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Abstract
We consider the hashing mechanism for con-
structing binary embeddings, that involves
pseudo-random projections followed by nonlin-
ear (sign function) mappings. The pseudo-
random projection is described by a matrix,
where not all entries are independent random
variables but instead a fixed “budget of random-
ness” is distributed across the matrix. Such ma-
trices can be efficiently stored in sub-quadratic or
even linear space, provide reduction in random-
ness usage (i.e. number of required random val-
ues), and very often lead to computational speed
ups. We prove several theoretical results showing
that projections via various structured matrices
followed by nonlinear mappings accurately pre-
serve the angular distance between input high-
dimensional vectors. To the best of our knowl-
edge, these results are the first that give theoret-
ical ground for the use of general structured ma-
trices in the nonlinear setting. In particular, they
generalize previous extensions of the Johnson-
Lindenstrauss lemma and prove the plausibility
of the approach that was so far only heuristi-
cally confirmed for some special structured ma-
trices. Consequently, we show that many struc-
tured matrices can be used as an efficient in-
formation compression mechanism. Our find-
ings build a better understanding of certain deep
architectures, which contain randomly weighted
and untrained layers, and yet achieve high per-

1Equal contribution.

formance on different learning tasks. We em-
pirically verify our theoretical findings and show
the dependence of learning via structured hashed
projections on the performance of neural network
as well as nearest neighbor classifier.

1. Introduction
The paradigm of binary embedding for data compression is
of the central focus of this paper. The paradigm has been
studied in some earlier works (see: (Weiss et al., 2008),
(Gong et al., 2013), (Plan & Vershynin, 2014), (Yi et al.,
2015)), and in particular it was observed that by using lin-
ear projections and then applying sign function as a non-
linear map one does not loose completely the information
about the angular distance between vectors, but instead the
information might be approximately reconstructed from the
Hamming distance between hashes. In this paper we are
interested in using pseudo-random projections via struc-
tured matrices in the linear projection phase. The pseudo-
random projection is described by a matrix, where not all
the entries are independent random variables but instead a
fixed “budget of randomness” is distributed across the ma-
trix. Thus they can be efficiently stored in a sub-quadratic
or even linear space and provide reduction in the random-
ness usage. Moreover, using them often leads to compu-
tational speed ups since they provide fast matrix-vector
multiplications via Fast Fourier Transform. We prove an
extension of the Johnson-Lindenstrauss lemma (Sivaku-
mar, 2002) for general pseudo-random structured projec-
tions followed by nonlinear mappings. We show that the
angular distance between high-dimensional data vectors is
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approximately preserved in the hashed space. This result
is also new compared to previous extensions (Hinrichs &
Vybral, 2011; Vybral, 2011) of the Johnson-Lindenstrauss
lemma, that consider special cases of our structured projec-
tions (namely: circulant matrices) and do not consider at all
the action of the non-linear mapping. We give theoretical
explanation of the approach that was so far only heuristi-
cally confirmed for some special structured matrices.

Our theoretical findings imply that many types of matri-
ces, such as circulant or Toeplitz Gaussian matrices, can
be used as a preprocessing step in neural networks. Struc-
tured matrices were used before in different contexts also
in deep learning, see for example (Saxe et al., 2011; Math-
ieu et al., 2014; Sindhwani et al., 2015)). Our theoretical
results however extend to more general class of matrices.

Our work has primarily theoretical focus, but we also
ask an empirical question: how the action of the ran-
dom projection followed by non-linear transformation may
influence learning? We focus on the deep learning set-
ting, where the architecture contains completely random or
pseudo-random structured layers that are not trained. Little
is known from the theoretical point of view about these fast
deep architectures, which achieve significant speed ups of
computation and space usage reduction with simultaneous
little or no loss in performance (Saxe et al., 2011; Jarrett
et al., 2009; Pinto et al., 2009; Pinto & Cox, 2010; Huang
et al., 2006). The high-level intuition justifying the suc-
cess of these approaches is that not only does the perfor-
mance of the deep learning system depend on learning, but
also on the intrinsic properties of the architecture. These
findings coincide with the notion of high redundancy in
network parametrization (Denil et al., 2013; Denton et al.,
2014; Choromanska et al., 2015). In this paper we con-
sider a simple model of the fully-connected feed-forward
neural network where the input layer is hashed by a struc-
tured pseudo-random projection followed by a point-wise
nonlinear mapping. Thus the input is effectively hashed
and learning is conducted in the fully connected subsequent
layers that act in the hashed space. We empirically verify
how the distortion introduced in the first layer by hashing
(where we reduce the dimensionality of the data) affects
the performance of the network (in the supervised learn-
ing setting). Finally, we show how our structured nonlinear
embeddings can be used in the k-nn setting (Altman, 1992).

This article is organized as follows: Section 2 discusses
related work, Section 3 explains the hashing mechanism,
Section 4 provides theoretical results, Section 5 shows ex-
perimental results, and Section 6 concludes. Supplemen-
tary material contains additional proofs and experimental
results.

2. Related work
The idea of using random projections to facilitate learn-
ing with high-dimensional data stems from the early work
on random projections (Dasgupta, 1999) showing in par-
ticular that learning of high-dimensional mixtures of Gaus-

sians can be simplified when first projecting the data into
a randomly chosen subspace of low dimension (this is a
consequence of the curse of dimensionality and the fact
that high-dimensional data often has low intrinsic dimen-
sionality). This idea was subsequently successfully ap-
plied to both synthetic and real datasets (Dasgupta, 2000;
Bingham & Mannila, 2001), and then adopted to a num-
ber of learning approaches such as random projection
trees (Dasgupta & Freund, 2008), kernel and feature-
selection techniques (Blum, 2006), clustering (Fern &
Brodley, 2003), privacy-preserving machine learning (Liu
et al., 2006; Choromanska et al., 2013), learning with
large databases (Achlioptas, 2003), and more recently -
deep learning (see (Saxe et al., 2011) for convenient re-
view of such approaches). Using linear projections with
completely random Gaussian weights, instead of learned
ones, was recently studied from both theoretical and prac-
tical point of view in (Giryes et al., 2015), but that work
did not consider structured matrices which is a central
point of our interest since structured matrices can be stored
much more efficiently. Beyond applying methods that
use random Gaussian matrix projections (Dasgupta, 1999;
2000; Giryes et al., 2015) and random binary matrix pro-
jections (Achlioptas, 2003), it is also possible to con-
struct deterministic projections that preserve angles and
distances (Jafarpour et al., 2009). In some sense these
methods use structured matrices as well, yet they do not
have the same projection efficiency of circulant matri-
ces and projections explored in this article. Our hybrid
approach, where a fixed “budget of randomness” is dis-
tributed across the entire matrix in the structured way en-
ables us to take advantage of both: the ability of com-
pletely random projection to preserve information and the
compactness that comes from the highly-organized internal
structure of the linear mapping.

