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Abstract

Computing the partition function (i.e., the normalizing constant) of a given pair-
wise binary graphical model is NP-hard in general. As a result, the partition
function is typically estimated by approximate inference algorithms such as be-
lief propagation (BP) and tree-reweighted belief propagation (TRBP). The former
provides reasonable estimates in practice but has convergence issues. The later
has better convergence properties but typically provides poorer estimates. In this
work, we propose a novel scheme that has better convergence properties than BP
and provably provides better partition function estimates in many instances than
TRBP. In particular, given an arbitrary pairwise binary graphical model, we con-
struct a specific “attractive” 2-cover. We explore the properties of this special
cover and show that it can be used to construct an algorithm with the desired
properties.

1 Introduction

Graphical models provide a mechanism for expressing the relationships among a collection of vari-
ables. Many applications in computer vision, coding theory, and machine learning can be reduced
to performing statistical inference, either computing the partition function or the most likely config-
uration, of specific graphical models. In general models, both of these problems are NP-hard. As
a result, much effort has been invested in designing algorithms that can approximate, or in some
special cases exactly solve, these inference problems.

The belief propagation algorithm (BP) is an efficient message-passing algorithm that is often used
to approximate the partition function of a given graphical model. However, BP does not always
converge, and so-called convergent message-passing algorithms such as tree reweighted belief prop-
agation (TRBP) have been proposed as alternatives to BP. Such convergent message passing algo-
rithms can be viewed as dual coordinate-descent schemes on a particular convex upper bound on the
partition function [1]. While TRBP-style message-passing algorithms guarantee convergence under
suitable message-passing schedules, finding the optimal message-passing schedule can be cumber-
some or impractical depending on the application, and TRBP often performs worse than BP in terms
of estimating the partition function.

The primary goal of this work is to study alternatives to BP and TRBP that have better convergence
properties than BP and approximate the partition function better than TRBP. To that end, the so-
called “attractive” graphical models (i.e., those models that do not contain frustrated cycles) stand
out as a special case. Attractive graphical models have desirable computational properties: Weller
and Jebara [2, 3] describe a polynomial time approximation scheme to minimize the Bethe free
energy of attractive models (note that BP only guarantees convergence to a local optimum). In
addition, BP has much better convergence properties on attractive models than on general pairwise
binary models [4, 5].
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In this work, we show how to approximate the inference problem over a general pairwise binary
graphical model as an inference problem over an attractive graphical model. Similar in spirit to
the work of Bayati et al. [6] and Ruozzi and Tatikonda [7], we will use graph covers in order to
better understand the behavior of the Bethe approximation with respect to the partition function. In
particular, we will show that if a graphical model is strictly positive and contains even one frustrated
cycle, then there exists a choice of external field and a 2-cover without frustrated cycles whose
partition function provides a strict upper bound on the partition function of the original model.
We then show that the computation of the Bethe partition function can approximated, or in some
cases found exactly, by computing the Bethe partition function over this special cover. The required
computations are easier on this “attractive” graph cover as computing the MAP assignment can be
done in polynomial time and there exists a polynomial time approximation scheme for computing
the Bethe partition function.

We illustrate the theory through a series of experiments on small models, grid graphs, and vertex in-
duced subgraphs of the Epinions social network1, . All of these models have frustrated cycles which
make the computation of their partition functions, marginals, and most-likely configurations exceed-
ingly difficult. In these experiments, the proposed scheme converges significantly more frequently
than BP and provides a better estimate of the partition function than TRBP.

2 Prerequisites

We begin by reviewing pairwise binary graphical models, graph covers, the Bethe and TRBP ap-
proximations, and recent work on lower bounds.

2.1 Pairwise Binary Graphical Models

Let f : {0, 1}n → R≥0 be a non-negative function. A function f factors with respect to a graph
G = (V,E), if there exist potential functions φi : {0, 1} → R≥0 for each i ∈ V and ψij : {0, 1}2 →
R≥0 for each (i, j) ∈ E such that

f(x1, . . . , xn) =
�

i∈V

φi(xi)
�

(i,j)∈E

ψij(xi, xj).

The graph G together with the collection of potential functions φ and ψ define a graphical model
that we will denote as (G;φ,ψ). For clarity, we will often denote the corresponding function as
f
(G;φ,ψ)(x). For a given graphical model (G;φ,ψ), we are interested in computing the partition

function Z(G;φ,ψ) � �
x∈{0,1}|V |

�
i∈V

φi(xi)
�

(i,j)∈E
ψij(xi, xj).

