
∑

t λtyt = 0.

The above is maximized to obtain the optimal setting of our Lagrange multipliers. Given that
setting, our linear classifier merely becomes:

L(X) =
∑

i

(
ρ
∑

t λtytXt,i

ρ + (1− ρ) exp(−1/2[
∑

t λtytXt,i]2)

)
Xi + b

In the above, the Xt,i indicates the i’th dimension of the t’th training set vector. The bias b is
estimated separately either from the Kuhn-Tucker conditions or (under a finite variance bias prior),
is set to b = σ

∑
t λtyt. The terms in the large parentheses in the equation above are the linear

coefficients of the new model and can be denoted Ci.

Experiments

To test the linear feature selection method, we used a DNA splice site classification problem which
must identify between true and spurious splice sites based on a DNA sequence. The examples were
fixed length DNA sequences (length 25) which were binary encoded (using a 4 bit translation of
{A,C, T, G}) into a 100-element vector. The training set consisted of 500 examples and the test
set contained 4724 examples. Results are depicted in Figure 4.5 which shows superior classification
accuracy when feature selection is used (as opposed to no feature selection which is roughly equivalent
to an SVM).

The feature selection process drives many of the linear model’s coefficients to zero in an aggressive
pruning manner. This provides better generalization as well as more efficiency during run-time.
To picture the sparsity in the resulting model, we plot the cumulative distribution function of the
magnitudes of the resulting coefficients |Ci| < x as a function of x for all the 100 components of the
linear classification vector. Figure 4.6 indicates that most of the weights resulting from the feature
selection algorithm are indeed small enough to be neglected.

While our derivation of the above feature selection was so far only performed for linear models, we
can mimic a kernel-based nonlinear classifier by mapping the feature vectors explicitly into a higher
order representation (i.e. through polynomial expansions). This does not retain the efficiency of
implicit kernel mappings (and infinite kernel mappings are infeasible) however we have the ability
to do fine-scale feature selection as components of the kernel mapping can also be extinguished. The
complexity of the feature selection algorithm is linear in the number of features and therefore we can
easily consider small expansions (such as quadratic or cubic polynomials) by explicit mapping. The
above problem was attempted with a quadratic expansion of the 100-dimensional feature vectors
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Figure 4.6: Cumulative distribution functions for the resulting effective linear coefficients with fea-
ture selection (solid line) and without (dashed line).
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Figure 4.7: ROC curves corresponding to a quadratic expansion of the features with feature selection
ρ = 0.00001 (solid line) and without ρ = 0.99999 (dashed line).

by concatenating the outer products of the original features to form a resulting ≈ 5000-dimensional
feature space. Figure 4.6 shows that feature selection is still helpful (compared to a plain linear
classifier), improving performance even when we have a larger and expanded feature space.

In another experiment, we used the feature selection classification to label protein chains (from the
UCI repository) which were valid splice sites into one of two classes: intron-exon (ie) or exon-intron
(ei). These are often also called donor and acceptor sites respectively. The chains consist of 60 base-
pairs which were then represented in binary code: A=(1000), C=(0100), G=(0010) and T=(0001).
Uncertain base-pairs where represented as a mixed version, i.e. A or C would be represented as
(0.5 0.5 0 0). Thus, we have 240 scalar input dimensions and a binary output class. We trained on
200 exemplars and test on the remaining 1335 exemplars in the testing set. Figure 4.8 depicts the
performance.

In training, linear classifiers can easily separate both classes at 100% accuracy however using all
the features causes over-fitting. The regularization brought upon by varying c does not prune away
features but rather ignores outliers. However, not the whole length of the protein chain is useful
in determining acceptor/donor status and we should ignore dimensions instead of data exemplars.
Thus, the best performance possible in a regular SVM (no feature selection, i.e. ρ = 1) remains
around 92% on testing as we vary regularization c. Meanwhile, any small amount of feature selection
quickly improves performance much more significantly. The experiments indicate that a level of
ρ = 1e − 2 or ρ = 1e − 3 helps obtain the greatest generalization accuracy of about 96%. Error is
halved from the SVM’s count of 100+ errors to an error count of 50 with feature selection. Figure 4.9
depicts the linear model for the SVM as well as the pruned model for the feature selection technique.
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Figure 4.8: Varying Regularization and Feature Selection Levels for Acceptor/Donor Protein Clas-
sification. Testing performance on unseen 1335 protein sequences. The dashed line indicates SVM
performance while the solid lines indicate varying performance improvements due to feature se-
lection. Optimal feature selection levels for this problem appear to be between ρ = 1e − 2 and
ρ = 1e− 3.
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Figure 4.9: Sparsification of the Linear Model. On the left are the parameters for the SVM’s linear
model while on the right are the parameters for the feature selection technique’s linear model. Note
the sparsification in the parameters as many are set to 0 on the right. This pruning encourages
better generalization.
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4.2.2 Feature Selection in Regression

Feature selection can also be advantageous in the regression case where a map is learned from inputs
to scalar outputs. Since some input features might be irrelevant (especially after a Kernel expansion),
we again employ an aggressive pruning approach by adding a “switch” (si) on the parameters as
before. The prior is given by P0(si) = ρsi(1 − ρ)1−si where lower values of ρ encourage further
sparsification. This prior is in addition to the Gaussian prior on the parameters (Θi) which does
not have quite the same sparsification properties.

The previous derivation for feature selection can also be applied in a regression context. The same
priors are used except that the prior over margins is swapped with the one in Equation 4.1. Also,
we shall include the estimation of the bias in this case, where we have a Gaussian prior: P0(b) =
N (0, σ). This replaces the hard constraint that

∑
t λt =

∑
t λ′t with a soft quadratic penalty, making

computations simpler. After some straightforward algebraic manipulations, we obtain the following
form for the objective function:

J(λ) =
∑

t

yt(λ′t − λt)− ε
∑

t

(λt + λ′t)−
1
2
σ(
∑

t

λt − λ′t)
2 +

∑
t

log(λt)− log
(

1− e−λtε +
λt

c− λt

)
+
∑

t

log(λ′t)− log
(

1− e−λ′tε +
λ′t

c− λ′t

)
−
∑

i

log
(
1− ρ + ρe

1
2 [
∑

t
(λt−λ′t)Xt,i]

2
)

This objective function is optimized over (λt, λ
′
t) and by concavity has a unique maximum. The

optimization over Lagrange multipliers controls optimization of the densities of the model parameter
settings P (Θ) as well as the switch settings P (s). Thus, there is a joint discriminative optimization
over feature selection and parameter settings. At the optimal setting of the Lagrange multipliers,
our resulting MED regression function is then:

L(Xnew) =
∑

i

(
ρ
∑

t(λ
′
t − λt)Xt,i

ρ + (1− ρ) exp [−1/2(
∑

t(λ
′
t − λt)Xt,i]2)

)
Xnew,i + b

Where the bias b is given by b = σ
∑

t(λ
′
t − λt).

Experiments

Below, we evaluate the feature selection based regression (or Support Feature Machine) on a popular
benchmark dataset, the ’Boston housing’ problem from the UCI repository. A total of 13 features
(all treated continuously) are given to predict a scalar output (the median value of owner-occupied
homes in thousands of dollars). To evaluate the dataset, we utilized both a linear regression and a
2nd order polynomial regression by applying a Kernel expansion to the input. The dataset is split
into 481 training samples and 25 testing samples (as in [188]).

Table 4.1 indicates that feature selection (decreasing ρ) generally improves the discriminative power
of the regression. Here, the ε-sensitive linear loss functions (typical in the SVM literature) shows
improvements with further feature selection. Just as sparseness in the number of vectors helps
generalization, sparseness in the number of features is advantageous as well. Here, there is a total
of 104 input features after the 2nd order polynomial Kernel expansion. However, not all have the
same discriminative power and pruning is beneficial.

For the 3 trial settings of the sparsification level prior (ρ = 0.99999, ρ = 0.001, ρ = 0.00001), we
again analyze the cumulative density function of the resulting linear coefficients Ci < x as a function
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Linear Model Estimator ε-sensitive linear loss

Least-Squares Fit 1.7584

MED ρ = 0.99999 1.7529
MED ρ = 0.1 1.6894
MED ρ = 0.001 1.5377
MED ρ = 0.00001 1.4808

Table 4.1: Prediction Test Results on Boston Housing Data. Note, due to data rescaling, only the
relative quantities here are meaningful.
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Figure 4.10: Cumulative distribution functions for the linear regression coefficients under various
levels of sparsification. Dashed line: ρ = 0.99999, dotted line: ρ = 0.001 and solid line: ρ = 0.00001.

of x based on the features from an explicit Kernel expansion. Figure 4.10 clearly indicates that the
magnitudes of the coefficients are reduced as the sparsification prior is increased.

The MED regression was also used to predict gene expression levels using data from “System-
atic variation in gene expression in human cancer cell lines”, by D. Ross et. al. Here, log-ratios
(log(RAT2n)) of gene expression levels were to be predicted for a Renal Cancer cell-line from mea-
surements of each gene’s expression levels across different cell-lines and cancer-types. Input data
forms a 67-dimensional vector while output is a 1-dimensional scalar gene expression level. Training
set size was limited to 50 examples and testing was over 3951 examples. The table below summarizes
the results. Here, an ε = 0.2 was used along with c = 10 for the MED approach. This indicates that
the feature selection is particularly helpful in sparse training situations.

4.2.3 Feature Selection in Generative Models

As mentioned earlier, the MED framework is not restricted to discriminant functions that are linear
or non-probabilistic. For instance, we can consider the use of feature selection in a generative model-
based classifier. One simple case is the discriminant formed from the ratio of two identity-covariance
Gaussians. Parameters Θ are (µ, ν) for the means of the y = +1 and y = −1 classes respectively
and the discriminant is L(X; Θ) = logN (µ, I) − logN (ν, I) + b. As before, we insert switches (si

Linear Model Estimator ε-sensitive linear loss

Least-Squares Fit 3.609e+03

MED ρ = 0.00001 1.6734e+03

Table 4.2: Prediction Test Results on Gene Expression Level Data.
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and ri) to turn off certain components of each of the Gaussians giving us:

L(X; Θ) =
∑

i

si(Xi − µi)2 −
∑

i

ri(Xi − νi)2 + b

This discriminant then uses the similar priors to the ones previously introduced for feature selection
in a linear classifier. It is straightforward to integrate (and sum over discrete si and ri) with these
priors (shown below and in Equation 3.9) to get an analytic concave objective function J(λ):

P0(µ) = N (0, I) P0(ν) = N (0, I)
P0(si) = ρsi(1− ρ)1−si P0(ri) = ρri(1− ρ)1−ri

In short, optimizing the feature selection and means for these generative models jointly will produce
degenerate Gaussians which are of smaller dimensionality than the original feature space. Such a
feature selection process could be applied to many density models in principle but computations
may require mean-field or other approximations to become tractable.

4.3 Transduction

In this section, we provide a Maximum Entropy Discrimination framework for solving the missing
labels or transduction problem [197] [100]. In many classification problems, labeled data is scarce
yet unlabeled data may be easily available in large quantities. The MED framework can be easily
extended to utilize the unlabeled data in forming a discriminative classifier by integrating over the
unobserved labels. In previous work, we initially presented the MED approach for transductive clas-
sification using primarily mean-field approximations [85]. Szummer [182] also presents an alternative
transduction approach in terms of Kernel expansions which may also be cast in an MED formalism.

In the classification setting, the exact solution of the resulting MED projection becomes intractable
(just as in SVM based transduction). We first review our mean-field approximation case as a
possible local solution [85]. A global information-projection solution is also possible if the prior over
unobserved labels is described by a distribution that is conjugate (and continuous) to the original
distribution over models. We thus also provide a transduction algorithm which computes a global
large margin solution over both labeled and unlabeled data by forcing the prior to be conjugate. We
subsequently discuss the use of unlabeled data in the regression scenario which does yield a tractable
global MED solution.

4.3.1 Transductive Classification

SVM transduction requires a search over binary labels of the unlabeled exemplars. The complexity
of this approach grows exponentially. Joachims proposes using efficient heuristics which approximate
this process yet are not guaranteed to converge to the true SVM transduction solution. Unlike SVMs,
the MED approach permits a probabilistic treatment of the search over labels which is somewhat
similar in spirit to relaxation methods. The discrete search problem is embedded in a continuous
probabilistic setting.

First, recall that MED solves for distributions over parameters as well as other unknown quantities
by augmenting the solution space. For example, when margins are unknown in a non-separable
problem, we introduced them into the solution as posteriors P (Θ, γ) (and in the prior as well).
When feature selection structure was unknown, it too was cascaded into the final MED posterior
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solution as P (Θ, γ, s). In the transduction case, unlabeled examples are given where yt is unknown.
Thus, we can hypothesize a prior/posterior distribution as well. This distribution would ideally take
on the form of two delta functions at −1 and +1. Thus, instead of solving for only a distribution
over say P (Θ, γ) we generalize to the non-separable transductive case via P (Θ, γ, y) where now
projection is over a larger space.

We have the following general solution:

P (Θ, γ, y) =
1

Z(λ)
P0(Θ, γ, y) e

∑
t

λt[ ytL(Xt|Θ)−γt]

where Z(λ) is the normalization constant (partition function) and λ = {λ1, . . . , λT } is again our
set of non-negative Lagrange multipliers, one per classification constraint. λ are set by finding the
unique maximum of the objective function J(λ) = − log Z(λ).

A distribution for y is required such that computation of the partition function Z(λ) remains analytic.
If we assume that the prior for (continuous) unlabeled y is given by the natural choice of a point-
wise delta function, i.e. P0(yt) = 1/2δ(yt, 1) + 1/2δ(yt,−1), the integrals above become intractable.
To proceed, a mean-field approximation is performed which effectively computes the integral over
P (Θ) with the unlabeled P (y) locked at a current estimate and then computes an update on the
P (y) while the P (Θ) is held fixed. This is equivalent to assuming that the distribution, P (Θ, γ, y)
is forced to factorize according to P (Θ, γ)P (y). Details are provided in [85] and produce good
generalization results when unlabeled data is useful for a classification problem. However, the
mean-field approximation forces us to obtain a local solution which is no longer unique. If our
two-stage iterative algorithm is poorly initialized, this may be a problem.

If, however, we could guarantee an analytic computation of Z(λ) for the non-transductive case, this
will yield a log-convex Z(λ). Thus, one can consider Z(λ) as an exponential family distribution.
This is because it is a concave function of λ for any setting of the y-variables. The y-variables can
then be considered as the data for the distribution while the λ are the parameters of the exponential
family. Therefore, it is always possible to find a conjugate distribution (in y variables) such that
the integral

∫
y
P0(y)Z(λ, y) is analytic. For instance, if Z(λ) is Gaussian (or equivalently J(λ) is

quadratic, as in an SVM) we could have a conjugate distribution P0(y) which is Gaussian and end
up with a final Z(λ) which is still concave and analytic.

Assume that the data set is partitioned into two sets, the labeled and unlabeled data. There are Tl

labeled components and Tu unlabeled components. Thus, we can consider our y vector of labels and
our λ vector of Lagrange multipliers as being split as follows:

y =
[

ȳ
ỹ

]
λ =

[
λ̄

λ̃

]
The ȳ labels are known however we do not know the ỹ labels and only have a prior distribution over
them. This prior is a scaled zero-mean spherical Gaussian, P0(ỹ) = N(0, κ−2I). This can also be
interpreted as a prior over each individual unlabeled data point as P0(ỹ) = ΠtP0(ỹt) = ΠtN(0, κ−2).
We can also consider the y and λ vectors in a diagonal matrix form, as Y = diag(y) and Λ = diag(λ)
respectively.

Y =
[

Ȳ 0
0 Ỹ

]
Λ =

[
Λ̄ 0
0 Λ̃

]
Similarly, we can consider the data matrix X as being a matrix of the Xt data vectors arranged as
columns. It can be further divided into labeled and unlabeled vectors as follows:

X =
[
X̄ X̃

]
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For simplicity, we will derive the transduction assuming a linear classifier yet drop the bias term
(i.e. Θ = θ). This will limit the linear decision boundaries that can be generated to those that
intersect the origin. This restriction can be circumvented by concatenating a constant scalar to our
input features X. However, the formulation we will show here readily admits kernels and can also
be augmented with the bias term with a little extra derivation. Thus, our classifier’s discriminant
function is:

L(X; Θ) = θT X

Let us derive the corresponding partition function (up to a constant scalar factor):

Z(λ) =
∫

ỹ

∫
θ

∫
γ

P0(θ, γ, ỹ) e
∑

t
λt[ ytL(Xt|θ)−γt]

Z(λ) =
∫

ỹ

∫
θ

P0(θ)P0(ỹ)e
∑

t
λt ytθ

T Xt ×
∫

γ

P0(γ)e−
∑

t
λtγt

Z(λ) = Zθ(λ)× Zγ(λ)

We may also consider dealing directly with our objective function J(λ) = − log Z(λ) in which case
we have the following decomposition of our objective function:

J(λ) = Jγ(λ) + Jθ(λ)

Solving, we ultimately obtain the following standard Jγ(λ):

Jγ(λ) =
∑
∀t

λt +
∑
∀t

log(1− λt/c)

The remaining component of the partition function is Jθ(λ) is given by:

1
2

log
∣∣∣κ2I − (Λ̃X̃)T (Λ̃X̃)

∣∣∣− 1
2
λ̄T

[
(X̄Ȳ )T (X̄Ȳ ) + (X̄Ȳ )T (X̃Λ̃)

(
κ2I − (X̃Λ̃)T (X̃Λ̃)

)−1

(X̃Λ̃)T (X̄Ȳ )
]

λ̄

This provides our overall solution for the objective function. This is an analytic concave function
with a single maximum that can be uniquely determined to obtain the answer P (Θ, γ, y).

Theorem 6 Assuming a discriminant function of the form L(X; Θ) = θT X and given a prior over
parameters and margins P0(Θ, γ) = P0(θ)P0(γ) where P0(θ) ∼ N(0, κ−2I), P0(ỹ) ∼ N(0, I) and
P0(γ) is given by P0(γt) as in Equation 3.9 then the MED Lagrange multipliers λ are obtained by
maximizing J(λ) subject to 0 ≤ λt ≤ c:

J(λ) =
∑
∀t

λt + log(1− λt/c) +
1
2

log
∣∣∣κ2I − (Λ̃X̃)T (Λ̃X̃)

∣∣∣
−1

2
λ̄T

[
(X̄Ȳ )T (X̄Ȳ ) + (X̄Ȳ )T (X̃Λ̃)

(
κ2I − (X̃Λ̃)T (X̃Λ̃)

)−1

(X̃Λ̃)T (X̄Ȳ )
]

λ̄

It is interesting to note that in the case of no missing data, the above objective function simplifies
back to the regular fully-labeled SVM case. The above objective function can be maximized via axis-
parallel techniques. It is also important to use various matrix identities (i.e. some by Kailath [108]
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and some matrix partitioning techniques [121]) to make the optimization efficient. This optimization
gives us the desired λ values to specify the distribution P (Θ, γ, y). This constrained optimization
problem can be solved in an axis-parallel manner (similar to Platt’s SMO algorithm). In fact, we
modify a single λt value at a time in an axis-parallel type of optimization. Since there are no
joint constraints on the λ vector, this step-wise optimization is feasible without exiting the convex
hull of constraints. We derived an efficient update rule for any chosen lambda that will guarantee
improvement of the objective function. The update will be different depending on the type of λt we
choose, basically if it is labeled or unlabeled. It is also particularly efficient to iterate within the set
of labeled and then the set of unlabeled Lagrange multipliers individually. This is because we store
running versions of the large unlabeled data matrix, G and its inverse where:

G = κ2I − (X̃Λ̃)T (X̃Λ̃)

There are a number of ways that we can now use the current setting of the Lagrange multipliers
to compute the labels of the unlabeled data. One way is to find the distribution over Θ, i.e. P (Θ)
for the current setting of λ and integrate over it to obtain the classification. We now derive the
computation of P (θ):

P (θ) =
∫

ỹ

∫
γ

1
Z(λ)

P0(Θ, γ, ỹ) e
∑

t
λt[ ytL(Xt|Θ)−γt]

P (θ) ∝ exp

{
−1

2
θT

(
I − 1

κ2
(X̃Λ̃)(X̃Λ̃)T

)
θ +

∑
t

λ̄tȳtX̄
T
t θ

}

Thus, we have the P (θ) ∼ N (µθ,Σθ). To obtain the classifier, we merely need the mean of the
resulting Gaussian distribution over θ. Since P (θ) ∼ N (µθ,Σθ), we have the following for our
classifier:

ynew = sign
(∫

θ

P (θ)L(Xnew|θ)
)

ynew = sign
(
µT

θ Xnew

)
More specifically, the mean µθ is given by the formula below (and the simplifications that follow):

µθ =
∑

t

λ̄tȳt

(
I − 1

κ2
(X̃Λ̃)(X̃Λ̃)T

)−1

X̄t

µT
θ Xnew =

∑
t

λ̄tȳt X̄T
t Xnew +

∑
t′

mt′X̃
T
t′ Xnew

Where we have the following definition m = κ2ȳT (Λ̄X̄T X̃Λ̃G−1Λ̃). This vector effectively defines
the linear decision boundary. It is important to choose κ large enough such that the unlabeled
data influences the estimation strongly (small values of κ will cause vanishing unlabeled Lagrange
multipliers, lock the unlabeled label estimates to 0 and effectively reduce to a standard SVM).
Since all input vectors appear only within inner products computations, the formulation can readily
accommodate kernels as well.

4.3.2 Transductive Regression

The previous assumption of a Gaussian over unlabeled data is actually much more reasonable for
the regression case. In the previous section, we showed how unlabeled exemplars in a binary (±1)
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classification problem can be dealt with by integrating over them with a Gaussian prior. However,
the Gaussian is a continuous distribution and does not match the discrete nature of the classification
labels. In regression, the outputs are scalars and are therefore much better suited to a continuous
Gaussian prior assumption. If the scalar outputs do not obey a Gaussian distribution, we may
consider transforming them (via the respective cumulative density functions) such that they are
Gaussian. We may also consider using other continuous distribution as priors. However, the Gaussian
has advantages since it has the conjugate form necessary to integrate over an MED linear regression
problem (which results in a quadratic log-partition function in the non-transductive case). This
guarantees that we will maintain a closed-form partition function in the transductive case.

Why would we wish to use unlabeled data in a regression scenario and when is it advantageous?
The basic motivation is that transductive regression should focus the model such that its predictions
on unlabeled data should be similarly distributed to its predictions on the labeled data. In other
words, when we extrapolate to new test regions in the unlabeled data, the regression function should
not diverge and exhibit unusual behavior. It should produce outputs that are similar to those it
generates over the labeled data. This is illustrated in the following example where we fit a noisy
sinusoidal data set with a high-order polynomial function. For example, note Figure 4.11. In The
standard regression scenario in Figure 4.11(a), fitting a polynomial to the sin(x) function without
transduction generates a good regression on the labeled data (blue dots) yet it sharply diverges on the
unlabeled data (green circles) and produces predictions that are far from the typical range of [−1, 1].
If we instead require that the outputs on the unlabeled data obey a similar distribution, these will
probably stay within [−1, 1], generate similarly distributed output, and produce a better regression
fit. This is illustrated in Figure 4.11(b) where the polynomial fit must obey the output distribution
even when we extrapolate to the unlabeled data (at x > 10). It is important, however, not to
go too far and have the regression function follow the prior on the unlabeled data too closely and
compromise labeled data fitting as well as the natural regularization properties on the parameters.
Therefore, as usual in MED with a multi-variable prior distribution, it is important to balance
between the different priors.
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(a) Polynomial Regression (b) Transductive Polynomial Regression

Figure 4.11: Transductive Regression vs. Labeled Regression Illustration. Here, we are attempting
to fit the sin(x) function with a high order polynomial. Labeled data is shown as blue dots while
unlabeled data are put on shown as green circles on the x-axis. In (a) the unlabeled data are not
used and we merely fit a regression function (red line) which unfortunately diverges sharply away
from the desired function when it is over the unlabeled data. In (b), the polynomial must maintain
a similar distribution of outputs (roughly within [-1,1]) over the unlabeled exemplars and therefore
produces are more reasonable regression function.

We begin the development with from a regular (non-transductive) regression setting. A support
vector machine is typically cast as a large-margin regression problem using a linear discrimination
function and an epsilon-tube of insensitivity with linear loss. Given input data as high dimensional
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vectors X1, . . . , XT and corresponding scalar labels y1, . . . , yT we wish to find a linear regressor that
lies within ε of each output. The regressor is again the same discriminant function, L(X; Θ) =
θT X + b. Recall the objective function for the regression case in Theorem 5. If we assume, instead
of a non-informative prior on P0(b) a zero-mean Gaussian prior with covariance σ we obtain the
following slightly modified objective function (which must be optimized subject to 0 ≤ λt ≤ c and
0 ≤ λ′t ≤ c):

J(λ) =
∑

t

yt(λ′t − λt)− ε
∑

t

(λt + λ′t)−
1
2
σ(
∑

t

λ′t − λt)2

+
∑

t

log(λt)− log
(

1− e−λtε +
λt

c− λt

)
+
∑

t

log(λ′t)− log
(

1− e−λ′tε +
λ′t

c− λ′t

)
−1

2

∑
t,t′

(λt − λ′t)(λt′ − λ′t′)(X
T
t Xt′)

In the case of unlabeled data, we do not know some particular yt values and must introduce a prior
over these and integrate it out to obtain the the partition function. The prior we shall use over the
unobserved yt is a white Gaussian prior. This modifies the above optimization function as follows.
Observe the component of J(λ) that depends on a given yt:

J(λ) = . . . + yt(λ′t − λt) + . . .

Going back to the partition-function representation of that component we have:

Z(λ) = . . .× exp (−yt(λ′t − λt))× . . .

If the yt value of the above is unknown, we can integrate over it with a Gaussian distribution as a
prior, i.e. P0(yt) ∼ N(0, 1) 4. The Gaussian prior gives rise to the following computation:

Z(λ) = . . .×
∫ ∞

−∞
exp

(
−1

2
y2

t

)
exp (−yt(λ′t − λt))× . . .

Ultimately our updated transduction J(λ) function is modified as follows for the unlabeled data
exemplars:

J(λ) = . . . +
1
2
(λ′t − λt)2 + . . .

Therefore, for the transductive regression case, we obtain the following objective overall function:

J(λ) =
∑

t∈labeled

yt(λ′t − λt) +
∑

t∈unlabeled

1
2
(λ′t − λt)2 − ε

∑
t

(λt + λ′t)−
1
2
σ(
∑

t

λ′t − λt)2

+
∑

t

log(λt)− log
(

1− e−λtε +
λt

c− λt

)
+
∑

t

log(λ′t)− log
(

1− e−λ′tε +
λ′t

c− λ′t

)
−1

2

∑
t,t′

(λt − λ′t)(λt′ − λ′t′)(X
T
t Xt′)

The final P (Θ) computation is straightforward to solve for once we have the optimal setting of λ
by maximizing J(λ). This effectively generates a simple linear regression model which takes into

4A uniform prior for P0(yt) is also feasible.
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account the unlabeled data. In practice, the yt values don’t have a white Gaussian distribution so we
transform these into a white Gaussian (via standard histogram fitting techniques or just a whitening
affine correction) and then solve the MED regression. The transformation is then inverted to obtain
yt values appropriate for the original problem.

Figure 4.12 depicts results on an the Ailerons data set (by R. Camacho) which addresses a control
problem for flying an F16 aircraft. The inputs are 40 continuous attributes are given that describe
the status of the airplane (i.e. pitch, roll, climb-rate) while the output is the control action for the
ailerons of the F16. An implicit second-order polynomial (quadratic) kernel was used as a regression
model. For the labeled case, we trained on 96 labeled data points (using standard SVM regression).
The MED transductive regression case used 96 labeled and 904 unlabeled examples for training.
Figure 4.12 depicts better regression accuracy for transduction techniques at appropriate levels
of regularization (while the non transductive regression remains somewhat fixed despite varying
regularization levels).
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Figure 4.12: Transductive Regression vs. Labeled Regression for F16 Flight Control. The above
show the inverse RMS error for the labeled regression case (dashed red line) and the transductive
regression case (solid blue line) at varying c-regularization levels.

It appears the the transduction is mostly useful when the labeled data is ambiguous and can cause
large errors when extrapolating out of a region that was well sampled to new test data unlabeled
data. The Gaussian prior on unobserved variables effectively constrains the extrapolation caused
by over-fitting by preventing unlabeled examples from having extreme outputs. If the unlabeled
examples are, however, in the convex hull of the labeled ones, transductive regression is unlikely to
be beneficial.

4.4 Other Extensions

In this sections we will motivate some extensions at a cursory level for completeness. More thorough
derivations and results concerning anomaly detection, latent anomaly detection, tree structure learn-
ing, invariants, and theoretical concepts can be found in [85] [90] and [128]. The MED framework
is not just limited to learning continuous model parameters, eg. Gaussian means and covariances.
It can also be used to learn discrete structures as well. For instance, one may consider using MED
to learn both the parameters and the structure of a graphical model. For instance, Θ may be parti-
tioned into a component that learns the discrete independency structure of the graphical model and
a component that learns the continuous parameters of the probability tables. Since the MED solves
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for a continuous distribution over the discrete and continuous model components, its estimation will
remain straightforward.

oo

o

o o

oo

o

o o

Figure 4.13: Tree Structure Estimation.

For example, consider solving for tree structures where a classifier results from the likelihood ratio
of two tree distributions. We have a space of dimensionality D and therefore D nodes in each tree
to connect. In Figure 4.13 we show an example where 5 nodes are to be connected in different tree
structures. One configuration is on the left while the other is on the right. The resulting discriminant
function has the abstract form:

L(X; Θ) = log
P (X|θ+, E+)
P (X|θ−, E−)

+ b

Here, the Θ model description will be composed of both set of θ± continuous parameters for each tree
as well as a structure component E± which specifies the configuration of edges which will be present
between the various nodes. The classification constraints will then involve not only an integration
but also a summation over discrete structures:∑

E+

∑
E−

∫
θ+

∫
θ−

∫
γt

∫
b

[ytL(Xt; Θ)− γt]dθ+dθ−dγtdb ≥ 0 ∀t

Similarly, computation of the partition function Z(λ) will require integration of the exponentiated
constraints and the prior over P0(θ+, θ−, E+, E−, γ, b). Since there is an exponential number of tree
structures that could connect D nodes, summing over all E+ and E− would be intractable. However,
due to some interesting results in graph theory (namely the matrix tree theorem), summing over
all possible tree structures of a graph can be done efficiently. This is reminiscent of Section 4.2
where we discussed an alternative form of structure learning. There, we also solved for a discrete
component of the model, namely feature selection. We similarly had to sum over an exponential
number of feature selection configurations. However, in this problem and the earlier one, embedding
the computation into a probabilistic MED setting makes it solvable in an efficient way. Further
details on tree structure estimation will be omitted here yet are provided in [85] and [128].

4.5 Mixture Models and Latent Variables

We have so far seen many variations of the MED formalism and its flexible application in different
scenarios and with different models. One key benefit MED enjoys is the ability to combine genera-
tive modeling virtues such as prior distributions with discriminative requirements that are typically
manifested as constraints. However, we have so far restricted the generative models in MED to
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simple and typically uni-model distributions. For example, we have shown exponential family clas-
sification using, e.g. Gaussian and multinomial models. However, to thoroughly harness that power
of generative modeling, we must go beyond such simple models and consider mixture models or
latent variable models. These models include sigmoid belief networks, latent Bayesian networks,
hidden Markov models which play a critical role in many applied domains (speech recognition, vi-
sion, etc.). These could also be potential clients for the MED formalism and could benefit strongly
from a discriminative estimation technique (as opposed to their traditional maximum-likelihood
incarnations).

Therefore, ideally, we would also like to handle latent mixture models in an MED discriminative
setting. However, this type of problem is decidedly more difficult than the cases we have seen
so far. Latent models and mixtures give rise to logarithms of sums and negated logarithms of
sums. Therefore, computational difficulties arise and the various MED integrals and optimizations
become intractable. In maximum likelihood and Bayesian estimation, these intractabilities are
readily addressed by the use of Jensen inequalities to simplify expressions and generate iterative
variants of the closed-form computations in the non-latent case. The Expectation-Maximization
(EM) algorithm is essentialy such a tool which iteratively solves a simpler version of an intractable
latent-variable problem using Jensen lower bounds on the logarithm of a sum. However, the EM
algorithm is designed for maximum likelihood estimation and is insufficient for MED discrimination
since the later involves negated logarithms of sums (the negation flips Jensen lower bounds and
creates undesirable upper bounds). Therefore, latent discrimination will require novel bounds and
a discriminative variant of the EM algorithm. The next chapter will propose such a discriminative
counterpart and will develop novel bounding tools which will permit discrimination on latent models.
Although the treatment in the next chapter will often focus on maximizing conditional likelihood,
the tools that will be developed for CML while also be useful for latent discrimination in MED.



Chapter 5

Latent Discrimination and CEM

Entities should not be multiplied unnecessarily 1 .

William of Ockham, 1280-1349

We have discussed several frameworks for optimizing the discriminative power of generative models.
These include maximum conditional likelihood, conditional Bayesian inference, and, the aforemen-
tioned Maximum Entropy Discrimination. All emphasize accuracy on a the given task either through
margins or a ’background’ probability. However, computational problems quickly arise when these
are applied to latent models, i.e. mixture models and models with hidden variables. It is these
very mixture models which are the workhorses of generative machine learning. Structures such as
mixtures of Gaussians, many Bayesian networks, hidden Markov models, and so forth are actually
latent generative models and not just simple exponential family distributions. The latent aspects of
such models can prevent them from being mathematically tractable in a discriminative setting.

Statistical model estimation and inference often require the maximization, evaluation, and integra-
tion of complicated mathematical expressions. One approach for simplifying the computations is to
find and manipulate variational upper and lower bounds instead of the expressions themselves. A
prominent tool for computing such bounds is Jensen’s inequality which subsumes many information-
theoretic bounds (cf. Cover and Thomas 1996 [40]). In maximum likelihood (ML) estimation under
incomplete data, Jensen is used to derive an iterative Expectation-Maximization (EM) algorithm
[13] [12] [44]. For graphical models, intractable inference and estimation is performed via variational
bounds [103]. Bayesian integration also uses Jensen and EM-like bounds to compute integrals that
are otherwise intractable [3] [63].

For discriminative frameworks to handle latent models, we need a discriminative version of the EM
algorithm and the bounds it uses. It is well known that in generative frameworks (eg. likelihood) the
EM algorithm uses Jensen’s inequality to lower bound latent log-likelihoods. The resulting tractable
variational bounds can then be integrated or maximized in a straightforward manner. However,
unlike their generative counterparts, discriminative frameworks involve both latent log-likelihoods
and negated log-likelihoods. The latter are not lower boundable by Jensen’s inequality and instead

1At the risk of misquoting what Ockham truly intended to say, we shall use this quote to motivate the use of
bounds on latent likelihoods which, if treated exactly and multiplied exactly, would cause an exponential explosion in
the number terms.

88
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require a type of reverse-Jensen inequality [94]. We derive this inequality for arbitrary mixtures of the
exponential family. This includes complex mixtures such as those arising in hidden Markov models.
The resulting bounds on the parameters and the mixing proportions then permit straightforward
maximization-steps or integration.

More specifically, we will show how a mixture model (or incomplete distribution) can be lower
bounded (through Jensen’s inequality) and also upper bounded (through a reverse-Jensen inequality)
by a single complete e-family distribution over parameters. For discriminative learning, the reverse
bounds are tight enough to permit efficient estimation that approaches EM computationally yet
yields superior classification and regression accuracy. We will call the resulting discriminative EM
variant the Conditional Expectation Maximization (CEM) algorithm.

This chapter is organized as follows. We first describe the set of probabilistic models we will re-
strict ourselves to: mixtures of the exponential family. We then argue why latent models cannot be
handled tractably in the same manner as exponential families. This is because they typically form
intractable expressions when multiplied. A formal treatment of these models exposes why generative
(and discriminative) criteria therein become intractable. We then describe the EM algorithm as a
way to address this intractability in latent models. EM addressed the intractable estimation problem
by by iteratively maximizing a lower bound on log-likelihood via Jensen’s inequality. Discriminative
criteria, however, also require a reverse upper bound. We propose such a bound, the reverse-Jensen
inequality, and develop it for a variety of cases. This includes mixtures of Gaussians, mixtures of
multinomials, mixing coefficients. The next chapter considers more sophisticated mixtures or struc-
ture models such as hidden Markov models and aggregated data set bounds. A rigorous derivation
and proof of the reverse-Jensen bound is provided in Chapter 7 which justifies its use in latent
discrimination and CEM.