This work studies the paradigm of constructing a binary
embedding for data compression, where hashes are ob-
tained by applying linear projections to the data followed
by the non-linear (sign function) mappings. The point-wise
nonlinearity was not considered in many previous works
on structured matrices (Haupt et al., 2010; Rauhut et al.,
2010; Krahmer et al., 2014; Yap et al., 2011) (moreover
note that these works also consider the set of structured
matrices which is a strict subset of the class of matrices
considered here). Designing binary embeddings for high
dimensional data with low distortion is addressed in many
recent works (Weiss et al., 2008; Gong et al., 2013; Yi et al.,
2015; Raginsky & Lazebnik, 2009; Salakhutdinov & Hin-
ton, 2009). In the context of our work, one of the recent
articles (Yi et al., 2015) is especially important since the
authors introduce the pipeline of constructing hashes with
the use of structured matrices in the linear step, instead of
completely random ones. They prove several theoretical re-
sults regarding the quality of the produced hash, and extend
some previous theoretical results (Jacques et al., 2011; Plan
& Vershynin, 2014). Their pipeline is more complicated
than ours, i.e. they first apply Hadamard transformation
and then a sequence of partial Toeplitz Gaussian matrices.
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Some general results (unbiasedness of the angular distance
estimator) were also known for short hashing pipelines in-
volving circulant matrices ((Yu et al., 2014)). These works
do not provide guarantees regarding concentration of the
estimator around its mean, which is crucial for all practi-
cal applications. Our results for general structured matri-
ces, which include circulant Gaussian matrices and a larger
class of Toeplitz Gaussian matrices as special subclasses,
provide such concentration guarantees, and thus establish
a solid mathematical foundation for using various types of
structured matrices in binary embeddings. In contrast to
(Yi et al., 2015), we present our theoretical results for sim-
pler hashing models (our hashing mechanism is explained
in Section 3 and consists of two very simple steps that we
call preprocessing step and the actual hashing step, where
the latter consists of pseudo-random projection followed by
the nonlinear mapping).

In the context of deep learning, using random network
parametrization, where certain layers have random and un-
trained weights, often accelerates training. Introducing
randomness to networks was explored for various archi-
tectures, in example feedforward networks (Huang et al.,
2006), convolutional networks (Jarrett et al., 2009; Saxe
et al., 2011), and recurrent networks (Jaeger & Haas, 2004;
White et al., 2004; Boedecker et al., 2009). We also re-
fer the reader to (Ganguli & Sompolinsky, 2012), where
the authors describe how neural systems cope with the
challenge of processing data in high dimensions and dis-
cuss random projections. Hashing in neural networks that
we consider in this paper is a new direction of research.
Very recently (see: (Chen et al., 2015)) it was empirically
showed that hashing in neural nets may achieve drastic re-
duction in model sizes with no significant loss of the qual-
ity, by heavily exploiting the phenomenon of redundan-
cies in neural nets. HashedNets introduced in (Chen et al.,
2015) do not give any theoretical guarantees regarding the
quality of the proposed hashing. Our work aims to touch
both grounds. We experimentally show the plausibility of
the approach, but also explain theoretically why the hash-
ing we consider compresses important information about
the data that suffices for accurate classification.

3. Hashing mechanism
In this section we explain our hashing mechanism for di-
mensionality reduction that we next analyze.

3.1. Structured matrices

We first introduce the aforementioned family of structured
matrices, that we call: Ψ-regular matrices P . This is the
key ingredient of the method.
Definition 3.1. M is a circulant Gaussian matrix if its first
row is a sequence of independent Gaussian random vari-
ables taken from the distributionN (0, 1) and next rows are
obtained from the previous ones by left/right shifts.
Definition 3.2. M is a Toeplitz Gaussian matrix if each
of its descending diagonals from left to right is of the form

(g, ..., g) for some g ∼ N (0, 1) and different descending
diagonals are independent.

Remark 3.1. The circulant Gaussian matrix with right
shifts is a special type of the Toeplitz Gaussian matrix.

Assume that k is the size of the hash and n is the dimen-
sionality of the data.

Definition 3.3. Let t be the size of the pool of independent
random Gaussian variables {g1, ..., gt}, where each gi ∼
N (0, 1). Assume that k ≤ n ≤ t ≤ kn. We take Ψ to be a
natural number, i.e. Ψ ∈ N. P is Ψ-regular random matrix
if it has the following form

∑
l∈S1,1

gl ...
∑
l∈S1,j

gl ...
∑
l∈S1,n

gl
... ... ... ... ...∑

l∈Si,1 gl ...
∑
l∈Si,j gl ...

∑
l∈Si,n gl

... ... ... ... ...∑
l∈Sk,1 gl ...

∑
l∈Sk,j gl ...

∑
l∈Sk,n gl


(1)

where Si,j ⊆ {1, ..., t} for i ∈ {1, ..., k}, j ∈ {1, ..., n},
|Si,1| = ... = |Si,n| for i = 1, ..., k, Si,j1 ∩ Si,j2 = ∅ for
i ∈ {1, ..., k}, j1, j2 ∈ {1, ..., n}, j1 6= j2, and furthermore
the following holds:

• for a fixed column C of P and fixed l ∈ {1, ..., t} ran-
dom variable gl appears in at most Ψ + 1 entries from
C.

Remark 3.2. Circulant Gaussian matrices and Toeplitz
Gaussian matrices are special cases of the 0-regular ma-
trices. Toeplitz Gaussian matrix is 0-regular, where subsets
Si,j are singletons.

In the experimental section of this paper we consider six
different kinds of structured matrices, which are examples
of general structured matrices covered by our theoretical
analysis. Those are:
• Circulant (see: Definition 3.1),
• BinCirc - a matrix, where the first row is partitioned

into consecutive equal-length blocks of elements and
each row is obtained by the right shift of the blocks
from the first row,

• HalfShift - a matrix, where next row is obtained from
the previous one by swapping its halves and then per-
forming right shift by one,

• VerHorShift - a matrix that is obtained by the follow-
ing two phase-procedure: first each row is obtained
from the previous one by the right shift of a fixed
length and then in the obtained matrix each column
is shifted up by a fixed number of elements,

• BinPerm - a matrix, where the first row is partitioned
into consecutive equal-length blocks of elements and
each row is obtained as a random permutation of the
blocks from the first row,

• Toeplitz (see: Definition 3.2).
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Remark 3.3. Computing hashes for structured matrices:
Toeplitz, BinCirc, HalfShift, and VerHorShift can be done
faster than in time O(nk) (e.g. for Toeplitz one can use
FFT to reduce computations to O(n log k)). Thus our
structured approach leads to speed-ups, storage compres-
sion (since many structured matrices covered by our theo-
retical model can be stored in linear space) and reduction
in randomness usage. The goal of this paper is not to ana-
lyze in details fast matrix-vector product algorithms since
that requires a separate paper. We however point out that
well-known fast matrix-vector product algorithms are some
of the key advantages of our structured approach.