We will also be interested in computing the maximum value of f , sometimes referred to as the
MAP problem. The problem of computing the MAP solution can be converted into the problem
of computing the partition function by adding a temperature parameter, T , and taking the limit as
T → 0.

max
x

f
(G;φ,ψ)(x) = lim

T→0
Z(G;φ1/T

,ψ
1/T )T

Here, φ1/T is the collection of potentials generated by taking each potential φi(xi) and raising it to
the 1/T power for all i ∈ V, xi ∈ {0, 1}.

2.2 Graph Covers

Graph covers have played an important role in our understanding of statistical inference in graphical
models [8, 9]. Roughly speaking, if a graph H covers a graph G, then H looks locally the same as
G.
Definition 2.1. A graph H covers a graph G = (V,E) if there exists a graph homomorphism

h : H → G such that for all vertices i ∈ G and all j ∈ h
−1(i), h maps the neighborhood ∂j of j in

H bijectively to the neighborhood ∂i of i in G.

1In the Epinions network, users are connected by agreement and disagreement edges and therefore frus-
trated cycles abound. By treating the network as a pairwise binary graphical model, we may compute the
trustworthiness of a user by performing marginal inference over a variable representing if the user is trusted or
not.
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Figure 1: An example of a graph cover. The nodes in the cover are labeled for the node that they
copy in the base graph.

If h(j) = i, then we say that j ∈ H is a copy of i ∈ G. Further, H is said to be an M -cover of G
if every vertex of G has exactly M copies in H . For an example of a graph cover, see Figure 1. For
a connected graph G = (V,E), each M -cover consists of M copies of each of the variable nodes
of G with an edge joining each distinct copy of i ∈ V to a distinct copy of j ∈ V if and only if
(i, j) ∈ E.

To any M -cover H = (V H
, E

H) of G given by the homomorphism h, we can associate a collection
of potentials: the potential at node i ∈ V

H is equal to φh(i), the potential at node h(i) ∈ G, and
for each (i, j) ∈ E

H , we associate the potential ψh(i,j). In this way, we can construct a function
f
(H;φH

,ψ
H) : {0, 1}M |V | → R≥0 such that f (H;φH

,ψ
H) factorizes over H . We will say that the

graphical model (H;φH
,ψ

H) is an M -cover of the graphical model (G;φ,ψ) whenever H is an
M -cover of G and φ

H and ψ
H are derived from φ and ψ as above.

2.3 The Bethe Partition Function

The Bethe free energy is a standard approximation to the so-called Gibbs free energy that is mo-
tivated by ideas from statistical physics. TRBP and more general reweighted belief propagation
algorithms take advantage of a similar approximation.

For τ in the local marginal polytope,

T �{τ ≥ 0 | ∀(i, j) ∈ E,

�

xj

τij(xi, xj) = τi(xi) and ∀i ∈ V,

�

xi

τi(xi) = 1}.

the reweighted free energy approximation at temperature T = 1 is given by
logFB,ρ(G, τ ;φ,ψ) = U(τ ;φ,ψ)−H(τ, ρ)

where U is the energy,

U(τ ;φ,ψ) =−
�

i∈V

�

xi

τi(xi) log φi(xi)−
�

(i,j)∈E

�

xi,xj

τij(xi, xj) logψij(xi, xj),

and H is an entropy approximation,

H(τ, ρ) =−
�

i∈V

�

xi

τi(xi) log τi(xi)−
�

(i,j)∈E

�

xi,xj

ρijτij(xi, xj) log
τij(xi, xj)

τi(xi)τj(xj)
.

Here, ρij controls the reweighting over the edge (i, j) in the graphical model. If ρij = 1 for
all (i, j) ∈ E, then we call this the Bethe approximation and will typically drop the ρ writing
ZB,�1 = ZB. The reweighted partition function is then expressed in terms of the minimum value
achieved by this approximation over T as follows.

ZB,ρ(G;φ,ψ) = e
−minτ∈T FB,ρ(G,τ ;φ,ψ)

Similar to the exact partition function computation, the reweighted partition function at temperature
T is given by ZB,ρ(G;φ1/T

,ψ
1/T )T . The zero temperature limit corresponds to minimizing the

energy function over the local marginal polytope.