5.1 The Exponential Family and Mixtures

We will restrict the treatment of latent variables (via Jensen and our reverse-Jensen bounds) to
mixtures of the exponential family (e-family) [9] [32]. In practice this class of densities covers a
very large portion of contemporary statistical models. Mixtures of the e-family include Gaussians
Mixture Models, Multinomials, Poisson, Hidden Markov Models, Sigmoidal Belief Networks, Discrete
Bayesian Networks, etc. [34]. The e-family (which is closely related to generalized linear models)
has the following form:

P (X|Θ) = exp(A(X) + XT Θ−K(Θ))

Here, the e-family is shown in its natural parameterization. Many alternative parameterizations exist
however the natural one will be easiest to manipulate for our purposes (i.e. for computing the reverse-
Jensen inequality and performing discriminative estimation). The K(Θ) function is the cumulant
generating function [32] and is convex in Θ, the multi-dimensional parameter vector. Typically the
data vector X is constrained to live in the gradient space of K, i.e. X ∈ ∂

∂ΘK(Θ) or X ∈ K′(Θ) for
short. In fact, a duality exists in that the domain of the function A(X) is the gradient space of K(Θ)
and vice versa. A more specific property of the exponential family is that the cumulant generating
function is not just an arbitrary convex but also given by the following Laplace transform. This is
directly due to the normalization property of the distribution (which directly generates convexity of
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K(Θ) 2):

K(Θ) = log
(∫

X

exp(A(X) + XT Θ)dX

)
The e-family has special properties (i.e. conjugates, convexity, linearity, etc.) [9] [32] [34] [6]. Fur-
thermore, one very important property of this class of distributions is that products of exponential
family distributions remain in the family. These intrinsic properties will be exploited for the deriva-
tion of the reverse-Jensen bound in this chapter and the next. The table below lists example A and
K functions for Gaussian, multinomial3 and other distributions.

E-Distribution A(X) K(Θ) Constraints
Gaussian (mean) − 1

2XT X − D
2 log(2π) 1

2ΘT Θ
Gaussian (covariance) − 1

2 log(2π) − 1
2 log(Θ) ∀Θ > 0

Multinomial log(Γ(η + 1))− log(ν) η log(1 +
∑D

d=1 exp(Θd))
Exponential 0 − log(−Θ) ∀Θ < 0
Gamma − exp(X)−X log Γ(Θ) ∀Θ > 0
Poisson log(X!) exp(Θ)

Table 5.1: Sample exponential family distributions.

This crucial property (along with others) makes maximum likelihood estimation of the parameters of
an e-family distribution with respect to an iid data set fully tractable, unique and straightforward.
This is because log-likelihood remains concave in the parameters for the e-family (and products
thereof). It is also straightforward to integrate over an exponential family distribution (with conju-
gate priors) to obtain a fully Bayesian estimate of its parameters. Thus, it is widely acknowledged
that this family enjoys tractable and straightforward estimation properties.

5.1.1 Mixtures of the Exponential Family

m X

Figure 5.1: Graph of a Standard Mixture Model

A generalization beyond the class of exponential family distributions is to consider mixtures of
the e-family. We begin by considering a simple (flat) mixture model (Chapter 6 considers more
complex mixture cases). Here, a convex combination of different e-family distributions with different
parameters is shown. The mixture is done by introducing a latent variable which is denoted as m
here. Thus, we have an incomplete data representation and since m is unobserved, multiple e-family
models models are mixed 4. Thus, we can consider Figure 5.1 as a Bayes net describe the relationship

2We will actually be mildly restricting our derivations to K functions satisfying Lemma 7.4. However, all standard
e-family distributions are still spanned.

3The multinomial shown is traditionally cast as in Equation 3.13 subject to the constraint
∑D+1

d=1
ρd = 1. In the

table, we map this into exponential family form where η =
∑D+1

d=1
Xd and ν = ΠD+1

d=1
Γ(Xd + 1). In the standard case

where X is a choice vector with all zeros and a single unit entry, the expressions simplify to η = 1 and ν = 1 and then
we only have A(X) = 0.

4Note we use Θ to denote an aggregate model encompassing all individual Θm ∀m.
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between the latent variable m which acts as a parent to the emission variable X. This generates the
following distribution:

p(X|Θ) =
∑
m

p(m)p(X, Θ|m) =
∑
m

αm exp(Am(Xm) + XT
mΘm −Km(Θm)) (5.1)

In the above, we are allowing the Xm to vary with the latent variable although in a regular mixture
model, we typically have Xm = X ∀m. This mathematical generalization or extra flexibility is done
here for convenience later on when we will need to consider different types of mixtures where Xm

will vary with m, i.e. the Xm will be a vector of the same cardinality as X but explicitly computed
as a result of some function of both X and m. Furthermore, the αm are scalars that sum to unity
representing the prior on each model in the mixture. We will assume that the αm are fixed now yet
this assumption will be loosened in Section 5.6.

For now, merely think of the above as a standard mixture model such as a mixture of Gaussians [20].
For example, we may consider the distribution of the weight and height of the males and females
of a species which would form two distinct clusters. Thus, the latent variable m would be binary
and determines the hidden male/female variable which select between the two different Gaussian
distributions on, eg. weight and height. This type of mixture can be called a flat mixture since there
are no additional relationships between the clusters or a hierarchy between the hidden variables
m. These types of latent distributions arise frequently in many machine learning tasks and include
include mixtures of Gaussians, mixtures of experts, mixtures of multinomials, and so forth. These
latent probability distributions need to get maximized, integrated, marginalized, conditioned, etc.
to solve various inference, prediction, and parameter estimation tasks. However, such manipulations
can sometimes be quite complex or intractable.

5.2 Mixtures in Product and Logarithmic Space

Why is it that non-exponential family models, such as mixture models or latent models, cannot be
treated exactly or in closed form? This is the case for both generative and discriminative frameworks.
In MED, just as in maximum likelihood, we can show that any exponential family member can be
estimated in a straightforward manner. However, as we consider mixtures of the exponential family,
there are many interpretations for how intractabilities that arise. We shall begin by illustrating these
problems using two different metaphors: ’product space’ or ’logarithmic space’. First, consider the
likelihood of an independent identically distributed (iid) data set in ’product space’:

p({X}|Θ) = ΠT
t=1p(Xt|Θ)

If the generative model P (Xt|Θ) for each data point is in the exponential family, the above aggre-
gate likelihood for the whole data set remains computationally tractable. In fact, products of the
exponential family are in the exponential family. In other words, the e-family forms a closed set
under multiplication (but not under addition unfortunately). For example, we would obtain the
following if we had an e-family distribution:

p({X}|Θ) = ΠT
t=1 exp(A(Xt) + XT

t Θ−K(Θ))

= exp

(∑
t

A(Xt) + (
∑

t

Xt)T Θ− TK(Θ)

)

Thus, the aggregate P ({X}|Θ) is in the exponential family itself and it would be just as easy to
integrate over it or maximize the likelihood as it would be to work with a single data point P (Xt|Θ).
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For example, maximizing the likelihood over the parameter Θ would simply be given by the unique
closed-form solution of:

∂K(Θ)
∂Θ

=
1
T

∑
t

Xt

However, if the generative model P (Xt|Θ) is not in the exponential family but rather a mixture
model or a latent distribution, it must be represented as a sum or marginalization over a (possibly
continuous) set of simpler distributions. Unfortunately, summations (unlike products) of exponential
family distributions are not in the exponential family. For example, consider the case where we are
summing M exponential family distributions to get P (Xt|Θ), in other words

∑M
m=1 P (m,Xt|Θ). In

this case, there are M possible configurations of the simpler distributions and expanding we get:

p({X}|Θ) = ΠT
t=1

(
M∑

m=1

p(m,Xt|Θ)

)

Here we see quite clearly that if we were to expand the above product over sums we would effectively
have a summation over many terms, in fact an exponential number equal to MT . At this point,
integration or other calculations would be solvable as we bring them into the sum and apply them
to the simple non-latent distributions in isolation. However, having to deal with a total of MT

terms prevents this approach from being tractable except in toy problems. Thus, exact Bayesian
integration (as depicted in Example 2.3.1) would become very cumbersome.

It is often the case that we will manipulate the log-likelihood instead of the likelihood itself (as
in maximum likelihood estimation). Taking the logarithm will put us in ’logarithmic space’ which
might deceptively appear to simplify the expressions:

log p({X}|Θ) = log ΠT
t=1p(Xt|Θ) (5.2)

=
T∑

t=1

log p(Xt|Θ) (5.3)

=
T∑

t=1

log

(
M∑

m=1

p(m,Xt|Θ)

)
(5.4)

Now, we only have a summation over a tractable number of terms, namely T terms in total. However,
the presence of the log-sum is equally intractable and prevents direct integration or maximization
steps. Thus, non-exponential family distributions (i.e. mixtures) prevent easy maximization calcu-
lations for ML (i.e. maximizing by taking gradients and setting to zero). Alternatively, in Bayesian
inference, we will attempt to perform integrals to compute, for example, the evidence:

p({X}) =
∫

p({X},Θ)dΘ (5.5)

=
∫

ΠT
t=1

(
M∑

m=1

p(m,Xt|Θ)

)
P (Θ)dΘ (5.6)

Once again, integrating over a product of sums is a very difficult task. In fact, the intractability
resulting from products of sums is equivalent to the intractability resulting from the addition of
logarithms of sums. Therefore, it is highly desirable to find surrogate distributions which are easier
to manipulate than these latent distributions or log-sums. These can be either upper or lower
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bounds on the log-sum so that we can give guarantees on the integrals or iteratively maximize the
objective functions (such as likelihood). Conceptually, we would like to pull the logarithm into the
sum so that we have a sum of logs instead of a log-sum. This intractability is directly avoided when
we introduce bounds (upper and lower) which permit tractable multiplication, maximization and
integration. In this chapter we will derive these upper and lower bounds and provide an analytic
formula for obtaining them. Basically, the multi-modal, complex expressions we have shown above
will be replaced with simple (exponential family) distributions that upper and lower bound them to
avoid intractabilities. We will focus on the log-sum interpretation in the next sections but all results
are directly equivalent in the product space as well. Product space is more convenient for integration
while logarithmic space is more convenient for maximization. We now discuss the celebrated EM [44]
algorithm which does just that: it lower bounds the latent log-sums to alleviate the computational
intractability.

5.3 Expectation Maximization: Divide and Conquer

The Expectation-Maximization (EM) algorithm 5 finds its roots as the successor of old heuristic
approaches to fitting mixtures of models and clustering algorithms such as k-means. In the case of
mixtures of models or latent maximum likelihood estimation, notions of divide and conquer [102]
were used to motivate EM-type procedures. One can view maximum likelihood with a mixture model
as several independent models available to collectively describe a training data set. Therefore, we
divide the data among these models in some sort of competition where each model gravitates to data
that it accounts for most strongly. Iterating this division of data and conquering (i.e. reestimating
individual models) breaks down what would be a difficult fit to a complex training set of points
into several small fitting operations to partitions of the training data. In k-means, models gravitate
to clusters of points by competing in a winner take all scenario. EM is also such a divide and
conquer operation but models do not greedily take over a given point (winner-take-all) but share
a soft responsibility assignment to each data point. In other words, models that describe a point
better are given a higher responsibility or weight. Computationally, then, this division permits each
model to be estimated from data as if it were alone, simplifying the intractabilities of the log-sum in
Equation 5.4, for instance. Each model is estimated on its own over a weighted configuration of the
data according to its previous responsibility levels. Effectively, the summation inside the logarithm
is pulled outside, avoiding the difficulties in the m-steps (or the intractable integration in Bayesian
inference over Equation 5.6).

EM’s strategy of conquer and divide works not because it is intuitive but because of the mathematical
properties of maximum log-likelihood, namely the concavity of the log function and the direct
applicability of Jensen’s inequality in forming a guaranteed lower bound on log-likelihood [44] [13]
[12]. In fact, if we change the objective function, this same conquer and divide strategy will not
work. Figure 5.2 depicts what EM is effectively doing. In an E-step, we compute a lower bound on
the log-likelihood using Jensen’s inequality and in an M-step we maximize that lower bound. By
iterating these two procedures, we are bounding and maximizing the objective function which is
therefore guaranteed to increase monotonically.

Unfortunately, discriminative criteria cannot use EM’s simple conquer and divide strategy because
Jensen’s inequality does not generate a lower bound on their objective functions. This will be
elaborated in the following sections but we provide a high level discussion here. Computationally,
what differentiates the discriminative criteria from ML is that they not only require Jensen-type
lower bounds but also need the corresponding upper bounds. The Jensen bounds only partially

5Here we are deferring a formal treatment in favor of an intuitive explanation of EM.
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Figure 5.2: Expectation-Maximization as Iterated Bound Maximization.

simplify their expressions and some intractabilities remain. For instance, latent distributions need
to be bounded above and below in a discriminative setting[85]. Metaphorically, discriminative
learning requires lower bounds to cluster positive examples and upper bounds to repel away from
negative ones. Thus, conquer and divide doesn’t work and we need a discriminative variant of the
conquer-and-divide strategy.

5.4 Latency in Conditional and Discriminative Criteria

Why can’t we apply EM in a discriminative setting? The combination of ML estimates with EM and
Jensen have indeed produced straightforward and monotonically convergent estimation procedures
for mixtures of the e-family [44] [34] [103]. However, EM, like ML, does not explicitly address the
task of the learning system. It is a are rather non-discriminative modeling technique for estimating a
generative model. Consequently, EM and ML suffer when assumptions in the model are inaccurate.
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Figure 5.3: Maximum Likelihood versus Maximum Conditional Likelihood. Thick Gaussians repre-
sent o’s, thin ones represent x’s.

For visualization, observe the binary classification6 problem in Fig. 5.3. Here, we have a training
data set which consists of o’s (positive class) and x’s (negative class). These have been sampled
from 8 identity-covariance Gaussians (4 of each class). Each Gaussian has equal probability. We will
fit this data with a two-class generative model which incorrectly has 2 Gaussians per class (again
with equal probability each and identity covariance). Two solutions are shown, ML in Figure 5.3(a)
and CML in Figure 5.3(b). Each of the 4 Gaussians in the model is depicted by its iso-probability

6The derivations herein extend to multi-class classification and regression as well.
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contour. The 2 thick circles represent the positive (o’s) Gaussian models while the 2 thin circles
represent the negative (x’s) Gaussian models. We also see the values of the joint log-likelihood l and
conditional log-likelihood lc for each solution. Note how ML has the larger l value of the two while
CML has the larger lc value of the two configurations. These distributions induce a classification
boundary, i.e. points where the positive 2-Gaussian model is greater than the negative one will be
assigned to the positive class and vice-versa.

In Figure 5.3(a) this results in a decision boundary that splits the figure in half with a horizontal line
across the middle because the positive Gaussians overtake the top and the negative ones overtake
the bottom half of the figure. Counting the number of correct classifications, we see that the ML
solution performs as well as random chance, getting roughly 50% accuracy. This is because the ML
model is trying to cluster the data and put the Gaussian models at our disposal such that their
probability mass is on top of the data samples (that belong to their class). In fact, fitting the
positive data with the positive model is done independently of the fit of the negative data with the
negative model. This is precisely how EM iterates and the objective it maximizes is likelihood. It’s
objective is to get as good a generator of the data so classification performance is sacrificed.

Meanwhile, in Figure 5.3(b), the decision boundary that is generated by the model creates 4 hor-
izontal classification strips (as opposed to splitting the figure in half). These classify the data as
positive,negative,positive and negative respectively as we go from top to bottom, because the 4
Gaussians are arranged in this vertical interleaving order. The accuracy for this fit is roughly 100%.
This is because CML attempts to form a good output (class label) distribution given the input
and this is more appropriately suited to classification. CML, in estimating a conditional density,
propagates the classification task into the estimation criterion. It is clear, however, that the model
is not a good generator of the data since the Gaussians don’t put their probability mass on the
samples but are simply arranged down the middle of the figure which provides a very low value
of likelihood l. Clearly, therefore, optimizing lc using CML is more appropriate for finding a good
classifier model. What is needed is a discriminative or conditional counterpart of EM that seeks to
optimize lc instead.

Let us now describe the above classification scenario more mathematically. In such examples, we are
given training examples Xi and corresponding binary labels ci. The goal is to classify the data with
a latent variable e-family model (a mixture of Gaussians here). We use m to represent the latent
missing variables. Let us now consider the objective functions which will immediately exhibit the
aforementioned intractable log-sum structures. For the generative log-likelihood objective function
l we have the following formula:

l =
∑

i

log
∑
m

p(m, ci, Xi|Θ)

For the more discriminative conditional likelihood approach we have the conditional log-likelihood
lc which also has log-sums as well as negated log-sums:

lc =
∑

i

log
∑
m

p(m, ci|Xi,Θ)

=
∑

i

log
∑
m

p(m, ci, Xi|Θ)−
∑

i

log
∑
m

∑
c

p(m, c, Xi|Θ)

Alternatively, we could have considered an even more discriminative MED approach whose discrim-
inant function would again result in complications due to the log-sum:

L(X|Θ) = log
p(X|Θ+)
p(X|Θ−)
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= log
∑
m

p(m,X|Θ+)− log
∑
m

p(m,X|Θ−)

In the above latent log-likelihoods and discriminant functions we recognize the presence of logarithms
of sums (and negated log-sums). As before these cause intractabilities (which remain in the product
space interpretation as well). EM can handle log-sums through Jensen’s inequality and manipulate
lower bounds on log-likelihood. Each log-sum in the objective function l will be lower bounded
and all the lower bounds will add to form an aggregate lower bound. However, in conditional
and discriminative criteria we observe negated log-sums. Negation will flip the Jensen inequality
lower bounds. Thus, applying Jensen on the negated components of these objective functions or
discriminant functions will actually produce upper bounds. Thus, the log-sum terms will be lower
bounded while the negated log-sum terms will be upper bounded. Adding lower bounds and upper
bounds is useless sinc it will not generate the desired aggregate lower bound on the discriminative
quantities (i.e. conditional likelihood or MED discriminant functions).

We next show the Jensen inequality which will lower bound log-sums to produce an EM algorithm.
For discrimination, we also derive the complementary upper bounds 7 through a reverse-Jensen
inequality. These reverse-bounds are structurally similar to Jensen bounds, allowing easy migration
of ML techniques to discriminative settings. The bounds could also be useful as mathematical
tools for non-statistical problems. We will focus the development of these bounds on mixtures of the
exponential family which will have desirable properties permitting us to establish guaranteed bounds
on discriminative quantities like conditional likelihood and Maximum Entropy Discrimination.

5.5 Bounding Mixture Models

As was mentioned earlier, optimizing likelihood or conditional likelihood becomes intractable when
we have latent models or mixture models (equivalently). The EM algorithm was shown to be well
suited to maximize likelihood since it replaces the complicated log-sum expressions that arise with
simple lower bounds that can be maximized in a straightforward way. Yet, for discrimination and
conditional likelihood maximization, we have negated log-sums and cannot use lower bounds alone.
Therefore, it is clear that we need to bound latent quantities or log-sums on both sides with lower
and upper bounds. Once again, we assume that we have a generative model that is given by a
mixture of exponential family as described earlier: p(X) =

∑
m p(m)p(X|m). In a log-likelihood

based optimization, each data point therefore, gives rise to a log-sum term log(
∑

m p(m)p(X|m))
which causes intractabilities.

We propose upper and lower bounds on the log-sum which appear as follows (in a logarithmic space):

∑
m

w̃m log p(Ỹm|m,Θ) + k̃ ≤ log
M∑

m=1

p(m,X|Θ) ≤
∑
m

(−wm) log p(Ym|m,Θ) + k (5.7)

Taking exp() of both sides allows us to consider these bounds in product space:

exp(k̃)Πmp(Ỹm|m,Θ)w̃m ≤
M∑

m=1

p(m,X|Θ) ≤ exp(k)Πmp(Ym|m,Θ)−wm (5.8)

Upon inspection, it is clear that the left hand side and right hand side of the inequalities share a very
similar structure. This homogeneous structure is critical if we are to use lower bounds and upper

7 A similar yet weaker bound was shown for Gaussian mixture regression in [92].
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bounds in a combined way to simplify log-sums. Furthermore, through these bounds it should be
evident that we are no longer dealing with a log-sum but rather a sum of logs (we have ’pulled’
the log into the summation). This structure is far easier to handle computationally. In product
space, we are no longer dealing with a sum of e-family distributions but rather products of e-families
(which remain in the e-family) and therefore immediately inherit the straightforward computational
and estimation properties therein. We have yet to specify the parameters of the upper and lower
bounds, namely the k̃, w̃m, Ỹm and the k, wm, Ym respectively (where the subscript m ranges from
1..M , the number of latent models). This will be done shortly after we give a conceptual description
of the parameters and their roles.

θ
log P(X|θ)

log P(Y|θ)

log P(Y|θ)

θ

−w
w

YY

~

~

w~

w~

~

Figure 5.4: Dual-Sided Bounding of Latent Likelihood

The left hand side of the above inequality follows a direct consequence of Jensen’s inequality (which
computes guaranteed k̃, Ỹm, w̃m). The right hand side is a direct consequence of the reverse-Jensen
inequality (which computes guaranteed k, Ym, wm). The bounds basically give a weight to the data
points (i.e. wm) and translate their coordinates (i.e. from Xm to Ym) to avoid representing them
as a sum of distributions. Therefore, we have replaced the sum of the exponential family members
by bounds which are only products of the exponential family. As we said earlier, products of the
e-family will remain in the e-family and intractable latent log-likelihood quantities will be bounded
by simple e-family distributions above and below. The bounding is illustrated in Figure 5.4 on a
1d example (where the e-family being used here is a Gaussian mean). The middle curve (which is
neither concave nor convex) is the original latent log-likelihood while the upper bound is a convex
(as a consequence of the negated weight −w) complete likelihood and the lower bound is a concave
(as a consequence of a positive weight w̃) complete likelihood. The upper and lower bounds both
make contact with the original log-sum quantity at the point Θ̃ which is also referred to as the
contact point. If we were performing iterative maximization (such as in EM), this would be the
current model estimate which would get iteratively updated after a bounding and maximization
step. Table 5.5 summarizes the meaning of the parameters. In the next two sections, we provide
the equations to compute them for a given log-sum of the form shown in Equation 5.1 at a current
operating or contact point Θ̃.

5.5.1 Jensen Bounds

Recall the definition of Jensen’s inequality: f(E{2}) ≥ E{f(2)} for concave f . The log-summations
in l, lc, and L(X|Θ) all involve a concave f = log around an expectation, i.e. a log-sum or proba-
bilistic mixture over latent variables. We apply Jensen as follows:

log
∑
m

p(m,X|Θ) ≥
∑
m

(
p(m,X|Θ̃)∑
n p(n, X|Θ̃)

)
log

p(m,X|Θ)
p(m,X|Θ̃)

+ log
∑
m

p(m,X|Θ̃) (5.9)
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Parameter Role
Jensen

w̃m Scalar weight on the virtual data for the m’th model Θm

Ỹm Virtual data vector computed from the datum Xm = X for the m’th model Θm

k̃ An additive constant ensuring the lower bound equals the log-sum at Θ = Θ̃
Reverse-Jensen

wm Scalar weight on the virtual data for the m’th model Θm

Ym Virtual data vector computed from the datum Xm = X for the m’th model Θm

k An additive constant ensuring the upper bound equals the log-sum at Θ = Θ̃

Table 5.2: Jensen and Reverse-Jensen Bound Parameters.

It is traditional to denote the terms in the parentheses above by hm and refer to them as the
responsibilities [102]. These can be thought of as the weights each model has for the data point
which is shared by each model according to how likely it was generated by it.

hm :=
p(m,X|Θ̃)∑
n p(n, X|Θ̃)

The Jensen inequality application above can be recast into the form shown in Equation 5.7. This
manipulation readily shows how the log-sum intractability is removed. Recall the lower bound we
wished to form on the log-sum:

log
∑
m

p(m,X|Θ) ≥
∑
m

w̃m log p(Ỹm|m,Θ) + k̃

We expand this form in the e-family notation:

log
∑
m

αm exp(Am(Xm) + XT
mΘm −Km(Θm)) ≥

∑
m

w̃m (Am(Ỹm) + Ỹ T
m Θm −Km(Θm)) + k̃

Here, k̃ is a scalar additive constant, w̃m are positive scalar weights on the data and Ỹm are the
new virtual data vectors (translated from the original Xm). This forms a variational lower bound
on the log-sum which makes tangential contact with it at Θ̃ and is much easier to manipulate.
Basically, the log-sum becomes a sum of log-exponential family members. Plugging in the results
from Equation 5.9 into the above expanded e-family notation gives us the parameters of the lower
bound in exponential family form as:

k̃ = log p(X|Θ̃)−
∑
m

w̃m(A(Ỹm) + Ỹ T
m Θ̃m −Km(Θ̃m))

Ỹm = − 1
w̃m

hm

(
∂Km(Θm)

∂Θm

∣∣∣∣
Θ̃m

−Xm

)
+

∂Km(Θm)
∂Θm

∣∣∣∣
Θ̃m

= Xm

w̃m = hm

Note the the positive scalar hm terms (the responsibilities) which arise from Jensen’s inequality.
These quantities are relatively straightforward to compute. We only require local evaluations of
log-sum values at the current Θ̃ to compute a global lower bound.
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If we bound all log-sums in the log-likelihood, we have a lower bound on the objective l which we
can maximize easily. Iterating maximization and lower bound computation at the new Θ produces
a local maximum of log-likelihood as in EM 8 . However, applying Jensen on log-sums in lc and
L(X|Θ) is not as straightforward. Some terms in these expressions involve negative log-sums and
so Jensen is actually solving for an upper bound on those terms. If we want overall lower and upper
bounds on lc and L(X|Θ), we need to compute reverse-Jensen bounds.

5.5.2 Reverse-Jensen Bounds

Reversals and converses of Jensen’s inequality have been explored in the mathematics and statistics
community and are summarized in [150] and [46]. However, these reversals do not have the correct
form for direct use in discriminative and conditional latent learning so we have derived our own
reversal (which is detailed in Chapter 7). It seems strange we can reverse Jensen (i.e. f(E{2}) ≤
E{f(2)}) but it is possible. Among other things, we exploit the convexity of the K functions in the
e-family instead of exploiting the concavity of f = log. However, not only does the reverse-bound
have to upper-bound the log-sum, it should also have the same form as the Jensen-bound above,
i.e. a sum of log-exponential family terms. That way, upper and lower bounds can be combined
and used together homogeneously and ML tools can be quickly adapted to the new bounds. The
derivation for the reverse-Jensen inequality is long and is deferred to Chapter 7. For now, we simply
show how to calculate the inequality’s required parameters (wm, Ym, k) that will guarantee a global
upper bound on the log-sum. Recalling Equation 5.7, we note that we had:

log
∑
m

p(m,X|Θ) ≤
∑
m

(−wm) log p(Ym|m,Θ) + k

Expanding out in exponential family form we obtain:

log
∑
m

αm exp(Am(Xm) + XT
mΘm −Km(Θm)) ≤

∑
m

−wm(A(Ym) + Y T
m Θm −Km(Θm)) + k

Here, we give the parameters of the bound directly, refer to Chapter 7 for their algebraic derivation.
This bound again makes tangential contact at Θ̃ yet is an upper bound on the log-sum9.

k = log p(X|Θ̃) +
∑
m

wm(A(Ym) + Y T
m Θ̃m −Km(Θ̃m))

Ym =
hm

wm

(
∂K(Θm)

∂Θm

∣∣∣∣
Θ̃m

−Xm

)
+

∂K(Θm)
∂Θm

∣∣∣∣
Θ̃m

w′m = minw′m such that
hm

w′m

(
∂K(Θm)

∂Θm

∣∣∣∣
Θ̃m

−Xm

)
+

∂K(Θm)
∂Θm

∣∣∣∣
Θ̃m

∈ ∂K(Θm)
∂Θm

wm = 4 G(hm/2)
(
Xm −K′(Θ̃m)

)T

K′′(Θ̃m)−1
(
Xm −K′(Θ̃m)

)
+ w′m

In the above, we have introduced the function G(γ) which is simply:

G(γ) =

{
γ + 1

4 log(6) + 25/36
log(6)2 − 1/6 γ ≥ 1/6

1
4 log(1/γ) + (γ−1)2

log(γ)2 γ ≤ 1/6
(5.10)

8Other justifications for the convergence of EM include appeals to Kullback-Leibler divergence (1951) [114] and
Bregman distances. However, these concepts are newer than Jensen’s inequality (1906) [98] which pre-dates them and
is sufficient to prove EM’s convergence.

9We can also find multinomial bounds on α-priors instead of Θ parameters as in Section 5.6.
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This bound effectively re-weights (wm) and translates (Ym) incomplete data to obtain complete data.
The wm are positive weights and we pick the smallest wm and w′m which still satisfy the last two
simple conditions. We can always set wm larger than the conditions require but smaller wm values
mean a tighter bound. The first condition requires that the w′m generate a valid Ym that lives in the
gradient space of the K functions (a typical e-family constraint) 10. Thus, from local computations of
the log-sum’s values, gradients and Hessians at the current Θ̃, we can compute global upper bounds.

The Appendix contains a tighter formulation than the one above. The G(γ) function is actually an
upper bound on a tighter reverse-Jensen solution for wm which involves numerical table lookups.
This is detailed in the derivation of the reverse-Jensen inequality in the next Chapter and in the
Appendix. Using these lookup tables provides slightly tighter bounds. Furthermore, in practice,
we often compute a tighter version of the wm by omitting the multiplicative 4 in front of the G(γ)
function (i.e. make it 1 or less). This still seems to empirically generate reasonable bounds yet these
have no analytic guarantees.

In earlier work [94], we derived and used a simpler (yet looser) version of the above bounds which
is given by:

wm =
(
Xm −K′(Θ̃m)

)T

K′′(Θ̃m)−1
(
Xm −K′(Θ̃m)

)
+ w′m

Visualization

In Figure 5.5 we plot the bounds for a two-component unidimensional Gaussian mixture model
case and a two component binomial (unidimensional multinomial) mixture model. The Jensen-type
bounds as well as the reverse-Jensen bounds are shown at various configurations of Θ̃ and X. Jensen
bounds are usually tighter but this is inevitable due to the intrinsic shape of the log-sum. In addition
to viewing many such 2D visualizations, we computed higher dimensional bounds and sampled them
extensively, empirically verifying that the reverse-Jensen bound remained above the log-sum.
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Figure 5.5: Jensen (black) and reverse-Jensen (white) bounds on the log-sum (gray).

10In the Gaussian case, the bounds can be made tighter by letting wm be a full matrix and ignoring the contribution
of w′

m.
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5.6 Mixing Proportions Bounds

Recall that we had Equation 6.1 to contend with as our mixture of e-family distributions. The αm

were assumed to be constants. The variational bound we solved for is on the Θ model parameters
which are allowed to change. However, it may be necessary to vary the αm as parameters (i.e. if
these are free and must be optimized). Thus, we could conceive of bounds on the mixing proportions
and use these to estimate optimal mixing coefficients. It is possible to find a reverse-Jensen bound
over both α and Θ simultaneously, just as EM and Jensen will handle both jointly. This is done
by simply rewriting the mixing proportions in their natural exponential family form and seeing that
they can be concatenated into the Θ parameters. This development mirrors that proposed in [105]
(in the appendix thereof).

Let us return to our mixture model and note that α will be allowed to vary:

p(X|α, Θ) =
M∑

m=1

αm exp(Am(Xm) + XT
mΘm −Km(Θm))

For simplicity, let us define the following:

Tm := exp(Am(Xm) + XT
mΘm −Km(Θm))

This allows us to simplify the expression for the mixture model:

p(X|α, Θ) =
M∑

m=1

αmTm

We will now show that p(X|α, Θ) can be written as a sum of exponential family members whose
parameters are in α and are therefore boundable via Jensen and reverse-Jensen. First note that we
are dealing with mixing proportions, and thus the α sum to unity, i.e

∑
m αm = 1. Furthermore,

consider the change of variable (from the M -dimensional α-space to a natural, compact M − 1-
dimensional η-space):

eηm =
αm

αM
∀m ∈ [1...(M − 1)]

We can thus rewrite p(X|α, Θ) as follows:

p(X|α, Θ) =
M∑

m=1

Tmαm =
M∑

m=1

Tm
αm

αM
αM =

M∑
m=1

Tm exp
(

log
αm

αM

)
αM

=
M∑

m=1

Tm exp
(

log
αm

αM

)
αM∑M

m=1 αm

=
M∑

m=1

Tm exp
(

log
αm

αM

)
1

1 +
∑M−1

m=1
αm

αM

=
M∑

m=1

Tm exp

(
log

αm

αM
− log

[
1 +

M−1∑
m=1

αm

αM

])

=
M−1∑
m=1

Tm exp

(
log

αm

αM
− log

[
1 +

M−1∑
m=1

αm

αM

])
+ TM exp

(
log

αM

αM
− log

[
1 +

M−1∑
m=1

αm

αM

])
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=
M−1∑
m=1

Tm exp

(
ηm − log

[
1 +

M−1∑
m=1

eηm

])
+ TM exp

(
0− log

[
1 +

M−1∑
m=1

eηm

])

Now consider the vector η (which is a reparameterization of α) as an (M − 1)-tuple. We can rewrite
the above as a multinomial e-family member. Recall that for a multinomial we have the following
K and A functions11:

A(xm) = 0 ∀m (5.11)

K(η) = log

(
1 +

M−1∑
i=1

exp(ηi)

)
(5.12)

This allows us to rewrite the above as:

p(X|α, Θ) =
M−1∑
m=1

Tm exp (ηm −K(η)) + TM exp (0−K(η))

In addition, we shall introduce virtual data vectors x as (M − 1)-tuples and define them. For each
m ∈ [1,M − 1] consider virtual data vectors xm which are all-zero except each has a single 1 at
dimension m. Furthermore, the vector xM is all zeros. Also note that the function A(x) = 0 for
a typical multinomial model. We can therefore rewrite the latent likelihood parameterized by α in
the following familiar form:

p(X|α, Θ) =
M∑

m=1

Tm exp
(
ηT xm −K(η)

)
=

M∑
m=1

Tm exp
(
A(xm) + ηT xm −K(η)

)
Thus we realize that we can rewrite the above as an exponential family form and the same bounding
techniques can be applied for both Jensen and reverse-Jensen. The derivations for the Θ-case can
be adapted to α which is effectively a multinomial e-family member. Let us now plug back the
definition of T into the above:

p(X|α, Θ) =
∑
m

exp
(
A(xm) + ηT xm −K(η)

)
Tm

=
∑
m

exp
(
A(xm) + ηT xm −K(η)

)
exp(Am(Xm) + XT

mΘm −Km(Θm))

Note that the above product of e-family terms over Θ with the multinomial over η remains in the
e-family. We can thus now consider an agglomerative model (i.e. Θ̄ where the bar indicates some
aggregated model) that contains the parameters Θ and η which is also in the exponential family and
has the general form as in Equation 6.1. However, now the α parameters have been folded into the
exponential family distributions over Θ. This makes it possible to jointly upper bound the logarithm
of p(X|α, Θ) over both α and Θ using the reverse-Jensen approach.

Recall that we typically have Xm = X for a mixture model as we argued earlier in the definition of a
mixture of exponential families. In the above, we encounter a situation where the data xm is varying
for each value of m unlike the regular mixture model scenario. This justifies our initial precautionary
measure of indexing the data with the latent variable m in the definition of the exponential family.

11Here we are omitting the calligraphic font for K and A to differentiate them from the ones in the definition of
Tm.
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5.7 The CEM Algorithm

Equipped with Jensen and reverse-Jensen bounds, it is now straightforward to implement a maximum
conditional likelihood algorithm or a discriminative learning approach with latent variables. The
CEM (Conditional Expectation Maximization) algorithm mirrors the EM algorithm in its approach
to maximizing joint likelihood. EM iterates by lower bounding and then maximizing the joint log-
likelihood. CEM iterates by lower bounding and then maximizing the conditional log-likelihood. Due
to the guarantees behind both the Jensen and reverse-Jensen bounds, CEM converges monotonically
to a local maximum of conditional likelihood. It should be noted though that CEM’s convergence is
slower than EM’s since the reverse-Jensen bounds are looser. However, this is an almost inevitable
byproduct of the shape of the negated log-sum.