3.2. Hashing methods

Let φ be a function satisfying limx→∞ φ(x) = 1 and
limx→−∞ φ(x) = −1. We will consider two hashing
methods, both of which consist of what we refer to as a pre-
processing step followed by the actual hashing step, where
the latter consists of pseudo-random projection followed by
nonlinear (sign function) mapping. The first mechanism,
that we call extended Ψ-regular hashing, applies first ran-
dom diagonal matrix R to the data point x, then the L2-
normalized Hadamard matrix H, next another random di-
agonal matrix D, then the Ψ-regular projection matrix PΨ

and finally function φ (the latter one applied point-wise).
The overall scheme is presented below:

x
R−→ xR

H−→ xH
D−→ xD︸ ︷︷ ︸

preprocessing

PΨ−−→ xPΨ

φ−→ h(x)︸ ︷︷ ︸
hashing

∈ Rk. (2)

The diagonal entries of matrices R and D are chosen in-
dependently from the binary set {−1, 1}, each value be-
ing chosen with probability 1

2 . We also propose a shorter
pipeline, that we call short Ψ-regular hashing, where we
avoid applying first random matrix R and the Hadamard
matrixH, i.e. the overall pipeline is of the form:

x
D−→ xD︸ ︷︷ ︸

preprocessing

PΨ−−→ xPΨ

φ−→ h(x)︸ ︷︷ ︸
hashing

∈ Rk. (3)

The goal is to compute good approximation of the angu-
lar distance between given vectors p, r, given their com-
pact hashed versions: h(p), h(r). To achieve this goal we
consider the L1-distances in the k-dimensional space of
hashes. Let θp,r denote the angle between vectors p and
r. We define the normalized approximate angle between p
and r as:

θ̃np,r =
1

2k
‖h(p)− h(r)‖1 (4)

In the next section we show that the normalized approxi-
mate angle between vectors p and r leads to a very precise
estimation of the actual angle for φ(x) = sign(x) if the
chosen parameter Ψ is not too large. Furthermore, we show
an intriguing connection between theoretical guarantees re-
garding the quality of the produced hash and the chromatic
number of some specific undirected graph encoding the
structure of P . For many of the structured matrices under

lp,r

H

Figure 1: Two vectors: p, r spanning two-dimensional hy-
perplane H and with the angular distance θp,r between
them. We have: lp,r = giD,H,⊥. Line lp,r is dividing θp,r
and thus gi contributes to ‖h(p)− h(r)‖1.

l

H

p,r

Figure 2: Similar setting to the one presented on Figure
1. Vector v represents L2-normalized version of gi and is
perpendicular to the two-dimensional plane R. The inter-
sectionR∩H of that plane with the 2-dimensional planeH
spanned by p, r is a line lp,r that this time is outside Up,r.
Thus gi does not contribute to ‖h(p)− h(r)‖1.

consideration this graph is induced by an algebraic group
operation defining the structure of P (for instance, for the
circular matrix the group is a single shift and the underly-
ing graph is a collection of pairwise disjoint cycles, thus its
chromatic number is at most 3).

4. Theoretical results
4.1. Unbiasedness of the estimator

We are ready to provide theoretical guarantees regarding
the quality of the produced hash. Our guarantees will be
given for a sign function, i.e for φ defined as: φ(x) = 1 for
x ≥ 0, φ(x) = −1 for x < 0. We first show that θ̃np,r is an
unbiased estimator of θp,rπ , i.e. E(θ̃np,r) =

θp,r
π .

Lemma 4.1. LetM be a Ψ-regular hashing model (either
extended or a short one) and ‖p‖2 = ‖r‖2 = 1. Then θ̃np,r
is an unbiased estimator of θp,rπ , i.e. E(θ̃np,r) =

θp,r
π .

Let us give a short sketch of the proof first. Note that
the value of the particular entry in the constructed hash
depends only on the sign of the dot product between the
corresponding Gaussian vector representing the row of the
Ψ-regular matrix and the given vector. Fix two vectors: p
and r with angular distance θ. Note that considered dot
products (and thus also their signs) are preserved when in-
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stead of taking the Gaussian vector representing the row
one takes its projection onto a linear space spanned by p
and r. The Hamming distance between hashes of p and r is
built up by these entries for which one dot product is neg-
ative and the other one is positive. One can note that this
happens if the projected vector is inside a 2-dimensional
cone covering angle 2θ. The last observation that com-
pletes the proof is that the projection of the Gaussian vector
is isotropic (since it is also Gaussian), thus the probability
that the two dot products will have different signs is θ

π .

Proof. Note first that the ith row, call it gi, of the matrix P
is a n-dimensional Gaussian vector with mean 0 and where
each element has variance σ2

i for σ2
i = |Si,1| = ... = |Si,n|

(i = 1, ..., k). Thus, after applying matrix D the new vec-
tor giD is still Gaussian and of the same distribution. Let us
consider first the short Ψ-regular hashing model. Fix some
vectors p, r (without loss of generality we may assume that
they are not collinear). LetHp,r, shortly called by usH , be
the 2-dimensional hyperplane spanned by {p, r}. Denote
by giD,H the projection of giD into H and by giD,H,⊥ the
line in H perpendicular to giD,H . Let φ be a sign function.
Note that the contribution to the L1-sum ‖h(p) − h(r)‖1
comes from those gi for which giD,H,⊥ divides an angle be-
tween p and r (see: Figure 1), i.e. from those gi for which
giD,H is inside the union Up,r of two 2-dimensional cones
bounded by two lines inH perpendicular to p and r respec-
tively. If the angle is not divided (see: Figure 2) then the
two corresponding entries in the hash have the same value
and thus do not contribute to the overall distance between
hashes.

Observe that, from what we have just said, we can conclude
that θ̃np,r = X1+...+Xk

k , where:

Xi =

{
1 if giD,H ∈ Up,r,
0 otherwise. (5)

Now it suffices to note that vector giD,H is a 2-dimensional
Gaussian vector and thus its direction is uniformly dis-
tributed over all directions. Thus each Xi is nonzero with
probability exactly θp,r

π and the theorem follows. For the
extended Ψ-regular hashing model the analysis is very sim-
ilar. The only difference is that data is preprocessed by
applying HR linear mapping first. Both H and R are or-
thogonal matrices though, thus their product is also an or-
thogonal matrix. Since orthogonal matrices do not change
angular distance, the former analysis can be applied again
and yields the proof.

We next focus on the concentration of the random variable
θ̃np,r around its mean θp,r

π . We prove strong exponential
concentration results for the extended Ψ-regular hashing
method. Interestingly, the application of the Hadamard
mechanism is not necessary and it is possible to get con-
centration results, yet weaker than in the former case, also
for short Ψ-regular hashing.

𝑔1    𝑔2   …   𝑔𝑛 
𝑔2    𝑔3   …   𝑔1 

… 
𝑔𝑖    𝑔𝑖+1   … 

𝑔𝑗    𝑔𝑗+1   … 

… 

… … 

𝑔𝑖𝑔𝑖+2 

𝑔𝑖+2𝑔𝑖+4 

… 

𝑔𝑖+1𝑔𝑖+3 

𝑔𝑖+3𝑔𝑖+5 

𝑗 = 𝑖 + 2 

Figure 3: On the left: matrix P with two highlighted
rows of indices: k1 = i and k2 = j respectively, where
j = i + 2. On the right: corresponding graph that con-
sists of two cycles. If each cycle is even then this graph
is 2-colorable, as indicated on the picture. Thus we have:
χ(GP(k1, k2)) = 2.

4.2. The P-chromatic number

The highly well organized structure of the projection ma-
trix P gives rise to the underlying undirected graph that en-
codes dependencies between different entries of P . More
formally, let us fix two rows ofP of indices 1 ≤ k1 < k2 ≤
k respectively. We define a graph GP(k1, k2) as follows:

• V (GP(k1, k2)) = {{j1, j2} : ∃l ∈ {1, ..., t}s.t.gl ∈
Sk1,j1 ∩ Sk2,j2 , j1 6= j2},

• there exists an edge between vertices {j1, j2} and
{j3, j4} iff {j1, j2} ∩ {j3, j4} 6= ∅.

