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Abstract 
 

Chord sequences are a compact and useful description 
of music, representing each beat or measure in terms of a 
likely distribution over individual notes without specifying 
the notes exactly. Transcribing music audio into chord 
sequences is essential for harmonic analysis, and would 
be an important component in content-based retrieval and 
indexing, but accuracy rates remain fairly low. In this 
paper, the existing 2008 LabROSA Supervised Chord 
Recognition System is modified by using different 
machine learning methods for decoding structural 
information, thereby achieving significantly superior 
results. Specifically, the hidden Markov model is replaced 
by a large margin structured prediction approach 
(SVMstruct) using an enlarged feature space. 
Performance is significantly improved by incorporating 
features from future (but not past) frames. The benefit of 
SVMstruct increases with the size of the training set, as 
might be expected when comparing discriminative and 
generative models. Without yet exploring non-linear 
kernels, these improvements lead to state-of-the-art 
performance in chord transcription. The techniques could 
prove useful in other sequential learning tasks which 
currently employ HMMs.  
 
1. Introduction 
 

Humans are able to extract rich and meaningful 
information from complex audio performances, but so far 
it has proved difficult for computers to deal with these 
signals, particularly when attempting a challenging task 
such as transcribing chords from ensemble performances 
of popular music. 

This paper is motivated by the Music Information 
Retrieval Evaluation eXchange (MIREX) [1], a contest 
where entrants were judged on how well they were able to 
identify the chords in commercial recordings of popular 
music. The evaluation was performed over a set of 
manually-labeled Beatles songs [2]. Chord labels were 
simplified to 25 possibilities – one for each of the 12 
major chords, one for each of the 12 minor chords, and 
one additional label to represent ‘no chord’. The top 
performing methods included the LabROSA Supervised 

Chord Recognition System [3] which obtained the second 
highest accuracy in the evaluation, scoring about 10% 
relative worse than the best system [4], [20]. The 
modifications reported in this paper have improved the 
LabROSA system performance by approximately an 8% 
relative increase, which is almost equivalent to the state-
of-the-art. By appealing to a well-established large margin 
discriminative methodology that has been popularized by 
support vector machines, this performance is achieved 
without extensive tweaking or domain adaptation. [20] 
discusses a technique used first to suppress drum sounds 
from an audio input in order to obtain a harmonic-
emphasized signal, which is then processed in a similar 
manner to the LabROSA system, i.e. by extracting 
chroma features and decoding using an HMM as in [17]. 
While this pre-processing technique is not incorporated 
here, one of the attractive aspects of our approach is that it 
may be combined with other such ideas, and also may be 
augmented by adding additional features, without 
significant reformulation of the underlying algorithms. 
Further increases in performance are also possible 
through the investigation of more elaborate nonlinear 
kernels. 

The main stages of the LabROSA system may be 
summarized thus: An input song is first converted into 
beat-synchronous frames (for the Beatles songs used, the 
average number of frames per song is 459, with a range of 
77 to 1806), each with 12 chroma features which are 
constructed to estimate the intensity of each semitone 
regardless of octave. Each of these 12 features is in the 
range [0,1]. It is assumed that the chord is constant within 
a frame. These processes are described in [9]. The 
remaining task is then a sequence labeling problem where 
each frame is treated as one token. For the MIREX 
contest, the frame labels are converted to a sequence of 
chords with the times of the changes. For purposes of this 
paper, this last conversion is not performed but instead 
accuracy per frame is used as the metric. 

The sequence labeling method employed by the 
LabROSA system is a Hidden Markov Model with 
Gaussian emissions. From the training data, a single full-
covariance Gaussian distribution is fit to all major chord 
instances, each rotated by the appropriate number of 
semitones to “transpose” them to a common root note. 



Similarly a minor-chord Gaussian is fit. These are then 
rotated through each semitone to provide models of the 
emission probabilities for each chord state. The transition 
matrix is estimated by counting the transitions in the 
training data, along with a small prior (also known as 
Laplace smoothing) to avoid zero transition probabilities 
in the matrix. 
 
2. Hidden Markov Models 
 

A Hidden Markov Model (HMM) is a statistical model 
where the underlying process is assumed to be Markov. 
The state itself is unobservable or hidden; instead each 
state has a probability distribution over a range of 
possible emissions or output tokens, which are observed. 
After its parameters have been trained on labeled data, an 
HMM can be used on unlabeled data to take an 
observation sequence as input and infer or decode the 
likely states that generated the sequence. 