To maximize conditional likelihood (or joint likelihood minus marginal likelihood), we begin with
the following type of expression which needs to be maximized over the parameters Θ:

lc = lj − lm

lc =
∑

i

log
∑
m

p(m, ci, Xi|Θ)−
∑

i

log
∑
m

∑
c

p(m, c, Xi|Θ)

The above is the conditional log-likelihood of a data set with a (simple) mixture model. We lower
bound the joint likelihood term with Jensen and upper bound the marginal likelihood term with
the reverse-Jensen inequality. This gives us the following overall lower bound on conditional log-
likelihood (this step can be called the CE-step of the CEM algorithm):

lc ≥
∑
mi

hmi

(
ΘT

mci
Xi −K(Θmci)

)
−
∑
mci

(−wmci)
(
ΘT

mcYmci −K(Θmc)
)

+ constant terms

It is then straightforward to maximize the right hand side by taking derivatives and setting to zero
(this is the M-step):

∂K(Θmc)
∂Θmc

=
1∑

i δ(ci, c)hmi + wmci

(∑
i

hmiδ(ci, c)Xi + wmciYmci

)
∀m, c

The above M-step has a unique solution due to the convexity of the K cumulant generating functions.
In fact, the above step corresponds to merely maximizing a non-latent exponential family distribution
where the data has been weighted (through the hmi and wmci scalar terms) and has also been
translated since the Ymci are translated versions of the original data.

Visualization

As we mentioned earlier, CEM involves weighted and translated virtual data in the M-steps. EM
only involves weighted terms in the M-step since it only employs the Jensen inequality. The use of
the reverse-Jensen inequality applies to the negated marginal likelihood which provides a repulsion
term through what is often called the background probability. Thus, CEM bounds the negated
marginal likelihood and its negated repulsion forces by translating the data to another position and
then treating it as an attractive force (as in a standard maximum likelihood setting).

An interesting analogy can be made with the translated and weighted data which is depicted in
Figure 5.6. Here, we show a mixture model where 2 (light) Gaussians are assigned to the ’x’ class
and 1 (dark) Gaussian is assigned to the ’+’ class. Basically, CEM re-weights the data if it is
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Figure 5.6: CEM Data Weighting and Translation. Figure (a) depicts the incomplete data and the
models that describe it. Figures (b) and (c) depicts the complete data as seen by one of the ’x’
models where the data is weighted and the other class’ data is translated. Similarly, (c) depicts the
what the model for the ’+’ class sees.

in the model’s class but if it is in another class, the data gets translated and re-weighted. The
translation involves adding a scaled gradient vector K′(Θ̃mc) to the data. In the Gaussian case,
the translation effectively moves the data point through the mean of the model and puts it on the
other side. Therefore, instead of repelling from the negative data (or the incorrect class), a model
gravitates towards it after it has been translated to the other side. The data and models are seen
in Figure 5.6(a). Figure 5.6(b) shows how one of the ’x’ Gaussians sees ’x’ data nearby it with high
weight and ’x’ data far away with less weight (as in EM). However, the other class data (the ’+’
points) are seen translated to the other side of the model with a weight of their own. Thus, the
model will effectively repel away from them. Similarly, Figure 5.6(c) depicts the weighting for the
other ’x’ model which has different weights on the correct data and has different virtual data from
the repulsion of the other class. Finally, Figure 5.6(d) depicts the lonely ’+’ model which gets all
the ’+’ data with equal weight as well as a repulsion term from the ’x’ data.

Since Gaussians are an exponential family model that is self-dual, their data vectors and their
parameter vectors lie in the same space (i.e. the gradient space of 1/2ΘT Θ is Θ). Therefore, the
analogy of translating through the means of the Gaussian can be made here. In other distributions,
the analogy does not maintain the same geometric interpretation but can be made more loosely at
a higher level through the gradients of the cumulant-generating function.

Experiments

We now show some experiments that compare CEM with EM (and therefore pit conditional likelihood
against joint likelihood). In these experiments, we used the straightforward reverse-Jensen bounds
that we have described in the previous section. It is quite possible that alternative schemes (which
will be described later) such as annealing (see Section 5.7.1) and the so-called data-set bound (see
Section 6.7) could be helpful in obtaining faster convergence or quasi-global optima and this remains
to be explored.

In Figure 5.7 we depict the toy problem we initially posed. The model being used is a mixture
of 2 Gaussians per class where the mixing proportions are equal and the Gaussians have identity
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Figure 5.7: CEM vs. EM Performance on a Gaussian Mixture Model. The clustering CEM computes
as well as the one EM finds are shown on the left. The plots depict conditional likelihood, likelihood
and classification accuracy on the right. CEM’s performance is shown as a solid blue line while EM’s
performance is shown as a dashed red line.

covariance. Here, both EM and CEM are initialized with the same configuration. Both EM and
CEM converge monotonically for their respective objective functions We note that EM quickly
converges to a maximum likelihood solution and CEM takes a few more iterations to converge to
the maximum conditional likelihood solution. However, in this problem, maximum likelihood is a
very poor criterion and the resulting classifier that EM generates has a classification accuracy of
50% (random chance). Meanwhile, CEM produces a classifier that has 100% accuracy.

We compare that above performance with that of (batch) gradient ascent in Figure 5.8. Here, we
applied gradient ascent to both the maximum likelihood problem and the maximum conditional
likelihood problem. Therefore, we are not using bounds. While gradient ascent seems to converge
nicely for the maximum likelihood problem, it gets stuck in local minima when applied to the
maximum conditional likelihood problem. Thus, the reverse-Jensen bounds can have advantages
over a purely local optimization technique like gradient ascent.

In another evaluation of CEM an EM, we used a standardized UCI data set, the Yeast data set.
Here, there are 9 classes of yeast that are to be classified based on continuous features. The inputs
were scaled and translated to have zero mean and identity covariance. We assumed a rather poor
model: an equal mixture of 2 Gaussians per class. Each Gaussian has identity covariance which
restricts the power of the model considerably. Figure 5.9 depicts the resulting performance of EM
and CEM. Although CEM takes a long time to converge, it provides a better conditional likelihood
score as well as better classification accuracy. The training data included 600 exemplars while the
test data included 884. Table 5.7 summarizes the results which suggests that CEM is better suited
for classification tasks (here, random guessing would produce an accuracy of about 10%).
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Figure 5.8: Gradient Ascent on Conditional and Joint Likelihood. Here, we are optimizing the same
Gaussian Mixture Model. Gradient ascent seems to work on joint likelihood but gets stuck on the
conditional. The plots depict conditional likelihood, likelihood and classification accuracy on the
right. Gradient ascent on conditional likelihood is shown as a solid blue line while ascent on joint
likelihoods is shown as a dashed red line.

Training Log-Likelihood Conditional Log-Likelihood Accuracy
EM -5946 444.1 58.3%
CEM -7404 859.0 67.2%
Testing Log-Likelihood Conditional Log-Likelihood Accuracy
EM -9210 424.4 51.2%
CEM -11121 835.4 54.0%

Table 5.3: CEM & EM Performance for Yeast Data Set.

0 200 400
−1500

−1000

−500

0

500

1000
Conditional Log−Likelihoods

0 200 400
−9500

−9000

−8500

−8000

−7500

−7000

−6500

−6000

−5500
Log−Likelihoods

0 200 400
50

100

150

200

250

300

350

400

450
Classification Accuracy

Figure 5.9: CEM vs. EM Performance on the Yeast UCI Dataset. The plots depict conditional
likelihood, likelihood and classification accuracy on the right. CEM’s performance is shown as a
solid blue line while EM’s performance is shown as a dashed red line.
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5.7.1 Deterministic Annealing

In the EM algorithm, it is known that local minima problems can be avoided if one uses a tech-
nique called Deterministic Annealing [194] which effectively replaces the current models for each
exponential family distribution with a temperature-scaled version as follows:

exp(. . .)→ exp
(

1
Temp

× (. . .)
)

Effectively, Jensen’s inequality is softened by bounding a different pdf which has smoother properties.
A similar technique is also be feasible with the reverse-Jensen inequality. This gives a deterministi-
cally annealed type of a maximum conditional likelihood algorithm, i.e. annealed CEM. Annealing
is the simple operation of replacing every exponentiation operation with a softened exponentiation
where we divide by a scalar Temp temperature value. We follow a standard annealing schedule
where this temperature value starts off large and is slowly decremented until the temperature goes
to unity. This typically softens the bounds and should improve convergence to obtain quasi-global
optima.

5.8 Latent Maximum Entropy Discrimination

The MED framework can also directly benefit from the reverse-Jensen bounds and it is straightfor-
ward to see how these permit it to handle mixture models. Furthermore, discrimination is much
better suited for classification and regression than conditional likelihood. We begin by placing
mixtures of the e-family in the MED discriminant function:

L(X; Θ) = log
∑

m P (m,X|Θ+)∑
m P (m,X|Θ−)

+ b

Recall that the constraints to be satisfied involve expectations over the discriminant function as
follows: ∫

P (Θ, γt) [ytL(Xt; Θ)− γt] ≥ 0

If we expand the above constraints, it becomes clear that the integrals they produce are intractable
due to the presence of the summation over the hidden variable. Therefore, we will not have an
analytic partition function and objective to optimize. The solution is to invoke Jensen and reverse-
Jensen bounds as follows (here, without loss of generality, we assume that yt = 1, if yt = −1, we
swap the application of the Jensen and reverse-Jensen bound):∫

P (Θ, γt)

[
yt log

(∑
m

P (m,Xt|Θ+)

)
− yt log

(∑
m

P (m,Xt|Θ−)

)
+ b− γt

]
≥ 0∫

P (Θ, γt)
[
log
(
exp(k̃)Πmp(Ỹm|m,Θ+)w̃m

)
− log

(
exp(k)Πmp(Ym|m,Θ−)−wm

)
+ b− γt

]
≥ 0

Above, we have lower bounded the left hand side. If we satisfy the ’greater than zero’ constraint with
the lower bound we have just created (using Jensen and reverse-Jensen), then we must automatically
satisfy it for the original quantity (the true expectation constraint). Therefore, we have introduced
bounds that give stricter constraints in the MED framework to avoid the intractabilities. The
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logarithm operator no longer acts on a summation and the integrals can be computed analytically
(provided that the P (Θ, γ) is in a conjugate form to the discriminant function’s probability model).

Effectively, we have replaced the discriminant function L(Xt; Θ) with a lower bound on it whenever
yt = 1, and an upper bound whenever yt = −1. Therefore we can now propose an iterative MED
algorithm that is locally optimal (but not unique). We assume that we start with an estimated
mode of the model P (Θ, γ) which we will denote Θt:

• Step 1: Each data point’s discriminant function is bounded individually using the Jensen and
reverse-Jensen bounds. This is done at the current estimated mode of the model P (Θ, γ), i.e.
a given Θt.

• Step 2: We solve the MED optimization using the bounds and obtain the current Lagrange
multipliers. These new Lagrange multipliers λt+1 are then used to compute P (Θ, γ) and again
generate a new estimated mode Θt+1.

The above steps are iterated until convergence. In practice, the above variational bound will become
more accurate as the MED solution distribution P (Θ) becomes more peaked. This is typically the
case as we converge to a final solution and the Lagrange multipliers in the objective function J(λ)
settle to their locally optimal configuration.

The latent MED technique discussed above has an interesting geometric interpretation. Figure 5.10
depicts the process where we interleave the Jensen and reverse-Jensen bounds with an iterated MED
projection calculation. Since it is impossible to do the projection tractably with the full latent model,
we cannot find the closest distribution from the MED prior P0(Θ) to the true admissible set P and
its large (and complicated) convex hull. Instead, we pick an arbitrary point Pt(Θ) (typically the
EM algorithm’s maximum likelihood estimate is used to initialize this posterior distribution). We
then find a more constrained convex hull which is formed by invoking the Jensen and reverse-Jensen
bounds at the mode of the current Pt(Θ), namely Θ̂t. This smaller convex hull admits a closed-form
solution since it only involves e-family discriminant functions. Thus, we can find the closest point to
the prior by a direct MED projection which yields Pt+1(Θ). This process is iterated and the small
convex hull (which lies within the large original hull, i.e. the admissible set), is slowly updated until
we reach a local minimum where the MED projection no longer modifies the solution Pt++(Θ).

5.8.1 Experiments

To compare the latent MED against the standard EM framework, we employed a simple mixture
of Gaussians model. The means are permitted to vary while the mixing proportions are held fixed
and the covariances are locked at identity. The data set used was the Pima Indians Diabetes data
set (available from the UCI repository). The input forms a 7-dimensional feature space while the
output is a binary class. Training was performed on 200 input points while testing was performed on
the remaining 332 points. Table 5.8.1 depicts the performance of EM and the latent MED technique
(using the reverse-Jensen bounds in a CEM-type of iterative loop).

In Table 5.8.1 we also present the results with a standard support vector machine and note that the
latent MED performance achieves comparable to the polynomial kernel based SVM, or equivalently a
non-latent MED with a polynomial kernel. While the latent MED solution used the same generative
model as the EM algorithm (a mixture of Gaussians), the discriminative aspect of the estimation
in MED provides better classification performance. In all the SVM and the MED experiments, the
regularization constant c was set to 10. Furthermore, in the SVM experiments, the input space
was scaled such that it remained within the unit cube for normalization reasons (while the EM and
latent MED implementations operated on the raw original data).
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Figure 5.10: Iterated Latent MED Projection with Jensen and Reverse-Jensen Bounds. Direct
projection to the admissible set P would give rise to an intractable MED solution due to the mixture
of e-family discriminant function. Instead, a stricter convex hull within the admissible set is found
using the Jensen and reverse-Jensen inequalities which give rise to a simple e-family discriminant
function and therefore permit closed form projection. The process is iterated until we converge to a
locally optimal point that is as close to the prior as possible while remaining in the admissible set.

Training Accuracy Testing Accuracy
EM - 2 Gaussian Mixture 73 % 70%
EM - 3 Gaussian Mixture 71 % 72%
EM - 4 Gaussian Mixture 68 % 67%
MED - 2 Gaussian Mixture 74 % 79%
MED - 3 Gaussian Mixture 78 % 78%
MED - 4 Gaussian Mixture 77 % 77%

Table 5.4: EM and latent MED Performance on the Pima Indians Data Set.

Training Accuracy Testing Accuracy
SVM - 1st Order 76 % 79%
SVM - 2nd Order 77 % 80%
SVM - 3rd Order 79 % 78%
SVM - 4th Order 84 % 76%

Table 5.5: SVM with Polynomial Kernel Performance on the Pima Indians Data Set.
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5.9 Beyond Simple Mixtures

It is clear that the mixture of exponential family distributions we have specified in this chapter does
not capture all latent model situations that are typical in machine learning. For example, it is difficult
to represent the latencies that would arise in a structured graphical model with this flat mixture.
Chapter 6 expands on the mixture model we have seen such that it can encompass latent Bayesian
networks and structured mixture model situations. This will permit us to consider structures such
as hidden Markov models. The Jensen and reverse-Jensen inequalities will be reiterated for such
models and we shall show efficient algorithms for computing the bounds’ parameters in polynomial
time. Subsequently, Chapter 7 goes into the derivation details of the reverse-Jensen inequality which
was put forward without proof in this chapter. Therein we show the proof for the case of structured
mixtures as in Chapter 6 since it subsumes the case of flat mixtures in this chapter.



Chapter 6

Structured Mixture Models

In the previous chapter, we addressed the problem of discrimination with a standard flat mixture
model. The intractabilities that resulted from this model were avoided by utilizing upper and lower
bounds that mapped the mixture of exponential family model into a standard exponential family
form permitting monotonically convergent maximum conditional likelihood and iterative latent MED
applications. However, the mixture models we described earlier were limited and cannot span the
full spectrum of latent models such as latent Bayesian networks, hidden Markov models and so
forth. Additional flexibility is required in the mixture model such that it can accommodate these
so-called structured models. A structured model, as depicted in Figure 6.1 differs from a flat mixture
model in that the latent variables are not a simple parent of the observable variables. Instead, the
latent variables and the observables may have other dependencies, such as a Markov structure and
so forth. From a mathematical point of view, the flat mixture model we previously considered, only
had parameters that were independent across each element in the summation (within the log-sum).
In many latent model situations, particularly when we are dealing with a structured graphical model,
the elements in the mixture will have tied parameter models.

T=1 T=2 T=3 T=4 T=5

S1 S2 S3 S4 S5

X1 X2 X3 X4 X5

Figure 6.1: Graph of a Structured Mixture Model (HMM)

In this chapter, we will begin by motivating a more complicated class of mixtures of the exponential
family that goes beyond Equation 5.1. This is done by noting that a hidden Markov model cannot be
described in the mixture model framework we previously encountered and subsequently proposing
a more appropriate structured mixture or, alternatively, what we call a mixture of mixtures. The
Jensen and Reverse-Jensen inequalities are then explicated for this case and effectively map the latent
model back to a standard exponential family form. We then go into details on the computation of
the reverse-Jensen inequality for a hidden Markov model as well resolve important issues of efficiency
(i.e. via dynamic programming and other efficient algorithms). Then, we show some illustrations
of the CEM algorithm applied to an HMM. Further results on CEM with HMMs are elaborated in
Chapter 8. We then discuss the case of latent Bayesian networks in general. Finally, as an interesting
academic exercise (which may be skipped by the reader) we show how summation or data set of log
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mixture models can be mapped into a single structured mixture model.

6.1 Hidden Markov Models

Consider the case above where we are dealing with a hidden Markov model as in Figure 6.1. This
model and any many latent Bayesian networks like it can be seen as a mixture of exponential families.
An important result [34] is that tree structured dependencies between variables who are themselves
in the exponential family form an aggregate exponential-family distribution. Therefore, we can ex-
tend the Jensen bound and reverse-Jensen bounds to Bayesian networks or directed acyclic graphs
(DAGs) which have a general tree-structure. However, it remains crucial to map the probability
distribution of the HMM (or another latent Bayesian network) into a mixture of naturally param-
eterized exponential family distributions to fully take advantage of this property and to apply the
reverse-Jensen bounds (just as it was crucial to work with natural parameterizations to clearly see
the bounds on flat mixtures in the previous chapter).

A hidden Markov model 1 or doubly-stochastic-automaton is an interesting mixture of exponential
family distributions and is another important ’client model’ for the reverse-Jensen bounds we have
proposed for discriminative learning. An HMM typically involves a sequence X of T output vectors
(o1, ..., oT ) living in a D-dimensional space. A M -state Markov model has state vectors (s1, ..., sT )
which identify for each t ∈ [1..T ] which state m ∈ [1..M ] the model is in. It can generally be
described by the following pdf (if we assume we know S, i.e. the states are not hidden):

p(X, S) = p(s1)p(o1|s1)ΠT
t=2p(st|st−1)p(ot|st)

The choices for the component distributions (i.e. the transition distributions p(st|st−1) and emis-
sion distributions p(ot|st)) are either multinomials, Gaussians or another member of the exponential
family. Selecting a multinomial model for p(st|st−1) gives us a stochastic finite state automaton (an
HMM). Selecting a Gaussian model for p(st|st−1) generates a linear dynamic system (an LDS) or
a Kalman filter. If the output emission p(ot|st) distribution is chosen to be Gaussian, we expect
continuous vector outputs from the automaton. If the output distribution is multinomial, the au-
tomaton generates discrete symbols. Either way, as long as the component distributions are in the
exponential family, any product of the exponential distributions remains in the exponential family
as well.

Since we deal with hidden Markov models where S is not observed (it is a latent or hidden variable)
a marginalization is involved. Thus, we sum over all possible settings of the S (i.e. a total of about
MT configurations). This summation need not be inefficient, though, and can be computed via
recursion and tree-based algorithms. This is represented as follows:

p(X) =
∑
S

p(X, S) =
M∑

s1=1

· · ·
M∑

sT =1

p(X, S)

This is the likelihood of data under a hidden Markov model. It is well known that EM and Jensen
can generate a lower bound on the probability distribution above which has a simple (non-latent)
e-family form. To perform maximum conditional likelihood or discrimination, though, we need to

1The HMM can be taken more generally as a hidden state machine (which we can take noisy measurements of)
evolving with Markovian dynamics. Therefore, a linear dynamical system (LDS) can be treated in a similar way.
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upper bound the log-likelihood. First, we shall begin by expanding the above:

p(X) =
∑
S

p(X, S) =
M∑

s1=1

· · ·
M∑

sT =1

p(s1)p(X1|s1)ΠT
t=2p(st|st−1)p(Xt|st)

At this point, we will be more specific for the sake of clarity and define the actual distributions of
the HMM. The following development doesn’t cause a loss of generality. We shall assume that we
are dealing with an HMM with Gaussian emissions (where the means of each Gaussian are to be
estimated while the covariances are locked at identity) and we have multinomial models to describe
the transition matrix from hidden state to hidden state (unlike a Kalman filter which would require
a Gaussian on the sate transition probabilities). In the above, the state transition probability is
typically given as a multinomial (or transition matrix). This state transition can be expressed in
the following standard form or in its natural exponential family form:

p(st|st−1 = m) = ΠM
i=1((αm)i)(st)i

= exp
{
A(xt) + ηT

mxt −K(ηm)
}

As before, we will use the multinomial in its exponential family form to compute the reverse-Jensen
bound. Therein, the xt is a vector of length M − 1 which is all zero and contains a ’1’ at the k′th
index value if the current state is st = k. If the current state is st = M , then the x is all zeros.
Once again, the ηm is related to the αm multinomial model through a simple transformation. The
A() function and the K() function correspond to the standard ones for the multinomial as given in
Table 25. To be more specific, we write the transition probabilities as follows where the ηm and the
x values are indexed by the appropriate st−1 and st state-labels respectively:

p(st|st−1 = m) = exp
{
A(x(st)) + η(st−1)T x(st)−K(η(st−1))

}
The Gaussian in exponential family form is straightforward and gives the emission probability:

p(Xt|st = m) = exp
{
A(Xt) + θT

mXt −K(θm)
}

= exp
{
A(Xt) + θ(st)T Xt −K(θ(st))

}
For simplicity, we can assume the prior over initial states p(s1) is fixed and equal for all states as
p(s1) = 1

M . Thus, at this point, we can write the HMM’s likelihood as a mixture of exponential
family distributions as follows:

p(X) =
M∑

s1=1

· · ·
M∑

sT =1

1
M

exp

(
T∑

t=1

A(Xt) + θ(st)T Xt −K(θ(st))

+
T∑

t=2

A(x(st)) + η(st−1)T x(st)−K(η(st−1))

)

The above mixture cannot be cast in the form introduced in Chapter 5 (in Equation 5.1) since each
of the M elements in the mixture there had its own exponential family model, Θm. The above
mixture has approximately MT components yet only 2M models (M Gaussian mean parameters,
θm, and M multinomial transition parameters ηm). Therefore, we need to have a mixture model
form which involves summing many e-family distributions where the models can be replicated while
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the data varies. In other words, consider the form below where we have indexed data vectors X
with both m and n and sum over m = 1..M as well as n = 1..N .

p(X|Θ) =
M∑

m=1

N∑
n=1

αmn exp(Am(Xmn) + XT
mnΘm −Km(Θm)) (6.1)

Equation 6.1 does appear to be a strange mixture model indeed. The latent variables (i.e. the indexes
m and n) no longer have the simple intuitive statistical meaning that the latencies in Equation 5.1
carried. However, the mathematical form is the important generalization and we now have the
flexibility to describe the probability distribution of an HMM (or other latent Bayesian networks)
using the notation in Equation 6.1. Here, we can reuse a given exponential family model Θm in
different components in the mixture while varying the data that it interacts with (namely the Xmn).
The Xmn are various vectors of the same cardinality as Θm which can be explicitly computed from
the original observations, say X and the index variables m and n. For example, we may think of
them as the result of an arbitrary function that operates on X, i.e. Xmn = fmn(X). The form
above will be called a mixture of mixtures. It is clear that the setting of N = 1 will make the
above mixture model identical to the original one in Equation 5.1 in Chapter 5. We will now go into
details of the above form and derive the parameters for the corresponding Jensen and reverse-Jensen
inequalities. Subsequently, we will explicitly put the HMM in the form of Equation 6.1 and show how
these parameters can be obtained tractably and efficiently by taking advantage of the independency
structure of the HMM’s directed graphical model.

6.2 Mixture of Mixtures

We have motivated the use of the double mixture or mixture of mixtures. We will see that the
more elaborate mixture can be bounded with the same form of upper and lower bounds as the flat
mixture model in Chapter 5. We will compute the same (or analogous) parameters for the bounds
as derived previously and obtain similar terms such as w̃m, Ỹm, k̃ for the Jensen bounds as well as
wm, Ym, k for the reverse-Jensen bounds. The actual computation of the bounds is slightly different
than the one shown in Chapter 5 and is a natural generalization of the previous formulas (which are
exactly the same as those for the mixture of mixtures under the setting of N = 1). Once again, we
will work in log-space and consider bounds on this (more elaborate) log-sum:

log p(X|Θ) = log

(
M∑

m=1

N∑
n=1

αmn exp(Am(Xmn) + XT
mnΘm −Km(Θm))

)
(6.2)

6.2.1 Jensen Bounds

Applying Jensen to the log mixture of mixtures log p(X|Θ) lower bounds it with the same function
form as in Chapter 5 except with different parameter definitions:

log
∑
m

∑
n

αmn exp(Am(Xmn) + XT
mnΘm −Km(Θm)) ≥

∑
m

w̃m(A(Ỹm) + Y T
m Θm −Km(Θm)) + k̃

The right hand term is the familiar Q(Θ, Θ̃) function that is derived in the EM algorithm. This
bound is not static, it is a variational lower bound which is always below the original function yet
makes tangential contact with it at a specified current configuration of Θ̃. For a given Θ̃, we again
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have to find settings for the parameters of the bound (w̃m, Ỹm, k̃). Here, k̃ is a scalar, w̃m are positive
scalar weights on the data and Ỹm are virtual data vectors (i.e. translated mixtures of the original
data points):

k̃ = log p(X|Θ̃)−
∑
m

w̃m(A(Ỹm) + Ỹ T
m Θ̃m −Km(Θ̃m))

Ỹm = − 1
w̃m

∑
n

hmn

(
∂Km(Θm)

∂Θm

∣∣∣∣
Θ̃m

−Xmn

)
+

∂Km(Θm)
∂Θm

∣∣∣∣
Θ̃m

=
∑

n

hmn∑
n hmn

Xmn

wm =
∑

n

hmn

For convenience, the above uses hmn which are referred to as responsibilities. These are positive
scalars defined as follows:

hmn =
αmn exp(Am(Xmn) + XT

mnΘ̃m −Km(Θ̃m))∑
m

∑
n αmn exp(Am(Xmn) + XT

mnΘ̃m −Km(Θ̃m))
(6.3)

We obtain the parameters for k̃ and Ỹm by making sure that the bound is equal to the original
function p(X|Θ) at Θ̃ and both their gradients are equal as well. The formula for w̃m naturally
results from using Jensen’s inequality subsequently. It is clear that from only local calculations, we
obtain a global lower bound on log p(X|Θ).

6.2.2 Reverse Jensen Bounds

Now, if we wish to upper bound the log-sum instead, we use reverse Jensen:

log
∑
m

∑
n

αmn exp(Am(Xmn) + XT
mnΘm −Km(Θm)) ≤

∑
m

(−wm)(Am(Ym) + Y T
m Θm −Km(Θm)) + k

In this case the parameters are:

k = log p(X|Θ̃) +
∑
m

wm(Am(Ym) + Y T
m Θ̃m −Km(Θ̃m))

Ym =
1

wm

∑
n

hmn

(
∂Km(Θm)

∂Θm

∣∣∣∣
Θ̃m

−Xmn

)
+

∂Km(Θm)
∂Θm

∣∣∣∣
Θ̃m

w′m = minw′m such that
1

w′m

∑
n

hmn

(
∂K(Θm)

∂Θm

∣∣∣∣
Θ̃m

−Xmn

)
+

∂K(Θm)
∂Θm

∣∣∣∣
Θ̃m

∈ ∂K(Θm)
∂Θm

wm = 4 G

(∑
n hmnZT

mnZmn

2 maxnZT
mnZmn

)
max

n
ZT

mnZmn + w′m

whereZmn = K′′(Θ̃m)−1/2(Xmn −K′(Θ̃m))

Once again, the function G(γ) is given by Equation 5.10. This bound effectively re-weights (wm)
and translates (Ym) incomplete data to obtain complete data. The wm are positive weights and we
pick the smallest wm and w′m which still satisfy the last two simple conditions. We can always set
wm larger than the conditions require but smaller wm values mean a tighter bound. Furthermore,
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increasing the values of the terms maxnZT
mnZmn or increasing

∑
n hmnZT

mnZmn will also yield
guaranteed yet more conservative (looser) bounds. This may be necessary if these terms are too
complicated to compute exactly while upper bounds on them may be efficient to estimate.

The first condition requires that the w′m generate a valid Ym that lives in the gradient space of the
K functions (a typical e-family constraint) 2. Thus, from local computations of the log-sum’s values,
gradients and Hessians at the current Θ̃, we can compute global upper bounds.

We recognize that the recipes for Ym and k here are quite similar to those of the Jensen bound
except that we have solved for different wm values to generate the dual inequality. The similarity
is due to the fact that both bounds are variational and make tangential contact at Θ̃. Thus, their
values and gradients are equal to the original function log P (X|Θ) at Θ̃ hence the natural coupling
of the linear parameters Ym and k. It is clear that from only local calculations, we obtain a global
upper bound on log p(X|Θ).

In fact, the reverse-Jensen inequality’s computational effort (and tightness) hinges on our ability to
compute wm (through summations and maximizations over the transformed data). This is because
the Ym is given by the following closed form formula thereafter (the scalar k parameter is trivial
and usually irrelevant). The simple formula for Ym that does not require any summations over the
data and is given by a straightforward manipulation of the definition for Ym in the reverse-Jensen
inequality and the definition for Ỹm in the traditional Jensen inequality:

Ym =
(

w̃m

wm
+ 1
)
K′(Θ̃m)− w̃m

wm
Ỹm

We can also use this definition to quickly isolate the requirements on the positive scalar w′m which
guarantees that the virtual data Ym remains in the gradient space of the cumulant generating
function. For example, in the case of the Gaussian mean, w′m is 0 since we have no constraints on
the gradient space: K(Θ) = 1/2θT θ which spans all gradients. In the case of the multinomial, the
cumulant generating function is K(Θ) = η log(1 +

∑
i exp(θi)). Therefore, each of the Ym vector’s

elements is restricted to [0, η) and the sum of the elements of Ym is also restricted to the range [0, η).

The Appendix contains a tighter formulation than the one above. The G(γ) function is actually
an upper bound on a tighter reverse-Jensen solution for wm which involves numerical table lookups
(this is detailed in the derivation of the reverse-Jensen inequality in the next Chapter and in the
Appendix). Furthermore, in practice, we omit the multiplicative 4 (i.e. make it 1 or less) in the
definition for wm which scales the G(γ) function and still obtain very reasonable bounds (which we
cannot analytically guarantee, however).

We can also employ a simpler (yet looser) version of the above bounds as described in [94] as follows:

wm = max
n

(
Xmn −K′(Θ̃m)

)T

K′′(Θ̃m)−1
(
Xmn −K′(Θ̃m)

)
+ w′m (6.4)

The reverse-Jensen inequality as well as the above looser bound are both derived thoroughly in
Chapter 7. The above simpler bound is based on a sloppy curvature check. Although curvature
constraints are easy ways to construct bounds, they may be too conservative and generate loose
bounds. It is best to avoid curvature checking in bound derivations or to defer it to only when
absolutely necessary. In the following, we outline some heuristics to avoiding the full computation of
wm which may be crucial when we are dealing with latent models that are, for example, structured
and do not permit easy computation of the sum and max of the inner-products ZT

mnZmn.

2In the Gaussian case, the bounds can be made tighter by letting wm be a full matrix and ignoring the contribution
of w′

m.
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Simplifying Heuristics

There are many heuristics to avoid the extra computations involved in obtaining the
wm parameters for the reverse-Jensen inequality. One way is to avoid the maximization
over the data which may be cumbersome (i.e. in hidden Markov models where the max
is over an exponential number of data configurations). For example, we can use the
the following simple (yet tighter) bound which is no longer globally guaranteed but only
locally guaranteed:

wm =
∑

n

hmn

(
Xmn −K′(Θ̃m)

)T

K′′(Θ̃m)−1
(
Xmn −K′(Θ̃m)

)
+ w′m (6.5)

Here, only an average over the data is needed (i.e. no longer a maximization). Thus,
we can implement an HMM with a forward-backward type of algorithm instead of also
having to solve the maximization problem maxnZT

mnZmn. At the end of this chapter we
derive both the max and the summation for the HMM case.

An additional possible simplification is to avoid computing the wm parameter altogether
by merely setting it to w̃m from the traditional Jensen inequality, i.e.:

wm = w̃m + w′m

This assumes that the upper bound has the same width and overall shape (modulo a
flip and a translation) as the corresponding lower bound which may sometimes be a
reasonable assumption. Evidently, this lazily requires no extra computation beyond the
usual Jensen inequality. A few such iterations are acceptable at the beginning of an
iterative algorithm until the optimization and help accelerate convergence in the early
stages. It is wise, however, to eventually switch to the guaranteed bounds (involving the
G() function thereafter) to avoid divergence.

Visualization

In this visualization, we merely show the log-sum with several random scalar values of xt data
points under a single Gaussian model, a single Poisson distribution and finally a single exponential
model. Figures 6.2, 6.3, and 6.4 depict the Jensen lower bound, the reverse-Jensen as well as the
original distribution. Here, for visualization purposes we have chosen to represent the bounds in
product-space for the Gaussian (and logarithmic space for the others).
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Figure 6.2: Jensen (dashed cyan) and reverse-Jensen (solid blue) bounds on the original mixture of
mixtures distribution (thick red dots). The Gaussian model is shown with a mixture of data points
in a product scale (as opposed to the logarithmic scale).
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Figure 6.3: Jensen (dashed cyan) and reverse-Jensen (solid blue) bounds on the original mixture of
mixtures distribution (thick red dots). The Poisson model is shown with a mixture of data points
in a logarithmic scale.
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Figure 6.4: Jensen (dashed cyan) and reverse-Jensen (solid blue) bounds on the original mixture
of mixtures distribution (thick red dots). The Exponential distribution is shown with a mixture of
data points in a logarithmic scale.

6.3 Reverse Jensen Inequality for Hidden Markov Models

At this point, we resume our development of hidden Markov models and more explicitly cast them in
the desired mixture of mixtures form (Equation 6.1). Since applying Jensen’s inequality to HMMs is
straightforward from the standard EM, Baum-Welch literature [13] [12] [156] [102], we will only go
into the details of the reverse-Jensen inequality case. Recall that we had the following probability
density function for the HMM:

p(X) =
M∑

s1=1

· · ·
M∑

sT =1

1
M

exp

(
T∑

t=1

A(Xt) + θ(st)T Xt −K(θ(st))

+
T∑

t=2

A(x(st)) + η(st−1)T x(st)−K(η(st−1))

)

We shall now introduce indicator functions that will clarify the above notation. Consider the case
when st = m, this can be represented by a delta-function that is only unity when st = m and is zero
otherwise, i.e. δ(st = m). This allows us to simplify the above as:

p(X) =
M∑

s1=1

· · ·
M∑

sT =1

1
M

exp

(
M∑

m=1

{
T∑

t=1

δ(st = m)A(Xt) + δ(st = m)θT
mXt − δ(st = m)K(θm)

}

+
M∑

m=1

{
T∑

t=2

δ(st−1 = m)A(x(st)) + δ(st−1 = m)ηT
mx(st)− δ(st−1 = m)K(ηm)

})

Therefore, in the above, we are summing many exp() functions each of which is an exponential
family member. The e-family member consists of an inner product with an aggregate data vector
and an aggregate K-type partition function. Our parameters for this hidden Markov model are M
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multinomial parameters and M Gaussian emission parameters. The aggregate parameter vector Θ
can be seen as all these parameter vectors spliced together. The above can thus also be expressed
as:

p(X) =
M∑

s1=1

· · ·
M∑

sT =1

1
M

exp
(
A(Xs) + ΘT Xs −K(Θ)

)
To compute reverse-Jensen bound over this structure we must be efficient since explicitly enumerating
all the terms in the sum will cause intractabilities. To compute the reverse-bounds, it is suffices to
show how to compute the wm parameters. The Ym and k parameters of the reverse-bound will not
result in intractable computation once we have the wm. We assume that obtaining the usual Jensen
bounds is also feasible, giving us w̃m, Ỹm and k̃. If we have solved for wm for the reverse-Jensen
case, obtaining the equivalent Ym is given by the following3 efficient formula:

Ym =
(

w̃m

wm
+ 1
)
K′(Θ̃m)− w̃m

wm
Ỹm

Obtaining the corresponding k scalar parameter for the reverse-Jensen case is then trivial. The
crucial parameters to compute are the wm parameters which determine the width of the reverse-
Jensen bounds for the M Gaussian and the M multinomial models. Thus, we need to solve for 2M
scalars. To distinguish the multinomial width parameters from those of the Gaussian we will use
w̄m where m = 1..M to index the multinomial models and use wm where m = 1..M to index the
Gaussian models. We now show how to estimate these computationally critical wm for the Gaussian
parameters of the HMM as well as the corresponding wm̄ for the multinomial parameters of the
HMM.