The chromatic number χ(G) of the graph G is the minimal
number of colors that can be used to color the vertices of
the graph in such a way that no two adjacent vertices have
the same color.
Definition 4.1. Let P be a Ψ-regular matrix. We define the
P-chromatic number χ(P) as:

χ(P) = max
1≤k1<k2≤k

χ(G(k1, k2)).

The graph associated with each structured matrix that we
have just described enables us to encode dependencies be-
tween entries of the structured matrix in the compact form
and gives us quantitative ways to efficiently measure these
dependencies by analyzing several core parameters of this
graph such as its chromatic number. More dependencies
that usually lead to more structured form mean more edges
in the associated graph and often lead to higher chromatic
number. On the other hand, fewer dependencies produce
graphs with much lower chromatic number (see Figure 3,
where the graph associated with the circulant matrix is a
collection of vertex disjoint cycles and thus has chromatic
number 3 if it contains an odd length cycle and 2 other-
wise).

4.3. Concentration inequalities for structured hashing
with sign function

We present now our main theoretical results. The proofs are
deferred to the Supplementary material. We focus on the
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concentration results regarding produced hashes that are
crucial for practical applications of the proposed scheme.

We first start with the short description of the methods used
and then rigorously formulate all the results. If all the rows
of the projection matrix are independent then standard con-
centration inequalities can be used. This is however not the
case in our setting since the matrix is structured. We still
want to say that any two rows are “close” to independent
Gaussian vectors and that will give us bounds regarding the
variance of the distance between the hashes (in general, we
observe that any system of k rows is “close” to the system
of k independent Gaussian vectors and get bounds involv-
ing kth moments). We proceed as follows:

• We take two rows and project then onto the linear
space spanned by given vectors: p and r.

• We consider the four coordinates obtained in this way
(two for each vector). These coordinates are obviously
Gaussian, but what is crucial, they are “almost inde-
pendent”.

• The latter observation is implied by the fact that these
are the coordinates of the projection of a fixed Gaus-
sian vector onto directions that are “almost orthogo-
nal”.

• We use the property of the Gaussian vector, namely
that its projections onto orthogonal directions are in-
dependent.

• To prove that directions considered in our setting are
close to orthogonal with high probability, we compute
their dot product. This is the place where the struc-
ture of the matrix, the chromatic number of the under-
lying graph and the fact that in our hashing scheme
we use random diagonal matrices come into action.
We decompose each dot product into roughly speak-
ing χ components (where χ stands for the chromatic
number), such that each component is a sum of in-
dependent random variables with mean 0. Now we
can use standard concentration inequalities to get tight
concentration results.

• The Hadamard matrix used in the extended model pre-
processes input vectors to distribute their mass uni-
formly over all the coordinates, while not changing
L2 distances (note that it is a unitary matrix). It turns
out that balanced vectors lead to much stronger con-
centration results.

Now we are ready to rigorously state our results. By
poly(x) we denote a function xr for some r > 0. The
following theorems guarantee strong concentration of θ̃np,r
around its mean and therefore justify theoretically the ef-
fectiveness of the structured hashing method.

Let us consider first the extended Ψ-regular hashing model.
The following is our main theoretical result.
Theorem 4.1. Consider extended Ψ-regular hashing
modelM with t independent Gaussian random variables:
g1, ..., gt, each of distribution N (0, 1). Let N be the size
of the dataset D. Denote by k the size of the hash and by

n the dimensionality of the data. Let f(n) be an arbitrary
positive function. Let θp,r be the angular distance between
vectors p, r ∈ D. Then for every a, ε > 0 the following is
true:

P
(
∀p,r∈D

∣∣∣∣θ̃np,r − θp,r
π

∣∣∣∣ ≤ ε) ≥[
1− 4

(
N

2

)
e−

f2(n)
2 − 4χ(P)

(
k

2

)
e
− 2a2t
f4(t)

]
(1− Λ),

where Λ = 1
π

∑k
j=b εk2 c

1√
j
(kej )jµj(1 − µ)k−j + 2e−

ε2k
2

and µ =
8k(aχ(P)+Ψ

f2(n)
n )

θp,r
.

Note how the upper bound on the probability of failure Pε
depends on the P-chromatic number. The theorem above
guarantees strong concentration of θ̃np,r around its mean
and therefore justifies theoretically the effectiveness of the
structured hashing method. It becomes more clear below.

As a corollary, we obtain the following result:
Corollary 4.1. Consider extended Ψ-regular hashing
modelM. Assume that the projection matrix P is Toeplitz
Gaussian. Let N,n, k be as above and denote by θp,r be
the angular distance between vectors p, r ∈ D. Then the
following is true for n large enough:

P
(
∀p,r∈D

∣∣∣∣θ̃np,r − θp,r
π

∣∣∣∣ ≤ k− 1
3

)
≥[

1−O
(

N2

epoly(n)
+ k2e−n

3
10

)](
1− 3e−

k
1
3
2

)
.

Corollary 4.1 follows from Theorem 4.1 by taking: a =

n−
1
3 , ε = k−

1
3 , f(n) = np for small enough constant

p > 0, noticing that every Toeplitz Gaussian matrix is 0-
regular and the corresponding P-chromatic number χ(P)
is at most 3.

Let us consider now the short Ψ-regular hashing model.
The theorem presented below is an application of the
Chebyshev’s inequality preceded by the careful analysis of
the variance of θ̃np,r.
Theorem 4.2. Consider short Ψ-regular hashing model
M, where P is a Toeplitz Gaussian matrix. Denote by k
the size of the hash. Let θp,r be the angular distance be-
tween vectors p, r ∈ D, where D is the dataset. Then the
following is true

∀p,r∈DV ar(θ̃np,r) ≤
1

k

θp,r(π − θp,r)
π2

+ (
log(k)

k2
)

1
3 , (6)

and thus for any c > 0 and p, r ∈ D:

P

∣∣∣∣θ̃np,r − θp,r
π

∣∣∣∣ ≥ c
(√

log(k)

k

) 1
3

 = O

(
1

c2

)
.

Figure 4 and 5 show the dependence of the upper bound on
the variance of the normalized approximate angle θ̃np,r on
resp. the true angular distance θp,r and the size of the hash
k when resp. k and θp,r are fixed.
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Figure 4: The dependence of the upper bound on the vari-
ance of the normalized approximate angle θ̃np,r on an angle
when the size of the hash k is fixed. The upper bound scales
as 1

k and is almost independent of θp,r.

Figure 5: The dependence of the upper bound on the vari-
ance of the normalized approximate angle θ̃np,r on the size
of the hash k when the true angular distance θp,r is fixed.
The upper bound converges to 0 as k →∞.

5. Numerical experiments

x1

x2

. . .. . .

xn

1

2

. . .

k

. . .

y1

y2

. . .

ys

P D

Figure 6: Fully-connected network with randomized input
layer (red edges correspond to structured matrix). k < n.
D is a random diagonal matrix with diagonal entries chosen
independently from the binary set {−1, 1}, each value be-
ing chosen with probability 1

2 , and P is a structured matrix.
The figure should be viewed in color.

