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Abstract

We present the CEM (Conditional Expectation Maximization) al-
gorithm as an extension of the EM (Expectation Maximization)
algorithm to conditional density estimation under missing data. A
bounding and maximization process is given to speci�cally optimize
conditional likelihood instead of the usual joint likelihood. We ap-
ply the method to conditioned mixture models and use bounding
techniques to derive the model's update rules. Monotonic conver-
gence, computational e�ciency and regression results superior to
EM are demonstrated.

1 Introduction

Conditional densities have played an important role in statistics and their merits
over joint density models have been debated. Advantages in feature selection, ro-
bustness and limited resource allocation have been studied. Ultimately, tasks such
as regression and classi�cation reduce to the evaluation of a conditional density.

However, popularity of maximumjoint likelihood and EM techniques remains strong
in part due to their elegance and convergence properties. Thus, many conditional
problems are solved by �rst estimating joint models then conditioning them. This
results in concise solutions such as the Nadarya-Watson estimator [2], Xu's mixture
of experts [7], and Amari's em-neural networks [1]. However, direct conditional
density approaches [2, 4] can o�er solutions with higher conditional likelihood on
test data than their joint counter-parts.



5 10 15 20

4

6

8

10

12

x

y

5 10 15 20

4

6

8

10

12

x

y

(a) La = �4:2 Lca = �2:4 (b) Lb = �5:2 Lcb = �1:8

Figure 1: Average Joint (x; y) vs. Conditional (yjx) Likelihood Visualization

Popat [6] describes a simple visualization example where 4 clusters must be �t with
2 Gaussian models as in Figure 1. Here, the model in (a) has a superior joint likeli-
hood (La > Lb) and hence a better p(x; y) solution. However, when the models are
conditioned to estimate p(yjx), model (b) is superior (Lcb > Lca). Model (a) yields
a poor unimodal conditional density in y and (b) yields a bi-modal conditional
density. It is therefore of interest to directly optimize conditional models using con-
ditional likelihood. We introduce the CEM (Conditional Expectation Maximization)
algorithm for this purpose and apply it to the case of Gaussian mixture models.

2 EM and Conditional Likelihood

For joint densities, the tried and true EM algorithm [3] maximizes joint likelihood
over data. However, EM is not as useful when applied to conditional density estima-
tion and maximum conditional likelihood problems. Here, one typically resorts to
other local optimization techniques such as gradient descent or second order Hessian
methods [2]. We therefore introduce CEM, a variant of EM, which targets condi-
tional likelihood while maintaining desirable convergence properties. The CEM
algorithm operates by directly bounding and decoupling conditional likelihood and
simpli�es M-step calculations.

In EM, a complex density optimization is broken down into a two-step iteration
using the notion of missing data. The unknown data components are estimated via
the E-step and a simpli�ed maximization over complete data is done in the M-step.
In more practical terms, EM is a bound maximization: the E-step �nds a lower
bound for the likelihood and the M-step maximizes the bound.

p(xi;yij�) =
MX
m=1

p(m;xi;yij�) (1)

Consider a complex joint density p(xi;yij�) which is best described by a discrete
(or continuous) summation of simpler models (Equation 1). Summation is over the
`missing components' m.

�l =
PN

i=1 log(p(xi;yij�
t)) � log(p(xi;yij�t�1))

�
PN

i=1

PM

m=1 him log p(m;xi;yij�t)
p(m;xi;yij�t�1) where him = p(m;xi;yij�t�1)P

M

n=1
p(n;xi;yij�t�1)

(2)

By appealing to Jensen's inequality, EM obtains a lower bound for the incremental
log-likelihood over a data set (Equation 2). Jensen's inequality bounds the log-
arithm of the sum and the result is that the logarithm is applied to each simple



model p(m;xi;yij�) individually. It then becomes straightforward to compute the
derivatives with respect to � and set to zero for maximization (M-step).

p(yijxi;�) =
MX
m=1

p(m;yijxi;�) =

PM

m=1 p(m;xi;yij�)PM

m=1 p(m;xij�)
(3)

However, the elegance of EM is compromisedwhen we consider a conditioned density
as in Equation 3. The corresponding incremental conditional log-likelihood, �lc, is
shown in Equation 4.