6.3.1 Bounding the HMM Gaussians

Now, let us consider each component of the Θ vector individually. First, consider the m’th Gaussian
emission component being dot-producted in the exponential:

exp

(
. . . + θT

m

T∑
t=1

δ(st = m)Xt − . . .

)

Therefore, the Zm̄s vector (from the previous reverse-Jensen bound definition and its nomenclature)
that corresponds to it is:

Zms = K′′(θ̃m)−1/2

(
T∑

t=1

δ(st = m)Xt −
T∑

t=1

δ(st = m)K′(θ̃m)

)

However, in the Gaussian case, we have K(θm) = 1
2θT

mθm so the above quickly simplifies into:

Zms =
T∑

t=1

δ(st = m)(Xt − θ̃m)

3The formula for Ym here is straightforward to derive, simply by starting from the definitions of the Jensen and
Reverse-Jensen bounds.
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Now, to compute the wm (and later the wm̄ for the multinomial) that correspond to the necessary
reverse-Jensen bounds we need to efficiently evaluate the following expressions or upper bounds on
them: ∑

s

hsZT
msZms

max
s
ZT

msZms

Above we recognize the responsibility terms hs which are the probability posteriors over the latent
state paths at the previous model setting Θ̃ given the observations {X} or X1, . . . , XT . Thus, they
can be written as hs = p(s1, . . . , sT |{X}, Θ̃). Let us now expand out the required the inner products
in the above computations:

ZT
msZms =

T∑
t=1

δ(st = m)(Xt − θ̃m)T ×
T∑

t=1

δ(st = m)(Xt − θ̃m)

For one of the terms of the reverse-Jensen bound, we need the max over all such possible inner
products. Thus we need compute the maximum over any path of the above quantity:

max
s
ZT

msZms = max
s

T∑
t=1

δ(st = m)(Xt − θ̃m)T ×
T∑

τ=1

δ(sτ = m)(Xτ − θ̃m)

Expanding the above, we obtain:

max
s
ZT

msZms = max
s

T∑
t=1

T∑
τ=1

δ(st = m)δ(sτ = m)(Xt − θ̃m)T (Xτ − θ̃m)

The discrete optimization required now will probably require integer programming to solve exactly
(probably some variant of the knapsack problem). However, we can find an upper bound on the
desired quantity with a simple a quadratic program. To do so, we simply introduce the following
λ-scalar variables:

λt := δ(st = m)

We do this for all time steps t ∈ [1, . . . , T ]. These λt are bounded over λt ∈ [0, 1] and thus are a
super-set of the binary variables. Therefore, maximizing over this larger space of variables will yield
the true maxsZT

msZms or an upper bound over it. Thus, we can replace the above optimization
with:

max
s
ZT

msZms ≤ max
λ1,...,λT

T∑
t=1

T∑
τ=1

λtλτ (Xt − θ̃m)T (Xτ − θ̃m) ∀λt ∈ [0, 1]

The above is a quadratic program over T variables with 2T inequality constraints which can be
solved in a straightforward manner (subject to the box constraints on λt ∈ [0, 1]). It is also evident
that the maximum usually lies outside the convex hull of constraints and will typically cause the λt

to rail to their extremes at the end of the optimization (except for degenerate situations). Therefore,
we get a more conservative value for the maximum data magnitude which is still a guaranteed upper
bound.
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Now, we detail the computation of the other component of the wm bound-parameter: the ’expected
magnitude’ (instead of the max):

∑
s

hsZT
msZms =

∑
s

hs

T∑
t=1

δ(st = m)(Xt − θ̃m)T ×
T∑

t=1

δ(st = m)(Xt − θ̃m)

Expanding the above, we obtain:

∑
s

hsZT
msZms =

T∑
t=1

T∑
τ=1

(∑
s

hsδ(st = m)δ(sτ = m)

)
(Xt − θ̃m)T (Xτ − θ̃m)

=
T∑

t=1

T∑
τ=1

p(st = m, sτ = m|{X}, Θ̃) (Xt − θ̃m)T (Xτ − θ̃m)

In the above, we have introduced the marginal distribution p(st = m, sτ = m|{X}, Θ̃) over the state
at time t being m and the state at time τ being m after the HMM observations have been accounted
for. This marginal distribution over a state sequence sub-string is straightforward to compute
efficiently since the HMM is a tree-structured graphical model which permits efficient computation
of marginal distributions (which is based on the Baum-Welch forward backward algorithm). In the
case where τ = t, the probability is merely p(st = m|{X}, Θ̃) which is equal to the traditional
normalized α̂t(m)β̂t(m) product from the familiar forward-backward algorithm [156].

For completeness, we will show how to compute the marginal distribution p(st, sτ |{X}),
where we will assume, without loss of generality, that t < τ . Several quantities are
easy to compute after the forward-backward algorithm. Once of them is the marginal
over a single state: p(st|{X}) = α̂tβ̂t. Similarly, there is a direct formula for the
marginal over a pair of subsequent states (where ct is Rabiner’s so-called scaling factor):
p(st+1, st|{X}) = ct+1α̂(st)p(st+1|st)p(Xt+1|st+1)β̂(st+1). Using Bayes’ rule gives condi-
tionals on pairs of subsequent states p(st+2|st+1, {X}) = p(st+2, st+1|{X})/p(st+1|{X}).
Thus, we can obtain the following three-way marginal by multiplying a pairwise marginal
with a conditional: p(st+2, st+1, st|{X}) = p(st+2|st+1, {X})p(st+1, st|{X}). To obtain
p(st+2, st|{X}) we merely sum the later marginal over st+1. This reasonably efficient
process is iterated until we reach p(st, sτ |{X}) and does not require intractable compu-
tation.

The above computation can be implemented efficiently with approximately O(T 2M2) operations
since we need to consider bivariate probability distributions p(st, sτ ) which are of order M ×M for
every pair of time points in the trellis of length T . Although this is a factor of T slower than the
computation of the forward backward algorithm in regular hidden Markov models which is typically
O(TM2), the above computation is tractable (particularly for short trellis lengths).

The computations outlined thus readily give us both components (or legitimate upper bounds on
them) of the wm bound parameter efficiently without doing intractable calculations. These only
require a simple quadratic program as well as the results from EM’s Baum-Welch computations. We
now move to bounding the multinomial parameters.
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6.3.2 Bounding the HMM Multinomials

Next consider the m̄’th multinomial component which is being dot-producted inside the exponential
function as follows:

exp

(
. . . + ηT

m̄

T∑
t=2

δ(st−1 = m̄)x(st)− . . .

)

Therefore, the Zm̄s vector (from the previous reverse-Jensen bound nomenclature) that corresponds
to it is:

Zm̄s = K ′′(η̃m̄)−1/2

(
T∑

t=2

δ(st−1 = m̄)x(st) −
T∑

t=2

δ(st−1 = m̄)K ′(η̃m̄)

)

=
T∑

t=2

δ(st−1 = m̄) K ′′(η̃m̄)−1/2 (x(st) − K ′(η̃m̄))

Now, to compute the wm̄ that correspond to the necessary reverse-Jensen bounds, we need to
efficiently evaluate the following: ∑

s

hsZT
m̄sZm̄s

max
s
ZT

m̄sZm̄s

As before, we can expand the inner products as follows:

ZT
m̄sZm̄s =

T∑
t=2

T∑
τ=2

δ(st−1 = m̄)δ(sτ−1 = m̄) (x(st) − K ′(η̃m̄))T
K ′′(η̃m̄)−1 (x(sτ ) − K ′(η̃m̄))

Since the x data here correspond to only a choice of one of the M -multinomial models, we can
rewrite it as follows:

x(st) =
M∑

q=1

δ(st = q)xq

For notational convenience, we also define the following:

zq = K ′′(η̃m)−1/2 (xq −K ′(η̃m))

Thus, the desired inner product term becomes:

ZT
m̄sZm̄s =

T∑
t=2

T∑
τ=2

δ(st−1 = m̄)δ(sτ−1 = m̄)

(
M∑

q=1

zqδ(st = q)

)T ( M∑
r=1

zrδ(sτ = r)

)

=
T∑

t=2

T∑
τ=2

δ(st−1 = m̄)δ(sτ−1 = m̄)

(
M∑

q=1

M∑
r=1

δ(st = q)δ(sτ = r)zT
q zr

)

To obtain the desired w̄m reverse-Jensen bound parameter for the multinomials, we need to compute
two terms using the above inner-products. These are the expected term (the sum over all the inner



CHAPTER 6. STRUCTURED MIXTURE MODELS 123

products weighted by the hs probabilities) and the max type term. The maxs term is elucidated
first:

max
s
ZT

m̄sZm̄s = max
s

M∑
q=1

M∑
r=1

T∑
t=2

T∑
τ=2

δ(st−1 = m̄)δ(sτ−1 = m̄)δ(st = q)δ(sτ = r) zT
q zr

Although an integer programming solution may be possible for the above maximization, we can
instead solve for an upper bound on it (which will still produce a guaranteed bound) by reformulating
it as follows. We first define scalars as follows:

λrq :=
T∑

t=2

T∑
τ=2

δ(st−1 = m̄)δ(sτ−1 = m̄)δ(st = q)δ(sτ = r)

It is clear that these scalars are all positive, i.e. λrq ≥ 0 which gives us M2 constraints. Furthermore,
we have the following constraint on these variables:∑

r

∑
q

λrq ≤ (T − 1)2

Therefore we can solve for an upper bound on the desired quantity via a simple linear program
over the M2 surrogate variables λrq. By allowing these surrogate λ variables to vary as continuous
parameters over the constrained range, we are solving for a more flexible maximization than the
original integer programming problem over state paths. Therefore optimizing over the λ will yield a
more conservative upper bound on the quantity of interest (which still produces a legitimate reverse-
Jensen bound overall). The solution can thus be solve via the simple linear form below (with the
corresponding M2 + 1 inequality constraints imposed on the λ-variables):

max
s
ZT

m̄sZm̄s ≤ max
λ

M∑
q=1

M∑
r=1

λrq zT
q zr

Now, we turn our attention to the computation of the expected inner product (versus the maximum):

∑
s

hsZT
m̄sZm̄s =

∑
s

hs

M∑
q=1

M∑
r=1

T∑
t=2

T∑
τ=2

δ(st−1 = m̄)δ(sτ−1 = m̄)δ(st = q)δ(sτ = r) zT
q zr

=
M∑

q=1

M∑
r=1

T∑
t=2

T∑
τ=2

∑
s

hsδ(st−1 = m̄)δ(sτ−1 = m̄)δ(st = q)δ(sτ = r) zT
q zr

=
M∑

q=1

M∑
r=1

T∑
t=2

T∑
τ=2

p(st−1 = m̄, sτ−1 = m̄, st = q, sτ = r|{X}, Θ̃) zT
q zr

Once again we have to simply use the marginal distribution over a state sub-string p(st−1 =
m̄, sτ−1 = m̄, st = q, sτ = r|{X}, Θ̃) which is readily obtainable for a tree-structure or chain
structure HMM model without intractable computation. The clique size being considered is over 4
variables here which leads to more work then in a standard EM setting, it appears that computing
the expected data magnitude as opposed to expected data vectors (as EM does) requires squared
clique sizes. More specifically, the implementation of the above requires O(T 2M4) operations since
we need to consider 4-variable probability distributions p(st, st−1, sτ , sτ−1) which are of order M4
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for every pair of time points in the trellis of length T . Although this is slower than the computation
of the forward backward algorithm in a regular hidden Markov model (which is typically O(TM2))
the above computation is still tractable.

The above computations thus give us both the wm and the w̄m parameters for the Gaussian and the
Multinomial components of the reverse-Jensen bound without resorting to intractable computation.
All computations remain efficient via appeals to linear programming, quadratic programming and
forward-backward types of dynamic programming.

6.4 Conditional Hidden Markov Models

Given both Jensen and reverse-Jensen bounds for hidden Markov models, it is now feasible to use
the CEM algorithm and perform conditional likelihood maximization in a straightforward way. In
this section, we will describe one scenario where it becomes necessary to optimize a conditional
likelihood quantity. There are many other situations where a conditional expression will arise due
to the problem formulation and result in a negated log-sum type of expression. Negated log-sums
and conditional likelihood expressions would occur, for example, when learning a classifier based
on multiple competing hidden Markov models, or when learning a mixture-of-experts regression
function whose gates are hidden Markov models. In this section we will focus on and develop what
is traditionally called an input-output hidden Markov model [16] where the objective is to regress
certain components of a time series from others which are observable. Both inputs and outputs are
coupled through a hidden state which evolves with Markov dynamics.

We begin with a standard hidden Markov model as portrayed in the previous sections and assume
that we are given a time sequence of vectors. For an input-output hidden Markov model, we split
the emission vectors into two components: x and y which are to be treated as input and output
respectively. Given a training sequence of such x1, . . . , xT and y1, . . . , yT vector-pairs over time, we
would like to estimate a hidden Markov model such that, on future test data, we can reliably predict
a ŷ1, . . . , ŷτ sequence from a given x̂1, . . . , x̂τ sequence alone. An example application would be to
learn the mapping from various passive biological measurements such as heart-rate, temperature,
motion energy, etc. to a more complicate output measurement such as blood-glucose which would
not always be easily measurable.

We shall assume that we are dealing with an HMM with a total of M underlying states which
gives rise to an M ×M transition matrix. This transition matrix is equivalently described by M
multinomial distributions of dimensionality equal to M . We will further assume that the emission
model for x and y is jointly Gaussian with a diagonal covariance matrix. Therefore, it is necessary
to estimate the M Gaussian covariance terms, the M Gaussian mean terms and the M ×M state
transition matrix.

Since we wish to regress y from x, it is natural to form a conditional distribution of p(y|x) and a
natural objective function is the conditional log-likelihood on the training data below:

lc = log p(x, y)− log p(x)

We can view the first term in the above expression as the log-likelihood of the whole hidden Markov
model on the training data. The second (negated) term, is the likelihood of the hidden Markov
model after it has been marginalized and only applies the input data x. Figuratively, we have the
following graphical model scenario:

Recall that p(x, y) and p(x) in the above expressions are latent quantities which involve a summation
over all possible paths in the state space of the hidden Markov model. In other words, we can expand
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log p(x, y) − log p(x)

Figure 6.5: Conditional HMM Estimation. Effectively, we maximize the joint p(x, y) log-likelihood
of the HMM over both x and y (inputs and outputs) minus the marginal p(x) log-likelihood where
the HMM has been summed over to obtain a marginal only over the x input.

the conditional likelihood quantity as follows.

lc = log
∑
S

p(S, x, y)− log
∑
S

p(S, x)

We lower bound the left hand term with Jensen’s inequality while the reverse-Jensen inequality is
applied to the right hand term log p(x). This gives us an overall lower bound on the conditional
log-likelihood lc which can be maximized in closed form.

We then iterate bounding and maximization steps until we converge to a local maximum of condi-
tional likelihood. To perform regression, we merely use novel x̂1, . . . , x̂τ data to estimate a probability
distribution over the hidden states S. This can then be used to compute an estimated output se-
quence ŷ1, . . . , ŷτ simply by using the alpha-beta values in the forward-backward algorithm to weight
each Gaussian in the emission model appropriately for each time step.

6.4.1 Experiments

To compare the estimates of the conditional likelihood criterion or CEM against the usual maximum
likelihood or EM framework, we used a standard meteorological time series prediction task. This
small toy data set constitutes of 420 monthly of measurements of the precipitation, temperature and
water flow in the San Francisco area from 1932 to 1966. Therefore, we have a 4 dimensional time
series when we concatenate the month as well (which is represented as a sinusoidal whose values
range between -1.0 and 1.0). The input-output HMM we wish to build will regress the precipitation
value from the remaining three inputs. Training was performed on the first 360 samples of the time
series while testing was performed on the remaining 60 samples. Figure 6.6 depicts a snapshot of
the training data, i.e. the 4-dimensional time series of weather measurements.

We trained both an EM and a CEM based input-output hidden Markov model with 4 states assuming
diagonal-covariance Gaussian emission models. The Gaussians are over 4 dimensions (3 inputs and
the precipitation level as output). Table 6.4.1 summarizes the resulting log likelihoods and the RMS
error for the EM and CEM algorithms. In this particular example, the CEM algorithm was much
slower requiring over 2 orders of magnitude more time to attain convergence than the EM algorithm.
This is due to extra computations on top of the usual forward-backward algorithm and the extra
looseness of the reverse-Jensen bounds which require more iterations. However, the resulting testing
performance which is notable in the conditional likelihood on testing and the RMS error on testing
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Figure 6.6: Training data from the San Francisco Data Set. Here, the 4-dimensional time series
depicts the monthly levels of precipitation, water flow, temperature as well as the month of year as
a sinusoid.

shows CEM performed favorably when compared to EM based prediction. For an appropriate and
quantitative measure of performance, the conditional likelihood on testing data is the best choice
since the given task here is to predict precipitation values from the other inputs. Therefore, it is
inappropriate to penalize or reward good estimates of the input components. Thus joint likelihood
on test data is an inappropriate measurement of the quality of the estimate. Only the desired
outputs need to be properly predicted and hence the conditional likelihood score (as well as RMS
error) depict that a better regression estimate is obtained by the CEM algorithm.

Training Log-Likelihood Conditional Log-Likelihood
EM -5.985 -3.473
CEM -9.683 -3.066
Testing Log-Likelihood Conditional Log-Likelihood RMS Error
EM -6.466 -3.463 195.2
CEM -9.360 -3.110 184.6

Table 6.1: CEM & EM Performance for HMM Precipitation Prediction.

Figure 6.7 shows a qualitative performance difference between the EM-based hidden Markov model
and the CEM-based hidden Markov model. Note how the CEM version tracks the precipitation
values (during testing) more closely than the EM and also has a more accurate range of variation
than the conservative near-constant precipitation estimates EM generates.

In Chapter 8, a more ambitious application of the input-output HMM regression will be attempted.
However, due to the extremely large size of the data and its long trellis length, simplifying approxi-
mations will be needed to reduce the computation time of the CEM algorithm such that it operates
in roughly the same time as the EM algorithm.

6.5 Discriminative Hidden Markov Models

In this section we will give details of an implementation of MED for hidden Markov models in a
discriminative regression setting. Unlike the standard regression or conditional regression in the
previous input-output HMM, we will here use a discriminative epsilon-tube insensitivity with linear
loss function to form the regression function. The implementation for a classification setting is
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Figure 6.7: Test predictions for the San Francisco Data Set. The true precipitation values are
depicted with the dashed cyan line and the filled dots. The EM hidden Markov model’s predictions
are outlined with the dashed red line connecting the ’x’ points. The CEM hidden Markov model’s
predictions are outlined by the solid blue line connecting the hollow ’o’ circles. Note how the CEM
predictions track the true precipitation values more closely while the EM predictions do not span
the desired range of variation and do not align well with the desired output.

straightforward given the regression development here. While classification has many applications
(i.e. speech recognition, bioinformatics, etc.) we will portray the discriminative regression HMM
as a novel way to incorporate time invariance in regression settings. Recall in section 4.1 where we
developed MED for regression applications and discussed the use of generative and latent generative
models therein. We now consider the following regression discriminant function:

L(X; Θ) = log
∑

S p(X, S|θ+)∑
S p(X, S|θ−)

+ b

Where the numerator and denominator are hidden Markov models which define a probability density
over each X datum which is itself a sequence of observations instead of a single vector. Recall the
regression constraints that arise in the MED framework:∫

P (Θ, γ) [yt − L(Xt; Θ) + γt] dΘdγ ≥ 0, t = 1..T∫
P (Θ, γ) [γ′t − yt + L(Xt; Θ)] dΘdγ ≥ 0, t = 1..T

The expectations over the discriminant functions above are intractable and therefore we will employ
variational bounds instead (Jensen and reverse-Jensen). In the first constraint, we will need to
upper bound L(Xt; Θ) while in the second constraint we will need to lower bound L(Xt; Θ). This will
result in the creation of more restrictive constraints that generate a convex hull that is contained
in the convex hull of the original MED problem. In the first set of constraints, we will use reverse-
Jensen on the numerator and the Jensen bound on the denominator. The situation is reversed for
the other set of constraints. Once the variational bounds are used, the MED solution distribution
P (Θ) will factorize across all the (positive and negative) HMM parameters (i.e. the emissions and
transitions) if our prior over these P0(Θ) is conjugate and factorized itself. Assume we have invoked
the inequalities at a given Θ̃ operating point and now have the following constraints instead:∫

P (Θ, γ)

[
yt +

∑
m

wtm log p(Ytm|m, θ+)− kt +
∑
m

w̃tm log p(Ỹtm|m, θ−) + k̃t − b + γt

]
dΘdγ ≥ 0

∫
P (Θ, γ)

[
γ′t − yt +

∑
m

w̃tm log p(Ỹtm|m, θ+) + k̃t +
∑
m

wtm log p(Ytm|m, θ−)− kt + b

]
dΘdγ ≥ 0
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In the above, we have used Jensen and reverse-Jensen on each training sequence Xt in the data
t = 1..T to obtain the parameters of the bounds: w̃tm, Ỹtm, k̃t and wtm, Ytm, kt for each HMM
model (both the positive and the negative one). Here, m indexes over the M Gaussian emission
models and the M multinomial (transition matrix) models for each HMM respectively. To compute
the bounds we convert the multinomial in natural parameterization for the Jensen/reverse-Jensen
computations and back to the form in section 3.9.4 for the MED computations. The Gaussian is
only over means and therefore is always in its natural parameterization. The above constraints give
rise to the following partition function where the margin (with exponential prior) and bias (with
Gaussian prior) components are the same as any simple (linear) MED regression:

Z(λ) = Zγ(λ) Zb(λ) Zθ+(λ) Zθ−(λ)

The only novel computation involves solving for the Zθ+ and Zθ− components since the other com-
ponents were already explored in previous regression problems. A closed form partition function is
needed so that we can estimate the optimal setting of the Lagrange multipliers. Each of the mod-
els, θ+ and θ− contains the M Gaussian emission parameters and M multinomial parameters of the
positive (numerator) HMM. We will assume white Gaussian priors over the emission parameters and
uniform Dirichlet priors (i.e. αk = α = 1/M in the notation of section 3.9.4) over the multinomials.
It suffices to show how to compute the partition function component for one of the HMMs, say Zθ+ ,
which is given by:

Zθ+(λ) =
∫

θ+

P0(θ+)e
∑

t
λt

∑
m

wtm log p(Ytm|m,θ+)−λtkt+
∑

t
λ′t
∑

m
w̃tm log p(Ỹtm|m,θ+)+λ′tk̃tdθ+

The above partition function component can be further broken down as follows:

Zθ+(λ) = Zlinear+(λ) × ΠM
n=1Zgauss+,n(λ) × ΠM

q=1Zmulti+,q(λ)

There is a simple log-linear component which is given by the following:

Zlinear+(λ) = e−
∑

t
λtkt+

∑
t

λ′tk̃t

There are n = 1..M Gaussian partition function components given here in logarithmic form (where
the A(Y ) = −1/2Y T Y −D/2 log(2π), as usual for a Gaussian e-family model):

log Zgauss+,n(λ) = log
∫

P0(µn)e
∑

t
λtwtn(A(Ytn)+Y T

tnµn−1/2µT
n µn)+

∑
t

λ′tw̃tn(A(Ỹtn)+Ỹ T
tnµn−1/2µT

n µn)dµn

log Zgauss+,n(λ) =
∑

t

λtwtnA(Ytn) +
∑

t

λ′tw̃tnA(Ỹtn)− 1
2

log

(
1 +

∑
t

λtwtn +
∑

t

λ′tw̃tn

)

+
1
2

(∑
t λtwtnYtn +

∑
t λ′tw̃tnỸtn

)T (∑
t λtwtnYtn +

∑
t λ′tw̃tnỸtn

)
1 +

∑
t λtwtn +

∑
t λ′tw̃tn

We also have to consider the contribution of the q = 1..M multinomial components. We first convert
the natural parameterization of the data, i.e. the M − 1-dimensional vectors Ytq, into the standard
multinomial form with M -dimensional vectors Utq. This is done by concatenating an extra element
to the vector such that it sums to unity. We then integrate to obtain the following partition function
which is reminiscent of the derivation in Section 3.9.4 (and we use the superscript k to index into
the dimensionality of the Utq vectors):

Zmulti+,q ∝
ΠM

k=1Γ(αk +
∑

t λtwtqU
k
tq +

∑
t λ′tw̃tqŨ

k
tq)

Γ(
∑M

k=1 αk +
∑

t λtwtqUk
tq +

∑
t λ′tw̃tqŨk

tq)
e

∑
t

λtwtq

Γ(1+
∑M

k=1
Uk

tq
)

ΠM
k=1

Γ(1+Uk
tq

)
+
∑

t
λ′tw̃tq

Γ(1+
∑M

k=1
Ũk

tq
)

ΠM
k=1

Γ(1+Ũk
tq

)
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For computing the partition function for the negative HMM, we merely use its own Jensen and
reverse-Jensen parameters and permute the roles of λ and λ′. The negative of the logarithm of the
aggregate partition function is then maximized. There are redundancies in the above computations
and they are all computable efficiently if only a single Lagrange multiplier is modified at a time.
This permits a fast axis-parallel implementation.

Once we have sufficiently optimized over the Lagrange multipliers, we can use the current setting
of these to compute P (Θ). To obtain the next Θ̃ setting, we merely find the maximum of P (Θ).
For the Gaussian models, the maximum is merely at the mean which involves the following simple
update rule (the negative model’s parameters are updated similarly with their bounds and the role
of the λt and λ′t swapped):

µn+ =
∑

t λtwtnYtn +
∑

t λ′tw̃tnỸtn

1 +
∑

t λtwtn +
∑

t λ′tw̃tn

For the q’th multinomial, the natural parameters are θ+q which permit a simple update rule involving
the gradients of the cumulant-generating function K = log(1+

∑
i exp(θi)). The following rule merely

finds the max of the MED solution distribution P (θ+q) in e-family form (the ~1 is used to denote a
vector of ones of the same size as Ytq):

∂K(θ+q)
∂θ+q

=
α~1 +

∑
t λtwtqYtq +

∑
t λ′tw̃tqỸtq

1 +
∑

t λtwtq +
∑

t λ′tw̃tq

Once the max has been found, we can re-convert the natural representation of θ+q back into the
usual multinomial parameterization (using ρ as in Section 3.9.4). Thus, we iterate, updating the Θ̃
contact point, recomputing the bounds, and estimating the Lagrange multipliers. This is continued
until convergence (a heuristic stopping criterion is used). Utilizing the MED solution P (Θ) for
prediction is still intractable even after training is performed since we must compute expectations
over the HMM. Instead, during run-time, we merely use the maximum Θ̂ = argmaxP (Θ) which
gives us two fixed HMM models. The log-ratio of their likelihoods (with the bias scalar parameter)
is then used to compute the regression to obtain an approximate output:

ŷ =
∫

P (Θ)L(X; Θ)dΘ

ŷ ≈ L(X; Θ̂)

We can thus form a discriminative regression model that inherits the dynamic-time-warping proper-
ties of an HMM while optimizing an epsilon-tube insensitive scalar prediction. The above expressions
can be trivially re-applied to also create discriminative HMMs for classification where the parameters
of each HMM are estimated such that we obtain a large-margin decision boundary between the two
generative models (unlike in the standard maximum-likelihood setting).

6.6 Latent Bayesian Networks

We shall now discuss the case of Bayesian networks in general, of which hidden Markov models are
a specific example. The hidden Markov model has a chain dependency structure which maintains
some important computational properties that were useful for computing Jensen and reverse-Jensen
bounds efficiently. It is well known that Bayesian networks which have tree structures can also
take advantage of efficient algorithms to avoid intractabilities and therefore may also be possible to
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estimate discriminatively (with the Jensen and reverse-Jensen bounds). Recall that tree structured
dependencies between variables who are themselves in the exponential family form an aggregate
exponential-family distribution [34]. Now, if we have latent or hidden variables in the Bayes net
graph, these tree structures need to be summed over. Therefore, the log-likelihood of the latent Bayes
net can be represented as a mixture of exponential family distributions. Again, this can be written
in the mixture of mixtures form of Equation 6.1. Subsequently, its logarithm (the log-likelihood of
the latent Bayes net) can be upper and lower bounded via Jensen and reverse-Jensen. Although we
can compute these bounds merely by unfolding the latencies in the mixture of mixtures, this may be
highly inefficient. The computations for the wm would become intractable since they would require
enumerating all latent configurations in the Bayesian networks. Just as we demonstrated for the
hidden Markov model where efficient algorithms avoid the exponentially large explicit mixture model,
we need an efficient algorithm to compute the reverse-Jensen bounds for general tree-structured
Bayes nets by taking advantage of the conditional independency properties of the graphical model.
Otherwise, naive computation of Jensen and reverse-Jensen bounds will require intractable amounts
of work for latent Bayesian networks.

It is possible to compute lower bounds efficiently by taking advantage of the independency structure
in the networks and that is done for the regular Jensen inequality parameters by using EM and the
so-called Junction Tree Algorithm [102]. In fact, the forward-backward algorithm that we modified
for the reverse-Jensen bound is a special case of the more general junction-tree algorithm. Both are
methods that take advantage of the structure of the graph to efficiently compute expectations. For
solving the reverse-Jensen upper bound’s parameters, we also need such efficient procedures that
take advantage of the graph structure. Just as was shown for the HMM, the general case of latent
tree-structured Bayesian networks may also have a similar efficient reverse-Jensen algorithms and
this direction definitely merits further investigation.

6.7 Data Set Bounds

So far, we have considered only bounds (lower and upper) on the log-likelihood of a single data point
or single sequence (in the HMM case). However, it is often the case that we will want to bound
the likelihood of a data set of many points. If this is the case, the reverse-Jensen inequality can be
applied in a more straightforward way. The main benefit is that the reverse-Jensen inequality will
be applied once to form the bound instead of being applied separately for each data point and this
may generate a more efficient and more appropriately shaped bound.

Consider the following augmentation to the bounding of the log-sum. To obtain the aggregate data
set’s conditional likelihood, we must sum the likelihood over each data point as follows:

lc =
∑

i

log
∑
m

p(m, ci, Xi|Θ)−
∑

i

log
∑
m

∑
c

p(m, c, Xi|Θ)

The conditional log-likelihood (lc) above can be seen as the joint log-likelihood (lj) minus the
marginal log-likelihood (lm):

lc = lj − lm

Where in the above we have the joint log-likelihood:

lj =
∑

i

log
∑
m

p(m, ci, Xi|Θ)
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We also have the negated marginal log-likelihood:

lm =
∑

i

log
∑
m

∑
c

p(m, c, Xi|Θ)

Since we want overall lower bounds on the conditional likelihood, we need to lower bound the joint
log-likelihood above and upper bound the marginal log-likelihood (since it gets negated). We can
also write the marginal log-likelihood more compactly as follows (which obscures the fact that it is
latent):

lm =
∑

i

log p(Xi|Θ)

We begin by adding a constant term to the marginal likelihood which has no effect on the shape of
the bound. This is in the same spirit as the incremental likelihood derivation for EM in Bishop [20].
This additive constant does not vary since it is based on the fixed previous Θ̃ parameter values (i.e.
at the point of tangential contact) and has no effect on the shape of the bounds:

∆lm =
∑

i

log
p(Xi|Θ)
p(Xi|Θ̃)

Now, we shall do the reverse of EM and pull the summation over data into the logarithm operator.
This will generate an upper bound on incremental marginal log-likelihood:∑

i

log
p(Xi|Θ)
p(Xi|Θ̃)

≤ log
∑

i γip(Xi|Θ)βi∑
i γip(Xi|Θ̃)βi

(6.6)

One thing to note in the above bound is that the γi terms can be scaled by an arbitrary amount
and this will not change the shape of the bound. However, we still need to pick the γi and the βi to
insure that we have a guaranteed upper bound. These will become obvious shortly. First consider
the right hand side above and manipulate as follows:

log
∑

i γip(Xi|Θ)βi∑
i γip(Xi|Θ̃)βi

= log

∑
i γip(Xi|Θ)βi × p(Xi|Θ̃)βi

p(Xi|Θ̃)βi∑
j γjp(Xj |Θ̃)βj

log
∑

i γip(Xi|Θ)βi∑
i γip(Xi|Θ̃)βi

= log
∑

i

(
γip(Xi|Θ̃)βi∑
j γjp(Xj |Θ̃)βi

)
p(Xi|Θ)βi

p(Xi|Θ̃)βi

It is clear that if γi are all positive, then the terms in the parentheses are always positive and sum
to unity (if we sum over the index i). Thus, due to concavity of the log() function, we can apply
Jensen’s inequality:

log
∑

i γip(Xi|Θ)βi∑
i γip(Xi|Θ̃)βi

≥
∑

i

(
γip(Xi|Θ̃)βi∑
j γjp(Xj |Θ̃)βi

)
log

p(Xi|Θ)βi

p(Xi|Θ̃)βi
(6.7)

log
∑

i γip(Xi|Θ)βi∑
i γip(Xi|Θ̃)βi

≥
∑

i

(
γip(Xi|Θ̃)βi∑
j γjp(Xj |Θ̃)βi

)
βi log

p(Xi|Θ)
p(Xi|Θ̃)

(6.8)

By inspection, we can see that Equation 6.8 is very similar to Equation 6.6 (when left and right
hand sides are flipped). However, for them to be identical, we will need to guarantee that every
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term multiplying the logarithm in the right hand side of Equation 6.8 is unity. Thus we need:(
γip(Xi|Θ̃)βi∑
j γjp(Xj |Θ̃)βi

)
βi = 1

The above can be simplified to (recall that the γi are invariant up to a global scale factor):

γi ∝ 1
βip(Xi|Θ̃)βi

We can pick the scale factor above arbitrarily and it should be chosen for numerical precision
reasons (to avoid underflow or overflow computationally). One possible choice is to normalize the
γi as follows:

γi =
1

βip(Xi|Θ̃)βi∑
j

1

βjp(Xj |Θ̃)βj

We should also note that the βi are always greater than or equal to unity. This is because we had:(
γip(Xi|Θ̃)βi∑
j γjp(Xj |Θ̃)βi

)
βi = 1

Clearly, the terms in the parentheses that multiply βi are less than or equal to unity so we can
conclude that βi ≥ 1.