We performed experiments on MNIST dataset downloaded

from http://yann.lecun.com/exdb/mnist/.
The data was preprocessed2 according to the short hashing
scheme (the extended hashing scheme gave results of
no significant statistical difference) before being given
to the input of the network. We considered a simple
model of the fully-connected feed-forward neural network
with two hidden layers, where the first hidden layer
had k units that use sign non-linearity (we explored
k = {16, 32, 64, 128, 256, 512, 1024}), and the second
hidden layer had 100 units that use ReLU non-linearity.
The size of the second hidden layer was chosen as follows.
We first investigated the dependence of the test error on
this size in case when n = k and the inputs instead of
being randomly projected are multiplied by identity (it is
equivalent to eliminating first hidden layer). We then chose
as a size the threshold below which test performance was
rapidly deteriorating.

a)

b)
Figure 7: Mean test error versus a) the size of the hash (k)
(zoomed plot3), b) the size of the reduction (n/k) for the
network. Baseline corresponds to 1.7%.

The first hidden layer contains random untrained weights,
and we only train the parameters of the second layer
and the output layer. The network we consider is shown
in Figure 6. Each experiment was initialized from a
random set of parameters sampled uniformly within the
unit cube, and was repeated 1000 times. All networks
were trained for 30 epochs using SGD (Bottou, 1998).
The experiments with constant learning rate are reported
(we also explored learning rate decay, but obtained simi-
lar results), where the learning rate was chosen from the set

2Preprocessing is discussed in Section 3.
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Table 1: Mean and std of the test error versus the size of the hash (k) / size of the reduction (n/k) for the network.

k / n
k

Circulant Random BinPerm BinCirc HalfShift Toeplitz VerHorShift
[%] [%] [%] [%] [%] [%] [%]

1024 / 1 3.53± 0.16 2.78± 0.10 3.69± 0.21 6.79± 0.49 3.54± 0.16 3.16± 0.19 3.74± 0.16
512 / 2 5.42± 0.83 3.61± 0.19 4.68± 0.35 8.10± 1.85 5.13± 2.15 4.97± 0.53 5.55± 0.62
256 / 4 11.56± 1.42 4.79± 0.13 7.43± 1.31 6.13± 1.42 5.98± 1.05 9.48± 1.88 10.96± 2.78
128 / 8 22.10± 5.42 10.13± 0.24 10.02± 0.50 11.43± 0.92 12.42± 0.95 18.35± 2.36 15.82± 1.63
64 / 16 29.50± 1.13 16.26± 1.02 26.50± 10.55 22.07± 1.35 20.90± 2.25 32.82± 4.83 21.59± 3.05
32 / 32 42.07± 4.16 28.77± 2.28 29.94± 3.48 35.55± 3.12 29.15± 0.97 42.97± 2.08 45.10± 4.46
16 / 64 64.20± 6.76 46.06± 1.03 50.65± 5.66 58.70± 7.15 55.40± 6.90 57.96± 3.65 61.66± 4.08

Table 2: Memory complexity and number of required random values for structured matrices and Random matrix.
Matrix Random Circulant BinPerm HalfShift VerHorShift BinCirc Toeplitz

# of random values O(nk) O(n) O(n) O(n) O(n) O(n) O(n)
Memory complexity O(nk) O(n) O(nk) O(n) O(n) O(n) O(n)

{0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5,
1} to minimize the test error. The weights of the first hid-
den layer correspond to the entries in the “preprocessed”
structured matrix. We explored seven kinds of random
matrices (first six are structured): Circulant, Toeplitz, Half-
Shift, VerHorShift, BinPerm, BinCirc, and Random (entries
are independent and drawn from Gaussian distribution
N (0, 1)). All codes were implemented in Torch7.

a)

b)
Figure 8: Mean test error versus a) the size of the hash (k)
(zoomed plot3), b) the size of the reduction (n/k) for 1-NN.
Baseline corresponds to 4.5%.

Figure 7a shows how the mean test error is affected by the

3Original plot is in the Supplement.

size of the hash, and Figure 7b shows how the mean test
error changes with the size of the reduction, where the size
of the reduction is defined as the ratio n/k. In Table 1 we
report both the mean and the standard deviation (std) of
the test error across our experiments. Training results are
reported in the Supplementary material. Baseline refers to
the network with one hidden layer containing 100 hidden
units, where all parameters are trained.

Experimental results show how the performance is affected
by using structured hashed projections to reduce data di-
mensionality. Figure 7b and Table 1 show close to linear
dependence between the error and the size of the reduc-
tion. Simultaneously, this approach leads to computational
savings and the reduction of memory storage (in example
for Circulant matrix the memory storage reduction4 is of
the order O(n/k)). Memory complexity5 and the number
of required random values for different structured matrices
and Random matrix are summarized in Table 2.

Experiments show that using fully random matrix gives the
best performance as predicted in theory. BinPerm matrix
exhibits comparable performance to the Random matrix,
which might be explained by the fact that applying permu-
tation itself adds an additional source of randomness. The
next best performer is HalfShift, which generation is less
random than in case of BinPerm or Random. Thus its per-
formance, as expected, is worse than for these two other
matrices. However, as opposed to BinPerm and Random
matrices, HalfShift matrix can be stored in linear space.
The results also show that in general all structured matri-
ces perform relatively well for medium-size reductions. Fi-
nally, all structured matrices except for BinPerm lead to the
biggest memory savings and require the smallest “budget of
randomness”. Moreover, they often lead to computational
efficiency, e.g. Toeplitz matrix-vector multiplications can

4The reduction of memory storage is computed as the reduc-
tion of the number of input weights for the hidden layer (the mem-
ory required for storing Circulant matrix is negligible compared
to the number of weights).

5Memory complexity is the required memory to store the ma-
trix.
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be efficiently implemented via Fast Fourier Transform (Yu
et al., 2014). But, as mentioned before, faster than naive
matrix-vector product computations can be performed also
for BinPerm, HalfShift, and VerHorShift.

Finally, we also report how the performance of 1-NN algo-
rithm is affected by using structured hashed projections for
the dimensionality reduction. We obtained similar plots as
for the case of neural networks. They are captured in Fig-
ure 8. The table showing the mean and the standard devia-
tion of the test error for experiments with 1-NN is enclosed
in the Supplementary material.

6. Conclusions
This paper shows that using structured hashed projections
well-preserves the angular distance between input data in-
stances. Our theoretical results consider mapping the data
to lower-dimensional space using various structured matri-
ces, where the structured linear projections are followed
by the sign nonlinearity. This non-linear operation was
not considered for such a wide range of structured matri-
ces in previous related theoretical works. The theoretical
setting naturally applies to the multilayer network frame-
work, where the basic components of the architecture per-
form matrix-vector multiplication followed by the nonlin-
ear mapping. We empirically verify our theoretical findings
and show how using structured hashed projections for di-
mensionality reduction affects the performance of neural
network and nearest neighbor classifier.
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Binary embeddings with structured
hashed projections

(Supplementary Material)

In this section we prove Theorem 4.1 and Theorem 4.2. We
will use notation from Lemma 4.1.

7. Proof of Theorem 4.1
We start with the following technical lemma:
Lemma 7.1. Let {Z1, ..., Zk} be the set of k indepen-
dent random variables defined on Ω such that each Zi has
the same distribution and Zi ∈ {0, 1}. Let {F1, ...,Fk}
be the set of events, where each Fi is in the σ-field de-
fined by Zi (in particular Fi does not depend on the σ-
field σ(Z1, ..., Zi−1, Zi+1, ...Zk)). Assume that there ex-
ists µ < 1

2 such that: P(Fi) ≤ µ for i = 1, ..., k. Let
{U1, ..., Uk} be the set of k random variables such that
Ui ∈ {0, 1} and Ui|Fi = Zi|Fi for i = 1, ..., k, where
X|F stands for the random variable X truncated to the
event F . Assume furthermore that E(Ui) = E(Zi) for
i = 1, ..., k. Denote U = U1+...+Uk

k . Then the following is
true.