�lc =
PN

i=1 log(p(yijxi;�
t))� log(p(yijxi;�t�1))

=
PN

i=1 log

P
M

m=1
p(m;xi;yij�t)P

M

m=1
p(m;xi;yij�t�1)

� log

P
M

n=1
p(n;xij�t)P

M

n=1
p(n;xij�t�1)

(4)

The above is a di�erence between a ratio of joints and a ratio of marginals. If
Jensen's inequality is applied to the second term in Equation 4 it yields an upper

bound since the term is subtracted (this would compromise convergence). Thus,
only the �rst ratio can be lower bounded with Jensen (Equation 5).

�lc �
NX
i=1

MX
m=1

him log
p(m;xi;yij�t)

p(m;xi;yij�t�1)
� log

PM

n=1 p(n;xij�
t)PM

n=1 p(n;xij�
t�1)

(5)

Note the lingering logarithmof a sum which prevents a simpleM-Step. At this point,
one would resort to a Generalized EM (GEM) approach which requires gradient or
second-order ascent techniques for the M-step. For example, Jordan et al. overcome
the di�cult M-step caused by EM with an Iteratively Re-Weighted Least Squares
algorithm in the mixtures of experts architecture [4].

3 Conditional Expectation Maximization

The EM algorithm can be extended by substituting Jensen's inequality for a dif-
ferent bound. Consider the upper variational bound of a logarithm x � 1 � log(x)
(which becomes a lower bound on the negative log). The proposed logarithm's
bound satis�es a number of desiderata: (1) it makes contact at the current op-
erating point1, (2) it is tangential to the logarithm, (3) it is a tight bound, (4)
it is simple and (5) it is the variational dual of the logarithm. Substituting this
linear bound into the incremental conditional log-likelihood maintains a true lower
bounding function Q (Equation 6).

�lc � Q(�t;�t�1) =
NX
i=1

MX
m=1

him log
p(m;xi;yij�t)

p(m;xi;yij�t�1)
�

PM

n=1 p(n;xij�
t)PM

n=1 p(n;xij�
t�1)

+ 1 (6)

The Mixture of Experts formalism [4] o�ers a graceful representation of a conditional
density using experts (conditional sub-models) and gates (marginal sub-models).
The Q function adopts this form in Equation 7.

1The current operating point is 1 since the �t model in the ratio is held �xed at the
previous iteration's value �t�1.
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him(log p(yijm;xi;�t) + log p(m;xij�t) � zim)� rip(m;xij�) +

1
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where zim = log(p(m;xi;yij�

t�1)) and ri = (
PM

n=1 p(n;xij�
t�1) )�1

(7)

Computing this Q function forms the CE-step in the Conditional Expectation Max-
imization algorithm and it results in a simpli�ed M-step. Note the absence of the
logarithm of a sum and the decoupled models. The form here allows a more straight-
forward computation of derivatives with respect to �t and a more tractable M-Step.
For continuous missing data, a similar derivation holds.

At this point, without loss of generality, we speci�cally attend to the case of a condi-
tioned Gaussian mixture model and derive the corresponding M-Step calculations.
This serves as an implementation example for comparison purposes.

4 CEM and Bound Maximization for Gaussian Mixtures

In deriving an e�cient M-step for the mixture of Gaussians, we call upon more
bounding techniques that follow the CE-step and provide a monotonically conver-
gent learning algorithm. The form of the conditional model we will train is obtained
by conditioning a joint mixture of Gaussians. We write the conditional density
in a experts-gates form as in Equation 8. We use unnormalized Gaussian gates
�N (x;�;�) = exp(�1

2 (x � �)T��1(x � �)) since conditional models do not require
true marginal densities over x (i.e. that necessarily integrate to 1). Also, note that
the parameters of the gates (�; �x;�xx) are independent of the parameters of the
experts (�m;�m;
m).