It is evident that we have guaranteed the bound originally proposed in Equation 6.6 and we still
have some freedom in selecting the βi (as long as they are greater than unity). We shall exploit this
freedom to find the tightest bound possible. At this point we have the following bound:

∆lm ≤ log
∑

i γip(Xi|Θ)βi∑
i γip(Xi|Θ̃)βi

∆lm ≤ log

∑
i

1
βi

p(Xi|Θ)βi

p(Xi|Θ̃)βi∑
i

1
βi

The above bound holds for any distribution and for any βi that are greater than unity. However, it
should be noted that βi also sum inversely to unity since:

1
βi

=
γip(Xi|Θ̃)βi∑
j γjp(Xj |Θ̃)βi∑

i

1
βi

=
∑

i

γip(Xi|Θ̃)βi∑
j γjp(Xj |Θ̃)βi

= 1

Thus, we can write the bound as follows:

∆lm ≤ log

∑
i

1
βi

p(Xi|Θ)βi

p(Xi|Θ̃)βi∑
i

1
βi

∆lm ≤ log
∑

i

1
βi

(
p(Xi|Θ)
p(Xi|Θ̃)

)βi
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Expanding the above to include the latent values, we obtain:

∆lm ≤ log
∑

i

1
βi

(∑
mc p(m, c, Xi|Θ)∑
mc p(m, c, Xi|Θ̃)

)βi

However, the above expression is still undesirable since the power operation (i.e. ()βi) applies to a
mixture (over the summation over c and m). Let us consider bounding these terms to simplify them
further. We will invoke Jensen again since the power operation (i.e. pow(., βi) or (.)βi) is a convex
function for βi ≥ 1. This permits us to upper bound the expressions involving the power operation
and thus generates an overall upper bound on ∆lm. Manipulating the mixture of terms being taken
to a power and applying Jensen, we obtain:(∑

mc p(m, c, Xi|Θ)∑
mc p(m, c, Xi|Θ̃)

)βi

=

(∑
mc

p(m, c, Xi|Θ)∑
nd p(n, d,Xi|Θ̃)

)βi

(∑
mc p(m, c, Xi|Θ)∑
mc p(m, c, Xi|Θ̃)

)βi

=

(∑
mc

p(m, c, Xi|Θ̃)∑
nd p(n, d,Xi|Θ̃)

p(m, c, Xi|Θ)
p(m, c, Xi|Θ̃)

)βi

(∑
mc p(m, c, Xi|Θ)∑
mc p(m, c, Xi|Θ̃)

)βi

≤
∑
mc

p(m, c, Xi|Θ̃)∑
nd p(n, d, Xi|Θ̃)

(
p(m, c, Xi|Θ)
p(m, c, Xi|Θ̃)

)βi

It is clear that the left hand side and the right hand side are equal at the old value of Θ̃ ensuring
that we have generated a variational bound that makes tangential contact appropriately. We can
now plug in these upper bounds on the individual terms indexed by i and get an overall stricter
upper bound on ∆lm:

∆lm ≤ log
∑

i

1
βi

(∑
mc p(m, c, Xi|Θ)∑
mc p(m, c, Xi|Θ̃)

)βi

∆lm ≤ log
∑

i

1
βi

∑
mc

p(m, c, Xi|Θ̃)∑
nd p(n, d, Xi|Θ̃)

(
p(m, c, Xi|Θ)
p(m, c, Xi|Θ̃)

)βi

The above again holds for any arbitrary distribution as long as βi are greater than one and their
inverses sum to unity. If we more specifically assume that p(m, c, Xi|Θ) is in the exponential family,
we can write it compactly as follows:

p(m, c, Xi|Θ) = αmc exp
(
Amc(Xi) + ΘT

mcXi −Kmc(Θmc)
)

In that case, the bound can be written more succinctly as:

∆lm ≤ log
∑
imc

1
βi

p(m, c, Xi|Θ̃)1−βi∑
nd p(n, d, Xi|Θ̃)

αβi
mc exp

(
βiAmc(Xi) + βiΘT

mcXi − βiKmc(Θmc)
)

This bound is variational and makes contact at the old Θ̃ configuration in the space of pdfs. We
can now invoke the reverse-Jensen inequality on the above log-sum only one single time to obtain
a bound on the whole data set. We also have the freedom of adjusting the βi (as long as they are
greater than unity and their inverses sum to unity) to ensure that this bound is as tight as possible
(i.e. select the βi to minimize the resulting wm values).
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6.8 Applications

In the above we have only shown toy illustrations of the conditional hidden Markov models with
CEM. Clearly, many important applications are now within reach and it would be interesting to
investigate the performance on a real-world data set. Chapter 8 describes a behavior-imitation
problem where the hidden Markov model is used to learn how an agent interacts with the outside
world. This is basically a stimulus-response type of model that is trained from real data by observing
human activity for several hours. Since we only wish to predict and resynthesize the agent’s behavior
conditioned on the outside world measurements, we train the HMM with a conditional likelihood
criterion. The imitation learning application seems well suited to the CEM algorithm and we show
real-world results using CEM instead of EM (after describing the implementation details of the
experiment). However, the next chapter, namely Chapter 7, is the derivation of the reverse-Jensen
inequality which was so far put forth without proof. The mathematical reader may find the derivation
interesting while the more applied reader may wish to skip directly to Chapter 8 to see a real-world
application of latent discriminative learning with structured graphical models.



Chapter 7

The Reverse Jensen Inequality

Difficulties strengthen the mind, as labor does the body.

Seneca, 3 B.C. - 65 A.D.

In this chapter we shall give a terse derivation of the reverse-Jensen inequality we used in Chapter 5.
The derivation is made to generate bounds that are as tight as possible and thus involves many
details. These are shown in full to permit future extensions and tightenings. We first review some
literature in the contemporary mathematical inequalities community and show current converses
and reversals of Jensen. These do not suit the requirements of discriminative learning since the
functional form of the bounds is not easy to combine with regular Jensen or EM-type bounds and
therefore we derive our own reversal.

7.1 Background in Inequalities and Reversals

The celebrated Jensen inequality has been formalized a century ago [99] and its roots trace even
further back in history. This result has been at the heart of many inequalities in statistics [40] and
mathematics [150]. For example, Holder’s inequality can be easily derived from Jensen’s inequality.
Jensen in its simplest form states that a convex function of an expectation is upper bounded by the
expectation of the convex function. An excellent review of Jensen’s inequality, other inequalities,
convex functions and various statistical applications can be found in Pecaric et al.’s text [150].
Furthermore, several converses and reversals of Jensen’s inequality are provided in the text. Some are
simple manipulations of Jensen’s inequality (i.e. assuming that the mixture is weighted by negative
scalars instead of positives ones). Others refinements require further assumptions and properties on
the convex function and the elements it operates upon. Similarly, Log sum inequality and variants
of Jensen are also discussed in [40] however many of these are usually just trivial consequences of
Jensen’s inequality. A more recent reversal of Jensen that has been important in statistics has been
proposed in [46]. For instance, the Jensen inequality can be reversed if the function it is applied
to has a limited range of variation or the elements it applies to are clamped to a limited domain.
However, the bound proposed in [46] is fundamentally curvature based which can sometimes prevent
tight bounds. The uses for [46] are to find general dual-sided bounds on Csiszar Φ-divergences in

135
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terms of the many other divergences in the family. These permit one to map between divergences,
i.e. Kullback-Leibler divergence, harmonic divergence, variational divergence, Renyi-entropy, etc.

Unfortunately, the above bounds in the literature do not directly suit our purposes. They not
only generate reversals which are not homogeneous with the regular Jensen inequality bounds (and
therefore cannot be combined easily with the EM-type bounds), but they also put requirements on
the elements in the expectation which are not appropriate for our pruposes. The elements in our
log-sum problems are exponential family probability densities which have special properties but not
necessarily the ones explored so far in the literature. We therefore start with a blank slate and derive
our own customized reversal.

7.2 Derivation of the Reverse Jensen Inequality

We begin by recalling the inequality given without proof in the previous chapter:

log
∑
mn

αmn exp(Am(Xmn) + XT
mnΘm −Km(Θm)) ≤

∑
m

−wm(Am(Ym) + Y T
m Θm −Km(Θm)) + k

k = log p(X|Θ̃) +
∑

m wm(Am(Ym) + Y T
m Θ̃m −Km(Θ̃m))

Ym = 1
wm

∑
n hmn

(
∂Km(Θm)

∂Θm

∣∣∣
Θ̃m

−Xmn

)
+ ∂Km(Θm)

∂Θm

∣∣∣
Θ̃m

w′m = minw′m such that 1
w′

m

∑
n hmn

(
∂K(Θm)

∂Θm

∣∣∣
Θ̃m

−Xmn

)
+ ∂K(Θm)

∂Θm

∣∣∣
Θ̃m

∈ ∂K(Θm)
∂Θm

wm = 4 G

(∑
n

hmnZT
mnZmn

2 maxn ZT
mnZmn

)
maxnZT

mnZmn + w′m

Zmn = K′′(Θ̃m)−1/2(Xmn −K′(Θ̃m))
hmn = αmn exp(Am(Xmn)+XT

mnΘ̃m−Km(Θ̃m))∑
mn

αmn exp(Am(Xmn)+XT
mnΘ̃m−Km(Θ̃m))

G(γ) =

{
γ + 1

4 log(6) + 25/36
log(6)2 − 1/6 γ ≥ 1/6

1
4 log(1/γ) + (γ−1)2

log(γ)2 γ ≤ 1/6

We will now derive the reverse-Jensen bound above in the so-called double-mixture case. This
derivation subsumes that of the reverse-Jensen bound for the single mixture case. This derivation will
follow a somewhat general recipe for bounding quantities such as log-sums. It begins by making the
variational bound touch the original function tangentially at the current operating point. We then
find a mapping on the non-linear K functions into a quadratic space which makes the computations
tractable. The bound is then simplified by noting its convexity properties. Subsequently, we note
that a log-partition function of a Gibbs distribution arises (i.e. a log-sum of exponentiated linear
terms) which needs to be bounded by a quadratic. This derivation is done in a one dimensional simple
case and then generalized by sweeping the 1d bound up to the multidimensional case. Subsequently,
curvature constraints are checked on the bound which are simpler to deal with and subsume the
original inequality. Ultimately, a very simple formula for the bound’s parameters arises which
guarantees that it remains above the original log-sum function.

Again, we start with the log-sum which needs to be upper bounded:

log
∑
mn

αmn exp(Am(Xmn) + XT
mnΘm −Km(Θm)) ≤

∑
m

−wm(A(Ym) + Y T
m Θm −Km(Θm)) + k (7.1)
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At the current tangential contact point Θ̃ of the variational bound, the two sides above are equal:

log
∑
mn

αmn exp(Am(Xmn) + XT
mnΘ̃m −Km(Θ̃m)) =

∑
m

−wm(A(Ym) + Y T
m Θ̃m −Km(Θ̃m)) + k

This allows us to isolate k:

k = log
∑
m

∑
n

αmn exp(Am(Xmn) + XT
mnΘ̃m −Km(Θ̃m)) +

∑
m

wm(A(Ym) + Y T
m Θ̃m −Km(Θ̃m))

Also, at the contact point Θ̃, the gradients of both sides of Inequality 7.1 must be equal, again
allowing us to isolate Ym:

∑
n

hmn

(
Xmn −

∂Km(Θm)
∂Θm

∣∣∣∣
Θ̃m

)
= −wm

(
Ym −

∂Km(Θm)
∂Θm

∣∣∣∣
Θ̃m

)
∀m

Now, if we reinsert the definitions for k and Ym into Inequality 7.1 and rearrange terms we obtain
the following expression below. Note, the only variables that remain to be computed are the wm

scalar values.∑
m

wm(K(Θm)−K(Θ̃m)−(Θm−Θ̃m)TK′(Θ̃m)) ≥ log

∑
mn

αmn exp(Am(Xmn)+XT
mnΘm−Km(Θm))∑

mn
αmn exp(Am(Xmn)+XT

mnΘ̃m−Km(Θ̃m))

+
∑

mn
hmn(Θm−Θ̃m)T (K′(Θ̃m)−Xmn)

It is interesting to note that the terms in parentheses that are multiplying the wm scalar values are
Bregman distances (or Bregman divergences). This is a direct result of the convexity of the cumulant
generating functions K(Θ) in the exponential family. In the case of Gaussian distributions, these
Bregman distances are a Euclidean distance metric with origin at Θ̃m. In the more general case of
exponential family distributions, these Bregman distances are actually Kullback Leibler divergences
from a distribution at Θ to one at the origin Θ̃. Therefore, it is clear that the left hand side of the
above is only zero at the contact point since Bregman distances are always positive except at the
origin. This is encouraging, since it indicates that we should be able to obtain non-vacuous bounds
with finite wm values (i.e. due to the positivity of Bregman divergences).

At this point, we realize that it is difficult to try to solve for wm for arbitrary K functions. We
shall show next how we can avoid dealing explicitly with these functions and map all cases to the K
functions that are of quadratic form.

7.3 Mapping to Quadratics

For brevity we begin by defining the following shorthand for the Bregman distances that arose
earlier:

Fm(Θm) = K(Θm)−K(Θ̃m)− (Θm − Θ̃m)TK′(Θ̃m)

The F functions are convex and have a minimum (which is zero) at Θ̃m. We can now replace K
functions with F to simplify the above expressions obtaining the following:

∑
m

wmF(Θm) ≥ log

∑
m

∑
n exp

(
Dmn + (Θm − Θ̃m)T Zmn −F(Θm)

)
∑

m

∑
n exp

(
Dmn + Θ̃T

mZmn −F(Θ̃m)
) −

∑
m

∑
n

hmn(Θm − Θ̃m)T Zmn
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Above, we have defined the constant scalars Dmn and constant vectors Zmn as follows:

Dmn = log αmn +Am(Xmn)−Km(Θ̃m) + Θ̃T
mXmn

Zmn = Xmn −K′(Θ̃m)

We can immediately recognize the constants above are actually closely related to the responsibilities
as follows:

hmn =
expDmn∑
mn expDmn

Which permits the further simplification:∑
m

wmF(Θm) ≥ log
∑
mn

hmn exp
(
(Θm − Θ̃m)T Zmn −F(Θm)

)
−
∑
mn

hmn(Θm − Θ̃m)T Zmn (7.2)

Through straightforward redefinitions, we seem to have a simplified expression. However, we still
have hidden and possibly complicated non-linearities in Θ-space due to the F functions preventing
an easy solution for the wm. This situation can be alleviated if we transform the space. Let us define
a mapping from Θ-space to Φ-space such that the non-linear F functions are simple quadratics:

Fm(Θm) = Gm(Φm) =
1
2
(Φm − Θ̃m)T (Φm − Θ̃m)

The above is a mapping from a convex non-negative function to another convex non-negative function
which is always possible by a stretching of the axes or a change of variable. Geometrically, we are
mapping a bowl into another bowl. Both maintain their minimum at Θ̃ which is 0. Thus, the origin
can be consider to remain fixed at Θ̃ as we stretch the domain or perform a change of variables. If
the convex function F(Θ) is restricted in its range, we can consider a convex-hull restriction on the
domain of the quadratic1 to make it obey the same range. We begin by using this transformation
on the left hand side of Equation 7.2 to produce the following:∑

m

wmG(Φm) ≥ log
∑
mn

hmn exp
(
(Θm − Θ̃m)T Zmn −F(Θm)

)
−
∑
mn

hmn(Θm − Θ̃m)T Zmn (7.3)

Figure 7.1 portrays this mapping in the 2D case. Essentially, we are performing a convexity-
preserving map. Here, an arbitrary (strictly) convex function is being turned into a quadratic.
The quadratic arises by default for the F(Θ) functions when we are dealing with exponential family
members in the log-sum that are Gaussians (with variable means and fixed covariance). Therefore,
we can transform any e-family member to a Gaussian for the purposes of computing the wm pa-
rameters of the reverse-Jensen inequality. Before we transform the rest of the expression out of Θ
into a quadratic domain of Φ, we will point out an important property associated with the above
convexity-preserving map.

7.4 An Important Condition on the E-Family

We shall now identify an important condition concerning the above mapping to a quadratic which
we will put forth here without proof. Instead, we show that it holds for a wide variety of exponential
family models: for example the Gaussian mean, Gaussian covariance, multinomial, gamma, Poisson,
and exponential distributions.

1 A quadratic has an unrestricted range ∈ [0,∞) and hence is a superset.
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(a) General Convex Bowl in Θ (b) Mapping Θ→ Φ (c) Quadratic Bowl in Φ

Figure 7.1: Convexity-Preserving Map. Given a convex bowl or Bregman divergence in Θ-space as
in (a), we can always find a displacement map from Θ→ Φ that will stretch axes as in (b) to obtain
a quadratic (Euclidean distance) bowl in Φ-space in (c). Thus, a change of variables exists which
permits a simpler solution in a quadratic space.

Lemma 2 Under mild conditions and for standard exponential family models, we can always find a
change of variable mapping from the variable Θ to Φ given by equating the Bregman distance at Θ̃
arising from the cumulant generating function K(Θ) to a quadratic function in Φ with a minimum
at Θ̃:

1
2
(Φ− Θ̃)T (Φ− Θ̃) = K(Θ)−K(Θ̃)− (Θ− Θ̃)TK′(Θ̃)

Select an arbitrary point Θ∗ in the domain of Θ. From all possible mappings induced by the above,
there will always be a mapping from Θ→ Φ such that the following upper bound holds globally:(

Φ− Θ̃
)T (
K′′(Θ̃)

)−1/2 (
K′(Θ∗)−K′(Θ̃)

)
≥

(
Θ− Θ̃

)T (
K′(Θ∗)−K′(Θ̃)

)
−
(
K(Θ)−K(Θ̃)− (Θ− Θ̃)TK′(Θ̃)

)
The above holds for any choice of the arbitrary point Θ∗ in the domain of Θ (Θ∗ can be any point
in the domain of K). Furthermore, the upper bound makes tangential contact at Θ = Θ̃ (Θ can be
any point in the domain of K).

The property in Lemma 2 is guaranteed to hold at the contact point when Θ = Θ̃ as both sides of
the inequality go to zero. Furthermore, it is easy to show that the right hand side will eventually
diverge negatively as we move away from the contact point Θ̃ since the right hand side is concave
and the left hand side is increasing away from the contact point. Thus, the bound is also trivial
to guarantee at distant values of Θ. An exact proof is elusive since the above property does not
arise only from the convexity of K but some more specific attributes. For instance, the K cumulant
generating function is the logarithm of a Laplace transform and this route may be used to construct
an argument. Alternatively, other specific e-family assumptions such as steepness [9] may be useful.
Instead of deriving a formal proof for when the condition is valid, we will instead give visual examples
of it holding for many standard distributions in the exponential family. For the unidimensional case,
the mapping is unique (modulo a mirror flip around the origin) and we can easily compute the
explicit mapping for Φ as follows:

Φ = Θ̃ + sign(Θ− Θ̃)
√

2
√
K(Θ)−K(Θ̃)− (Θ− Θ̃)K′(Θ̃)

For the details of the cumulant generating functions and their duals A(X) for these distributions
refer to Table 25 in the previous Chapter. In Figures 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7 we show
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examples of the bounds implied by Lemma 2. We have thus argued for a convexity-preserving map
that also has a powerful bound associated with it. We will now use this property on our formula for
wm to drastically simplify it.
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Figure 7.2: Lemma Bound for the Gaussian Mean Distribution. Four random configurations
for Θ̃ and Θ∗ are shown. The solid line is the lemma’s upper bound above the dashed red line. The
Gaussian mean case is the most trivial one to consider and it is trivial to construct a mapping from
Θ→ Φ which is only affine. This is Gaussians have a quadratic K function to begin with (regardless
of dimensionality). It is straightforward to see that for various choices of Θ̃ and Θ∗, we have an
upper bound as desired.
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Figure 7.3: Lemma Bound for the Gaussian Covariance Distribution. Four random config-
urations for Θ̃ and Θ∗ are shown. The solid line is the lemma’s upper bound above the dashed red
line. If we consider varying the covariance of the Gaussian, K is not quadratic however the mapping
is possible. It is straightforward to see that for various choices of Θ̃ and Θ∗, we have an upper bound
as desired.
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Figure 7.4: Lemma Bound for the Multinomial Distribution. Four random configurations for
Θ̃ and Θ∗ are shown. The solid line is the lemma’s upper bound above the dashed red line.

7.5 Applying the Mapping

We shall now invoke the above Lemma on the current Equation 7.3 for wm we have progressed to:∑
m

wmG(Φm) ≥ log
∑
mn

hmn exp
(
(Θm − Θ̃m)T Zmn −F(Θm)

)
−
∑
mn

hmn(Θm − Θ̃m)T Zmn

We recognize in the above that the F(Θm) are the Bregman distances arising from the cumulant
generating functions. Furthermore, the Zmn can be represented as K′(Θ∗

mn)−K′(Θ̃m) for a particular
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Figure 7.5: Lemma Bound for the Gamma Distribution. Four random configurations for Θ̃
and Θ∗ are shown. The solid line is the lemma’s upper bound above the dashed red line.
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Figure 7.6: Lemma Bound for the Poisson Distribution. Four random configurations for Θ̃
and Θ∗ are shown. The solid line is the lemma’s upper bound above the dashed red line.
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Figure 7.7: Lemma Bound for the Exponential Distribution. Four random configurations for
Θ̃ and Θ∗ are shown. The solid line is the lemma’s upper bound above the dashed red line.
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choice of Θ∗
mn (due to the data vectors Xmn living in the gradient space K′). Thus, the terms being

exponentiated in Equation 7.3 are exactly the right hand side of the bound in Lemma 2. Thus, we
replace them with their upper bounds to obtain a stricter guaranteed constraint on the wm values:∑

m

wmG(Φm) ≥ log
∑
mn

hmn exp
(
(Φm − Θ̃m)TK′′(Θ̃m)(−1/2)Zmn

)
−
∑
mn

hmn(Θm − Θ̃m)T Zmn

For simplicity, we shall define the following surrogate ’whitened’ data vectors which are translated
and scaled versions of the original data Xmn:

Zmn = K′′(Θ̃m)−1/2Zmn

At this stage have done away with all but the last few Θ terms at the end of the right hand side:∑
m

wmG(Φm) ≥ log
∑
mn

hmn exp
(
(Φm − Θ̃m)TZmn

)
−
∑
mn

hmn(Θm − Θ̃m)T Zmn (7.4)

Before we also bound away the last terms depending directly on Θ and replace them with Φ, we
shall invoke a constraint that was dictated in the definition of the bounds.

7.6 Invoking Constraints on Virtual Data

Recall that the bounds generate virtual data points Ym and these were constrained (as the original
Xmn data points) to live in the gradient space of the cumulant generating function. From the original
definition of the exponential family we must have the following requirement:

Ym ∈ ∂K(Θm)
∂Θm

This makes perfect sense since the e-family distributions we will be generating to bound the log-sum
mixture must be valid and it is a common constraint that the data terms are in the gradient space
of the cumulant generating function. Furthermore, Ym is acted upon by the A(X) function and the
domain of the function only admits vectors in the gradient space as well. Let us insert the definition
of Ym we have derived into this constraint:

1
wm

∑
n

hmn

(
∂K(Θm)

∂Θm

∣∣∣∣
Θ̃m

−Xmn

)
+

∂K(Θm)
∂Θm

∣∣∣∣
Θ̃m

∈ ∂K(Θm)
∂Θm

Clearly, we need a wm such that the above is satisfied. Furthermore, it is evident that setting
wm → ∞ will always satisfy the above. The smallest wm that satisfies the above will be called
w′m. By convexity of the gradient space K′, any value for wm from [w′m,∞) will thus satisfy the
constraint above. In practice, it is relatively easy to compute w′m analytically for exponential family
distributions using the above formula. Let us assume that we find this w′m and then have the
particular gradient space vector it generates be a K′(Θ∗

m) in the gradient space. This gives us the
following equation:

1
w′m

∑
n

hmn

(
∂K(Θm)

∂Θm

∣∣∣∣
Θ̃m

−Xmn

)
+

∂K(Θm)
∂Θm

∣∣∣∣
Θ̃m

=
∂K(Θm)

∂Θm

∣∣∣∣
Θ∗

m
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We now rewrite the Equation above as follows:(∑
n hmn

w′m
+ 1
)
K′m(Θ̃m)− 1

w′m

∑
n

hmnXmn = K′m(Θ∗
m)∑

n hmn

w′m
K′m(Θ̃m)− 1

w′m

∑
n

hmnXmn = K′m(Θ∗
m)−K′m(Θ̃m)

1
w′m

∑
n

hmn

(
K′m(Θ̃m)−Xmn

)
= F ′m(Θ∗

m)

−
∑

n

hmnZmn = w′mF ′m(Θ∗
m)

Thus, we see that the scaled negated mixture of Zmn vectors lies in the gradient space of F(Θm).
We shall now consider the formula for wm we have up to this point, namely Equation 7.4 and replace
the above into it:∑

m

wmG(Φm) ≥ log
∑
mn

hmn exp
(
(Φm − Θ̃m)TZmn

)
−
∑
mn

hmnZT
mn(Θm − Θ̃m)∑

m

wmG(Φm) ≥ log
∑
mn

hmn exp
(
(Φm − Θ̃m)TZmn

)
+
∑
m

w′mF ′m(Θ∗
m)T (Θm − Θ̃m)

Next we subtract
∑

m w′mFm(Θm) from both sides obtaining:∑
m

wmG(Φm)−
∑
m

w′mFm(Θm) ≥ log
∑
mn

hmn exp
(
(Φm − Θ̃m)TZmn

)
+
∑
m

w′m

(
F ′m(Θ∗

m)T (Θm − Θ̃m)−Fm(Θm)
)

The terms multiplying the w′m in the right hand side are actually the lower bounds in Lemma 2.
We can invoke an upper bound on them and get an even stricter constraint on the formula for wm:∑

m

wmG(Φm)−
∑
m

w′mFm(Θm) ≥ log
∑
mn

hmn exp
(
(Φm − Θ̃m)TZmn

)
+
∑
m

w′m

(
F ′m(Θ∗

m)TK′′(Θ̃m)(−1/2)(Φm − Θ̃m)
)

Now, in the right hand side, we re-replace the w′mF ′m(Θ∗
m) (it was only introduced to reflect similarity

with the Lemma) with its original definition:∑
m

wmG(Φm)−
∑
m

w′mFm(Θm) ≥ log
∑
mn

hmn exp
(
(Φm − Θ̃m)TZmn

)
−
∑
mn

hmnZT
mnK′′(Θ̃m)(−1/2)(Φm − Θ̃m)

The above is further simplified when we use the definition for Zmn and the equality F(Θ) = G(Φ):∑
m

(wm − w′m)G(Φm) ≥ log
∑
mn

hmn exp
(
(Φm − Θ̃m)TZmn

)
−
∑
mn

hmnZT
mn(Φm − Θ̃m)
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At this point we have succeeded in eliminating the complexities that arise from the nonlinear Θ
representation of the exponential family and we only have quadratic G functions. Effectively, all e-
family computations are now computationally equivalent to the simple Gaussian mean case with its
quadratic cumulant generating function. We should also recognize the logarithm is over a summation
of exponentiated linear models. This is equivalent to the log-partition function of a Gibbs distribution
and also similar to the logistic function. Thus, we can map any reverse-Jensen problem into finding
quadratic upper bounds in Φ space on the log-partition function of a Gibbs distribution.

We next provide a very simple formula for wm which was originally proposed in [94]. This bound
here is based on a direct curvature check and is not as tight as possible. A longer and more involved
derivation follows in the next section (Section 7.8) which will generate a much tighter bound.

7.7 A Simple yet Loose Bound

To solve for the wm we are effectively bounding the log-partition of a Gibbs distribution with a
quadratic function. This is an unusual side effect of solving the reverse-Jensen bounds. Earlier work
in Gaussian Processes[65] also necessitated quadratic bounds on this form of log-partition function.
The doctoral dissertation of M. Gibbs involved finding such a bound for use in Gaussian Processes
however the bound that was solved for was approximate and not provable. Here, we shall show
how to arrive at a guaranteed bound for this log-partition function which can ultimately be used
to compute the wm terms of the reverse-Jensen bound. The derivations below are simple and the
resulting formula is guaranteed. However, we shall employ a crude method for obtaining a bound,
namely a direct curvature check. In the following section we will refine this crude manipulation and
obtain a tighter bound.

For convenience, we will now work with a surrogate variable rm instead of wm where rm = wm−w′m.
We therefore currently have the following equation:∑

m

rmG(Φm) ≥ log
∑

mn hmn exp
(
(Φm − Θ̃m)TZmn

)
−
∑

mn hmnZT
mn(Φm − Θ̃m)

For clarity, let us define the right hand side as a function of Φ:

L(Φ) := log
∑
mn

hmn exp
(
(Φm − Θ̃m)TZmn

)
−
∑
mn

hmnZT
mn(Φm − Θ̃m)

Similarly, we can define H(Φ) as the left hand side of the above as follows:

H(Φ) :=
∑
m

rmG(Φm)

=
1
2

∑
m

rm

(
Φm − Θ̃m

)T (
Φm − Θ̃m

)

It should be evident that both L(Φ) and H(Φ) are zero and have zero gradients at the contact point
when Θ = Θ̃. We wish to upper bound L(Φ) with H(Φ) (a quadratic) which makes tangential
contact at Φ = Φ̃ = Θ̃. This requires finding valid rm scalars which satisfy the following inequality
at all values of the Φ parameter:

H(Φ) ≥ L(Φ)
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Instead of working in Φ-space, we can simplify things through a change of variable (a mere trans-
lation) and work in Ψ-space where we define Ψm = Φm − Φ̃m. In other words, find the rm that
satisfy:

H(Ψ) ≥ L(Ψ)

Where, naturally, we now have:

H(Ψ) =
1
2

∑
m

rmΨT
mΨm

L(Ψ) = log

(∑
mn

hmn exp(ZT
mnΨm)

)
−
∑
mn

hmnZT
mnΨm

It should be noted that both H(Ψ) and L(Ψ) have a zero-valued minimum at Ψ = 0. This form of
tangential contact between H(Ψ) and L(Ψ) is necessary if we are to have a variational bound. Note,
here Ψ vector is a stacked version of all the individual Ψm vectors:

Ψ = [Ψ1 Ψ2 . . . Ψm . . . ΨM ]T

It is now trivial to take second derivatives of both sides of Equation 7.5 and get bounds on curvature.
This effectively provides a Loewner ordering on the curvature matrices which indicates that rm =
maxnZT

mnZmn which is a very simple yet typically loose bound. More specifically, we obtain:

∂2

∂Ψ2
H(Ψ) ≥ ∂2

∂Ψ2
L(Ψ)

 r1I · · · 0
...

. . .
...

0 · · · rMI

 ≥


∑

n
h1n exp(ZT

1nΨ)Z1nZT
1n∑

nm
hmn exp(ZT

mnΨ)
· · · 0

...
. . .

...

0 · · ·
∑

n
h1n exp(ZT

MnΨ)ZMnZT
Mn∑

nm
hmn exp(ZT

mnΨ)



−


∑

n
h1n exp(ZT

1nΨ)Z1n∑
nm

hmn exp(ZT
mnΨ)

...∑
n

h1n exp(ZT
MnΨ)ZMn∑

nm
hmn exp(ZT

mnΨ)




∑
n

h1n exp(ZT
1nΨ)Z1n∑

nm
hmn exp(ZT

mnΨ)

...∑
n

h1n exp(ZT
MnΨ)ZMn∑

nm
hmn exp(ZT

mnΨ)


T

The subtractive outer-product can be ignored to obtain a stricter bound. Furthermore, by inspection
(i.e. realizing that a convex combination of outer products is bounded by its max), we can clearly
see that: ∑

n hmn exp(ZT
mnΨ)ZmnZT

mn∑
nm hmn exp(ZT

mnΨ)
≤ max

n
ZmnZT

mn

In addition, we now that the trace of a matrix multiplied by identify is greater than the matrix itself
in the Loewner ordering sense:

trace(A)I ≥ A

ZT
mnZmnI ≥ ZmnZT

mn
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This simplifies the above into:

∂2

∂Ψ2
H(Ψ) ≥ ∂2

∂Ψ2
L(Ψ) r1I · · · 0

...
. . .

...
0 · · · rMI

 ≥

 maxnZT
1nZ1n · · · 0

...
. . .

...
0 · · · ZT

MnZMn


Giving the following settings for the individual rm:

rm = max
n
ZT

mnZmn ∀ m

Unfortunately, this bound is not quite as adaptive as we would like since it does not depend on the
hmn values. In other words, a Zmn sample might have extremely low weight (i.e. hmn → 0) which
means we should almost ignore it. Thus, we would like to have a bound that depends on the hmn

terms as well.

7.8 A Tighter Bound

Thus, it is preferable to get tighter bounds which can be done if we avoid this quick curvature test.
The bounds should still be simple to allow easy implementation. Let us begin by manipulating L(Ψ)
more conservatively and obtain intermediate variational upper bounds on it that are tighter than
the curvature check. If H(Ψ) is greater than this upper bound, it must be an upper bound on L(Ψ)
itself. First, let us pull the additive linear term into the logarithm as follows:

L(Ψ) = log
∑
mn

hmn exp

(
ΨT

mZmn −
∑
mn

hmnΨT
mZmn

)

Now, let use define a stacked version of the Zmn vectors as follows:

Zmn = [~0 ~0 . . . Zmn . . . ~0]T

The Zmn vector is of the same dimensionality as the Ψ vector and is obtained by padding the
corresponding Zmn with a total of M − 1 zero-vectors. Therefore, we naturally have:

ZT
mnΨ = ZT

mnΨm

This allows us to rewrite the above as:

L(Ψ) = log
∑
mn

hmn exp

(
ΨT

(
Zmn −

∑
mn

hmnZmn

))

Again, to further simplify notation, define the following vectors:

Umn = Zmn −
∑
mn

hmnZmn
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This lets us rewrite the L(Ψ) function compactly as:

L(Ψ) = log
∑
mn

hmn exp
(
ΨT Umn

)
To compute our reverse-Jensen bound, we must set the scalars rm such that the inequality H(Ψ) ≥
L(Ψ) holds for all values of Ψ. More specifically we need:

1
2

∑
m

rmΨT
mΨm ≥ log

∑
mn

hmn exp
(
ΨT Umn

)
∀Ψ

Selecting rm values such that the above holds for any Ψ vector requires considering all Ψ configu-
rations in the whole multidimensional Euclidean space. For now, we shall simplify this multidimen-
sional problem by only consider a one-dimensional ray in Ψ-space.

7.8.1 Bounding a One Dimensional Ray

However, for now, let us consider guaranteeing the bound when Ψ is along a certain given direction,
i.e. Ψ̂. Therefore, we can write the Ψ vector as:

Ψ = βΨ̂

Thus, our L(Ψ) function becomes:

L(βΨ̂) = log
∑
mn

hmn exp
(
βΨ̂T Umn

)
Now, let us see if we can find a quadratic bound on the above uni-dimensional function alone. In
other words:

1
2
qΨ̂β2 ≥ log

∑
mn

hmn exp
(
βΨ̂T Umn

)
∀ β (7.5)

In the above, we have to find a scalar qΨ̂ that satisfies the inequality for all β. The subscript on
the q indicates that it corresponds to a certain choice of direction Ψ̂. This will give us a quadratic
bound along this directional slice. The hope is that these individual uni-dimensional bounds can
be aggregated and then used to find the required H(Ψ) in the full multi-dimensional problem. For
convenience, define the scalars vmn as follows:

vmn = Ψ̂T Umn

At this point, however, the problem has simplified to solving the following one-dimensional bound
for a value of qΨ̂:

1
2
qΨ̂β2 ≥ log

∑
mn

hmn exp (βvmn) (7.6)

It should be evident from the definitions of vmn (or more specifically the original definition of Umn)
that the following holds: ∑

mn

hmnvmn = 0
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Consequently, when β is zero, both the left hand side above and the right hand side are zero and
their derivatives are zero too (i.e. tangential contact). This one-dimensional log Gibbs partition
function is depicted in Figure 7.8 for various random configurations of the vmn and hmn as well as
the lower bounds that arise from the epigraph for visualization. These types of structures need to
be upper bounded by a quadratic.
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Figure 7.8: One Dimensional Log Gibbs Partition Functions. The solid line is the Gibbs partition
function which is lower bounded by its epigraph (dashed red lines). These were plotted from l(β) =
log
∑

mn hmn exp(βvmn) for random selections of hmn and vmn.