In practice, local optima of these free energy approximations can be found by a reweighted version of
belief propagation. The fixed points of this reweighted algorithm correspond to stationary points of
logZB(G, τ ;φ,ψ) over T [10]. The TRBP algorithm chooses the vector ρ such that ρij corresponds
to the edge appearance probability of (i, j) over a convex combination of spanning trees. For these
choices of ρ, the reweighted free energy approximation is convex in τ , ZB,ρ(G;φ,ψ) is always
larger than the true partition function and there exists an ordering of the message updates so that
reweighted belief propagation is guaranteed to converge.
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2.4 Log-Supermodularity and Lower Bounds

A recent theorem of Vontobel [8] provides a combinatorial characterization of the Bethe partition
function in terms of graph covers.
Theorem 2.2 (8).

ZB(G;φ,ψ) = lim sup
M→∞

M

����
�

H∈CM (G)

Z(H;φH ,ψH)

|CM (G)|

where CM (G) is the set of all M -covers of G.

This characterization suggests that bounds on the partition functions of individual graph covers can
be used to bound the Bethe partition function. This approach has recently been used to prove that the
Bethe partition function provides a lower bound on the true partition function in certain nice families
of graphical models [8, 11, 12]. One such nice family is the family of so-called log-supermodular
(aka attractive) graphical models.
Definition 2.3. A function f : {0, 1}n → R≥0 is log-supermodular if for all x, y ∈ {0, 1}n

f(x)f(y) ≤ f(x ∧ y)f(x ∨ y)
where (x ∧ y)i = min{xi, yi} and (x ∨ y)i = max{xi, yi}. Similarly, f is log-submodular if the

inequality is reversed for all x, y ∈ {0, 1}n.

Theorem 2.4 (Ruozzi [11]). If (G;φ,ψ) is a log-supermodular graphical model, then for any M -

cover, (H;φH
,ψ

H), of (G;φ,ψ), Z(H;φH
,ψ

H) ≤ Z(G;φ,ψ)M .

Plugging this result into Theorem 2.2, we can conclude that the Bethe partition function always
lower bounds the true partition function in log-supermodular models.

3 Switching Log-Supermodular Functions

Let (G;φ,ψ) be a pairwise binary graphical model. Each ψij , in this model, is either log-
supermodular, log-submodular, or both. In the case that each ψij is log-supermodular, Theorem
2.4 says that the partition function of the disconnected 2-cover of G provides an upper bound on the
partition function of any other 2-cover of G.

When the ψij are not all log-supermodular, this is not necessarily the case. As an example, if G is
a 3-cycle, then, up to isomorphism, G has two distinct covers: the 6-cycle and the graph consisting
of two disconnected 3-cycles. Consider the pairwise binary graphical model for the independent set
problem on G = (V,E) given by the edge potentials ψij(xi, xj) = 1− xixj for all (i, j) ∈ E. We
can easily check that the 6-cycle has 18 distinct independent sets while the disconnected cover has
only 16 independent sets. That is, the disconnected 2-cover does not provide an upper bound on the
number of independent sets in all 2-covers.

Sometimes graphical models that are not log-supermodular can be converted into log-supermodular
models by performing a simple change of variables (e.g., for a fixed I ⊆ V , a change of variables
that sends xi �→ 1 − xi for each i ∈ I and xi �→ xi for each i ∈ V \ I). As a change of variables
does not change the partition function, we can directly apply Theorem 2.4 to the new model. We will
call such functions switching log-supermodular. These functions are the log-supermodular analog
of the “switching supermodular” and “permuted submodular” functions considered by Crama and
Hammer [13] and Schlesinger [14] respectively.

The existence of a 2-cover whose partition function is larger than the disconnected one is not unique
to the problem of counting independent sets. Such a cover exists whenever the base graphical model
is not switching log-supermodular. In this section, we will describe one possible construction of a
specific 2-cover that is distinct from the disconnected 2-cover whenever the given graphical model
is not switching log-supermodular and will always provide an upper bound on the true partition
function.

3.1 Signed Graphs

In order to understand when a graphical model can be converted into a log-supermodular model
by switching some of the variables, we introduce the notion of a signed graph. A signed graph is
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Figure 2: An example of the construction of the 2-cover G2 for the same graph with different edge
potentials. Here, dashed lines represent edges with log-submodular potentials. The graph in (b) is
the 2-cover construction of the graph in (a) and the graph in (d) is the 2-cover construction applied
to the graph in (c). Note that the graph in (b) is connected while the graph in (d) is not.

a graph in which each edge has an associated sign. For our graphical models, we will use a “+”
to represent a log-supermodular edge and a “−” to represent a log-submodular edge. The sign of
a cycle in the graph is positive if it has an even number of “−” edges and negative otherwise. A
signed graph is said to be balanced if there are no negative cycles. Equivalently, a signed graph is
balanced, if we can divide its vetices into two sets A and B such that all edges in the graph with
one endpoint in set A and the other endpoint in the set B are negative and the remaining edges are
positive [15]. Switching, or flipping, a variable as above has the effect of flipping the sign of all
edges adjacent to the corresponding variable node in the graphical model: flipping a single variable
converts an incident log-supermodular edge into a log-submodular edge and vice versa. A graphical
model is switching log-supermodular if and only if its signed graph is balanced.