Both gates and experts are optimized independently and have no variables in com-
mon. An update is performed over the experts and then over the gates. If each
of those causes an increase, we converge to a local maximum of conditional log-
likelihood (as in Expectation Conditional Maximization [5]).

p(yjx;�) =

P
M

m=1
�n �N (x;�nx ;�

n
xx)�N (y;�my +�myx(�

m
xx)

�1(x��mx );�myy��
m
yx(�

m
xx)

�1�mxy)P
M

n=1
�n �N (x;�nx ;�nxx)

=

P
M

m=1
�n �N (x;�nx ;�

n
xx)�N (y;�m+�mx;
m)P

M

n=1
�n �N (x;�nx ;�nxx)

(8)

To update the experts, we hold the gates �xed and merely take derivatives of the Q
function with respect to the expert parameters (�m = f�m;�m;
mg ) and set them
to 0. Each expert is e�ectively decoupled from other terms (gates, other experts,
etc.). The solution reduces to maximizing the log of a single conditioned Gaussian
and is analytically straightforward.

@Q(�t;�(t�1))
@�m =

PN

i=1 him
@ logN (yi;�m+�mxi;
m)

@�m := 0 (9)

Similarly, to update the gate mixing proportions, derivatives of the Q function are
taken with respect to �m and set to 0. By holding the other parameters �xed, the
update equation for the mixing proportions is numerically evaluated (Equation 10).

�m :=
NX
i=1

riN̂ (xi;�
m
x ;�

m
xx) j�(t�1) f

NX
i=1

ĥimg
�1 (10)
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Figure 2: Bound Width Computation and Example Bounds

4.1 Bounding Gate Means

Taking derivatives of Q and setting to 0 is not as straightforward for the case of
the gate means (even though they are decoupled). What is desired is a simple
update rule (i.e. computing an empirical mean). Therefore, we further bound the
Q function for the M-step. The Q function is actually a summation of sub-elements
Qim and we bound it instead by a summation of quadratic functions on the means
(Equation 11).

Q(�t;�(t�1)) =
NX
i=1

MX
m=1

Q(�t;�(t�1))im �
NX
i=1

MX
m=1

kim � wimk�
m
x � cimk

2 (11)

Each quadratic bound has a location parameter cim (a centroid), a scale parameter
wim (narrowness), and a peak value at kim. The sum of quadratic bounds makes
contact with the Q function at the old values of the model �t�1 where the gate
mean was originally �m�x and the covariance is �m�

xx . To facilitate the derivation,
one may assume that the previous mean was zero and the covariance was identity
if the data is appropriately whitened with respect to a given gate.

The parameters of each quadratic bound are solved by ensuring that it contacts the
corresponding Qim function at �t�1 and they have equal derivatives at contact (i.e.
tangential contact). Solving these constraints yields quadratic parameters for each
gate m and data point i in Equation 12 (kim is omitted for brevity).

cim = 1
2wim

(ĥim � ri�me
� 1

2x
T
i xi)x

wim � ri�m
e
�

1
2 (xi��

m
x )T (xi��mx )�e�

1
2xi

Txi�e�
1
2xi

TxixiT �mx
�mx

T�mx
+ ĥim

2

(12)

The tightest quadratic bound occurs when wim is minimal (without violating the
inequality). The expression for wim reduces to �nding the minimal value, w�im, as in
Equation 13 (here �2 = xTi xi). The f function is computed numerically only once

and stored as a lookup table (see Figure 2(a)). We thus immediately compute the
optimal w�im and the rest of the quadratic bound's parameters obtaining bounds as
in Figure 2(b) where a Qim is lower bounded.

w�im = ri�m
max
c fe�

1
2�

2 e�
1
2 c

2

ec� � c� � 1

c2
g+

ĥim

2
= ri�me

� 1
2�

2

f(�) +
ĥim

2
(13)

The gate means �mx are solved by maximizing the sum of theM�N parabolas which
bound Q. The update is �mx = (

P
w�imcim) (

P
w�im)

�1. This mean is subsequently
unwhitened to undo earlier data transformations.
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Figure 3: Conditional Density Estimation for CEM and EM

4.2 Bounding Gate Covariances

Having derived the update equation for gate means, we now turn our attention
to the gate covariances. We bound the Q function with logarithms of Gaussians.
Maximizing this bound (a sum of log-Gaussians) reduces to the maximum-likelihood
estimation of a covariance matrix. The bound for a Qim sub-component is shown
in Equation 14. Once again, we assume the data has been appropriately whitened
with respect to the gate's previous parameters (the gate's previous mean is 0 and
previous covariance is identity). Equation 15 solves for the log-Gaussian parameters
(again �2 = xTi xi).