For brevity, we will use l(β) to denote the right hand side of Equation 7.5.

l(β) = log
∑
mn

hmn exp (βvmn)

Instead of working directly with l(β), we will try to find an intermediate upper bound on this
quantity which has the following simpler form:

l(β) ≤ log (γ exp (βu) + γ exp (−βu) + 1− 2γ) (7.7)

This intermediate bound is interesting since it serves to symmetrize l(β) such that the sign of β is
no longer important. This intermediate has two scalar parameters: u and γ. The right hand term
above is a variational bound which makes tangential contact with the left hand side at β = 0. In
other words, both sides are zero and have zero gradient at β = 0. We must now find legitimate
parameters u and γ which will guarantee that the right hand side’s term is an upper bound. To do
so, it suffices to find parameters which guarantee that the curvature of the right hand term is an
upper bound on the curvature of the left hand term (since the 0th and 1st order terms are equal
at β = 0). This is because of the flat tangential contact at β = 0. Thus, we need to guarantee the
following (this is the above Inequality 7.7 with the logarithm extracted out):∑

mn

hmn exp (βvmn) ≤ γ exp (βu) + γ exp (−βu) + 1− 2γ

Taking second derivatives with respect to β of both sides, we obtain the following (this is a stricter
curvature test for the above inequality):∑

mn

hmnv2
mn exp (βvmn) ≤ γ exp (βu) u2 + γ exp (−βu) u2 (7.8)

Let us now set the u parameter as follows: u = maxmn |vmn|. Now, instead of satisfying Equation 7.8
we will satisfy the following two stricter constraints. These 2 cases subsume Equation 7.8 since in
each case we are subtracting a positive quantity from the left hand side and still trying to maintain
an upper bound. These cases are as follows:
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• Case 1: When β is positive, we know that: exp(βu) ≥ exp(βvmn). This is because we already
defined u = maxmn |vmn| and β is positive. Thus we impose the following stricter guarantee
and expand it:

γ exp(βu)u2 ≥
∑
mn

hmnv2
mn exp (βvmn)

γ exp(βu)u2 ≥
∑
mn

hmnv2
mn exp (βu)

γ ≥
∑

mn hmnv2
mn

u2

• Case 2: When β is negative, we know that exp(−βu) ≥ exp(βvmn). Therefore, we impose the
stricter guarantee below and expand it:

γ exp(−βu)u2 ≥
∑
mn

hmnv2
mn exp (βvmn)

γ exp(−βu)u2 ≥
∑
mn

hmnv2
mn exp (−βu)

γ ≥
∑

mn hmnv2
mn

u2

We can thus satisfy Inequality 7.7 by setting the following definition for the parameters γ and u and
guarantee that the intermediate bound is valid. Thus, we have an intermediate upper bound on the
log Gibbs partition function which simplifies its possibly large number of terms (in the summation∑

mn) to just two parameters. Figure 7.9 depicts the bound for various random cases.

u := maxmn |vmn| γ :=
∑

mn
hmnv2

mn

u2
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Figure 7.9: Intermediate Bound on Log Gibbs Partition Functions. The solid line is the simple
intermediate upper bound which is always guaranteed greater than Gibbs partition function in the
dashed red line.

Thus, instead of finding a qΨ̂ that satisfies the original uni-dimensional bound in Equation 7.6 we
will merely find qΨ̂ that satisfies the stricter intermediate bounds we have just computed:

1
2
qΨ̂β2 ≥ log (γ exp (βu) + γ exp (−βu) + 1− 2γ) (7.9)

We next invoke a simple change of variables to get rid of the u parameter for the following analysis.
Namely, define ω = βu and solve for the desired qΨ̂ as follows:

qΨ̂

2u2
≥ max

ω
f(γ, ω)



CHAPTER 7. THE REVERSE JENSEN INEQUALITY 150

0
1

2
3

4

0

0.5

1
0

0.2

0.4

0.6

0.8

1

ωγ

f(
γ,

ω
)

Figure 7.10: f(γ, ω).

Where above we have replaced the expression on the right for brevity with a two-dimensional function
f(γ, ω). The 2d function is plotted in Figure 7.10 and is given by the following:

f(γ, ω) =
log (γ exp(ω) + γ exp(−ω) + 1− 2γ)

ω2
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Figure 7.11: maxω f(γ, ω).

Unfortunately, maximizing over ω cannot be done analytically. Instead, one possibility is to obtain
the function maxω f(γ, ω) numerically as show in Figure 7.11. Instead of dealing with maxω f(γ, ω)
directly (which may be awkward due to its non-analytic nature), we can work with analytic linear
upper bounds upon it. For example, we can have various linear upper bounds of the form:

aγ + b ≥ max
ω

f(γ, ω)
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Figure 7.12: Linear Upper Bounds on the numerical maxω f(γ, ω). Here, we show various settings
of the upper bounds aγ + b as we vary the (a, b) settings.

Figure 7.12 depicts the linear bounds on the maxω f(γ, ω) function. Some values of a and b which
provide numerically guaranteed upper bounds on the right hand side are listed in the Appendix in
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Table 10.3. Matlab code to derive the function relating a and b is also given in the Appendix in
Section 10.3. We merely have to select one of those many valid settings for a and b to obtain an
upper bound on maxω f(γ, ω). Therefore, inserting this intermediate bound allows us to obtain the
desired qΨ̂ in terms of the (a, b) linear bound:

qΨ̂ ≥ 2u2 max
ω

f(γ, ω)

qΨ̂ ≥ 2u2(aγ + b)

qΨ̂ ≥ 2 max
mn

v2
mn

(
a

∑
mn hmnv2

mn

maxmn v2
mn

+ b

)
qΨ̂ ≥ 2a

∑
mn

hmnv2
mn + 2b max

mn
v2

mn
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Figure 7.13: Quadratic Bound on Log Gibbs Partition Functions. The quadratic bound (’x’ green
line) is above the the simple intermediate upper bound (the solid blue line) which is above the Gibbs
partition function (dashed red line).

In the above, we have expanded our parameters u and γ in terms of their definitions. Figure 7.13
depicts the desired resulting quadratic bounds from the formula for qΨ̂ on the intermediate bounds
as in Equation 7.9. We optimize over the possible choices (a, b) such that the qΨ̂ value is minimized
to generate the tightest bound. We have thus found a quadratic bound for the one dimensional case.
The next step is to fold this bound into the original multidimensional formulation and guarantee it
in the general full-dimensional bounding problem.

7.8.2 Scaling Up to the Multidimensional Formulation

We now have a quadratic bound that is guaranteed along a particular slice of the L(Ψ) function
when Ψ = βΨ̂. Let us rewrite this unidimensional bound in terms of our whitened data vectors
Zmn. Furthermore, for computational efficiency we will also make sure that the computation of qΨ̂

will only require simple inner products of these vectors. First recall the following definition:

vmn = Ψ̂T

Zmn −
∑
ij

hijZij


Replacing that into the current bound on qΨ̂ we get the following:

qΨ̂ ≥ 2a
∑
mn

hmnv2
mn + 2b max

mn
v2

mn

qΨ̂ ≥ 2a
∑
mn

hmn

Ψ̂T

Zmn −
∑
ij

hijZij

2

+ 2b max
mn

Ψ̂T

Zmn −
∑
ij

hijZij

2
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qΨ̂ ≥ 2a
∑
mn

hmn

(
Ψ̂T Zmn

)2

− 2a

∑
ij

hijΨ̂T Zij

2

+ 2b max
mn

Ψ̂T Zmn − Ψ̂T
∑
ij

hijZij

2

For the terms that depend on the b scaling, we shall merely invoke Jensen’s inequality in a straight-
forward way on the quadratic expression. Again, this makes us get an intermediate upper bound on
qΨ̂ which satisfies our requirements even more strictly. More specifically, we have:Ψ̂T Zmn − Ψ̂T

∑
ij

hijZij

2

= 4×

1
2
Ψ̂T Zmn +

1
2

−Ψ̂T
∑
ij

hijZij

2

≤ 4× 1
2

(
Ψ̂T Zmn

)2

+ 4× 1
2

Ψ̂T
∑
ij

hijZij

2

Reinserting this bound into our current qΨ̂ expressions, we obtain the following stricter condition
on qΨ̂:

qΨ̂ ≥ 2a
∑
mn

hmn

(
Ψ̂T Zmn

)2

− 2a

∑
ij

hijΨ̂T Zij

2

+ 2b max
mn

2
(
Ψ̂T Zmn

)2

+ 2

Ψ̂T
∑
ij

hijZij

2


qΨ̂ ≥ 2a
∑
mn

hmn

(
Ψ̂T Zmn

)2

− 2(a− 2b)

∑
ij

hijΨ̂T Zij

2

+ 4b max
mn

(
Ψ̂T Zmn

)2

We can easily guarantee that a − 2b is always positive (which is evident from the allowable values
in the tables), and thus we see that the middle term in the above expression is negative. We can
therefore delete it and obtain an even stricter bound on qΨ̂:

qΨ̂ ≥ 2a
∑
mn

hmn

(
Ψ̂T Zmn

)2

+ 4b max
mn

(
Ψ̂T Zmn

)2

Now recall the following property from the definition of Zmn in Equation 7.5. If we are dealing
with a normalized unit-norm version of the Ψ vector (i.e. Ψ̂), and dot product it with Zmn which
is padded with zeroes, this is equivalent to dot-producting the truncated version of Zmn with a
truncated version of of Ψ̂, namely Ψ̂m:

Ψ̂T Zmn = Ψ̂T
mZmn

In the above we have the Ψ̂m vector simply be a vector of less than unit norm corresponding to the
unit norm vector Ψ̂ with all entries that are not in the m’th index position zeroed out. This allows
us to rewrite the above as:

qΨ̂ ≥ 2a
∑
mn

hmn

(
Ψ̂T

mZmn

)2

+ 4b max
mn

(
Ψ̂T

mZmn

)2

Any inner product can be written as the magnitudes of the vectors times the cosine of the angle
between them, i.e. Ψ̂T

mZmn = ‖Ψ̂m‖ ‖Zmn‖ cos(θ). Therefore, we can find a stricter upper bound
once again by noting the following:(

Ψ̂T
mZmn

)2

≤ Ψ̂T
mΨ̂mZT

mnZmn
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Therefore we can finally write the following condition on qΨ̂ which will guarantee an upper bound:

qΨ̂ := 2a
∑
mn

hmnΨ̂T
mΨ̂m ZT

mnZmn + 4b max
mn

Ψ̂T
mΨ̂m ZT

mnZmn

This definition of qΨ̂ will give us a guaranteed quadratic bound on our original log-partition function
for arbitrary choice of direction Ψ̂ that:

1
2
qΨ̂β2 ≥ log

∑
m

∑
n

hmn exp
(
βΨ̂T Umn

)
∀ β

We can now plug in the definition of qΨ̂ in that quadratic expression and guarantee that it holds for
any β and any Ψ̂:

1
2

(
2a
∑
mn

hmnΨ̂T
mΨ̂m ZT

mnZmn + 4b max
mn

Ψ̂T
mΨ̂m ZT

mnZmn

)
β2 ≥ log

∑
m

∑
n

hmn exp
(
βΨ̂T Umn

)
∀ β

We should point out here, that we can vary the chosen a and b values for each Ψ̂ direction, they
need not be fixed throughout to guarantee the bounds. In other words, they can be made functions
of the direction Ψ̂ without violating the bound:(

aΨ̂

∑
mn

hmnΨ̂T
mΨ̂m ZT

mnZmn + 2bΨ̂ max
mn

Ψ̂T
mΨ̂m ZT

mnZmn

)
β2 ≥ log

∑
m

∑
n

hmn exp
(
βΨ̂T Umn

)
∀ β

We now return to the original problem, which was finding a quadratic upper bound on a multi-
dimensional log Gibbs partition function, i.e. H(Ψ) ≥ L(Ψ) by computing valid rm scalars that
satisfy:

1
2

∑
m

rmΨT
mΨm ≥ log

∑
m

∑
n

hmn exp
(
ΨT Umn

)
∀Ψ

The above can be written in terms of βΨ̂ and then we can directly plug in the unidimensional bound
we have derived:
1
2

∑
m

rmβΨ̂T
mβΨ̂m ≥ log

∑
m

∑
n

hmn exp
(
βΨ̂T Umn

)
∀ Ψ̂, β

1
2

∑
m

rmβΨ̂T
mβΨ̂m ≥

(
aΨ̂

∑
mn

hmnΨ̂T
mΨ̂m ZT

mnZmn + 2bΨ̂ max
mn

Ψ̂T
mΨ̂m ZT

mnZmn

)
β2 ∀ Ψ̂, β

We can now divide out the β2 (the β = 0 case is not relevant since we have tangential contact at
β = 0) from both sides:

1
2

∑
m

rmΨ̂T
mΨ̂m ≥

(
aΨ̂

∑
mn

hmnΨ̂T
mΨ̂m ZT

mnZmn + 2bΨ̂ max
mn

Ψ̂T
mΨ̂m ZT

mnZmn

)
∀ Ψ̂

By inspection, we can turn the above aggregate bound on the rm into M individual bounds on
isolated rm. Satisfying these bounds on an individual basis will satisfy the aggregate bound:

1
2
rmΨ̂T

mΨ̂m ≥ aΨ̂

∑
n

hmnΨ̂T
mΨ̂m ZT

mnZmn + 2bΨ̂ max
n

Ψ̂T
mΨ̂m ZT

mnZmn ∀ m
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Simplifying by dividing out the Ψ̂T
mΨ̂m yields:

rm ≥ 2aΨ̂

∑
n

hmnZT
mnZmn + 4bΨ̂ max

n
ZT

mnZmn ∀ m

Where we are still free to pick an arbitrary aΨ̂, bΨ̂ pair for each m value. Thus, we should really
index those as:

rm ≥ 2am

∑
n

hmnZT
mnZmn + 4bm max

n
ZT

mnZmn ∀ m

The smallest value of rm which still satisfies the above is the tightest bound. Therefore, we set rm

to the above to obtain, finally, a succinct formula for it:

rm = 2am

∑
n

hmnZT
mnZmn + 4bm max

n
ZT

mnZmn ∀ m

Expanding out the definition wm − w′m = rm, we ultimately obtain:

wm = 2am

∑
n

hmnZT
mnZmn + 4bm max

n
ZT

mnZmn + w′m

Where we have (from previous sections) the following definition 2:

xsw′m = minw′m such that
hm

w′m

(
∂K(Θm)

∂Θm

∣∣∣∣
Θ̃m

−Xm

)
+

∂K(Θm)
∂Θm

∣∣∣∣
Θ̃m

∈ ∂K(Θm)
∂Θm

And the Zmn are defined as follows (as shown earlier):

Zmn = K′′(Θ̃m)−1/2(Xmn −K′(Θ̃m))

It should be noted that we can always increase the wm terms and guarantee a bound because these
provide a stricter bounding. Consequently, any of the intermediate terms in the computation of wm

which are too difficult to compute can be upper bounded if they result in an increase in the wm and
this will still guarantee a strict global bound.

7.9 Analytically Avoiding Lookup Tables

The use of lookup tables is mathematically unappealing so we instead now provide a fully analytic
treatment of the am and bm tradeoff. Recall that we had achieved a fully analytic bounding process
up until the point where we were trying to solve for qΨ̂:

qΨ̂

2u2
≥ max

ω

log (γ exp(ω) + γ exp(−ω) + 1− 2γ)
ω2

This bounding thus required the maximization over ω of the following function:

f(γ, ω) =
log (γ exp(ω) + γ exp(−ω) + 1− 2γ)

ω2

2The value of w′
m depends on the nature of the constraints on the Km function. In the Gaussian case, Θ is an

arbitrary Euclidean vector and therefore w′
m is always zero. In the multinomial and other cases, it is trivial to compute

w′
m with some simple algebra.
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It was deemed too difficult to exactly solve the max of f(γ, ω) and instead it was handled numerically.
However, what we can do is find an upper bound on maxω f(γ, ω) and thus provide an even stricter
condition on qΨ̂. Naturally, this bound will not be as tight as the one resulting from the a, b numerical
linear bounds yet is fully analytic. First let us define the function g(γ) := maxω f(γ, ω) which we
have found too hard to compute analytically. We thus have:

qΨ̂ = 2u2g(γ)

An analytic expression for g(γ) is too difficult, however note the following interesting property: 3:

g(γ) = γ ∀ γ ≥ 1
6

This is true, since the limit of f(γ, ω) as ω goes to zero (via l’Hopital’s rule) is:

lim
ω→0

log(γ exp(ω) + γ exp(−ω) + 1− 2γ)
ω2

= γ

The maximum of f(γ, ω) occurs at ω → 0 whenever γ ≥ 1/6. This is done by proving that:

log(γ exp(ω) + γ exp(−ω) + 1− 2γ)
ω2

≤ γ

The proof of the last inequality is equivalent to proving:

exp(ω) + exp(−ω)− 2 ≤ exp(γω2)− 1
γ

Expanding all exp functions into power series in ω and comparing terms yields the result. This
last inequality can also be used to show that if 0 < γ < 1/6 then g(γ) > γ. Thus, we know that
g(γ) = γ for γ ≥ 1/6. Recall that g(γ) arose when we were trying to find a quadratic bound on the
log(γ exp(ω) + γ exp(−ω) + 1− 2γ). Thus, we had:

qΨ̂

2u2
ω2 ≥ log(γ exp(ω) + γ exp(−ω) + 1− 2γ)

Evidently, then, if γ ≥ 1/6, we have:

qΨ̂ ≥ 2u2γ ∀ γ ≥ 1
6

Now, let us look more closely at the interval when γ ≤ 1/6. For simplicity We define h(γ, ω) as
follows:

h(γ, ω) = log(γ exp(ω) + γ exp(−ω) + 1− 2γ)

Replacing, we can rewrite our condition as follows:

qΨ̂

2u2
ω2 ≥ h(γ, ω)

3This property was noted and proved with the help of Dr. Michael Ulm, FB Mathematik, Universitaet Rostock.
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Let us now split the left hand side and the right hand side into two components:

q1

2u2
ω2 +

q2

2u2
ω2 ≥ h1(γ, ω) + h2(γ, ω) (7.10)

Naturally, we have:

qΨ̂ = q1 + q2

h(γ, ω) = h1(γ, ω) + h2(γ, ω)

Now, if we can guarantee the following individual inequalities we can guarantee a stricter version of
the overall inequality in Equation 7.10.

q1

2u2
ω2 ≥ h1(γ, ω)

q2

2u2
ω2 ≥ h2(γ, ω)

So far, he solution has not really developed any further through this breakdown. However, we will
next specify the h1 and h2, and we shall be able to find a simple analytic solution for q1 and q2.

For h1(γ, ω), we will use the following function:

h1(γ, ω) =
|ω − log(γ)| − (ω − log(γ))

2
+
| − ω − log(γ)| − (−ω − log(γ))

2

The h2(γ, ω) is then naturally constrained to be:

h2(γ, ω) = h(γ, ω)− h1(γ, ω)
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Figure 7.14: Bounding Separate Components.

Clearly h1(γ, ω) and h2(γ, ω) add to form h(γ, ω) so this breakdown is legitimate. Figure 7.14 depicts
the different functions, h(γ, ω), h1(γ, ω) and h2(γ, ω). Now, it is relatively easy to upper bound the
above h1(γ, ω) and h2(γ, ω) functions individually. Basically, h1(γ, ω) is a symmetric function and
we can deal with only one side at a time. When ω ≥ 0, we need only guarantee that the quadratic
bound is greater than a line with slope=1 and an ω-intercept of − log(γ). Therefore, we have:

q1

2u2
ω2 ≥ ω + log(γ)

It is straightforward to show that:

1
4 log(1/γ)

ω2 ≥ ω + log(γ)
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This also holds for the ω ≤ 0 case by symmetry. Therefore, we obtain q1 as follows:

q1 =
2u2

4 log(1/γ)

Now, we need to solve for q2 to upper bound h2(γ, ω). Again, by symmetry of h(γ, ω) and the
quadratic upper bound, we need only consider the case when ω ≥ 0. We shall split the interval where
we will verify this bound into two separate components: 0 ≤ ω ≤ log(1/γ) and log(1/γ) ≤ ω <∞.

For the first interval, log(1/γ) ≤ ω <∞, we see that h2(γ, ω) simplifies as follows:

q2

2u2
ω2 ≥ h2(γ, ω) log(1/γ) ≤ ω <∞

q2

2u2
ω2 ≥ h(γ, ω)− (ω − log(1/γ)) log(1/γ) ≤ ω <∞

Thus, we can find q2 by maximizing as follows:

q2

2u2
= max

log(1/γ)≤ω<∞

h(γ, ω)− ω − log(γ)
ω2

q2

2u2
= max

log(1/γ)≤ω<∞

log(γ exp(ω) + γ exp(−ω) + 1− 2γ)− ω − log(γ)
ω2

It is clear in the above that the numerator h(γ, ω) − ω − log(γ) is monotonically decreasing (its
gradient is always negative). Meanwhile, the denominator ω2 is monotonically increasing. Therefore,
to maximize the fraction, we want to keep ω as small as possible, thus we set it to ω = log(1/γ).
This gives us the following condition for q2:

q2

2u2
=

log(γ exp(− log(γ)) + γ exp(log(γ)) + 1− 2γ) + log(γ)− log(γ)
log(γ)2

(7.11)

q2

2u2
=

log(γ2 − 2γ + 2)
log(γ)2

(7.12)

For the second interval, 0 ≤ ω ≤ log(1/γ), and there h1(γ, ω) is simply zero. This permits h2(γ, ω)
to simplify to: h2(γ, ω) = h(γ, ω). Therefore, we need to upper bound as follows:

q2

2u2
ω2 ≥ h2(γ, ω) 0 ≤ ω ≤ log(1/γ)

q2

2u2
ω2 ≥ h(γ, ω) 0 ≤ ω ≤ log(1/γ)

q2

2u2
ω2 ≥ log(γ exp(ω) + γ exp(−ω) + 1− 2γ) 0 ≤ ω ≤ log(1/γ)

By concavity of the logarithm function, we can upper bound log(z) by z−1. If we invoke this upper
bound on the right hand side, we obtain an even stricter condition for q2.

q2

2u2
ω2 ≥ (γ exp(ω) + γ exp(−ω) + 1− 2γ)− 1 0 ≤ ω ≤ log(1/γ)

q2

2u2
= γ max

0≤ω≤log(1/γ)

exp(ω) + exp(−ω)− 2
ω2

The right hand side function being maximized over ω is monotonically increasing (its gradient is
always positive). Therefore, to maximize it, we set ω as large as possible within the interval being
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considered (i.e. ω = log(1/γ)). Thus, to satisfy the bounding for this interval, we obtain the
following condition on q2:

q2

2u2
= γ

exp(− log(γ)) + exp(log(γ))− 2
log(γ)2

(7.13)

q2

2u2
=

(γ − 1)2

log(γ)2
(7.14)

q2 = 2u2 (γ − 1)2

log(γ)2
(7.15)

Now we must aggregate both Equation 7.12 with Equation 7.15 to obtain an overall bound on q2 for
both intervals. It is clear that Equation 7.15 is always stricter and subsumes Equation 7.12 since
the following is provably true (by simply invoking the log(z) ≥ z − 1 rule):

(γ − 1)2 ≥ log(γ2 − 2γ + 2)

Therefore, we have the following values for q1 and q2 (when γ ≤ 1/6):

q1 =
2u2

4 log(1/γ)

q2 = 2u2 (γ − 1)2

log(γ)2

Therefore, we can now compute the qΨ̂ value as their sum:

qΨ̂ = q1 + q2

qΨ̂ = 2u2

(
1

4 log(1/γ)
+

(γ − 1)2

log(γ)2

)

This is only for the γ ≤ 1/6 region. We can combine it with our value for the γ ≥ 1/6 as follows:

qΨ̂ = 2u2

{
γ γ ≥ 1/6

1
4 log(1/γ) + (γ−1)2

log(γ)2 γ ≤ 1/6

For reasons that will become evident soon, the l0 discontinuity at γ = 1/6 is not desirable and
prevents the overall concavity (with respect to the γ variable) of the right hand side. By checking
the curvature of 1

4 log(1/γ) and (γ−1)2

log(γ)2 , we can see that these two functions are concave for γ ≤ 1/6.
However, the sudden jump to the linear function when γ = 1/6 prevents concavity. To maintain
concavity, we use a linear upper bound for γ ≥ 1/6 which keeps the l0 and l1 continuity. Thus, we
will replace qΨ̂ with a concavified version as follows:

qΨ̂ = 2u2

{
m̃γ + b̃ γ ≥ 1/6

1
4 log(1/γ) + (γ−1)2

log(γ)2 γ ≤ 1/6

The gradient and the value at γ < 1/6 are:

m̃ =
1

4γ log(γ)2
+

2(γ − 1)
log(γ)2

− 2(γ − 1)2

γ log(γ)3

∣∣∣∣
γ=1/6
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m̃ =
1

4/6 log(6)2
+
−5/3

log(6)2
+

3(5/3)2

log(6)3

m̃ ≈ 1.397

b̃ =
(

1
4 log(6)

+
25/36
log(6)2

)
− m̃

6

In fact, to maintain concavity the value of m̃ can be any value less than the slope computed above.
However, we also must make it upper bound the original value, i.e. m̃γ + b̃ ≤ γ for 1/6 ≤ γ ≤ 1.
Therefore, we can merely use the value m̃ = 1 (which would result in a b̃ > 1/6 and thus an upper
bound on the original linear γ function). Therefore, we obtain:

qΨ̂ = 2u2

{
γ + 1

4 log(6) + 25/36
log(6)2 − 1/6 γ ≥ 1/6

1
4 log(1/γ) + (γ−1)2

log(γ)2 γ ≤ 1/6

In the next section we will justify why we went through the trouble to concavify the above function
over γ. Returning to our original solution for qΨ̂ we had:

qΨ̂ ≥ 2u2g(γ)

Therefore, we effectively have derived a guaranteed concave upper bound on g(γ). This analytic
upper bound on g(γ) is depicted in Figure 7.15 and is given by the following equation.

g(γ) ≤

{
γ + 1

4 log(6) + 25/36
log(6)2 − 1/6 γ ≥ 1/6

1
4 log(1/γ) + (γ−1)2

log(γ)2 γ ≤ 1/6
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Figure 7.15: Bounding the Numerical g(γ) (dashed red line) with Analytic G(γ) (solid blue line).

7.10 A Final Appeal to Convex Duality

We shall now explain why we have gone through this procedure to obtain an analytic concave upper
bound on the g(γ) function. Let us define our new upper bound on the right hand side of the above
expression as G(γ), i.e. g(γ) ≤ G(γ). Figure 7.15 depicts the two functions. Also, we have already
shown that G(γ) is concave.

G(γ) =

{
γ + 1

4 log(6) + 25/36
log(6)2 − 1/6 γ ≥ 1/6

1
4 log(1/γ) + (γ−1)2

log(γ)2 γ ≤ 1/6
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Recall that we avoided working with g(γ) directly by only considering upper bounds on it of the
form aγ + b ≥ g(γ). Ultimately, our final solution to the derived bounds had the form below which
involved these varying (a, b) terms:

wm = 2am

∑
n

hmnZT
mnZmn + 4bm max

n
ZT

mnZmn + w′m

The idea here is to now minimize the wm quantities above with respect to all possible settings of
the (a, b) term pairs to obtain as tight a bound as possible. By varying the tangential contact point
γ of the linear (a, b) bounds we obtain a continuum of variational bound (a, b) pairs parameterized
by a variable, say t, i.e. (a(t), b(t)). Alternatively, we may merely parameterize b as a function of a
to avoid the additional dummy variable, therefore, we have a continuum of pairs (a, b(a)). We can
now write the above more succinctly as:

wm = min
a

2a
∑

n

hmnZT
mnZmn + 4b(a) max

n
ZT

mnZmn + w′m

Manipulating further, we obtain:

wm = 4max
n
ZT

mnZmn

(
min

a
a

∑
n hmnZT

mnZmn

2 maxnZT
mnZmn

+ b(a)
)

+ w′m

Now note that we had defined the a and b pairs to upper bound as follows:

aγ + b(a) ≥ g(γ)

If instead, we satisfy the following stricter condition (i.e. since G(γ) ≥ g(γ)), we have a valid
alternative choice of for (a, b) pairs:

aγ + b(a) ≥ G(γ)

Manipulating further, we note that following convex-duality form:

b(a) ≥ G(γ)− aγ

b(a) = max
γ

G(γ)− aγ

It is well known that for any concave function G(γ), b(a) becomes its (negated) convex dual by the
above procedure. This is because b(a) is formed by the epi-graph of linear bounds on top of the
concave G(γ) function. This property allows us to use the following standard convex-duality result
(see the Appendix Section 10.2 for further clarification):

G(γ) = min
a

b(a) + aγ (7.16)

Using the notation in the Appendix where we show the basic result relating a function f to its dual
f∗ , we can clearly see that the above holds if we define f(γ) := G(γ) and f∗(a) := −b(a).

Now, recall that we had the following minimization problem to obtain wm:

wm = 4max
n
ZT

mnZmn

(
min

a
a

∑
n hmnZT

mnZmn

2 maxnZT
mnZmn

+ b(a)
)

+ w′m
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In the above, we have seen that the G() function arises from a similar minimization. We obtain
exactly the epi-graph definition of G() in Equation 7.16 if we simply define the term multiplying a
in the above equation as γ:

γ =
∑

n hmnZT
mnZmn

2 maxnZT
mnZmn

We clearly see that the minimization over a can therefore be avoided giving us the following analytic
result for the reverse-Jensen bound:

wm = 4max
n
ZT

mnZmn G

(∑
n hmnZT

mnZmn

2 maxnZT
mnZmn

)
+ w′m

Thus, to compute the upper bounds, we need to merely solve for the max and the expected norms
of Zmn and then plug in their ratio into the G() function and so on.

This concludes the derivation.

2



Chapter 8

Imitative Learning

It is by imitation, far more than by precept, that we learn everything;

Edmund Burke, 1729-1797

We have discussed generative and discriminative learning and seen how the two can be theoretically
fused into a powerful hybrid. We will now see these ideas come together in an applied sense as
a combination of discriminative and generative tools will be used in an imitation system. Our
motivation for imitative learning as a useful tool for learning interactive autonomous agents was
already outlined in the introduction. This chapter will outline details of our implementation. The
imitative architecture we will propose here uses perception to learn passively from a human teacher
as he interacts with his environment. It then utilizes its resulting models to synthesize an interactive
character that responds appropriately to perceived external stimulus.

To acquire data from the human teacher, we will use a generative perception model that automati-
cally represents the human’s visual and acoustic activity as well as the external stimulus presented to
him. A generative model is appropriate so that we can provide a priori structure to the complicated
perceptual domain as well as be able to sample from this model to create virtual animations of
the teacher. This generative representation then feeds training data to a discriminative prediction
system that learns to forecast the human’s measurements in response to stimuli. A discriminative
system here is favored to focus resources on the prediction task. We wish to optimize performance on
our ability to specifically predict the output behavior of an agent given the stimulus of the external
world.

In the next sections we begin by describing the architecture behind such an imitative system and
briefly relate it to the Action-Reaction Learning (ARL) platform. Various key issues and limitations
are brought up and motivate important generative and discriminative learning tools. Subsequently,
we present the data collection method and hardware. A generative model is then described to model
the perceptual domain and describes visual data as well as auditory data in the form of coefficient
vectors. A discriminative (conditional) hidden Markov model using CEM is then used to learn to
forecast a time series of such audio-visual coefficient vectors. Subsequently, we apply these tools to
a large dataset of human interactions and generate a program that learns behavior. A qualitative
as well as quantitative evaluation of the imitation learning is then given. We complete the chapter
with a brief summary and open questions.
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Figure 8.1: Dialog Interaction and Analysis Window

8.1 An Imitation Framework

The imitation framework we will describe learns an autonomous agent that is able to interact and
respond appropriately to external stimulus from the world and participants within it. Given the
ability to perceive real behavior in humans interacting in the world, we can collect data to learn a
predictive model. In earlier work [97] Action-Reaction Learning described a system that learns the
behavior of two agents while they are interacting. This can be seen as a more specific instance of
imitation where instead of having a teacher interacting with the world, we only consider two teachers
interacting with each other. In ARL, one teacher embodies the ’agent’ we wish to learn while another
teacher embodies the ’world state’. We now review the ARL framework in more detail.

Action-Reaction Learning involves temporal analysis of a multi-dimensional time series that repre-
sents the interaction between two agents. Figure 8.1 displays such a stream or series. Let us assume
that the stream is being generated by a vision algorithm which measures the openness of the mouth.
Two such algorithms are being run simultaneously on two different people. One person generates
the dashed line and the other generates the solid line.

Now, imagine that these two individuals are engaged in a conversation. Let us also name them Mr.
Solid (the fellow generating the solid line) and Mrs. Dash (the lady generating the dashed line).
Initially (interval A-B on the time axis), Mr. Solid is talking while Mrs. Dash remains silent. He
has an oscillatory mouth signal while she has a very low value on the openness of the mouth. Then,
Mr. Solid says something shocking and pauses (B-C). Mrs. Dash then responds with a discrete ’oh,
I see’ (C-D). She too then pauses (D-E) and waits to see if Mr. Solid has more to say. He takes
the initiative and continues to speak (E). However, Mr. Solid continues talking non-stop for just
too long (E-G). So, Mrs. Dash feels the need to interrupt (F) with a counter-argument and simply
starts talking. Mr. Solid notes that she has taken the floor and stops to hear her out.

What Action-Reaction Learning seeks to do is discover the coupling between the past interaction and
the next immediate reaction of both participants. The system will be used to learn a model of the
behavior of Mrs. Dash (and Mr. Solid) so that it can predict and imitate her idiosyncrasies. Thus,
we will learn how Mrs. Dash reacts to the current context (i.e. the past few seconds of activity of
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the users which is akin to a world state). The process begins by sliding a window over the temporal
interaction as in Figure 8.1. The window looks at a small piece of the interaction and the immediate
reaction of the users. This window over the time series forms the short term or iconic memory of
the interaction and it is highlighted with a dark rectangular patch. The consequent reaction of Mrs.
Dash and Mr. Solid are highlighted with the lighter and smaller rectangular strip. The first strip
will be treated as an input x and the second strip will be the subsequent future behavioral output
they should generate (y). To predict and imitate what either Mrs. Dash or Mr. Solid will do next,
a system system must estimate the future mouth parameters they will produce (these stored in y).
As the windows slide across a training interaction between the humans, many such (x,y) pairs are
generated and presented as training data to the system. The task of the learning algorithm is to
learn from these pairs and form a model relating x and y. Once learning has converged, it can then
generate a predicted y∗ sequence whenever it observes a past x sequence. This allows it to compute
and play out the future actions of one of the users (i.e. Mrs. Dash) when only the past interaction
of the participants is visible.

Thus, the learning algorithm should discover some mouth openness behavioral properties. For
example, Mrs. Dash usually remains quiet (closed mouth) while Mr. Solid is talking. However, after
Solid has talked and then stopped briefly, Mrs. Dash should respond with some oscillatory signal.
In addition, if Mr. Solid has been talking continuously for a significant amount of time, it is more
likely that Mrs. Dash will interrupt assertively. A simple learning algorithm could be used to detect
similar x data in another situation and then predict the appropriate y response that seems to agree
with the system’s past learning experiences.

Note now that we are dealing with a somewhat supervised learning system because the data has been
split into input x and output y. The system is given a target goal: to predict y from x. However,
this process is done automatically without any manual data engineering. One only specifies a-priori
a constant width for the sliding window that forms x and the width of the window of y (usually,
the width will be 1 frame for y to conservatively forecast only a small step into the future). The
system then operates in an unsupervised manner as it slides these windows across the data stream.
Essentially, the learning uncovers a mapping between past and future to later generate its best
possible prediction.

An interesting feature here (which we have stressed in the introduction chapter) is that the framework
has a shared action and perception space. Therefore, synthesizing an action that is similar to
a perceived one would merely involve copying the corresponding parameters. We don’t need to
uncover or use some complicated mapping. The AIM (Active Intermodal Mapping) problem that
plagues many imitative learning approaches is effectively side-stepped. Therefore unraveling the
complex mapping between a real human’s activity and a robot or virtual agent’s imitation of it is
not necessary.

8.1.1 A Simple Example

We now present a simple example of the ARL framework in action. This demonstrates the feasibility
of the approach in a particular domain but also permits us to later elucidate some weaknesses and
motivate important extensions.

Here, the agent learns to imitate a teacher’s head and hand gestures [97]. The world state is merely
another person’s head and hand coordinates which the teacher is interacting with. Figure 8.2(a)
depicts the training scenario where two users are interacting with each other by performing simple
gestures while a camera tracks their head and hands coordinates. Tracking is done merely by
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Figure 8.2: A Gestural Imitation Learning Framework. In (a) two users are being tracked in real-
time to collect measurements of their head and hand positions. Each user sees a caricature of the
other in real-time on his screen. In (b), a time series of the perceptual measurements from one user
is shown. Each step in time represents the means and covariances of the 3 Gaussians that describe
the head and hand positions.

modeling skin-colored1 pixels in the image spatially as a mixture of three 2D Gaussians using EM.
This gives us coordinates for the head and hands for both participants as a time series. One
participant’s parameters (actually the mean and covariance of the skin-shaped Gaussians) are shown
in Figure 8.2(b). At each time step of the training data, the users’ parameters over a window of the
past few seconds is vectorized. This large dimensional space is compressed with PCA down to 60
dimensions and is used as input to predict the coordinates of the head/hands in the next frame (the
output). The mapping from input to output is performed using a mixture of experts trained with
maximum conditional likelihood (CEM) over a few minutes of interaction.