P(|U−EU |>ε)≤ 1

π

k∑
r= εk

2

1√
r

(
ke

r
)rµr(1−µ)k−r+2e−

ε2k
2 .

(7)

Proof. Let us consider the event Fbad = F1∪ ...∪Fk. Note
that Fbad may be represented by the union of the so-called
r-blocks, i.e.

Fbad =
⋃

Q⊆{1,...,k}

(
⋂
q∈Q
Fq

⋂
q∈{1,...,k}\Q

Fcq ), (8)

where Fc stands for the complement of event F . Let us fix
now some Q ⊆ {1, ..., k}. Denote

FQ =
⋂
q∈Q
Fq

⋂
q∈{1,...,k}\Q

Fcq . (9)

note that P(FQ) ≤ µr(1− µ)k−r. It follows directly from
the Bernoulli scheme.

Denote Z = Z1+...+Zk
k . From what we have just said and

from the definition of {F1, ...,Fk} we conclude that for
any given c the following holds:

P(|U − Z| > c) ≤
k∑

r=ck

(
k

r

)
µr(1− µ)k−r. (10)

Note also that from the assumptions of the lemma we triv-
ially get: E(U) = E(Z).

Let us consider now the expression P(|U − E(U)|) > ε.

We get: P(|U − E(U)| > ε) = P(|U − E(Z)| > ε) =
P(|U−Z+Z−E(Z)| > ε) ≤ P(|U−Z|+ |Z−E(Z)| >
ε) ≤ P(|U − Z| > ε

2 ) + P(|Z − E(Z)| > ε
2 ).

From 10 we get:

P(|U − Z| > ε

2
) ≤

k∑
r= ε

2

(
k

r

)
µr(1− µ)k−r. (11)

Let us consider now the expression:

ξ =

k∑
r= εk

2

(
k

r

)
µr(1− µ)k−r. (12)

We have:

ξ ≤
k∑

r= εk
2

(k − r + 1)...(k)

r!
µr(1− µ)k−r

≤
k∑

r= εk
2

kr

r!
µr(1− µ)k−r (13)

From the Stirling’s formula we get: r! = 2πrr+
1
2

er (1 +
or(1)). Thus we obtain:

ξ ≤ (1 + or(1))

k∑
r= εk

2

krer

2πrr+
1
2

µr(1− µ)k−r

≤ 1

π

k∑
r= εk

2

1√
r

(
ke

r
)rµr(1− µ)k−r (14)

for r large enough.

Now we will use the following version of standard Azuma’s
inequality:

Lemma 7.2. Let W1, ...,Wk be k independent random
variables such that E(W1) = ...E(Wk) = 0. Assume that
−αi ≤ Wi+1 −Wi ≤ βi for i = 2, ..., k − 1. Then the
following is true:

P(|
k∑
i=1

Wi| > a) ≤ 2e
− 2a2∑k

i=1
(αi+βi)

2

Now, using Lemma 7.2 for Wi = Xi − E(Xi) and αi =
E(Xi), βi = 1− E(Xi) we obtain:

P(|X − EX| > a

2
) ≤ 2e−

a2k
2 . (15)
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Combining 14 and 15, we obtain the statement of the
lemma.

Our next lemma explains the role the Hadamard matrix
plays in the entire extended Ψ-regular hashing mechanism.
Lemma 7.3. Let n denote data dimensionality and let
f(n) be an arbitrary positive function. Let D be the
set of all L2-normalized data points, where no two data
points are identical. Assume that |D| = N . Consider
the

(
N
2

)
hyperplanes Hp,r spanned by pairs of different

vectors {p, r} from D. Then after applying linear trans-
formation HR each hyperplane Hp,r is transformed into
another hyperplane HHRp,r . Furthermore, the probability
PHRthat for every HHRp,r there exist two orthonormal vec-
tors x = (x1, ..., xn), y = (y1, ..., yn) in HHRp,r such that:

|xi|, |yi| ≤ f(n)√
n

satisfies:

PHR ≥ 1− 4

(
N

2

)
e−

f2(n)
2 .

Proof. We have already noted in the proof of Lemma 4.1
that HR is an orthogonal matrix. Thus, as an isometry,
it clearly transforms each 2-dimensional hyperplane into
another 2-dimensional hyperplane. For every pair {p, r},
let us consider an arbitrary fixed orthonormal pair {u, v}
spanning Hp,r. Denote u = (u1, ..., un). Let us denote by
uHR vector obtained from u after applying transformation
HR. Note that the jth coordinate of uHR is of the form:

uHRj = u1T1 + ...+ unTn, (16)

where T1, ..., Tn are independent random variables satisfy-
ing:

Ti =

{
1√
n

w.p 1
2 ,

− 1√
n

otherwise. (17)

The latter comes straightforwardly from the form of the
L2-normalized Hadamard matrix (i.e a Hadamard matrix,
where each row and column is L2-normalized).

But then, from Lemma 7.2, and the fact that ‖u‖2 = 1, we
get for any a > 0:

P(|u1T1 + ...+ unTn| ≥ a) ≤ 2e
− 2a2∑n

i=1
(2ui)

2 ≤ 2e−
a2

2 .
(18)

Similar analysis is correct for vHR. Note that vHR is
orthogonal to uHR since v and u are orthogonal. Fur-
thermore, both vHR and uHR are L2-normalized. Thus
{uHR, vHR} is an orthonormal pair.

To complete the proof, it suffices to take a = f(n) and
apply the union bound over all vectors uHR, vHR for all(
N
2

)
hyperplanes.

From the lemma above we see that applying Hadamard ma-
trix enables us to assume with high probability that for ev-
ery hyperplane Hp,r there exists an orthonormal basis con-
sisting of vectors with elements of absolute values at most
f(n)√
n

. We call this event Ef . Note that whether Ef holds or
not is determined only byH,R and the initial dataset D.

Let us proceed with the proof of Theorem 4.1. Let us
assume that event Ef holds. Without loss of generality
we may assume that we have the short Ψ-regular hashing
mechanism with an extra property that every Hp,r has an
orthonormal basis consisting of vectors with elements of
absolute value at most f(n)√

n
. Fix two vectors p, r from the

dataset D. Denote by {x, y} the orthonormal basis of Hp,r

with the above property. Let us fix the ith row of P and
denote it as (pi,1, ..., pi,n). After being multiplied by the
diagonal matrix D we obtain another vector:

w = (Pi,1d1, ...,Pi,ndn), (19)

where:

Di,j =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 . (20)

We have already noted that in the proof of Lemma 4.1 that
it is the projection of w into Hp,r that determines whether
the value of the associated random variableXi is 0 or 1. To
be more specific, we showed that Xi = 1 iff the projection
is in the region Up,r. Let us write down the coordinates
of the projection of w into Hp,r in the {x, y}-coordinate
system. The coordinates are the dot-products of w with x
and y respectively thus in the {x, y}-coordinate system we
can write w as:

w{x,y} = (Pi,1d1x1, ...,Pi,ndnxn,Pi,1d1y1, ...,Pi,ndnyn).
(21)