Signed graphs have been studied before in the context of graphical models. Watanabe [16] charac-
terized signed graphs for which belief propagation is guaranteed to have a unique fixed point. These
results depend only on the graph structure and the signs on the edges and not on the strength of the
potentials.

3.2 Switching Log-Supermodular 2-covers

We can always construct a 2-cover of a pairwise binary graphical model that is switching log-
supermodular.

Definition 3.1. Given a pairwise binary graphical model (G;φ,ψ), construct a 2-cover,

(G2;φG
2
,ψ

G
2
) where G

2 = (V G
2
, E

G
2
), as follows.

• For each i ∈ G, create two copies of i, denoted i1 and i2, in V
G

2
.

• For each edge (i, j) ∈ E, if ψij is log-supermodular, then add the edges (i1, j1) and (i2, j2)

to E
G

2
. Otherwise, add the edges (i1, j2) and (i2, j1) to E

G
2
.

G
2 is switching log-supermodular. This follows from the characterization of Harary [15] as G2 can

be divided into two sets V1 and V2 with only negative edges between the two partitions and positive
edges elsewhere. See Figure 2 for an example of this construction.

If all of the potentials in (G;φ,ψ) are log-supermodular, then G
2 is equal to the disconnected 2-

cover of G. If all of the potentials in (G;φ,ψ) are log-submodular, then G
2 is a bipartite graph.

Lemma 3.2. For a connected graph G, (G2;φG
2
,ψ

G
2
) is disconnected if and only if f

(G;φ,ψ)
is

switching log-supermodular. Equivalently, G
2

is disconnected if and only if the signed version of G

is balanced.

Returning to the example of counting independent sets on a 3-cycle at the beginning of this section,
we can check that G2 for this graphical model corresponds to the 6-cycle. The observation that the
6-cycle has more independent sets than two disconnected copies of the 3-cycle is a special case of a
general theorem.

Theorem 3.3. For any pairwise binary graphical model (G;φ,ψ), Z(G2;φG
2
,ψ

G
2
) ≥

Z(G;φ,ψ)2.
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The proof of Theorem 3.3 can be found in Appendix A of the supplementary material. Unlike
Theorem 2.4 that provides lower bounds on the partition function, Theorem 3.3 provides an upper
bound on the partition function.

4 Properties of the Cover G2

In this section, we study the implications that Theorem 2.4 and Theorem 3.3 have for characteriza-
tions of switching log-supermodular functions and the computation of the Bethe partition function.

4.1 Field Independence

We begin with the simple observation that Theorem 3.3, like Theorem 2.4, does not depend on the
choice of external field. In fact, in the case that all of the edge potentials are strictly larger than zero,
this independence of external field completely characterizes switching log-supermodular graphical
models.
Theorem 4.1. For a pairwise binary graphical model (G;φ,ψ) with strictly positive edge potentials

ψ, the following are equivalent.

1. f
(G;φ,ψ)(x) is switching log-supermodular.

2. For all M ≥ 1, any external field �φ, and any M -cover (H; �φH
,ψ

H) of (G; �φ,ψ),
Z(H; �φH

,ψ
H) ≤ Z(G; �φ,ψ)M .

3. For all choices of the external field �φ and any 2-cover (H; �φH
,ψ

H) of (G; �φ,ψ),
Z(H; �φH

,ψ
H) ≤ Z(G; �φ,ψ)2.

In other words, if all of the edge potentials are strictly positive, and the graphical model has even
one negative cycle, then there exists an external field �φ and a 2-cover (H; �φH

,ψ
H) of (G; �φ,ψ) such

that Z(G; �φ,ψ)2 < Z(H; �φH
,ψ

H). In particular, the proof of the theorem shows that there exists an
external field �φ such that Z(G; �φ,ψ)2 < Z(G2; �φG

2
,ψ

G
2
). See Appendix B in the supplementary

material for a proof of Theorem 4.1.