Once we have learned from the training data, the model can be used to synthesize behavior in
response to new stimuli. By feeding back the prediction and looping it with real measurements off
of a human, the interactive agent responds to novel gestures in real-time. Figure 8.3 depicts the
online interaction process (after training) where a user is performing a tricky gesture and the virtual
character model claps in response to it. Several simple gestures and their appropriate context are
thus learned from data and can be re-synthesized in a stochastic real-time manner when a single
user gestures towards the system.

8.1.2 Limitations

We now discuss three important limitations of the ARL framework and lead into extensions and tools
that will resolve them. First, the lack of a higher order mapping makes it hard to acquire long term
behavior. This is partly because we may not maintain the requisite fixed coordinate system of actions
and perceptions. The use of PCA as a representation also prevents us from inserting important prior
knowledge and structure in our model of the perception and temporal activity and thus restricts
ARL’s ability to generalize to novel behaviors. For example, simple yet nonlinear transformations of
the training data may not be recognized by the model. Finally, ARL used conditional likelihood to
focus on predicting the future from the past which is not necessarily where the discrimination power
should be most appropriate. An alternative and more appropriate conditional criterion is predicting
the teacher’s actions (the one to be resynthesized) from another user’s actions which will always be
observable.

1The skin color distribution in RGB space itself is also modeled using EM and a mixture of 3D Gaussians.
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Figure 8.3: Online Interaction with the Learned Synthetic Agent. The user is being tracked in real-
time while the agent synthesizes the most likely reaction to his activity. The synthesis is a real-time
forecast and therefore varies according to slight variations in the human’s gestures.
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Consistent and Long Term Training Data

As we previously mentioned, ARL avoids the AIM problem and has a direct equivalence between
action and perception. Thus we don’t have a layer of abstraction which will recognize that a given
gesture remains the same from different perspectives and viewing conditions. Therefore, we must
take care that we maintain consistent representations and deal with changes in the coordinate system
up front (i.e. if the cameras are moved, etc.). This is because the action and perception layer are
not abstracted away for us by a higher order mapping. This often means that training data is
short and scarce because it must be constrained to have the same consistent view point. In the
setup above (Figure 8.2) we are relying on having a constant bird’s eye view of the scene and the
participants. A real organism that performs imitative learning does not have the luxury of a fixed
view point of its teacher. Organisms are often mobile and perform long term (or lifelong) learning
in a multi-perspective world. Although we won’t show how to solve this problem explicitly, we will
try to alleviate it by proposing imitative ARL learning on a wearable platform that is affixed to and
follows a human teacher. This will let us extend the paradigm so that it can collect larger data sets
for training the behavior model.

A Generalizable Behavior Representation

To render the learning tractable, ARL projects the window over the short term memory into a 60
dimensional approximation using PCA. This is reasonable since the time series data is made up of
smooth trajectories. These will only get slightly smoothed from this approximation and will not
lose too much detail (reconstruction accuracy is well above 90%). However, PCA may not be an
appropriate representation since it does not capture any prior structure or knowledge we may have
about the perceptual space or the temporal data. For example, a constant global translation of the
head and hands should not change the meaning of a gesture. Furthermore, speed and phase variations
in a gesture will also cause a radical change in a PCA representation even though the gesture itself
may be the same. Unfortunately, these variations are not factored in the PCA representation and
a subsequent predictive learning technique will have difficulty learning invariances to them and
generalizing appropriately. Therefore, generative models are needed that can capture, or at least
represent in a factored way, these types of variations up-front (be they temporal warpings, visual
transformations or auditory variations).

Focusing on the Agent’s Output Behavior

Another deficiency in ARL framework is that it is discriminative in an inappropriate sense: it predicts
the future of both participants given the past. This regression model appropriately avoids wasting
resources modeling the past when it has no predictive value for estimating the future (i.e. we optimize
the conditional p(future|past) and not the marginal p(past)). However, the past is not exactly given
when the system has to interact with a single human being in an online synthesis scenario. The only
data that is ’given’ are the direct measurements from the external world and the single human who
is triggering the system. Therefore, it would make more sense to try to form a conditional learning
problem where the conditioning of the variables is broken into p(agent|external world) where the
external world may include other agents or other stimuli. While both measurements of the agent as
well as the world are available during training, during testing (or online prediction) only the external
stimulus will be available and it is up to the system to synthesize the agent’s output measurements.
Therefore, this form of conditioning is more appropriate.
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8.2 Long Term Behavior Data Collection

To resolve the issue of maintaining a consistent perception of the teacher’s behavior, we propose the
use of a wearable computer system. This is a convenient way to collect a sizeable amount of data
while the teacher engages in various natural activities and also preserves the regular conditions and
point of view necessary for a non-AIM based imitative learning framework. In Figure 8.4 a user
(or teacher) has a head mounted microphone and a camera mounted to a boom that perceives his
face. This audio-video source is the perception space as well as the action space for the learner.
Furthermore, a camera affixed to his glasses and a microphone that is aimed outwardly track the
context (which is the perceived space for the external world). The wearable then collects data via a
small computer that transcribes both channels of audio-video signals at roughly 100 megabytes per
hour.

Figure 8.4: Two channel audio-visual imitation learning platform.

Other instances of wearable learning include work by Starner [180] and Clarkson [38]. However,
only the contextual space was modeled and the teacher’s action/perception data is not collected or
coupled to the external context as in the above system. The platform above provides a consistent way
to collect long-term data for the purposes of imitative learning without dealing with the problems
of mapping from action to perception.

8.2.1 Data and Processing

The video that is captured arrives at 7Hz in both cameras and is stored as images of size 60 by 80
pixels in an 8-bit RGB representation. The images are first illumination-normalized by a histogram
fitting operation. Then, the image is filtered using a Gaussian RGB mixture model of skin color to
select only the skin-colored pixels from the images in both video streams. This focuses modeling
resources on the wearable user’s face and focuses the external stimuli on the head and hands of
people in the scene (as well as occasional random skin-colored objects, unfortunately).

The audio being captured arrives at a 16kHz sampling rate in mono for each microphone (with 16-bit
resolution on amplitude). The audio is processed by computing its sound energy and thresholding
to avoid modeling insignificant background noise. Then we perform a fast Fourier transform over a
Hamming window (with 50% overlap) and use magnitude values of the audio only (the phase infor-
mation is discarded). Each resulting spectrogram is clipped to use only the lowest 200 frequencies
of the audio signal (i.e. the highest represented frequency is about 6kHz). These spectrograms are
generated at approximately 60Hz.

Figure 8.5 portrays several frames of the user as he walks down a hallway and approaches an
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Figure 8.5: Wearable Interaction Data. Both the teacher and the world video are visible as well as
the spectrograms for their audio signals.
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individual to begin conversation. The frames show both the user’s face and his own eye’s view
(from the camera attached to his glasses). The spectrograms are shown interlaced between the
corresponding video images. The higher frequencies are to the left and more recent vectors are at
the bottom of each image. High intensities indicates high audio magnitude (the spectrograms are
normalized for easy viewing).

8.2.2 The Task

Given this large data set, our task will be to train an imitative agent by learning a good predictive
model of what the teacher will do given the external stimulus. The data set which spans several hours
and hundreds of megabytes of images/spectrograms is initially split in half to form a training portion
as well as a testing portion. Here, a piece of the training data is shown which covers approximately
10 seconds worth of images (both the teacher and the external view) as well as 10 seconds worth of
spectrograms (from both microphones). The data is further split in half into a representation of the
external world x (audio and video) and a representation of the agent y (audio and video). Therefore,
we have x = world and y = agent. We now have a standard regression formulation where we need
to obtain y from x by learning from the training data.

x

y

train test

Figure 8.6: The Audio-Visual Prediction Task. The user is seen conversing with another participant
in the external video source. Both his video signal and the participant are shown over a few frames
as well as their audio signals (as spectrograms). Using the training data portion, we wish to learn
a model that will map the outside world measurements x to the measurements y of the ’teacher’
which the system will imitate.

8.3 Generative Modeling for Perception

As previous chapters argued, it would be naive to claim that the above raw sensory data we have
captured (images and spectrograms) can be learned from directly without seeding the learning
process with some structure. Although humans learn to see, learn to hear, and so forth, in a
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machine learning system, this unwieldy learning task must be seeded with some a priori structures,
models and algorithms to make it tractable. Without a priori structure, data requirements and
search space size grow rapidly and lead to inefficient convergence. Such is the case for the blank-
slate approaches to behavioral model learning that Edelman proposes in the Darwin series of robots
(Darwin III, IV, V) [49]. Therein, the direct mapping of color responses from a camera into a
large unstructured neural network with connections to actuators does not seem practical and causes
convergence problems.

Of course, over-engineering the prior structure can be equally dangerous and there is a delicate
balance between nature and nurture. Not only can over-engineered structures specify models that
don’t agree with the observed phenomena, providing too much extra knowledge and structure might
also hurt. Extra knowledge and constraints can reduce tractability and computability. An algorithm
which is guaranteed to find a global solution in polynomial time can be marred with local minima
and poor gradient descent solutions when unusual additional constraints (which capture additional
domain knowledge) are added to the system. In Bayesian networks, the specification of dependencies
between random variable nodes is often restricted to a tree structure for propagation algorithms to
converge and additional knowledge may create non-trees or cyclic links [149] [209]. We will thus
propose a structured model that is not only intuitively plausible for the signals we will deal with
but is also algorithmically feasible.

In this section, we describe a structured generative model which we will to use to handle the various
perceptual signals being acquired by the hardware we proposed. We would like this model to quickly
provide a useful and generalizable representation for the perceptual data that will be collected
for imitation learning. Surprisingly, this generative model will be consistently applicable to both
the image data and auditory data we will be dealing with. Although it may seem naive initially,
this generative model will permit a mapping of high-dimensional audio and video into a compact
representation which will greatly facilitate imitative learning.

Traditional ways to learn from and summarize complicated multi-variate data included, for example,
principal components analysis (PCA)[20], factor analysis and multidimensional scaling [24]. Many
such data summarization approaches can be cast in a generative model framework where latent values
are estimated to compactly represent the data. Figure 8.8 depicts PCA as a generative Bayesian
network.

t=1..T
C

X

V,Λ

t=1..T
C

X1 X2 X3 XD

V,Λ

...

(a) (b)

Figure 8.7: A Bayesian Network Description of PCA. The model Θ includes eigenvectors and eigen-
values V,Λ while the latent variables are the coefficients c. There are T instances of the data vector,
X. The box acts as a replicator of the nodes T for all t = 1..T instances of the training data. Figure
(a) depicts the data vectors as single nodes which is equivalent to (b) which merely zooms in on
each data vector by showing how it can be split into smaller tuples or its individual scalars 1..D.

Here, PCA’s model (i.e. Θ) is the eigenvectors and eigenvalues (V,Λ respectively). The data is the
X node (which can be split into each dimension as sub-nodes X1, . . . , XD) while the coefficients c
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can be thought of as latent variables. The nodes in the ’box’ drawing are replicated (T times for
T instances of the data vectors). Given the eigenvectors, we are effectively forming a degenerate
Gaussian model that can be sampled to produce the data. The latent variables constrain that
Gaussian to a single mean value which, when sampled, will generate a spherical Gaussian over the
data.

There are indeed many shortcomings with linear PCA as a representation which have encouraged
variants such as Bayesian PCA [21], independent components analysis [14], auto-associator networks
[20], and nonlinear embedding [183]. However, in applying these techniques to images, audio and
time series, an important piece of knowledge is overlooked. All the aforementioned approaches
assume the data they deal with can be rasterized directly into a vector form in a high-dimensional
Euclidean space.

However, images, audio, and time series are not vectors. A single color image is not a single big
vector but rather a collection of small vectors or tuples (pixels). Each of these tuples is vector of 5
values, (X, Y,R, G,B) which specify XY location and RGB color. Similarly, an audio spectrogram
is not a vector but rather a collection of 2-tuples (A,F ) where A is a band’s amplitude and F is its
frequency. Furthermore, a univariate time series is not a vector, it is a collection of 2-tuples (C, T )
or coefficient value C and time value T. This permits us to generate an interesting variant of PCA
where each datum in our data set (images, audio) is not a vector but rather a collection of vectors.
This modification of the model is depicted in Figure 8.8 as a Bayesian network.

t=1..T
C

X1 X2 X3 XN

V,Λ

...

M1 M2 M3 MN...

Figure 8.8: Bayesian Network Representing a PCA Variant for Collections of Vectors.

Here, we have split each data vector X (image, audio data, time series) into the subcomponent
tuples X1, . . . , XN which agree with our prior knowledge about the data’s structure. Since there
is no explicit ordering on a collection of pixels or tuples, we can no longer put them into some
fixed vector arrangement. Instead, multinomial variables m1, . . . ,mN are introduced that assign
an unknown discrete label to each subcomponent to associate it with a corresponding location or
eigenvector subcomponent. Thus, the m1, . . . ,mN compute a correspondence between the data and
the model. Each mi multinomial parameter vector can be thought of as a vector of positive mixture
weights that sum to unity and effectively (in the hard case) picks a single destination assignment to
an eigenvector component. We can stack the mi vectors to form a large M -matrix which can also
be constrained to sum to unity across columns. These ’matching’ matrices are N × N and act as
soft permutation matrices, re-sorting each data element’s tuples before we compute the eigenspace.
In regular PCA, these M matrices are locked to identity. Instead, we will allow them to be variable,
doubly-stochastic matrices. Unlike regular matching procedures which match only a pair of images
or a pair of exemplars, the matching in this generative model is done simultaneously over the whole
data set. The M matrix elements can be appropriately repeated for each dimension in the tuple



CHAPTER 8. IMITATIVE LEARNING 173

(i.e. in an image that is XYRGB, our tuples our 5 elements creating a 5N × 5N matching matrix)
to form a matrix that is the size of the x vector and we can image it transforming x as follows:

X̂ = MX

This transform will re-shuffle the tuples, forming a new data element X̂ such that the resulting
eigenspace will fit more accurately and with less reconstruction error. It turns out that if we also
restrict the summation over M ’s columns to be unity, we get a doubly stochastic matrix which forces
the eigenvectors and the data tuples to distribute in a soft one-to-one manner. This is equivalent
to a softened case of the so-called two-way assignment problem [17]. This problem has an exact
polynomial time solution called the Auction Algorithm [17]. However a statistical physics based
approximation called the Invisible Hand Algorithm actually produces a more rapid result [112] 2.
Although a standard EM-propagation framework to the above problem could be feasible, we favored
this alternative solution because of the doubly stochastic constraints and the faster convergence
performance. The computation effectively iterates PCA computations interlaced with the invisible
hand algorithm solutions until convergence (after a few dozen iterations). We compute the soft
assignment matrices, then the coefficients, then the eigenspace iteratively, one at a time, while the
other parameters are fixed. The solution seems to converge yet does so non-monotonically and is
plagued by local minima. Finding a cleaner more global model and algorithm would be interesting
avenues for future research. We now explicate how to apply this generative model to images and
audio to finally form a multivariate time series of data.

8.3.1 A Generative Model on Images

We begin by collecting a small high-quality subset of images (a few hundred) of the agent and the
external world after they have been skin-segmented (to obtain the faces). This data is then used to
form a collection of (X, Y, I) tuples where I is the gray-scale intensity. Effectively, this representation
treats the images and pixels as “point-clouds” where a collection of 3D points is considered instead
of a continuous 2D intensity map. Approximately 2000 (X, Y, I) points are sampled from each
image forming a speckled point-cloud representation of it. For each of these image sets in our data
(agent and world), we then learn the latent coefficients, the doubly stochastic matrices as well as
the eigenspace using the structured PCA model in Figure 8.8.

Figure 8.9: Reconstruction of Facial Images with PCA and Variant.

Figure 8.9 depicts the model’s ability to reconstruct facial images of the teacher (after skin-color
based segmentation) from a 20 dimensional representation (compare it with the reconstruction of

2As an interesting related side note, these same authors have also recently derived a statistical physics formulation
for handling loopy Bayesian Networks.
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PCA directly on these images). The advantage of the collection of vectors is that morphing in XY
is just as easy as varying RGB quantities.

The reconstruction error for the variant is up to 2.5 orders of magnitude better than PCA for the
same level of dimensionality reduction. Previous techniques in the literature also utilized optical
flow [18] or variations [143] of it for image matching and also produce better reconstruction than
PCA.
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Figure 8.10: Reconstruction error for images of self (left) and world (right). 20 eigenvectors are
used. The dashed red line depicts the reconstruction error of PCA while the solid blue line depicts
the variant.

In Figure 8.10 we show the reconstruction accuracy of the variant compared to PCA where both
use a projection down to 20 eigenvectors. The variant captures much more of the image structure
by permitting pixel permutation. The whole data set is then processed with the agent’s eigenspace
where each agent image gets its own coefficients and matrix M . Each image is then summarized
by the 20-dimensional coefficient vector that results. Similarly, all the world images are processed
forming 20-dimensional coefficient vectors for each.

8.3.2 A Generative Model on Spectrograms

Similarly, we can apply the variant to spectrograms since these are not vectors either. In fact a
spectrogram has structure since it is several 2-tuples of amplitude and frequency. These can be
permuted to increase reconstruction accuracy over PCA as shown in Figure 8.11. Again, for 20
eigenvectors, reconstruction accuracy is over 2 orders of magnitude better for the variant. Note
that we also factored out the magnitude (loudness) of the spectrogram from this representation and
concatenate it to the coefficient vector. This produces a 21-dimensional vector that summarizes the
(200-dimensional) spectrogram data.

Spectrogram eigenspaces were learned for the agent’s audio and for the world’s audio from a small
subset. Then, we compute the coefficient vectors for the whole data set of agent audio and world
audio with their respective eigenspace to get a 21-dimensional coefficient vector for spectrogram at
each time point in the sequential dataset.
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Figure 8.11: Reconstruction error for spectrograms of self (left) and world (right). 20 eigenvectors
are used. The dashed red line depicts the reconstruction error of PCA while the solid blue line
depicts the variant.

8.4 Hidden Markov Models for Temporal Signals

The above representations generate a 20 or 21 dimensional vector for each frame of agent audio, agent
video, world audio and world video. By processing the whole data set, we obtain four multidimen-
sional time series of these coefficients. These are then time-aligned (with appropriate interpolation)
and aggregated into a large 82-dimensional time series. Unlike the previous ARL formulation where
PCA is used to represent a window over this time series, we shall instead describe the time series
with a hidden Markov model. PCA does not have temporal invariance properties and therefore
suffers from temporal misalignments in the data. It is well known that a hidden Markov model is
well-suited to time series data and can effectively model time warpings and sequential variations.
This arises by considering a hidden state variable and permitting summations of all possible state
paths in the evaluation of the probability of a sequence. Figure 6.1 depicts the graphical model for
a hidden Markov model however we shall make some simple modifications such that it more directly
addresses the desired task at hand.

8.5 Conditional Hidden Markov Models for Imitation

Since we are interested in predicting the component of the time series (audio and video) that the
agent would generate, we now have a discriminative prediction task, namely to predict y. This could
be cast in the MED framework by learning a regression function derived from HMM likelihood
measurements that would estimate the output with an epsilon-sensitive model. There are important
problems with such an approach. Unlike a traditional regression setting, the output of the HMM
model may exhibit some time-warpings and may not be perfectly aligned with the desired output
even though it generates the appropriate behavior. Therefore, an epsilon-tube type of constraint
may be inappropriate since it forces the outputs to be perfectly matched in time on a sample-by-
sample basis. Furthermore, performing MED regression requires the resolution of many two-sided
constraints on the output scalars. Since the training data has hundreds of thousands of samples
as well as 20 output dimensions, the number of Lagrange multipliers would be in the millions
making training very cumbersome. Therefore we will employ a maximum conditional likelihood as
our surrogate discriminative framework to estimate the input-output HMM instead [16]. We will
be discriminative in the conditional sense and utilize the CEM algorithm to estimate the HMM’s
parameters as elaborated (with Jensen and reverse-Jensen inequality derivations) in Chapter 6.
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We begin by simplifying the time series learning task into two subproblems and actually learn two
separate hidden Markov models conditionally. Recall that we had split the time series into half
where x represents the signals that correspond the the world while y represents the signals that
correspond to the agent. We can further split each of these into audio and video components where
xa is the audio component of the world signal while xv is the video component. The ya and the yv

are the agent’s audio and video sequences respectively. We will learn one hidden Markov model such
that it predicts p(ya|xa, xv) while we learn another to predict the agent’s video, i.e. p(yv|xa, xv).
This split is useful since it allows the hidden states in each Markov model to specialize into audio
or video prediction and, more importantly, events in either domain occur at different time scales
requiring a different transition model. Figure 8.12(a) depicts the HMM used to predict the agent’s
audio while Figure 8.12(b) depicts the HMM used to predict the agent’s video. These form what is
often called an input-output HMM structure [16] since the inputs x are related to outputs y through
a hidden state s which evolves with Markovian dynamics.

S1 S2 S3 S4 S5

Ya1 Ya2 Ya3 Ya4 Ya5

Xa1 Xa2 Xa3 Xa4 Xa5
Xv1 Xv2 Xv3 Xv4 Xv5

S1 S2 S3 S4 S5

Yv1 Yv2 Yv3 Yv4 Yv5

Xa1 Xa2 Xa3 Xa4 Xa5
Xv1 Xv2 Xv3 Xv4 Xv5

(a) (b)

Figure 8.12: Audio and Video Prediction HMMs. In (a) the HMM is predicting the agent’s audio
signal from the external world’s audio and video stimulus. In (b) the HMM is predicting the agent’s
video from the same input again.

We therefore train two input-output HMMs using CEM where we have 30 states for each and assume
Gaussian emission models with diagonal covariance matrices. Therefore, we need to estimate the
Gaussian means, covariances and state transition matrices for both these models. The first HMM
has 21-dimensional Gaussian-emission models over ya in the output and 41-dimensional Gaussian-
emission models over xa, xv in the input. Meanwhile, the second HMM has 20-dimensional Gaussian-
emission models over yv in the output and 41-dimensional Gaussian-emission models over the xa, xv

input.

Since we will estimate the HMMs using conditional likelihood, we will focus resources on predicting
the agent’s behavior from the input world stimulus. Therefore, we will maximize the joint log-
likelihood of both the HMM over both x and y components of the time series (i.e. both inputs and
outputs) minus the marginal likelihood of the HMM over the x component of the time series. This
process is depicted in Figure 8.13. This permits us to focus on salient stimuli such as conversations
with others since they results in a significant reaction from the agent. Meanwhile, episodes of the
data where the agent is not expressing any interesting responses (i.e. walking alone in the hallway,
background noise in the world, etc.) will be ignored even though they may contain much structure in
the world-signal on its own. In a standard maximum likelihood scenario, these external world stimuli
would get modeled and waste resources since they can be quite structured. However, their structures
may not be important or useful in a task-related way and should not be modeled for their own sake
unless they provide information about the output y. Furthermore, in using a conditional likelihood
criterion, we become slightly more robust to model inaccuracies which maximum likelihood may
be sensitive to. The behavior of the agent and the external world does not truly follow an HMM.
Therefore, the guarantees of Bayesian and maximum likelihood estimation are lost. However, by
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imposing the task (agent prediction) on the system via conditional maximum likelihood, we can be
less sensitive to some aspects of model-data mismatch.

S1 S2 S3 S4 S5

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

S1 S2 S3 S4 S5

X1 X2 X3 X4 X5

log p(x, y) − log p(x)

Figure 8.13: Conditional HMM Estimation. Effectively, we maximize the joint p(x, y) log-likelihood
of the HMM over both x and y (inputs and outputs) minus the marginal p(x) log-likelihood where
the HMM has been summed over to obtain a marginal only over the x input.

The above optimization therefore requires us to maximize the conditional log-likelihood of the HMM
parameters with respect to the time series of xt, yt vectors. This conditional log likelihood is simply
log p(x, y)−log p(x) yet these are latent distributions due to the state paths being hidden in an HMM.
Therefore, we can write the conditional log-likelihood as: log

∑
s p(s, x, y)− log

∑
s p(s, x) where we

recognize the intractable log-sum and a negated log-sum forms as discussed in previous chapters.
We utilize the Jensen inequality to lower bound the first term and the reverse-Jensen inequality to
lower bound the second term. This then permits us to do a simple m-step to reestimate the HMM’s
parameters. This process is therefore the CEM loop for HMMs and is iterated until convergence of
conditional likelihood.

8.6 Experiments

The hidden Markov models are trained as in Chapter 6. The audio prediction HMM is first initialized
with 5 iterations of EM and then converges with CEM to a maximum of conditional likelihood. The
video prediction HMM is optimized only with CEM after a random initialization. Due to the large
size of the dataset (the number of samples in the trellis is of the order of hundreds of thousands of
samples), we could not compute the wm parameters exactly for the reverse-Jensen inequality and
instead used heuristics (described in Chapter 6) to make the optimization more efficient. Therefore,
the monotonic convergence properties of CEM are compromised with these heuristics.

8.6.1 Training and Testing Likelihoods

The data set we have thus compiled is basically a 130,000 sample time series of multidimensional
vectors (82-dimensional to be precise). We use the first 75000 samples for training while the last
55000 samples are used for testing. These each form one long continuous sequence and therefore, to
train the HMMs, we have to deal with trellis sizes of up to 75000 samples. The forward-backward
algorithm and its counter-part for the reverse-Jensen inequality need special consideration to operate
on such a lengthy trellis window. We begin by scaling the α, β probabilities in the forward-backward
algorithm appropriately to avoid numerical errors [156]. Furthermore, we avoid computing the
reverse-Jensen bounds exactly since their computation scales poorly with large trellis sizes (in terms
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of number of samples and number of hidden states). Instead, we use the heuristic that wm = w̃m

where the reverse-Jensen bound’s width parameter is copied from the width parameter of the regular
Jensen bound (based on a symmetry type of argument).

Figure 8.14 depicts the convergence of the EM and the approximate CEM algorithm for the audio-
prediction HMM. While EM converges monotonically to the maximum likelihood solution, it is
inappropriate to optimize maximum likelihood in this setting since the world state (the x vectors)
will always be measurable and need not be predicted or modeled on their own. Since we desire a
conditional mapping from x to y, the conditional criterion is more suitable. Convergence for both
algorithms required less than 30 minutes on a modest Pentium III machine.
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Figure 8.14: Training Log-Likelihoods for Audio Prediction HMM. In (a) we show the joint log-
likelihood per iteration and in (b) we show the conditional log-likelihood per iteration. The dashed
red line is EM’s resulting log-likelihoods while the continuous blue line is CEM’s resulting log-
likelihoods. Note the common starting point and the common first 5 EM-iterations for both algo-
rithms. The use of heuristics to speed up the reverse-Jensen inequality for the HMM (trellis size
here is T=75000) prevents monotonic convergence in CEM.

Figure 8.15 depicts a similar behavior of the learning algorithms on the video prediction HMM.
Here the EM algorithm increases log-likelihood yet compromises conditional log-likelihood. The
CEM counterpart focuses resources in the opposite direction. Training time for both algorithms
required less than 30 minutes on a modest Pentium III machine.

The optimization of a surrogate conditional likelihood instead of ML is performed (i.e. CEM instead
of EM) since we ultimately would like to optimize conditional likelihood on the test data. To evaluate
the performance of our HMMs, we need to see how well they can estimate y from x. Therefore, it is
unfair to evaluate performance on the test data with maximum likelihood. The x are always ’given’
and therefore should not improve our score simply because we were able to predict them. Therefore,
a predictive HMM that needs to generate y from x should be evaluated by a discriminative final
criterion. However, unlike traditional classification problems where, for instance, classifier accuracy
is a good performance metric, regression accuracy is not directly applicable to HMM forecasts and
outputs. Regression accuracy is a natural and acceptable performance metric in a static function
approximation problem. However, the HMM’s outputs (just like its inputs) are sequences. These
sequences can easily accommodate time-warping. Therefore, the HMM can generate time sequences
with flexible time-warpings as well. It makes it inappropriate, consequently, to merely ’subtract’ an
HMM’s regressed estimate from the testing data since the two may not be perfectly aligned. For
example, consider the case where the output of our HMM was a sinusoid and it correctly matched
the overall shape of the desired sinusoid in the testing output data. However, if a small phase shift
were to arise, these two sinusoids would be misaligned and give rise to a large RMS error. It is unfair
to penalize the HMM since it produced the desired overall behavior but was not in perfect alignment
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Figure 8.15: Training Log-Likelihoods for Video Prediction HMM. In (a) we show the joint log-
likelihood per iteration and in (b) we show the conditional log-likelihood per iteration. The dashed
red line is EM’s resulting log-likelihoods while the continuous blue line is CEM’s resulting log-
likelihoods. Note the common (random) starting point for both algorithms. The use of heuristics to
speed up the reverse-Jensen inequality for the HMM (trellis size here is T=75000) prevents monotonic
convergence in CEM.

with the testing data. Thus, it is often inappropriate to use static regression evaluation techniques
in an HMM setting. Instead, we will only report conditional likelihood accuracy on testing since
other metrics do not capture the invariance in the predictions we would like to impose.

Log-Likelihood EM CEM
Joint under Training 204.12 203.33
Joint under Testing 202.55 202.22
Conditional under Training 100.61 101.50
Conditional under Testing 99.61 100.58

Table 8.1: Testing Log-Likelihoods for Audio Prediction HMM.

Table 8.6.1 depicts the testing log-likelihoods for the HMM on the agent’s audio prediction task. We
also show the training likelihoods for comparison. Both EM and CEM perform as expected, yielding
good joint likelihood and conditional likelihood test scores respectively. However, CEM performs
better during conditional likelihood testing (matching the performance EM had during its training,
in fact) which is the desired outcome. Note, here, that the reported quantities are on a logarithmic
scale and therefore, in terms of likelihood, the CEM solution is at least 2.5 times more likely.

Log-Likelihood EM CEM
Joint under Training -4.45 -4.96
Joint under Testing -21.12 -20.61
Conditional under Training -106.06 -105.73
Conditional under Testing -122.46 -121.26

Table 8.2: Testing Log-Likelihoods for Video Prediction HMM.

The situation is a little more unusual in the video prediction task shown in Table 8.6.1. Here, the
testing log-likelihoods for the HMMs (and the training ones for that matter) are somewhat similar
for both EM and CEM. Part of the problem could be that the video signals have a slower time
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scale than the audio ones so conditional learning may have less of a role. Furthermore, CEM’s
convergence was particularly poor here due to the speedup heuristics we are employing. CEM still
performs better in terms of training and testing conditional likelihoods and, quite surprisingly, does
slightly better on testing under joint likelihood as well.

While the above results provide a quantitative evaluation of the models, algorithms and the data
fit, it is not clear that the HMM prediction systems are capable of synthesizing imitative behavior
that qualitatively matches our expectations. In the next section we show the results of using the
predictions to animate a synthetic character that mimics the agent teacher and comment anecdotally
about the resulting behavior/performance.

8.7 Resynthesis Results

Given a generative model on the temporal data (i.e. the HMMs) as well as a generative model of the
perceptual input (the structured variant of PCA), we can now synthesize agent reactions to test data
where only the world stimulus is measured. This is done by first solving for the state distributions (i.e.
trellis) using the measurements from the external stimuli alone. In other words, we use a marginalized
hidden Markov model where the Gaussian emission models are only over the x component of the
time series. The forward-backward algorithm then computes a distribution the hidden states in the
HMM. Given the hidden states, it is straightforward to compute the expected value of the output
vectors yt at each time point by averaging the means of the Gaussian emissions weighted by their
corresponding state assignment probability. This method is reminiscent of other HMM regression
approaches where we map an input variable to an output by first solving for the hidden states. These
include matching visemes and phonemes [27], adding stylistic variations to dynamics [28], coupling
musical instrument expression to sound generation [173] as well as synthesizing facial expressions
between interacting people [73]. However, the HMMs we have estimated used CEM and therefore
their parameters where optimized specifically for this type of task. More formally, we have the
following type of resynthesis (or regression):

ŷt =
M∑

m=1

α̂t(m)β̂t(m)~µy(m)

The above α, β values are the standard (normalized) forward-backward probabilities while the µy(m)
is the ’y’ vector component of the mean of the m’th Gaussian emission model (where m = 1..M
indexes the states of the HMM).

The hidden Markov models thus provide us with a time series of predicted vectors of audio and
video coefficients for the agent. In other words, we have ŷa and ŷv for each time point. Given these
coefficients, we can reconstruct the original signals (images and spectrograms) by simply multiplying
the coefficients with the eigenvectors computed by the PCA variant. After some straightforward
operations, it is possible to synthesize spectrograms and point-clouds. Unfortunately, the point-
clouds are difficult to visualize and therefore, we merely find the closest nearest-neighbor in the
training data to the vector ŷv and render the corresponding image of the agent at that time point.

8.7.1 Resynthesis on Training Data

We now describe the predictions that the HMMs produce when applied to the training data. Here,
we censor the true outputs y and only show the input signal x, namely the external world measure-
ments. We begin by double-checking the HMM’s performance on the training dataset. Since the
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HMMs were trained on these exemplars, this process does not test their ability to generalize and
synthesize proper output behavior. Effectively, we are only evaluating the HMMs’ ability to encode
the training data and to repeat/mimic the behavior without extrapolation. What we can show is a
compression argument since the HMM parameters effectively summarize the agent’s y signals much
more compactly than the original training data representation. Each of the hidden Markov models
has roughly 302 parameters for the transition matrix and 30×60 parameters for the Gaussian mean
and Gaussian (diagonal covariance) parameters. Therefore, with a total of 9000 scalar parameters,
we are trying to summarize a 41-dimensional time series with approximately 75,000 samples. Thus,
3 million scalars are being captured using 9000 scalars. We obtain a compression level of over 3
orders of magnitude when we encode the data with the HMMs. In principle, though, this is a rough
estimate since the accuracy or number of significant digits of the scalars (in the data and in the
HMM) has not been accurately specified.

We next show the resynthesis for a few thousand samples as in Figure 8.16 which spans sample
values 1733 to 3209 (the training data spans time indices 0-74999 while the testing spans 75000-
130000). This figure was generated by taking individual frames from real-time (5Hz) movies we
generated from the HMM predictions and the reconstructed audio and video coefficients (the movies
are obviously easier to interpret than these figures yet unfortunately cannot be integrated into a
document). In the figure, we portray, from left to right order, the world audio spectrograms, the
agent’s audio spectrograms, the ’cloud of points’ PCA representation of the external world faces, the
representation of the agent’s face, then the raw video of the external world as well as the raw video
of the agent. The raw video of the agent is computed from the point-cloud’s representation from the
PCA variant. We use the coefficient vector representing the cloud-point and find its nearest neighbor.
This nearest neighbor match is found from all images in the training data set and their corresponding
20-dimensional vector representations. Efficient nearest neighbor searching is implementing using
KD-trees. This lets us render the image that looks most like the point-cloud the generative model
is recovering. It was crucial to find a nearest neighbor raw video match since the cloud of points
is a confusing representation and causes excessive speckling. Note, also, that the point clouds have
been translated and centered to the middle of the image.

The spectrograms in Figure 8.16 are also shown. Here, time for the spectrograms increases as we
move from top to bottom in each image. Furthermore, as we move across the figure from image to
image, time increases from top to bottom of the figure. Spectrograms can be inverted to play back
sound however there are synthesis problems since the phase information is no longer present (we
only model magnitudes). Although heuristics exist for reconstructing phase [75], we simplified the
problem by using random phase values. This causes a significant amount of noise and clicking in
the audio resynthesis but the audio is still discernible.

Observing Figure 8.16, we see the synthetic agent initiating a conversation as he approaches an
individual in the external world. The agent says “Hi” followed by the human saying “Hi”. Then
the agent says “how are you” which the human replies “fine and you”. Most of the other agent
articulations are mumbles that are difficult to decipher and generally sound like “I see”, “hmm” and
“yeah” except these are interleaved appropriately into the real human speech in the external world
stream. The agent also says what sounds like “hi” and “how are you” at semantically inappropriate
places in the conversation yet are interleaved appropriately in terms of timing with the real human’s
speech and audio energy. Furthermore, there is some head movement and visual cues of speech in
the agent’s synthesized video during the times when the agent is generating audio.