Q(�t;�(t�1))im � log(N ) = kim � wimc
T
im�

m
xx
�1cim � wim log j�m

xxj (14)

cimc
T
im = 1

2wim

�
ĥim � ri�me

� 1
2�

2
�
xixi

T + I

wim � ri�m
1
2 exp(�

1
2�

2)�2� 1
2 exp(�

1
2�

2)xTi �
�1xi+exp(� 1

2�
2)�exp(� 1

2x
T
i �

�1xi)
tr(I)�tr(��1)+log j��1 j

(15)

The computation for the minimalwim simpli�es to w�im = ri�mg(�). The g function
is derived and plotted in Figure 2(c). An example of a log-Gaussian bound is
shown in Figure 2(d) a sub-component of the Q function. Each sub-component
corresponds to a single data point as we vary one gate's covariance. All M � N

log-Gaussian bounds are computed (one for each data point and gate combination)
and are summed to bound the Q function in its entirety.

To obtain a �nal answer for the update of the gate covariances �m
xx we simply

maximize the sum of log Gaussians (parametrized by w�im; kim; cim). The update is
�m
xx = (

P
w�imcimcim

T ) (
P

w�im)
�1. This covariance is subsequently unwhitened,

inverting the whitening transform applied to the data.

5 Results

The CEM algorithm updates the conditioned mixture of Gaussians by computing
him and rim in the CE steps and interlaces these with updates on the experts,
mixing proportions, gate means and gate covariances. For the mixture of Gaussians,
each CEM update has a computation time that is comparable with that of an EM
update (even for high dimensions). However, conditional likelihood (not joint) is
monotonically increased.

Consider the 4-cluster (x; y) data in Figure 3(a). The data is modeled with a con-
ditional density p(yjx) using only 2 Gaussian models. Estimating the density with
CEM yields the p(yjx) shown in Figure 3(b). CEM exhibits monotonic conditional
likelihood growth (Figure 3(c)) and obtains a more conditionally likely model. In



Algorithm CCN0 CCN5 C4.5 LD EM2 CEM2
Abalone 24.86% 26.25% 21.5% 0.0% 22.32% 26.63%

Table 1: Test Results. Class label regression accuracy data. (CNN0=cascade-
correlation, 0 hidden units, CCN5=5 hidden LD=linear discriminant).

the EM case, a joint p(x; y) clusters the data as in Figure 3(d). Conditioning it
yields the p(yjx) in Figure 3(e). Figure 3(f) depicts EM's non-monotonic evolution
of conditional log-likelihood. EM produces a superior joint likelihood but an infe-
rior conditional likelihood. Note how the CEM algorithm utilized limited resources
to capture the multimodal nature of the distribution in y and ignored spurious bi-
modal clustering in the x feature space. These properties are critical for a good
conditional density p(yjx).

For comparison, standard databases were used from UCI 2. Mixture models were
trained with EM and CEM, maximizing joint and conditional likelihood respectively.
Regression results are shown in Table 1. CEM exhibited, monotonic conditional log-
likelihood growth and out-performed other methods including EM with the same
2-Gaussian model (EM2 and CEM2).

6 Discussion

We have demonstrated a variant of EM called CEM which optimizes conditional
likelihood e�ciently and monotonically. The application of CEM and bound maxi-
mization to a mixture of Gaussians exhibited promising results and better regression
than EM. In other work, a MAP framework with various priors and a deterministic
annealing approach have been formulated. Applications of the CEM algorithm to
non-linear regressor experts and hidden Markov models are currently being investi-
gated. Nevertheless, many applications CEM remain to be explored and hopefully
others will be motivated to extend the initial results.
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