Note that both coordinates are Gaussian random variables
and they are independent since they were constructed by
projecting a Gaussian vector into two orthogonal vectors.
Now note that from our assumption about the structure ofP
we can conclude that both coordinates may be represented
as sums of weighted Gaussian random variables gi for i =
1, ..., t, i.e.:

w{x,y} = (g1si,1 + ...+ gtsi,t, g1vi,1 + ...+ gtvi,t), (22)

where each si,j , vi,j is of the form dzxz or dzyz for some
z that depends only on i, j. Note also that

s2
i,1 + ...+ s2

i,t = v2
i,1 + ...+ v2

i,t. (23)

The latter inequality comes from the fact that, by 21, both
coordinates of w{x,y} have the same distribution.
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Let us denote si = (si,1, ..., si,t), vi = (vi,1, ..., vi,t) for
i = 1, ..., k. We need the following lemma stating that
with high probability vectors s1, ..., sk, v1, ..., vk are close
to be pairwise orthogonal.
Lemma 7.4. Let us assume that Ef holds. Let f(n) be
an arbitrary positive function. Then for every a > 0 with

probability at least Psucc ≥ 1− 4
(
k
2

)
e
− 2a2n
f4(n) , taken under

coin tosses used to construct D, the following is true for
every 1 ≤ i1 6= i2 ≤ k:

|
n∑
u=1

si1,uvi1,u| ≤ aχ(P) + Ψ
f2(n)

n
,

|
n∑
u=1

si1,usi2,u| ≤ aχ(P) + Ψ
f2(n)

n
,

|
n∑
u=1

vi1,uvi2,u| ≤ aχ(P) + Ψ
f2(n)

n
,

|
n∑
u=1

si1,uvi2,u| ≤ aχ(P) + Ψ
f2(n)

n
.

Proof. Note that the we get the first inequality for free
from the fact that x is orthogonal to y (in other words,∑n
u=1 si1,uvi1,u can be represented as C

∑n
u=1 xiyi and

the latter expression is clearly 0). Let us consider now one
of the three remaining expressions. Note that they can be
rewritten as:

E =

n∑
i=1

dρ(i)dλ(i)xζ(i)xγ(i) (24)

or

E =

n∑
i=1

dρ(i)dλ(i)yζ(i)yγ(i) (25)

or

E =

n∑
i=1

dρ(i)dλ(i)xζ(i)yγ(i) (26)

for some ρ, λ, ζ, γ. Note also that from the Ψ-regularity
condition we immediately obtain that ρ(i) = λ(i) for at
most Ψ elements of each sum. Get rid of these elements
from each sum and consider the remaining ones. From
the definition of the P-chromatic number, those remaining
ones can be partitioned into at most χ(P) parts, each con-
sisting of elements that are independent random variables
(since in the corresponding graph there are no edges be-
tween them). Thus, for the sum corresponding to each part
one can apply Lemma 7.2. Thus one can conclude that the
sum differs from its expectation (which clearly is 0 since
E(didj) = 0 for i 6= j) by a with probability at most:

Pa ≤ 2e
− 2a2∑n

i=1
xζ(i)xγ(i) , (27)

or

Pa ≤ 2e
− 2a2∑n

i=1
yζ(i)yγ(i) , (28)

or

Pa ≤ 2e
− 2a2∑n

i=1
xζ(i)yγ(i) . (29)

Now it is time to use the fact that event Ef holds. Then we
know that: |xi|, |yi| ≤ f(n)√

n
for i = 1, ..., n. Substituting

this upper bound for |xi|, |yi| in the derived expressions on
the probabilities coming from Lemma 7.2, and then taking
the union bound, we complete the proof.

We can finish the proof of Theorem 4.1. From Lemma 7.4
we see that s1, ..., sk, v1, ..., vk are close to pairwise or-
thogonal with high probability. Let us fix some positive
function f(n) > 0 and some a > 0. Denote

∆ = aχ(P) + Ψ
f2(n)

n
. (30)

Note that , by Lemma 7.4 we see that applying Gram-
Schmidt process we can obtain a system of pairwise or-
thogonal vectors s̃1, ..., s̃k, ṽ1, ..., ṽk such that

‖ṽi − vi‖2 ≤ k∆. (31)

and
‖s̃i − si‖2 ≤ k∆. (32)

Let us consider again wx,y . Replacing si by s̃i and vi by ṽi
in the formula on wx,y , we obtain another Gaussian vector:
w̃x,y for each row i of the matrix P . Note however that
vectors w̃x,y have one crucial advantage over vectors wx,y ,
namely they are independent. That comes from the fact that
s̃1, ..., s̃k,ṽ1, ..., ṽk are pairwise orthogonal. Note also that
from 37 and 38 we obtain that the angular distance between
wx,y and w̃x,y is at most k∆.

Let Zi for i = 1, ...k be an indicator random variable that
is zero if w̃x,y is inside the region Up,r and zero otherwise.
Let Ui for i = 1, ...k be an indicator random variable that
is zero if wx,y is inside the region Up,r and zero other-
wise. Note that θ̃np,r = U1+...+Uk

k . Furthermore, random
variables Z1, ..., Zk, U1, ..., Uk satisfy the assumptions of
Lemma 7.1 with µ ≤ 8τ

θp,r
, where τ = k∆. Indeed, ran-

dom variables Zi are independent since vectors w̃x,y are
independent. From what we have said so far we know that
each of them takes value one with probability exactly θp,r

π .
Furthermore Zi 6= Ui only ifwx,y is inside Up,r and w̃x,y is
outside Up,r or vice versa. The latter event implies (thus it
is included in the event) that wx,y is near the border of the
region Up,r, namely within an angular distance ε

θp,r
from

one of the four semi-lines defining Up,r. Thus in particular,
an event Zi 6= Ui is contained in the event of probability at
most 2 · 4 · ε

θp,r
that depends only on one wx,y .

But then we can apply Lemma 7.1. All we need is to as-
sume that the premises of Lemma 7.4 are satisfied. But this
is the case with probability specified in Lemma 7.3 and this
probability is taken under random coin tosses used to prod-
uct H and R, thus independently from the random coin
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tosses used to produce D. Putting it all together we obtain
the statement of Theorem 4.1.

8. Proof of Theorem 4.2
We will borrow some notation from the proof of Theorem
4.1. Note however that in this setting no preprocessing with
the use of matricesH andR is applied.
Lemma 8.1. Define U1, ..., Uk as in the proof of Theorem
4.1. Assume that the following is true:

|
n∑
u=1

si1,uvi1,u| ≤ ∆,

|
n∑
u=1

si1,usi2,u| ≤ ∆,

|
n∑
u=1

vi1,uvi2,u| ≤ ∆,

|
n∑
u=1

si1,uvi2,u| ≤ ∆.

for some 0 < ∆ < 1. The the following is true for every
fixed 1 ≤ i < j ≤ k:

|P(UiUj = 1)− P(Ui = 1)P(Uj = 1)| = O(∆).

The lemma follows from the exactly the same analysis that
was done in the last section of the proof of Theorem 4.1
thus we leave it to the reader as an exercise.

Note that we have:

V ar(θ̃np,r) =V ar(
U1 + ...+ Uk

k
)

=
1

k2
(

k∑
i=1

V ar(Ui) +
∑
i 6=j

Cov(Ui, Uj)). (33)

Since Ui is an indicator random variable that takes value
one with probability θp,r

π , we get:

V ar(Ui) = E(U2
i )− E(Ui)

2 =
θp,r
π

(1− θp,r
π

). (34)

Thus we have:

V ar(θ̃np,r) =
1

k

θp,r(π − θp,r)
π2

+
1

k2

∑
i 6=j

Cov(Ui, Uj).