In Figure 8.17, we skip a few seconds and go to the end of the conversation the agent is having with
this human and transition to the next person (time stamps 6265 to 7773). This is still data in the
training set yet it is important to note that the agent maintains a similar interactive behavior even
though there are many changes in audio/video signals as it transitions from one human to another.
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Figure 8.16: HMM Resynthesis on Training Data. Time is increasing from top to bottom at about
3 seconds per row. The figures are arranged from left to right as follows: the world spectrograms,
the agent’s spectrograms, the centered world visual point-cloud, the agent’s visual point-cloud, the
world’s image data and the agent’s image data reconstructed from the point cloud. Also, to the left
of the figures is the time index for the time series.
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Figure 8.17: HMM Resynthesis on Training Data Continued. Time is increasing from top to bottom
at about 3 seconds per frame. The figures are arranged from left to right as follows: the world
spectrograms, the agent’s spectrograms, the centered world visual point-cloud, the agent’s visual
point-cloud, the world’s image data and the agent’s image data reconstructed from the point cloud.
Also, to the left of the figures is the time index for the time series.
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Nevertheless, both humans are female which provides some similarity at the spectrogram level. The
agent responds to the real human audio with mumbled words that are again similar to the previous
“Hi”, “I See” and so forth. However, the audio energy and the timing are correctly interleaved and
the agent remains quiet when it is not actively engaged by human conversation in the external world
channel.

One important caveat here is that this form of resynthesis is not real-time and is not causal. The
HMM has access to the whole sequence of external world stimuli to make its synthesized agent’s
audio/video. Therefore, it is possible to anticipate future events that would not be available in an
online system. This lets us make more flexible predictions since the HMM can synthesize the output
sequence in retrospect after obtaining measurements from the world channel that would otherwise
follow the output. For example, when the agent approaches the individual in the external world, it
says “Hi” first since the external individual begins speaking immediately thereafter and a new face
initially appears from the noisy background. This form of anticipatory synthesized data would be
more difficult to do in a real-time or in an online synthesis setting which would require the external
world stimulus to trigger the system causally. In a sense, regressing all the agent’s activity off-line
using the HMMs is unfair since consistency can be achieved in the synthesized sequences without
the usual causal constraints in real-time behavior synthesis. Furthermore, the agent’s ability to
synthesize audio that is semantically and/or meaningfully related to the external world triggers is not
due to a linguistic understanding of the spectrograms. Rather, this is a byproduct of the HMM fitting
or over-fitting to the training data and capturing an interaction with enough redundancy to repeat
it but not to generalize it to novel situations. In fact, the agent also generates nonsensical responses
(although they are acoustically well-timed) during this synthesis on training data which suggests
that the compression achieved by the HMMs is discarding some information and summarizing some
responses with other generic responses (i.e. forming a crude notion of a few prototype responses).

8.7.2 Resynthesis on Test Data

To test the imitative learning and the HMMs, we maintained 55,000 samples fully hidden from the
training algorithms. These samples form a continuous sequence of several minutes of interactions
(just as the samples used for the training sequence). Figure 8.18 depicts the resulting synthesized
agent just as in the previous format. As the agent initially approaches the human, it remains
quiet. Once they are within range and conversing, it interleaves rather mumbled “Hi”, “I see”,
“How are you” and “I’m not sure” expressions with the audio of the human in the external world
channel. Once again, there is some facial motion which appears to be most active when the agent
is producing audio. The coupling is not as strong here as in the training case and there are no
sensible responses to the external world triggers. The more meaningful responses in the training
were, therefore, artifacts of over-fitting and the test shows that only a very superficial audio-visual
interaction is occurring primarily being driven by the audio energy in the external world channel.
Not only is there insufficient data to learn higher order behavioral patterns, it is also unlikely that
a flat hidden Markov model can capture a meaningful notion hidden state. After all, it only has
access to a few dozen hidden states and the simple spectrogram and visual features we are using.
However, it is interesting that the model recovers some of the timing issues in the interactions
and interjects audio that integrates smoothly into the conversation flow with “Umms”, “Yeahs”
and so forth. Such prosodic and textural interaction is typically difficult to design into structured
synthetic conversational agents and speech recognition systems due to its behavioral as opposed to
syntactical/semantic nature.
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Figure 8.18: HMM Resynthesis on Testing Data. Time is increasing from top to bottom at about
3 seconds per row. The figures are arranged from left to right as follows: the world spectrograms,
the agent’s spectrograms, the centered world visual point-cloud, the agent’s visual point-cloud, the
world’s image data and the agent’s image data reconstructed from the point cloud. Also, to the left
of the figures is the time index for the time series.
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8.8 Discussion

We have thus seen two approaches to imitative learning. First, we discussed the Action-Reaction
Learning approach which models the imitation as a time series prediction problem by learning
a probabilistic model of future given past p(future|past). Second, we have proposed the alter-
native imitative approach of learning where we predict the agent given the external world via:
p(agent|external world). Furthermore, instead of using PCA to represent audio-visual signals, we
proposed a more structured variant that is well suited to handling images and spectrograms and has
superior reconstruction accuracy. Also instead of using PCA to model temporal data, we proposed a
more appropriate hidden Markov model framework which is able to handle time-varying signals and
handle dynamic time warping. The HMM was estimated conditionally using CEM to obtain a more
discriminative predictive distribution and therefore produces better forecasting than the standard
EM approaches. This model was applied to a large data set of human interactions acquired with a
wearable computer and used to then synthesize interactions from only external world stimulus. The
system quantitatively performed better than EM and qualitatively generated interesting yet simple
audio-visual responses to the external world channel triggers.

One important extension to the above is the transition to a real-time causal system. While the above
HMMs benefited from having simultaneous access to all the external world channel (from sequence
start to end), an online prediction setting would require an HMM to only receive observations in
a causal stream from the external world channel while generating predictions itself. Therefore, we
can compute the HMM’s state trellis only on the available world measurements and only synthesize
the agent’s measurements in an incremental fashion. To make the forecasting more precise, it is
important not to use the most recent estimates of the HMM since these may be less reliable than
estimates that are bracketed by a small amount of world measurements in the near future. In other
words, the synthesis of the agent could use a small lag, i.e. a few frames, to get better estimates as
long as it is only a few milliseconds behind in its real-time responses to the user.

Another important caveat is that the acquisition of “behavior” here is being described in a very
limited and constrained sense. The behavior does not involve any natural language processing or
visual understanding and therefore is not based on any deep reaction to the stimulus but rather a
superficial coupling between the audio and video of the two channels. It is clear that various synthetic
systems that utilize speech recognition, natural language processing, specialized visual interfaces and
manual animations generate more compelling synthetic interactions. However, the objective here
is to recover these models from data. The learning process does uncover some slight facial motion
responses as well as simple auditory reactions from real data. It is also able to synthesize them
at somewhat appropriate times in response to simple acoustic and visual cues from the external
world channel. The hidden Markov model is a manageable level of representation for recovering
such simple couplings directly from data and does so reasonably in this setting. Furthermore, we
have shown that a conditional estimate performs slightly better than a regular EM formulation
since the objective is specifically to resynthesize agent measurements from external world triggers.
Therefore, we have obtained a preliminary yet albeit simple implementation of the imitative learning
paradigm we discussed. It was cast into the framework of generative models (a probabilistic variant
of PCA as well as HMMs) which were further endowed with discriminative estimation (conditional
likelihood) to focus on the task. The paradigm of imitative learning is a flexible one and was
implemented here by-and-large without any manual user supervision. Therefore, simple imitative
behavior can be acquired automatically merely by collecting data of a real human teacher’s responses
to the external world stimuli and attempting to mimic the agent’s responses to the context using
a statistical regression approach. The proposed paradigm is now amenable to more sophisticated
generative models (i.e. hierarchical HMMs or stochastic grammars) as well as various specialized
speech, vision and animation algorithms for more sophisticated results. These various augmentations
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can be cascaded into the overall imitation learning platform and hopefully will improve the realism
of the synthetic interactions and make them more compelling.



Chapter 9

Conclusion

The thesis has motivated and situated two schools of thought: generative and discriminative learn-
ing. Both have deeply complementary advantages yet in their traditional incarnations also pose
difficult incompatibilities. We have provided a common mathematical framework that unites the
two and subsumes their strengths. The framework, based on maximum entropy, regularization
theory and Jensen/reverse-Jensen inequalities provides a principled fusion of discriminative and
generative learning. We can now span the rich and flexible space of generative models yet estimate
them discriminatively to maximize performance on the tasks at hand. The probabilistic modeling
resources are harnessed optimally by a discriminative criterion avoiding the intermediate sub-goal
of estimating a good generator. The end result is better performance with the same models.

This framework was then applied to a real domain of imitation learning where a user’s audio-visual
interaction data is recorded with a wearable computer. Imitative learning is cast as a both dis-
criminative and generative learning task. This data is processed and re-synthesized with generative
perception while behavior is learned with discriminatively estimated generative models. The end
result is a synthetic agent that learns stimulus-response interactive behavior autonomously in an
unsupervised setting. The agent can then interactively respond to external stimulus and mimic the
teacher’s behavior in response to it. This provides an easy way for a naive user to create a synthetic
character clone that demonstrates simple interactions.

9.1 Contributions

In this section, we enumerate and detail the various contributions of this thesis. These include
conceptual, theoretical, practical and experimental types of contributions. The domains of relevance
for these contributions include machine learning, machine perception, behavior modeling, statistics,
mathematical inequalities, human-computer interaction and wearable computing.

• Motivating and Situating Generative, Conditional and Discriminative Learning

The thesis provides motivation by referring to various works including the author’s which
depict the importance of generative learning in many applied domains. The author’s own
demonstrations in computer vision, human-computer interfaces, and wearable computing em-
phasize a probabilistic approach. In addition, various works in discriminative learning were also
discussed which powerfully elucidate the deeply complementary advantages of both schools of
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thought (generative and discriminative). A taxonomy and formal treatment of various learn-
ing approaches was described across the range of generative, conditional and discriminative
estimation as well as across various levels of model integration: local, prior and (Bayesian)
averaging.

• Connecting Generative, Discriminative and Imitative Learning

We provide several arguments for expressing imitative learning as both a generative and
discriminative learning problem. The generative models are motivated by the need to re-
synthesize actions or perceive behavior as well as seed the learning with priors and structures
(i.e. Markov assumptions, representations, etc.). Discriminative learning is also made nec-
essary by the emphasis on prediction accuracy as well as computational arguments about
saliency and focus of attention. From a practical stand-point, the connection between imita-
tion and discriminative/generative learning is also made feasible by avoiding the traditional
active intra-modal mapping problems and considering a joint action-perception space. This
then maps the problem directly into a time-series regression scenario.

• MED: A Combined Generative and Discriminative Framework

Through the Maximum Entropy Discrimination (MED) formalism, this thesis provides a rig-
orous mathematical framework for spanning both the generative and discriminative schools
of thought. Connections to regularization theory are made and the technique follows as a
natural extension with interesting computational advantages. Discriminative support vector
machines are subsumed as well as the whole range of generative exponential family models.
The framework combines the flexibility of Bayesian modeling with discriminative estimation.
Algorithms for estimating the exponential family, support vector machines, Gaussian models
and multinomial models are portrayed and empirical results argue for their estimation using
MED as opposed to a generative criterion. In addition to empirical verification, we further
motivate MED by an appeal to three theoretical generalization guarantees that are based on
well-established sparsity, VC-dimension and PAC-Bayes arguments.

• Extensions to the MED Framework

We demonstrate the practical extensibility of the MED framework by discussing the metaphor
of augmented distributions which permits us to cascade various estimation problems into the
MED framework elegantly. We extend MED beyond the classification domain to the regression
domain and subsume the support vector regression method as well as generative model based
regression. Furthermore, discriminative feature selection in both regression and classification
settings is presented and rendered tractable. Transduction in a classification and regression
setting is also derived in closed-form. Empirical results justify these flexible extensions to
standard discriminative classification. Various optimization techniques are also illustrated
that make the framework competitive from a computational stand-point.

• CEM and Discriminative Mixture Models

We present a rigorous mathematical framework to extend discriminative and conditional ap-
proaches to latent domains. This begins by recognizing the predominance of mixtures of the
exponential family in the domain of generative learning. We elucidate the intractabilities
that arise with latent models. Variational bounds are motivated as an efficient and principled
way to resolve such intractabilities. A bound-based discriminative variant of the Expectation-
Maximization, the so-called Conditional Expectation-Maximization is proposed which provides
a tractable monotonically convergent algorithm for latent discriminative learning. The algo-
rithm is based on the reverse-Jensen inequality which is shown to apply to all mixtures of
the exponential family. The bounds are shown for mixtures of Gaussians, multinomials, Pois-
son, gamma, and exponential distributions. Monotonic convergence on conditional likelihood
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is guaranteed and shown to empirically outperform EM-based techniques. The bounds also
render latent MED computations tractable. Furthermore, other important manipulations are
elucidated which permit the bounds to apply to data sets, mixing proportions as well as other
variations of mixture models.

• Discriminative Graphical Models

The reverse-Jensen bounds are applicable to structured graphical models permitting them to
be estimated discriminatively. However, the caveat is that intractable computation may arise.
We demonstrated that efficient computation of the bounds is possible for some structured
graphical models by deriving the reverse-Jensen inequality for an HMM. This clearly shows
that the discrimination and bound techniques are potentially applicable to the case of struc-
tured graphical models such as Bayesian networks and thus permit our discriminative learning
techniques to span a large portion of the generative modeling spectrum.

• Analytic Reversal of Jensen’s Inequality

An analytic reversal of Jensen’s inequality was derived and globally guaranteed. The reversal
goes beyond other Jensen reversals and Jensen converses in the literature to specifically target
discriminative estimation problems. The reversal spans all mixtures of the exponential family
and is tighter than curvature-based bounds. Other statistical and mathematical applications
are also possible. The reversal permits dual sided bounds on many probabilistic quantities
which otherwise only had a single bound from the standard Jensen inequality case.

• A Generative Model for PCA on Collections of Tuples

We proposed a generative model that can be seen as an extension of principal components anal-
ysis (PCA) to collections of tuples. PCA applies to vectors which may not be the appropriate
representation of topological data which requires the joint solution of the correspondence prob-
lem with the subspace estimation problem. We describe a generative model that introduces
the correspondence solution as latent variables in PCA and can derive an iterative algorithm
for estimating all relevant parameters. This model is readily applicable to images as well as
other types of topographic signals and provides reconstruction that has orders of magnitude
better squared error than PCA with the same level of coding/compression.

• A Wearable Platform for Behavior Acquisition

A wearable platform for long-term behavior acquisition was developed. This apparatus is
capable of collecting in real-time two channels of video and audio which capture the relevant
aspects of the interaction of the user with his outside environment. The platform captures
the user’s reaction as well as the external world’s stimulus in a consistent perceived frame of
reference. This provides a digitized dataset that is well suited to imitation learning and agent
behavior acquisition.

• Autonomous Imitative Learning for Interactive Agents

An automatic framework was proposed for learning the interactions between an agent and
the outside world, including other agents. The approach is fully unsupervised and results
in an autonomous system which is able to discriminatively predict the behavior of an agent
from the external stimulus. The perceptual signals are encoded with a generative model which
permits straightforward resynthesis while the temporal behavior is learned with a conditionally
estimated hidden Markov model. By simply observing the behavior being manifested, the
system is able to learn the interactive model without any manual supervision and subsequently
synthesize behavior automatically.
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• Combining Perception, Learning and Behavior Acquisition

We have demonstrated a real-time system that performs perception, learning and acquires and
synthesizes real-time behavior. This closes the loop between generative perception, discrimi-
native prediction and imitative learning we proposed and shows how a common discriminative
and probabilistic framework can be extended throughout the multiple facets of a large system.

9.2 Future Theoretical Work

The tools developed in this thesis open many long-term questions as well as immediate directions for
future work. This section speculates and postulates on the theoretical aspects of what was presented
to challenge and stimulate ongoing efforts and ideas.

Having formed a joint generative-discriminative framework, it is now important to explore the con-
tinuum between the generative and discriminative solutions it can produce. As mentioned earlier,
through a regularization parameter the MED framework can interpolate between a purely generative
empirical Bayes model to a purely discriminative solution. What intuitions can be garnered about
the appropriate level of regularization? Beyond regularization parameters, what other parameters
in the framework (i.e. epsilon-insensitivity in regression, number of latent models, etc.) might have
principled settings or may be estimable without brute-force cross-validation? Furthermore, what
intuitions can we form about which models are most amenable to (and most likely to benefit from)
discriminative estimation?

Another immediate problem is the presence of local minima in the CEM and MED frameworks when
latent models are used. While MED effectively eschews the local minima problem for exponential
family models and promises interesting convergence properties, global or pseudo-global solutions may
be within reach for latent situations as well. Conventional deterministic annealing or regularization
arguments are certainly possible avenues however a formal approach that specifically takes advantage
of MED or the reverse-Jensen bounds may prove more appropriate.

The MED/CEM framework facilitates many important extensions which demonstrate and prove
its flexibility. While transduction, feature selection, latent models, etc. have been explored, these
may only be the proverbial tip of the iceberg and may open the flood-gates to other estimation
scenarios. For instance, missing or corrupted data in the input space may be addressed with an
appropriate prior and an augmented MED projection. Alternatively we may consider choosing
other distributions for model priors, margin priors, bias priors, etc. to explore the effects these
would have on the MED solutions. The proposed discriminative-generative frameworks also permit
us to explore novel probabilistic models that would not necessarily be practical in a purely generative
setting. This may include, for instance, un-normalizable generative models.

The reverse-Jensen approaches were demonstrated to be efficiently applicable to structured graphical
models like the HMM. It is clear that the bounds can be applied to latent Bayesian networks yet can
the efficient implementation derived for the HMM be translated into a more generic setting? For
instance, is there a general junction-tree approach or generic recipe for computing the reverse-Jensen
bounds on an arbitrary tree-structured latent Bayes net? Alternatively, we may consider other forms
of structure beyond the independence properties of graphical models. For instance, latent estimation
with models that not only have independency constraints but also have sufficiency and separability
constraints or even causal structures could be investigated. Finally, various tightenings or alternative
parameterizations of the bounds (under structured and unstructured models) may be possible by
varying the derivation of the reverse-Jensen inequality leading to improved convergence as well as
more efficient computation.
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One critical future effort involves exploring other applications of the reverse-Jensen inequality. The
derivation and its sub-components may have an impact in different situations other than discrimi-
native learning. The bounds, for example, may be useful algorithmically to generate optimization
routines, approximation methods, etc. for a wide range of domains. In addition, there may be
other direct statistical applications. It is well known that Jensen is at the heart of many statistical
inequalities which build up from it and therefore we may produce converses for these inequalities
using the thesis’ reverse-Jensen derivation. Similarly, more general mathematical applications and
theoretical implications in other fields should be explored.

From a theoretical stand point, the relation of MED and reverse-Jensen bounds to other approaches
such as Bayes point machines, relevance vector machines, boosting, exponential update rules, gen-
eralized additive models and so on should be elaborated. If deep connections can be made, some
synergistic combinations may be feasible. Bridging multiple techniques and schools of thought was
the predominant theme in this thesis. Therefore, continuing to find commonalities between learning
frameworks is paramount to avoiding the many pitfalls of the field as well as harnessing its many
strengths.

9.3 Future Applied Work

We now discuss future work that addresses the applied aspects of this thesis, namely the imitation
learning and machine perception tools as well as novel applications of the machine learning algorithms
we have developed.

The imitation learning platform we have described is capable of far more than a few hours of data
acquisition. With a slightly ’ruggedized’ version of the wearable, it may be possible to acquire several
days worth of interaction data. Furthermore, a more adequate hardware platform would facilitate
data acquisition due to the discomfort various individuals had while interacting with the user and
the somewhat intrusive wearable apparatus. The longer-term and more natural data may lead to a
more complex imitation learning where higher order behavior couplings could be modeled and more
redundant patterns could be isolated. The possibility of performing the learning in an online setting
would also permit continuous or developmental learning where the data acquisition process would
not be separate from the model estimation stage and the behavior synthesis stage.

Admittedly, the implementation of imitative learning in this thesis was more generic and domain-
independent than it had to be. The facial, auditory and temporal model had almost no manual
engineering and were not domain specific. If a focused effort to form a parametric model of these
types of data was made up-front, performance may be improved. For example, we may put stronger
priors into the system and more sophisticated structures, effectively seeding the learning process
with enough knowledge to converge to a more realistic autonomous agent. Therefore, various visual,
auditory and temporal behavior models need to be explored including, in particular, hierarchical
models which are potentially tractable in the discriminative frameworks we have outlined. Fur-
thermore, more sophisticated features and representations of the interaction could be used. These
include features from a speech recognition engine, contextual and ambient audio/video as well as
more powerful facial modeling and tracking. Nevertheless, the excessive modularization and struc-
turing of the problem may have its own disadvantages: it abstracts away and fixes the lower layers of
processing in the task at hand and prevents a learning algorithm from exploring deeper relationships
between the higher order behavior and the grounded sensory data.

However, mimicry of social interactive behavior is not the only domain of interest for the tem-
poral interaction learning that was at the core of the imitation framework. Fundamentally, the
system is discovering a discriminative higher order mapping between temporal processes. Learning
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to invert and re-synthesize such mappings has many applications ranging from control theory to
music synthesis. Other applications can also be considered as we introduce novel sensors that go
beyond the audio-visual platform that we investigated. The recent availability of practical and novel
measurement devices such as accelerometers, physiological sensors, GPS and various other types of
instrumentation permit us to collect a vast panorama of complex signals. While some may behave
deterministically, predicting many of these will require modeling complex higher order behavior.
This modeling process can be cast in the temporal/imitative learning platform we have discussed
and may also benefit from discriminative estimation.

The generative/discriminative estimation framework (MED and CEM) have many other powerful
applications on their own. One critical area is in the speech recognition domain. There, recent
results have indicated that discriminative HMMs outperform many methods on difficult large-corpus
recognition tasks (i.e. the switchboard dataset has been dominated by the Cambridge group’s
discriminative HMM estimation). Unfortunately, the discriminative variants used in the speech
recognition community are strewn with heuristics, approximate bounds and local/gradient-based
optimization. Furthermore, these are often more conditional than discriminative since the HMMs
are not optimized to form a large-margin decision boundary for example. The MED and CEM
machinery appears well suited to tackle these problems given that we have implemented a various
tools for conditional and discriminative HMMs successfully in this framework. In fact, the list
of machine learning application domains ranging from bioinformatics to web-page classification is
simply too long to enumerate. Fortunately, this provides an endless array of challenging problems
to explore and many potential clients for discriminative-generative learning.



Chapter 10

Appendix

This appendix provides various standard supplemental derivations and implementation details that
help support the main thesis body.

10.1 Optimization in the MED Framework

At this point, we will discuss the various implementation details of the optimization of the J(λ)
objective function in the MED framework. The important feature is that J(λ) is concave and
therefore any procedure that locally increases it (monotonically or otherwise) will eventually converge
to the global optimum. This will consistently give us the best setting of the Lagrange multipliers in
the dual space optimization. Since consistent global convergence is guaranteed, we will instead focus
on the speed of convergence and discuss multiple algorithms. Some natural optimization techniques
in this setting include Newton-Raphson, gradient descent, line search and conjugate gradient descent.
Unfortunately, these do not take advantage of some simple yet important decoupling properties in the
objective function. This limitation is portrayed initially in our presentation of a simple constrained
gradient descent approach. This then motivates the use of very fast axis-parallel approaches which
benefit from the decoupling of the objective function which only requires ’local’ computations. We
finally propose an optimized variant of axis-parallel which learns how to transition between subsets
of the variables to speed up the training process.

10.1.1 Constrained Gradient Ascent

One possible approach to maximizing J(λ) is to compute the gradients with respect to the Lagrange
multipliers and to take a small in their direction:

λ+ = λ− + w
∂J(λ)

∂λ

∣∣∣∣
λ−

Where λ+ are the next values of the Lagrange multipliers, λ− are the previous ones and w denotes the
step size. However, this form of optimization will disregard the constraints that λ are non-negative.
This problem can be taken care of by reparameterizing them as follows:

ν2
t = λt
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We can use the surrogate variables ν which, when squared, form the λ vector. Therefore, we have:

ν+ = ν− + w
∂J(λ)

∂ν

∣∣∣∣
ν−

Figure 10.1: Constrained Gradient Ascent Optimization in the MED framework.

This maintains the non-negativity constraint on the λ vector as we perform gradient ascent. However,
in problems where a non-informative bias is used, we also have the additional constraint:

∑
t λtyt =

0. This can be resolved by projecting each step in the unconstrained gradient ascent back onto the
plane

∑
t λtyt = 0. However, since we are operating in ν-space, this planar constraint behaves as a

quadratic constraint:
∑

t ν2
t yt = 0. Nevertheless, this projection is still solvable analytically.

In addition, to speed up the convergence, we allow the step size w to vary with each iteration. If
the step results in an increase in the objective function J(λ), then we take the step and also slightly
increase w. If it doesn’t result in an increase, we do not take the step and retry the gradient step
with w scaled down by one half.

In practice, computing the gradients and the updated J(λ) function is slow in many problems. This,
compounded with the fact that we are constantly re-projecting onto the constraint surface, leads to
slow convergence. One way to vastly improve the optimization process is to only consider updating
a single λt variable at a time and only computing J(λ) after that single perturbation. In many
problems, this permits us to decouple the computations and effectively consider only a single datum
at a time, speeding up each iteration considerably (i.e. by an order equal to the cardinality of the
data set, T ). This approach is elaborated in the following subsections.

10.1.2 Axis-Parallel Optimization

As discussed in the previous subsection, gradient ascent types of updates may not be efficient in the
MED framework since each step requires computations of gradients and the new objective function
over all the training data set. However, if we only consider updating a single Lagrange multiplier
at a time, the computations only involve manipulation of a single data point in detail as well as
some simple sufficient statistics that summarize the effects of the rest of the data. This principle,
axis-parallel optimization, is similar to the notion of smallest possible working sets in [146] and
Platt’s sequential minimal optimization [154]. The difference here is that the working set is a single
variable and we only optimize one dimension while all others are fixed.
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Figure 10.2: Axis Parallel Optimization in the MED framework.

Certainly, axis-parallel optimization has been around for a while and has its advantages and disad-
vantages. Other than computational efficiency, an additional advantage in MED is due to the overall
concavity of the objective function. Thus, optimizing over a single variable at a time is guaranteed
to increase the objective and iterating these axis optimizations will eventually converge to the global
optimum. Figure 10.2 depicts the optimization in a toy 2D problem.

In certain cases, the update for a single axis can be computed analytically. Take for example the
MED SVM kernel-based classification with a Gaussian prior of covariance σ2 on bias (as opposed to
a non-informative prior). We show here a resulting objective just as the one in Equation 3.11 where
the constraint

∑
t ytλt = 0 is no longer necessary:

J(λ) =
∑

t

[λt + log(1− λt/c) ] − σ2

2

(∑
t

ytλt

)2

− 1
2

∑
t,t′

λtλt′ytyt′K(Xt, Xt′)

The only constraints in effect in the objective function above is that the Lagrange multipliers are
non-negative and upper bounded by c. A simple analytic update rule exists for maximizing one
Lagrange multiplier, λi at a time. Holding all others fixed, taking derivatives with respect to λi and
setting to zero yield a quadratic equation of the form:

λi ← −B ±
√

B2 − 4AC

2A

where we have the following scalars to specify the quadratic equation:

A = K(Xi, Xi) + σ2

B = −1− cσ2 − cK(Xi, Xi)− yi

∑
t6=i

K(Xi, Xt)ytλt + σ2yi

∑
t6=i

ytλy

C = −1 + c + cyi

∑
t6=i

K(Xi, Xt)ytλt − cσ2yi

∑
t6=i

ytλy

These two solutions to the quadratic equation are clamped so that λi ∈ [0, c) and are then evaluated
to see which one causes the greatest increase in the objective function. In certain cases, it is difficult
to obtain an analytic update rule for a single Lagrange multiplier as above. We instead use Brent’s
method, which is a guaranteed 1D search method (which is more efficient than, eg. bisection search).
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This gives the maximum of the objective function for the single Lagrange multiplier numerically
without too much computational overhead.

At this point, we will focus on how to choose the axes intelligently in the axis-parallel optimization.
Typically, in axis-parallel, we iterate by randomly selecting one axis from the T possible choices (if the
optimization of J(λ) is T -dimensional) Eventually, the objective converges and we cease optimizing
with a simple heuristic stopping criterion. Optimization is typically very fast and MED classification
with hundreds of data points takes just a few seconds. We next discuss a more efficient strategy
than random selection which can bring convergence improvements of about an order of magnitude
(which can be important in large data set problems or high-dimensional feature selection).

10.1.3 Learning Axis Transitions

While the previous approach of randomly selecting an axis and maximizing it in isolation does
produce a fast learning algorithm for MED, it can be made significantly faster by a smarter routine
for axis selection. One strategy is to learn which axes are critical for producing a large improvement
in our objective function J(λ). This can be seen as a first order table or model which puts a scalar
weight on each axis, measuring its expected contribution to the increase in the objective function.
We could thus sample from this table as a distribution and update axes that are crucial to increasing
J(λ) more frequently than irrelevant axes. A natural extension to this T -element table is to consider a
T×T matrix where columns corresponds to the last axis that was optimized and the rows correspond
to the next axis to optimize. Each row of this stochastic matrix thus specifies a distribution over
the choice of axes for the next iteration given the last candidate that was attempted. Effectively,
we define a Markov transition matrix over axes. By identifying which axes are good followers of the
current axis, we can sample more specifically from our list to get a greater expected improvement
in the objective function.

More specifically, we compute the improvement in the objective function brought about by an axis
optimization as ∆J(λ) as we go from an old value to a new one on an axis. Needless to say, all values
of ∆J(λ) are non-negative (since each axis-parallel step is guaranteed to increase the objective). An
additional problem is that the ∆J values must be discounted since we expect large gains at the early
stages followed by exponentially reducing gains in J as we near convergence. Therefore, we model
the change of the time-varying values ∆Jt as they arrive in an online manner over time. This is
done by fitting an exponential model to the values of the form:

∆Jt ≈ α exp(−βt)

This fitting of the parameterized curve can be done with a simple least squares criterion in an online
way (i.e. we don’t need to explicitly store the values of ∆Jt). Figure 10.3 shows the fitting procedure
to some values of ∆J . Thus, we can now adjust the values of the ∆J to obtain values which are
appropriately discounted:

∆̃Jt = ∆Jt − α exp(−βt)

This can now be seen as the current ’true’ benefit of a given axis choice. In a greedy strategy,
we pick the axis that generated largest ∆̃Jt from our current axis iteration. Thus, we can form
a table of the ∆̃Jt with the expected value of an axis optimization given a current axis. At each
iteration we select the axis which (given our current axis) has the highest value of ∆̃Jt. We also
still interleave random axis selections about 20% of the time to encourage exploration to fill up our
table of axis-axis discounted objective function increments. In practice, we need not store all T × T
axis-axis transition values but only the handful of transitions with the highest discounted ∆̃J values.
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Figure 10.3: Approximating the decay rate in the change of the objective function.

Figure 10.4 depicts the approximately 10-fold increase in optimization speed that results from this
axis choice strategy (here an MED linear regression with feature selection problem is depicted).
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Figure 10.4: Axis-Parallel MED Maximization with Learned Axis Transition (solid line) and Random
Transition (dashed line).

10.2 A Note on Convex Duality

We briefly review some aspects of convex duality that were used to develop Section 7.9. These are
borrowed directly from a treatment of conjugacy and duality of convex functions (pp. 102-106) in
Rockafeller [166] and mirror the development of Jaakkola [80]. A standard property of a closed
convex set in <n is that it is the intersection of the closed half-spaces which contain it. This concept
can be translated from convex sets to convex functions. As in sets, a closed proper convex function
f on <n has an epigraph which is the intersection of the closed half-spaces in <n+1 which contain it.
These hyper-planes can be represented by linear functions on <n+1 and we can define a closed convex
function f(x) as the point-wise supremum of the collection of all affine functions h(x) = λT x− g(λ)
such that h(x) ≤ f(x). Thus, we have:

h(x) ≤ f(x)
λT x− g(λ) ≤ f(x)
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By simply bringing g(λ) in the above to the right hand side, we set up the simple inequality in
Equation 10.1. The theory of conjugacy can be regarded as the theory of the “best” inequalities of
this type:

λT x ≤ f(x) + g(λ) (10.1)

Let W denote the set of all pairs of functions f(x), g(λ) for which the above inequality is valid.
The “best” pairs of (f, g) in W for which the inequality cannot be tightened, i.e. those such that
if (f ′, g′) ∈ W , f ′ ≤ f and g′ ≤ g then f ′ = f and g′ = g occur when the functions are mutually
conjugate. In other words, when f = g∗ and f∗ = g. Any closed proper convex function f can
undergo a conjugacy operation, f → f∗ which produces its conjugate (or dual) function f∗ in a
symmetric one-to-one correspondence. The functions thus obey the following relation (by a trivial
manipulation of Equation 10.1):

f∗(λ) = max
x

{
xT λ− f(x)

}
f(x) = max

λ

{
xT λ− f∗(λ)

}
We can also replace the max or supremum operations in the above to obtain looser inequalities.
Reinserting f∗(λ) = g(λ) in Equation 10.1 gives us Fenchel’s inequality for any closed convex
function f and its conjugate f∗:

λT x ≤ f(x) + f∗(λ)

Furthermore, it is easy to show that the dual of the dual function returns the original function, i.e.
f = (f∗)∗. The conjugacy operation f → f∗ is closely related to the Legendre transformation.

10.3 Numerical Procedures in the Reverse-Jensen Inequality
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Figure 10.5: The function relating a and b values for linear upper bounds on the g(γ) function.

The Reverse-Jensen bound is computable analytically without lookup tables or numerical proce-
dures. For completeness, we provide below a slightly tighter incarnation which involves maximizing
a transcendental function that can only be done numerically. Recall that it was possible to use
the values of (a, b) to specify the bounds numerically. These arose as parameters of linear upper
bounds on the the function f(γ, ω) in Section 7.8. Recall that we needed to maximize f(γ, ω) over
ω to obtain the desired function g(γ) = maxω f(γ, ω). However, this is merely a one-dimensional
function allowing us to solve for it numerically and write it down as a look-up table. It is easier to
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handle this function by considering linear upper bounds upon it parameterized as aγ + b ≥ g(γ).
In Figure 10.5 the resulting function between a and b is plotted (on a logarithmic scale for better
visualization). Furthermore, a detailed list of values is provided in Table 10.3 as well as the Matlab
code for generating them numerically.

a b |

|

1.00000e+00 4.47519e-02 | % MATLAB CODE TO GENERATE THE LOOKUP TABLE

6.19173e+00 3.01078e-02 |

3.83376e+01 2.34440e-02 |

2.37376e+02 1.94024e-02 | D=1000;

1.46977e+03 1.66321e-02 | G=zeros(D,1);

9.10043e+03 1.46021e-02 | Z=G;

5.63475e+04 1.30340e-02 | W=G;

3.48889e+05 1.17862e-02 | OPTI=zeros(15,1);

2.16022e+06 1.07668e-02 | OPTI(2)=1e-6;

1.33755e+07 9.91606e-03 | OPTI(14)=59000;

8.28179e+07 9.19510e-03 |

5.12787e+08 8.57580e-03 | for j=1:D

3.17504e+09 8.03689e-03 | g = (1.2)^(-D+j);

1.96590e+10 7.56307e-03 | s = sprintf(’-log((%e)*exp(x)+(%e)*exp(-x)-(%e)*2+1)/(x*x)’,g,g,g);

1.21723e+11 7.14420e-03 | w = fmin(s,1e-8,1000.0,OPTI);

7.53679e+11 6.77054e-03 | G(j) = g;

4.66658e+12 6.43429e-03 | Z(j) = log(g*exp(w)+g*exp(-w)+1-2*g)/(w*w);

2.88942e+13 6.13169e-03 | end

1.78905e+14 5.85592e-03 |

1.10773e+15 5.60539e-03 | A=zeros(D/2,1);

6.85881e+15 5.37498e-03 | B=A;

4.24679e+16 5.16397e-03 |

2.62950e+17 4.96864e-03 | for j=1:(D/2)

1.62812e+18 4.78815e-03 | a = (1.1)^(j-3.2);

1.00808e+19 4.62047e-03 | b = max(Z-G*a);

6.24182e+19 4.46410e-03 | A(j) = a;

3.86477e+20 4.31857e-03 | B(j) = b;

2.39296e+21 4.18208e-03 | end

1.48166e+22 4.05413e-03 |

|

Table 10.1: List of a and b values for linear upper bounds on the g(γ) function. Furthermore, Matlab
code is provided next to the list to numerically generate the values of a and b.
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