HMMs have a long history and have been successfully 
applied to various tasks involving labeling sequential 
information. Among other applications, they have been 
used for speech recognition [15] and bioinformatics [7]. 
Since both speech and chord recognition involve the 
sequential decoding of audio signals, it was natural to 
consider this approach for chord transcription [17]. 

The baseline LabROSA system uses Viterbi decoding 
to compute the most likely sequence of chord labels from 
a song’s chroma features. It is also possible to compute 
the most likely label for a sequence on a token by token 
basis (following the terminology of [15], call this 
‘MaxGamma’ decoding). Since the evaluation metric 
considers period by period accuracy, we investigated the 
impact on performance of using MaxGamma decoding, 
rather than Viterbi. As presented in section 7 below, this 
generally provided a slight improvement. 

 
3. Generative and Discriminative Models 
 

While HMMs are a natural choice for the model, the 
estimation approach for fitting HMMs to data is typically 
maximum likelihood, a so-called generative criterion. 
Rather than focus the resources of the model on the input-
output task required, generative approaches merely fit the 
model to data without any task specificity. Discriminative 
methods, conversely, estimate model parameters to 
achieve accurate input-output mappings and are more 
directly relevant for the sequence labeling problem [10]. 
A discriminative contender to the maximum likelihood 
hidden Markov model is the conditional random field 
(CRF) [12] which maximizes the conditional likelihood 
p(y|x) of a label sequence y given an input sequence of 
features x. There exist more aggressive schemes involving 
maximum margin structured prediction which focus 
directly on the mapping from input features to output 

labels, potentially achieving further gains by avoiding 
explicit density modeling. As popularized in [21], “one 
should solve the [classification] problem directly and 
never solve a more general problem as an intermediate 
step.” For chord transcription, the goal is simply to map 
feature observations to chord label states x!y. An 
approach which does this directly (such as SVMstruct, 
described in section 4 below) would be expected to 
provide the greatest accuracy.  

There are, however, arguments to support a generative 
strategy. One reason is that if the assumptions made in the 
model are good – in this application, if Gaussian emission 
probabilities are a good description of musical feature 
data – then it is expected that such a model will perform 
better than a discriminative one which uses less prior 
knowledge about the system, particularly when the 
amount of training data is small. Similar arguments for 
the use of generative modeling were presented in [13] and 
the behaviors of generative and discriminative approaches 
are explored in the experiment results in section 7 below. 

Other reasons to favor a strategy which models the 
observation distributions include the ability to output 
measures such as the confidence of a prediction, or the 
second most likely label for a token. These are not 
required for the task here, but could be important 
elements of other systems. 

 
4. Large Margin Structured Prediction 

 
Maximum margin classifiers have been in use for 

many years and have also accommodated the use of soft 
margins via slack variables [6]. These allow classification 
hyperplanes such as the Support Vector Machine (SVM) 
to find an optimal split even when training data is non-
separable. A tuning parameter C allows the user to control 
the degree to which the algorithm trades off margin 
breadth against training error. Recently the maximum 
margin approach has been extended to structured 
classification problems such as sequence labeling [18], 
[19]. Although this framework generally involves an 
intractably large (exponential) number of constraints, the 
SVMstruct algorithm uses a cutting plane approach that 
can provide a solution within polynomial time. 

The goal is to estimate a function f : X ! Y, from the 
input space of features, X, to a discrete output space of 
labels, Y. This is accomplished by finding a suitable 
augmented function F : X ! Y ! R with parameter vector 
w such that 

"#$% & '()*'+,-. /#$0 ,12% 
F is taken to be linear so that F(x,y;w) = 34#$0 ,%0 25, 

with !(x,y) a joint feature map which depends on the 
application. 

Suppose the training set is ($6,,6) for i -78 & 9:; ; <=;7
If the data is separable (that is, if the model can achieve 
perfect accuracy on the training data), then in order to 



pick out the right ,6 for a given $6, the following 
constraint is imposed:7

34#$60 ,6%0 25 > 34#$60 ,%0 25 ? :0 @, A ,6 
As in a standard SVM, w is found which maximizes 

the margin by minimizing B2B subject to the above 
constraint. Thus in typical notation the problem is 

*CD
2
:
E 320257F; G; 34#$60 ,6%0 25 > 34#$60 ,%0 25 ? :0

@H - 80 , A ,6 
When the data is non-separable (as in this application), 

slack variables IJ are introduced. As is customary, writing 
K4J#,% & 4#$60 ,6% > 4#$60 ,%, the SVMstruct 
formulation is: 
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3K4J#,%025 ? : > IJ0 @H - 80 , A ,6 
where as above C > 0 is a tuning parameter controlling 
the tradeoff between the margin breadth and the slack 
variables. 