4.2 Bethe Partition Function of Graph Covers

Although the true partition function of an arbitrary graph cover could overestimate or underestimate
the true partition function of the base graphical model, the Bethe partition function on every cover
always provides an upper bound on the Bethe partition function of the base graph. In addition,
the reweighted free energy is always convex for an appropriate choice of parameters ρTRBP which
means that ZB,ρTRBP

(G;φ,ψ)2 = ZB,ρTRBP
(G2;φG

2
,ψ

G
2
). Consequently,

ZB,ρTRBP
(G;φ,ψ)2 ≥ Z(G2;φG

2

,ψ
G

2

) ≥ ZB(G
2;φG

2

,ψ
G

2

) ≥ ZB(G;φ,ψ)2. (1)

Because the graph cover G2 is switching log-supermodular, the convergence properties of BP are
better [5], and we can always apply the PTAS of Weller and Jebara [3] to (G2;φG

2
,ψ

G
2
) in order

to obtain an upper bound on the Bethe partition function of the original model. That is, by forming
the special graph cover G2, we accomplished our stated goal of deriving an algorithm that produces
better estimates of the partition function than TRBP but has better convergence properties than BP.
We examine the convergence properties experimentally in Section 5.

Before we evaluate the empirical properties of this strategy, observe that (1) holds for the MAP
inference problem as well. In the zero temperature limit, computing the Bethe partition function is
equivalent to minimizing the energy over the local marginal polytope. Many provably convergent
message-passing algorithms have been designed for this specific task [17, 18, 19, 1].

By Theorem 3.3, the MAP solution on (G2;φG
2
,ψ

G
2
) is always at least as good as the MAP so-

lution on the original graph. The problem of finding the MAP solution for a log-supermodular
pairwise binary graphical model is exactly solvable in strongly polynomial time using max-flow
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[20, 21]. We can show that the optimal solution to the Bethe approximation in the zero temperature
limit is attained as an integral assignment on this specific 2-cover. The argument goes as follows.
The graphical model (G2;φG

2
,ψ

G
2
) is switching log-supermodular. By Theorem 2.4, in the zero

temperature limit, no MAP solution on any cover of (G2;φG
2
,ψ

G
2
) can attain a higher value of the

objective function. This means that

lim
T→0

ZB(G
2; (φG

2

)1/T ,(ψG
2

)1/T )T = max
x
G2

f
(G2;φG

2
,ψ

G
2
)(xG2).

By (1), the Bethe approximation on (G2;φG
2
,ψ

G
2
) is at least as good as the Bethe approximation

on the original problem. In fact, they are equivalent in the zero temperature limit: the only part of
the Bethe approximation that is not necessarily convex in τ is the entropy approximation, which
becomes negligible as T → 0.

As a consequence, we can compute the optimum of the Bethe free energy in the zero temperature
limit in polynomial time without relying on convergent message-passing algorithms. This is partic-
ularly interesting as the local marginal polytope for pairwise binary graphical models has an integer
persistence property. Given any fractional optimum τ of the energy, U , over the local marginal poly-
tope, if τi(0) > τi(1), then there exists an integer optimum τ

� in the marginal polytope such that
τ
�(0) > τ

�(1) [22]. A similar result holds when the strict inequality is reversed. Therefore, we can
compute both the Bethe optimum and partial solutions to the exact MAP inference problem simply
by solving a max-flow problem over (G2;φG

2
,ψ

G
2
).

In this restricted setting, the two cover G2 is essentially the same as the graph construction produced
as part of the quadratic pseudo-boolean optimization (QPBO) algorithm in the computer vision
community [23]. In this sense, we can view the technique presented in this work as a generalization
of QPBO to approximate the partition function of pairwise binary graphical models.

5 Experimental Results

In this section, we present several experimental results for the above procedure. For the experiments,
we used a standard implementation of reweighted, asynchronous message passing starting from a
random initialization and a damping factor of .9. We test the performance of these algorithms on
Ising models with a randomly selected external field and various interaction strengths on the edges.
We do not use the convergent version of TRBP as the message update order is graph dependent
and not as easily parallelizable as the reweighted message-passing algorithm [1]. In addition, alter-
native message-passing schemes that guarantee convergence tend to converge slower than damped
reweighted message passing [24]. In some cases where the TRBP parameter choices do not con-
verge, additional damping does help but does not allow convergence within the specified number of
iterations.