(35)

Note however that Cov(Ui, Uj) is exactly: P(UiUj = 1)−
P(Ui = 1)P(Uj = 1).

Therefore, using Lemma 8.1, we obtain:

V ar(θ̃np,r) =
1

k

θp,r(π − θp,r)
π2

+O(∆). (36)

It suffices to estimate parameter ∆. We proceed as in the
previous proof. We only need to be a little bit more cautious
since the condition: |xi|, |yi| ≤ f(n)√

n
cannot be assumed

right now. We select two rows: i1, i2 of P . Note that again
we see that applying Gram-Schmidt process, we can ob-
tain a system of pairwise orthogonal vectors s̃i1 , s̃ii , ṽii , ṽi2
such that

‖ṽi1 − vi2‖2 ≤ ∆, (37)

and
‖s̃i1 − si2‖2 ≤ ∆. (38)

The fact that right now the above upper bounds are not mul-
tiplied by k, as it was the case in the previous proof, plays
key role in obtaining nontrivial concentration results even
when no Hadamard mechanism is applied.

We consider the related sums:
E1 =

∑n
i=1 dρ(i)dλ(i)xζ(i)xγ(i), E2 =∑n

i=1 dρ(i)dλ(i)yζ(i)yγ(i), E3 =
∑n
i=1 dρ(i)dλ(i)xζ(i)yγ(i)

as before. We can again partition each sum into at most
χ(P) sub-chunks, where this time χ(P) ≤ 3 (since P is
Toeplitz Gaussian). The problem is that applying Lemma
7.2, we get bounds that depend on the expressions of the
form

αx,i =

n∑
j=1

x2
jx

2
j+i, (39)

and

αy,i =

n∑
j=1

y2
j y

2
j+i, (40)

where indices are added modulo n and this time we cannot
assume that all |xi|, |yi| are small. Fortunately we have:

n∑
i=1

αx,i = 1, (41)

and
n∑
i=1

αy,i = 1 (42)

Let us fix some positive function f(k). We can conclude
that the number of variables αx,i such that αx,i ≥ f(k)

(k2)

is at most (k2)
f(k) . Note that each such αx,i and each such

αy,i corresponds to a pair {i1,2 } of rows of the matrix P
and consequently to the unique element Cov(Ui1 , Ui2) of
the entire covariance sum (scaled by 1

k2 ). Since trivially
we have |Cov(Ui1 , Ui2)| = O(1), we conclude that the
contribution of these elements to the entire covariance sum
is of order 1

f(k) . Let us now consider these αx,i and αy,i



Binary embeddings with structured hashed projections

Table 3: Mean and std of the train error versus the size of the hash (k) / size of the reduction (n/k) for the network.

k / n
k

Circulant Random BinPerm BinCirc HalfShift Toeplitz VerHorShift
[%] [%] [%] [%] [%] [%] [%]

1024 / 1 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.30± 0.44 0.00± 0.00 0.00± 0.00 0.00± 0.00
512 / 2 0.04± 0.06 0.00± 0.00 0.00± 0.00 2.66± 2.98 1.44± 2.89 0.00± 0.00 0.00± 0.01
256 / 4 6.46± 2.27 0.00± 0.00 0.79± 1.57 0.60± 1.19 0.49± 0.93 2.09± 1.69 3.98± 3.96
128 / 8 16.89± 6.57 4.69± 0.43 4.44± 0.50 5.62± 1.03 7.34± 1.27 11.82± 2.17 10.51± 1.27
64 / 16 26.47± 0.98 13.35± 0.61 23.98± 11.54 18.68± 0.78 17.64± 2.01 29.97± 5.29 18.68± 3.26
32 / 32 40.79± 3.82 27.51± 2.04 28.28± 3.23 33.91± 3.23 27.90± 1.05 41.49± 2.14 43.51± 3.78
16 / 64 63.96± 5.62 46.31± 0.73 50.03± 6.18 58.71± 6.96 54.88± 6.47 57.72± 3.42 60.91± 4.53

that are at most f(k)

(k2)
. These sums are small (if we take

f(k) = o(k2)) and thus it makes sense to apply Lemma
7.2 to them. That gives us upper bound a = ∆ with proba-
bility:

P∗ ≥ 1− e−Ω(a2 k2

f(k)
). (43)

Taking f(k) = ( k2

log(k) )
1
3 and a = ∆ = 1

f(k) , we conclude
that:

V ar(θ̃np,r) ≤
1

k

θp,r(π − θp,r)
π2

+ (
log(k)

k2
)

1
3 (44)

Thus, from the Chebyshev’s inequality, we get the follow-
ing for every c > 0 and fixed points p, r:

P(|θ̃np,r −
θp,r
π
| ≥ c(

√
log(k)

k
)

1
3 ) = O(

1

c2
). (45)

That completes the proof of Theorem 4.2.

9. Additional figures
Figure 9a and Figure 9b show how the mean train error is
affected by the size of the hash, and Figure 9c shows how
the mean train error changes with the size of the reduction
for the neural network experiment. In Table 3 we report
both the mean and the standard deviation of the train error
across our neural network experiments. Baseline refers to
the network with one hidden layer containing 100 hidden
units, where all parameters are trained.

Figure 10a shows the original version of Figure 7a (before
zoom). Figure 10b shows the original version of Figure 8a
(before zoom). Finally, Table 4 shows the mean and the
standard deviation of the test error versus the size of the
hash (k)/size of the reduction (n/k) for 1-NN.

a)

b)

c)
Figure 9: Mean train error versus a), b) the size of the hash
(k), c) the size of the reduction (n/k) for the network. b) is
a zoomed a). Baseline corresponds to 0%.
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Table 4: Mean and std of the test error versus the size of the hash (k) / size of the reduction (n/k) for 1-NN.

k / n
k

Circulant Random BinPerm BinCirc HalfShift Toeplitz VerHorShift
[%] [%] [%] [%] [%] [%] [%]

1024 / 1 6.02± 0.64 4.83± 0.19 6.67± 0.65 12.77± 2.86 6.38± 0.44 6.22± 1.20 6.30± 0.76
512 / 2 12.98± 11.29 5.77± 0.11 8.15± 0.56 12.40± 2.32 7.25± 0.71 9.11± 2.28 10.81± 4.31
256 / 4 17.73± 6.66 8.51± 0.35 11.11± 1.15 12.13± 4.35 12.05± 2.94 15.66± 3.36 18.19± 5.46
128 / 8 34.80± 14.59 14.44± 0.89 17.20± 2.26 22.15± 6.45 24.74± 8.14 33.90± 13.90 30.37± 7.52
64 / 16 45.91± 5.50 27.57± 1.58 29.53± 3.40 35.33± 5.58 36.58± 10.71 51.10± 13.98 41.66± 8.08
32 / 32 65.06± 9.60 40.58± 2.49 43.58± 4.66 53.05± 5.39 47.18± 7.19 58.24± 8.87 56.73± 6.09
16 / 64 68.61± 5.72 58.72± 3.08 60.30± 6.11 66.29± 4.79 60.84± 5.31 72.50± 6.04 72.50± 5.91

a)

b)
Figure 10: Mean test error versus the size of the hash (k)
(original plot) for a) the network, b) 1-NN.