 
5. Model selection 

 
Both CRFs and SVMstruct were included in a survey 

of models for structured learning problems [14], which 
compared performance on part-of-speech tagging (POS) 
and Optical Character Recognition (OCR) tasks. The 
conclusion was that SVMstruct provides the best 
performance on both tasks. This result has been 
challenged - [16] suggests that if appropriate adjustments 
are made to the software used in [14] in order to ensure 
that the different approaches use identical feature 
functions, then the CRF and SVMstruct approaches have 
similar peak results – but still the consensus is that 
SVMstruct typically performs at least as well as other 
methods. 

There are two further advantages of using SVMstruct 
for chord transcription compared to the baseline HMM 
approach. First, SVMstruct has better regularization 
properties and reduces the risk of over-fitting to the 
training data particularly when many features are added to 
the input sequence. Noting this, the effect of adding 
features from adjacent frames, as suggested in [5], is 
explored in section 7 below. Secondly, it opens up the 
large toolbox of kernel methods, which could prove 
fruitful in future work but is not fully explored here. 

[14] also introduced a Structured Learning Ensemble 
(SLE) method for combining the power of several 
different structural learning models. The SLE method 
performed slightly better than the others in [14], and may 
provide another productive area for further work.  

 
6. Experiments 
 

All experiments were performed on frame-level data, 
using the 25 possible chord labels described in section 1. 

Various models were compared after having been trained 
and tested on data sets chosen from the universe of 180 
labeled Beatles songs. 

Specifically, ten random permutations of all songs 
were selected. For each permutation, every model was 
trained on the first train% (30%, 60% or 90%) of the 180 
permuted songs. The last 10% of the permuted songs was 
used for testing, and for validation if required, irrespective 
of the amount of training data used. Since the HMM 
models do not require a validation set, they were simply 
tested on the entire final 10% of the songs. The 
SVMstruct models, however, require the estimation of a C 
parameter. This was achieved by splitting the final 10% 
into two halves – the penultimate 5% of the permuted 
songs, call this set A, and the last 5%, call this set B. Each 
model was trained with a broad range of values of C. The 
particular value which gave optimal performance on set A 
was used for testing the model on set B, and vice versa. 
The results on A and B were then combined by averaging, 
weighted by the respective number of frames, to give the 
accuracy per frame over the entire test set. This approach 
meant that for each permutation of the songs, as train% 
varied, all models used the same test data, facilitating 
comparison. 

For the SVMstruct runs, code from [11] was used. The 
specific instantiation was SVM-HMM with the following 
parameters: the precision constant e (epsilon) set to 0.1, 
the order of dependencies of transitions in HMM t set to 
the default 1, and the order of dependencies of emissions 
in HMM e set to the default 0. With these settings, the 
interdependency structure of the features and labels in the 
model is comparable to that of the HMM used in the 
LabROSA system [3]. The order of dependency of 
transitions was changed from 1 to 2 on a few test runs to 
investigate its impact. These runs took significantly 
longer and did not improve accuracy so are not reported 
here, but may warrant future investigation.  

The LabROSA system’s HMM uses Gaussian 
emissions, which lead to curved (quadratic) decision 
boundaries between labels. Since in this paper only linear 
kernels for SVMstruct are considered, to allow 
comparison against the HMM results and as a first step 
towards more sophisticated kernels, in some runs 
quadratic terms were added, i.e. pairwise products of 
existing features were added as new features. Features 
from neighboring frames were also introduced in some 
models, as discussed in section 5 above. 
 
7. Results 
 

To judge results, Hamming distance was used, that is 
the label predicted for each frame was either correct or 
not. Frame accuracy was not computed per song and then 
combined to give each song equal weight, but rather 
frame accuracy was calculated over the entire test set – 
which had a different number of frames for each 



permutation of the songs. This relates to the measure used 
in the MIREX 2008 contest, and is the metric used for 
training all the models. 

Figure 1 displays the Hamming accuracy for each 
structured prediction model as the amount of training data 
was varied, where results have been averaged over the ten 
random permutations of songs used. Note results shown 
are lower than those reported in MIREX 2008 due to 
differences in ground truth alignment, but this does not 
affect comparisons between models. 