The first experiment was conducted on a complete cycle on four nodes. The convergence properties
of BP have been studied both theoretically and empirically by Mooij and Kappen [5]. As expected,
TRBP provides a looser bound on the partition function than BP on the 2-cover and both typically
perform worse in terms of estimation than BP on the original graph (when BP converges there).
The experimental results are described in Figure 3. In all cases, the algorithms were run until the
messages in consecutive time steps differed by less than 10−8 or until more than 20, 000 iterations
were performed (a single iteration consists of updating all of the messages in the model). In general,
BP on the 2-cover construction converges more quickly than both BP and TRBP on the original
graph. BP failed to converge as the interaction strength decreased past −.9. The number of iterations
required for convergence of BP on the 2-cover has a spike at the first interaction strength such that
ZB(G) �=

�
ZB(G2). Empirically, this occurs because of the appearance of new BP fixed points on

the two cover that are close to the BP fixed point on the original graph. As the interaction strength
increases past this point, the new fixed points further separate from the old fixed points and the
algorithm converges significantly faster.

Our second set of experiments evaluates the practical performance of these three message-passing
schemes for Ising models on frustrated grid graphs (which arise in computer vision problems), sub-
networks of the Epinions social network (the specific subnetworks tested can be found in Appendix
D of the supplementary material), and simple four layer graphical models with five nodes per layer
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Figure 3: Plots of the log partition function and the number of iterations for the different algorithms
to converge for a complete graph on four nodes with no external field as the strength of the negative
edges goes from 0 to -2. For TRBP, ρij = .5 for all (i, j) ∈ E. The dashed black line is the ground
truth.

a BP TRBP BP 2-cover BP Iter. TRBP Iter BP 2-cover Iter.

Grid
1 100% 100% 95% 44.62 110.41 222.99
2 15% 30% 100% 210 815.3 44.14
4 1% 0% 100% 219 - 29.59

EPIN1
1 47% 0% 100% 63.53 - 21.12
2 37% 0% 100% 90.1 - 16.19
4 38% 0% 100% 93.63 - 15.9

EPIN1
1 41% 0% 100% 51.8 - 15.12
2 50% 0% 99% 42.46 - 14.84
4 53% 0% 100% 86.66 - 14.93

Deep Networks
1 61% 0% 100% 89.2 - 16.67
2 61% 0% 100% 30.66 - 16.82
4 60% 0% 100% 24.88 - 18.17

Figure 4: Percent of samples on which each algorithm converged within 1000 iterations and the
average number of iterations for convergence for 100 samples of edges weights in [−a, a] for the
designated graphs. For TRBP, performance was poor independent of the spanning trees selected.

similar to those used to model “deep” belief networks (layer i and layer i + 1 form a complete bi-
partite graph and there are no intralayer edges). In the Epinions network, the pairwise interactions
correspond to trust relationships. If our goal was to find the most trusted users in the network, then
we could, for example, compute the marginal probability that each user is trusted and then rank the
users by these probabilities. For each of these models, the edge weights are drawn uniformly at
random from the interval [−a, a]. The performance of BP, TRBP, and BP on the 2-cover continue to
behave as they did for the simple four node model: as a increases, BP fails to converge and BP on the
2-cover converges much faster and more frequently than the other methods. Here, convergence was
required to an accuracy of 10−8 within 1, 000 iterations. The results for the different graphs appear
in Figure 4. Notably, both BP and TRBP perform poorly on the real networks from the Epinions
data set.
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Supplemental Appendix

For the proofs in this appendix, it will be convenient to express f
(H;φH

,ψ
H) as a function over M

vectors in the set {0, 1}|V |. We can partition the vertex set V H into M disjoint sets V1, . . . , VM

such that each set contains exactly one copy of each vertex in the graph G. Then, without loss
of generality, any x ∈ {0, 1}M |V | can be expressed as x

1
, . . . , x

m ∈ {0, 1}|V | where x
m is

an assignment to the variables in Vm for all m ∈ {1, . . . ,M}. In this case, we will write
f
(H;φH

,ψ
H)(x) = f

(H;φH
,ψ

H)(x1
, . . . , x

M ).

A Proof of Theorem 3.3

Before proving Theorem 3.3, we prove a useful inequality for log-supermodular functions from
which the desired theorem will easily follow. This approach is similar to that used by Ruozzi [11]
in the proof of Theorem 2.4 but is much simpler as we only need 2-cover inequalities.
Theorem A.1. Let f1, f2 : {0, 1}n → R≥0 and g : {0, 1}2n → R≥0 such that g is log-

supermodular. If for all x, y ∈ {0, 1}n

f1(x)f2(y) ≤ g(x ∨ y, x ∧ y),

then ��

x

f1(x)
���

y

f2(y)
�
≤

�

x,y

g(x, y).