 
Figure 1. Average Hamming accuracies for 

each model 
 
The model on the far right of the figure, HMMv, is the 

baseline HMM approach with Viterbi decoding that was 
used in the LabROSA system. To its left, HMMg is the 
same HMM model but using MaxGamma decoding as 
described in section 2, showing a small improvement. 

The models to the left are all SVMstruct runs using 
various feature combinations. +0-0 on the far left uses 
only the original 12 chroma features for each frame – the 
same features used by the HMM models. To its right, +0-
1 adds the features of the previous frame, so in this model 
each frame is represented by 24 dimensions. Next to the 
right, Q+0-0 uses the 12 original features and adds all 
quadratic cross-terms for a total of 90 features. To its 
right, +1-0 uses the current frame’s 12 features and adds 
the next frame’s 12 features. Next to the right, +1-1 uses 
the current frame’s features along with those from both 
one frame forward and one frame backward. 

Further to the right, the remaining models add more 
features and are similarly labeled: +m-n uses features 
from the current frame along with those from each of the 
next m frames and each of the previous n frames; Q at the 
front means that in addition, all quadratic cross-terms 
have been added. There’s one exception, Q+2-0, which 
does not use all cross-terms since that would have led to 
an unwieldy 702 dimensions, but instead uses the 324 
features from Q+1-0 and adds just the 12 additional 

chroma features from 2 frames ahead without then adding 
more cross-terms. 

Results are almost uniformly better as the size of the 
training set grows, with the rates of improvement of the 
more complex SVMstruct models higher than those of the 
HMMs. Based on the modest gains from going from 60% 
to 90% training set size, however, there may not be much 
more to gain with more training data. Quadratic terms 
provide dramatic improvements, suggesting further gains 
may be achieved with non-linear kernels. Adding features 
from future frames also provides striking benefits, but 
only up to two frames ahead. Adding features from past 
frames appears not to help. 

Although the SVMstruct approach showed substantial 
improvements when certain additional features were 
added, incorporating those same features into the HMM 
framework led to worse performance (results not shown 
here). 

 
Table 1. Average accuracies and std deviations 

30% trained 60% trained 90% trained
+0-0 0.524 ± 0.062 0.524 ± 0.060 0.523 ± 0.058 
+0-1 0.527 ± 0.064 0.527 ± 0.060 0.528 ± 0.059 
Q+0-0 0.545 ± 0.053 0.560 ± 0.054 0.564 ± 0.054 
+1-0 0.575 ± 0.059 0.574 ± 0.056 0.575 ± 0.060 
+1-1 0.572 ± 0.061 0.575 ± 0.058 0.577 ± 0.058 
Q+1-0 0.585 ± 0.058 0.600 ± 0.056 0.606 ± 0.054 
+2-0 0.587 ± 0.059 0.597 ± 0.055 0.602 ± 0.056 
+2-2 0.580 ± 0.058 0.597 ± 0.056 0.600 ± 0.058 
Q+2-0 0.592 ± 0.056 0.614 ± 0.053 0.618 ± 0.052 
+3-0 0.592 ± 0.055 0.601 ± 0.050 0.605 ± 0.051 
+3-3 0.580 ± 0.055 0.599 ± 0.051 0.604 ± 0.050 
HMMg 0.568 ± 0.053 0.574 ± 0.050 0.576 ± 0.049 
HMMv 0.561 ± 0.051 0.570 ± 0.047 0.572 ± 0.045 

 
Table 1 shows the same average accuracies, along with 

sample standard deviations. The deviations do not differ 
greatly by model or as the amount of training data is 
varied. Although the deviations of each model 
individually are high relative to the observed differences 
in performance, because all models were trained and 
tested on the same data sets, relative performance can be 
examined using paired t-tests to obtain significant results. 