Proof. The proof of the theorem follows by induction on n. We begin by showing that the result
holds for the case n = 1. By assumption, we have the following inequalities.

f1(1)f2(1) ≤ g(1, 0)

f1(0)f2(1) ≤ g(1, 1)

f1(1)f2(0) ≤ g(1, 1)

f1(0)f2(0) ≤ g(0, 1)

Similarly, the following inequality follows from the above inequalities and the log-supermodularity
of g.

[f1(1)f2(0)][f1(0)f2(1)] = [f1(1)f2(1)][f1(0)f2(0)]

≤ g(1, 0)g(0, 1)

≤ g(1, 1)g(0, 0)

Combining these two sets of inequalities and using the observation that weak log-majorization im-
plies weak majorization yields the desired result for the base case [25].

The remainder of the proof now follows by induction on n. Let n ≥ 2 and suppose that the result
holds for all n − 1. Let f1, f2 : {0, 1}n → R≥0 and g : {0, 1}2n → R≥0 be nonnegative real-
valued functions such that g is log-supermodular. Further, suppose that these functions satisfy the
assumptions of the theorem.

Define f
� : {0, 1}n−1 → R≥0 and g

� : {0, 1}2(n−1) → R≥0 as

f
�
i
(y) = fi(y, 0) + fi(y, 1)

g
�(y1, y2) =

�

s1,s2∈{0,1}

g(y1, s1, y2, s2)

Notice that g� is log-supermodular because it is the marginal of a log-supermodular function. If we
can show that

f
�
1(y

1)f �
2(y

2) ≤ g
�(y1 ∨ y

2
, y1 ∧ y2)

for all y1, y2 ∈ {0, 1}n−1, then the result will follow by induction on n.
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To show this, fix z
1
, z

2 ∈ {0, 1}n−1 and define f
�� : {0, 1} → R≥0 and g

�� : {0, 1}2 → R≥0 as

f
��
i
(s) = fi(z

i
, s)

g
��(s1, s2) = g(z1 ∨ z

2
, s

1
, z1 ∧ z2, s

2).

We can easily check that g
��(s1, s2) is log-supermodular and that g

��(s1 ∨ s
2
, s1 ∧ s2) ≥

f
��
1 (s

1)f ��
1 (s

2) for all s1, s2 ∈ {0, 1}. Hence, by the base case,

f
�
1(z

1)f �
2(z

2) =
�

s1,s2∈{0,1}

f
��
1 (s

1)f ��
2 (s

2)

≤
�

s1,s2∈{0,1}

g
��(s1, s2)

= g
�(z1 ∨ z

2
, z1 ∧ z2)

which completes the proof of the theorem.

We now use Theorem A.1 in order to prove Theorem 3.3.

Theorem. For any pairwise binary graphical model (G;φ,ψ), Z(G2;φG
2
,ψ

G
2
) ≥ Z(G;φ,ψ)2.

Proof. For each (i, j) ∈ E, either ψij is log-supermodular, in which case

ψij(x
1
i
, x

1
j
)ψij(x

2
i
, x

2
j
) ≤ ψij(x

1
i
∨ x

2
i
, x

1
j
∨ x

2
j
)ψij(x

1
i
∧ x

2
i
, x

1
j
∧ x

2
j
)

for all x1
, x

2 ∈ {0, 1}, or log-submodular, in which case

ψij(x
1
i
, x

1
j
)ψij(x

2
i
, x

2
j
) ≤ ψij(x

1
i
∨ x

2
i
, x

1
j
∧ x

2
j
)ψij(x

1
i
∧ x

2
i
, x

1
j
∨ x

2
j
)

for all x1
, x

2 ∈ {0, 1}. Applying these inequalities to the disconnected 2-cover yields

f
(G;φ,ψ)(x1)f (G;φ,ψ)(x2) ≤ f

(G2;φ,ψ)(x1 ∨ x
2
, x

1 ∧ x
2).

Now, define the log-supermodular switching of f (G2;φ,ψ) as g(x1
, x

2) � f
(G2;φ,ψ)(x1

, x2) for all
x
1
, x

2 ∈ {0, 1}n. This gives

f
(G;φ,ψ)(x1)f (G;φ,ψ)(x2) ≤ g(x1 ∨ x

2
, x1 ∧ x2) (2)

for all x1
, x

2 ∈ {0, 1}n. Applying Theorem A.1 to (2), yields Z(G;φ,ψ)2 ≤ Z(G2;φG
2
,ψ

G
2
) as

desired.

B Proof of Theorem 4.1

Proof. (1 ⇒ 2) follows from by switching f
(G;φ,ψ) to a log-supermodular function and then invok-

ing Theorem 2.4, and (2 ⇒ 3) is trivial.

For the remaining implication (3 ⇒ 1) suppose by way of contradiction, that f (G;φ,ψ) is not switch-
ing log-supermodular (i.e., the graphical model contains a negative cycle). We can assume that the
model contains no edge potentials that are simultaneously log-supermodular and log-submodular as
these potentials can always be written as a product of two self-potentials over different variables and
absorbed into other edge potentials without affecting the signs on the edges of the graph [26].

Pick one negative cycle in the model. Denote it by C = (VC , EC). We can assume that the cycle C

is cordless. If not, we can find a smaller negative cycle that uses one of the cords.

As the external field does not affect the existence of negative cycles, we are free to choose it as we
please. Construct an external field �φ as follows. For each k ∈ V \ VC , �φk(1) = 1 and �φk(0) = 0.
For each i ∈ VC and xi ∈ {0, 1},

�φi(xi) =
1

�
k∈∂i\VC

�ψik(xi, 1)
.
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This external field effectively reduces the problem of computing the partition function of the entire
graph to that of computing the partition function over only the cycle VC in the absence of an external
field.

Z(G; �φ,ψ) = κZ(C;φconst
,ψEC

)

Here, φconst is a constant external field, κ is a positive constant, and ψEC
is the restriction of ψ to

the cycle C. A similar expression holds for the graphical model (G2; �φG
2
,ψ

G
2
).

Z(G2; �φG
2

,ψ
G

2

) = κ
2
Z(C2;φconst

,ψ
G

2

EC
)

To complete the proof, we will show that

Z(C;φconst
,ψEC

)2 < Z(C2;φconst
,ψ

G
2

EC
)

in contradiction of bullet 3 of the theorem. To see this, we need a few observations about the
computation of the partition function on a cycle. First, we will represent each potential function ψij

as a matrix A
ij ∈ R2×2

≥0 where A
ij

ab
= ψij(a− 1, b− 1) for all a, b ∈ {1, 2}.

By assumption C does not contain any edge potentials that are both log-submodular and log-
supermodular, so we must have that, for each (i, j) ∈ EC , the sign of the edge corresponds to
the determinant of Aij . Further note that, by the Perron-Frobenius Theorem and the fact that Aij

is a nonnegative matrix, Aij must have either two positive eigenvalues or one positive eigenvalue
and one negative eigenvalue. From this, we can conclude that every A

ij corresponding to a negative
edge has one positive and one negative eigenvalue while every A

ij corresponding to a positive edge
must have two positive eigenvalues.

Now, pick some i ∈ VC and walk in one direction around the cycle labeling the vertices, starting
with i, successively as c1, ..., c|VC |. With these definitions, we have

Z(C;φconst
,ψEC

) =
�

xC

�

(i,j)∈EC

ψij(xi, xj)

=
�

xC

�

(i,j)∈EC

A
ij

xi,xj

= trace(Ac1c2 ...A
c|VC |c1).

Denote the matrix product Ac1c2 ...A
c|VC |c1 simply as the matrix AC . Note that the sign of det(AC)

is equal to the sign of the cycle (which is negative by assumption). Similarly, for the two cover C2,

Z(C2;φconst
,ψ

G
2

EC
) = trace(ACAC).

Finally, denote the eigenvalues of AC as λ1 and λ2. From the arguments above, exactly one of these
is positive and one is negative. This completes the proof as

trace(ACAC) = λ
2
1 + λ

2
2 > (λ1 + λ2)

2 = trace(AC)
2
.

C Marginal Probability Experiment

In this experiment, we analyze the performance of BP, TRBP, and BP on the 2-cover for marginal
estimation. Figure 5 shows the error in the singleton marginals for the experiment in Figure 3 with
a randomly chosen external field.

D Epinions Social Network

For the Epinions experiments, we randomly generated node induced subgraphs from the Epinions
network data collected by Richardson et al. [27]. Figure 6 shows two graphs generated in this way.
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Figure 5: Plots of the error between the true marginals and the approximate marginals for a complete
graph on four nodes with no external field as the strength of the negative edges goes from 0 to -2.
For TRBP, ρij = .5 for all (i, j) ∈ E. The error is computed as the 2-norm between the vector of
true singleton marginals evaluated at one and the approximate singleton marginals evaluated at one.

(a) EPIN1: 92 nodes, 482 edges (b) EPIN2: 80 nodes, 185 edges

Figure 6: Node-induced subgraphs of the Epinions network.
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