 
Table 2. p-values for outperformance vs. HMMv 

30% trained 60% trained 90% trained
+0-0 0.998 0.999 1.000 
+0-1 0.995 0.998 1.000 
Q+0-0 0.985 0.945 0.897 
+1-0 0.091 0.352 0.392 
+1-1 0.151 0.303 0.329 
Q+1-0 0.013 0.001 0.001 
+2-0 0.017 0.004 0.006 
+2-2 0.052 0.004 0.009 
Q+2-0 0.002 0.000 0.000 
+3-0 0.009 0.001 0.001 
+3-3 0.060 0.001 0.001 
HMMg 0.012 0.008 0.048 



 
     Table 2 shows p-values for paired t-tests examining 
outperformance of each model compared to the baseline 
HMMv approach. Small values indicate statistical 
significance. p-values indicating outperformance at the 
5% significance level have been marked. The first five 
SVMstruct models do not show significant superior 
accuracy, but all the others do. In addition, HMMg shows 
statistically significant performance advantages over 
HMMv, although from the average accuracies it can be 
seen that the magnitude of this outperformance is small. 
 
8. Alternative metric 
 

Although accuracy in the MIREX contest was judged 
using Hamming distance, where each chord was 
determined to be either correct or incorrect and then 
accordingly received a score of either 1 or 0, it is 
reasonable to suggest that for this task all errors are not 
equal – e.g. C major and C# major are musically very far 
apart, whereas C major and A minor are closely related. 
The A minor root triad of A-C-E shares two notes with C 
major’s root triad of C-E-G, which is described musically 
as its relative major. One suggestion for an alternative 
metric follows: assign a similarity score of 1/3 for each 
note the automatically labeled chord’s root triad has in 
common with the true chord, so each predicted label can 
score either 0, 1/3, 2/3 or 1. C to C# would have a 
similarity score of 0; C to A minor would have a 
similarity score of 2/3. This triad overlap metric (TOM) is 
simple and is closer to human musical interpretation. 

Implementing a scheme like TOM to test a model is 
simple. To incorporate it into the training of a model is, 
however, more challenging and would require rewriting 
of the underlying algorithm. Figure 2 shows the TOM test 
accuracies for all the models trained using Hamming 
distance as before. Note that by definition, always TOM " 
Hamming distance leading to higher accuracy scores. 

The results are qualitatively very similar to the 
Hamming accuracies shown in section 7, and the p-values 
(not shown) are also similar with all the same models 
outperforming HMMv with statistical significance. These 
results are somewhat remarkable when viewed in context. 
As discussed in section 3, the SVMstruct approach is 
designed to focus directly on minimizing a (regularized) 
training error so as to achieve a corresponding low error 
when testing with the same measure. Training so as to 
minimize Hamming distance and then testing with the 
more musical TOM is in some way evaluating the 
intrinsic musicality of the model – which we might expect 
to be higher for the generative HMM model which has 
been shown to fit well to music audio than for a 
discriminative model honed exclusively to perform well 
on the training metric. 

 

 
Figure 2. Average TOM accuracies for each 
model trained using Hamming distance 

 
9. Conclusion and Future Work 
 

Music is typically a highly structured art form, using 
certain chord progressions frequently (e.g. I-IV-V-I). It is 
natural, therefore, to try structured prediction models for 
automated chord transcription. Following existing 
approaches which use HMMs, the application of a more 
recent machine learning algorithm, SVMstruct, was 
employed to decode the structural information. 

One of the benefits of this discriminative approach is 
the ability to add many features to see if they improve 
performance, with less risk of over-fitting than with the 
generative HMM model. The form of SVMstruct that was 
used automatically incorporates interdependency between 
adjacent chord labels (as in an HMM). It is interesting 
that adding the full feature set of forward frames gave rise 
to significant performance improvement, up to a 
saturation point. This may not be surprising since having 
more information about where one is heading naturally 
may provide useful information about where one is now. 
It seems remarkable, however, that similar information 
about previous frames does not help accuracy. This may 
be relevant for other musical analysis. 

By using features from just the next two frames 
forward and some quadratic terms, SVMstruct 
demonstrates dramatic improvements over HMM, 
achieving results in the realm of state-of-the-art. There 
remain promising avenues to explore which may yield 
further improvements. 

Non-linear kernels may prove helpful, as they have in 
other applications. Combining different models into an 
ensemble approach is another interesting area for further 
work. The LabROSA approach fits just one major and one 
minor chord model, rotating them through each semitone 
to provide a complete set of models. Neither this idea, nor 



any other musical knowledge, was used in the SVMstruct 
approach here. One way to accomplish something similar 
would be to take all the training data and transpose or 
rotate it through each semitone to yield a twelve-fold 
increase in training data size, which would require greater 
time and memory resources but should yield some 
performance improvement. 

The approaches described here may be helpful for 
other audio processing sequence labeling tasks, including 
melody or bass line transcription and perhaps speech 
recognition. 
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