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Abstract

We present a general framework for discriminative estimation based
on the maximum entropy principle and its extensions. All calcula-
tions involve distributions over structures and /or parameters rather
than specific settings and reduce to relative entropy projections.
This holds even when the data is not separable within the chosen
parametric class, in the context of anomaly detection rather than
classification, or when the labels in the training set are uncertain or
incomplete. Support vector machines are naturally subsumed un-
der this class and we provide several extensions. We are also able
to estimate exactly and efficiently discriminative distributions over
tree structures of class-conditional models within this framework.
Preliminary experimental results are indicative of the potential in
these techniques.

1 Introduction

Effective discrimination is essential in many application areas. Employing gener-
ative probability models such as mixture models in this context is attractive but
the criterion (e.g., maximum likelihood) used for parameter/structure estimation
is suboptimal. Support vector machines (SVMs) are, for example, more robust
techniques as they are specifically designed for discrimination [9].

Our approach towards general discriminative training is based on the well known
maximum entropy principle (e.g., [3]). This enables an appropriate training of both
ordinary and structural parameters of the model (cf. [5, 7]). The approach is not
limited to probability models and extends, e.g., SVMs.

2 Maximum entropy classification

Consider a two-class classification problem! where labels y € {—1,1} are assigned

!The extension to a multi-class is straightforward[4]. The formulation also admits an
easy extension to regression problems, analogously to SVMs.



to examples X € X. Given two generative probability distributions P(X|6,) with
parameters 6, one for each class, the corresponding decision rule follows the sign
of the discriminant function:

P(X16,)

L(X]0) =log X )

+b (1)

where © = {#,,0_1,b} and b is a bias term, usually expressed as a log-ratio b =
log p/(1 — p). The class-conditional distributions may come from different families
of distributions or the parametric discriminant function could be specified directly
without any reference to models. The parameters 8, may also include the model
structure (see later sections).

The parameters © = {6;,0_1,b} should be chosen to maximize classification accu-
racy. We consider here the more general problem of finding a distribution P(0©)
over parameters and using a convex combination of discriminant functions, i.e.,
J P(©)L(X|0)dO in the decision rule. The search for the optimal P(©) can be for-
malized as a mazimum entropy (ME) estimation problem. Given a set of training
examples {Xi,..., Xy} and corresponding labels {yi,...,yr} we find a distribu-
tion P(©) that maximizes the entropy H (P) subject to the classification constraints
[ P(O) [y L(X:|©)] dO > v for all ¢. Here v > 0 specifies a desired classification
margin. The solution is unique (if it exists) since H(P) is concave and the linear
constraints specify a convex region. Note that the preference towards high entropy
distributions (fewer assumptions) applies only within the admissible set of distribu-
tions P, consistent with the constraints. See [2] for related work.

We will extend this basic idea in a number of ways. The ME formulation assumes,
for example, that the training examples can be separated with the specified mar-
gin. We may also have a reason to prefer some parameter values over others and
would therefore like to incorporate a prior distribution Py(®). Other extensions
and generalizations will be discussed later in the paper.

A more complete formulation is based on the following minimum relative entropy
principle:

Definition 1 Let {X;,y:} be the training examples and labels, L(X|©) a parametric
discriminant function, and v = [y1,...,7] a set of margin variables. Assuming a
prior distribution Py(©,7), we find the discriminative minimum relative entropy
(MRE) distribution P(©,v) by minimizing D(P||Py) subject to

/ P(6,7) [y L(X,|®) — %] dOdy > 0 @)

for all t. Here §j = sign ( [ P(©) L(X|O) d@) specifies the decision rule for any
new example X .

The margin constraints and the preference towards large margin solutions are encod-
ed in the prior Py(7y). Allowing negative margin values with non-zero probabilities
also guarantees that the admissible set P consisting of distributions P(0©,) con-
sistent with the constraints, is never empty. Even when the examples cannot be
separated by any discriminant function in the parametric class (e.g., linear), we
get a valid solution. The miss-classification penalties follow from Py(7y) as well.
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Figure 1: a) Minimum relative entropy (MRE) projection from the prior distribution
to the admissible set. b) The margin prior Py(7y:). c¢) The potential terms in the
MRE formulation (solid line) and in SVMs (dashed line). ¢ =5 in this case.

Suppose Po(0,7) = Py (0)Py(v) and Po(y) =[], Po(7:), where
Py(y) = ce =) for 4, <1, (3)

This is shown in Figure 1b. The penalty for margins smaller than 1 —1/c (the prior
mean of ;) is given by the relative entropy distance between P(vy) and Py(v). This
is similar but not identical to the use of slack variables in support vector machines.
Other choices of the prior are discussed in [4].

The MRE solution can be viewed as a relative entropy projection from the prior
distribution Py(0,) to the admissible set P. Figure la illustrates this view. From
the point of view of regularization theory, the prior probability P, specifies the
entropic regularization used in this approach.

Theorem 1 The solution to the MRE problem has the following general form [1]

P(@afy) = P()(@,’)/)ezt Ae[y: L(X¢]©)—7¢] (4)

1
Z(N)
where Z () is the normalization constant (partition function) and A = {1, ..., A7}
defines a set of non-negative Lagrange multipliers, one for each classification con-

straint. X\ are set by finding the unique mazimum of the following jointly concave
objective function: J(A) = —log Z(\)

The solution is sparse, i.e., only a few Lagrange multipliers will be non-zero. This
arises because many of the classification constraints become irrelevant once the
constraints are enforced for a small subset of examples. Sparsity leads to immediate
but weak generalization guarantees expressed in terms of the number of non-zero
Lagrange multipliers [4]. Practical leave-one-out cross-validation estimates can be
also derived.

2.1 Practical realization of the MRE solution

We now turn to finding the MRE solution. To begin with, we note that any disjoint
factorization of the prior Py(©,7y), where the corresponding parameters appear in
distinct additive components in y;£(X¢, @) — ¢, leads to a disjoint factorization of
the MRE solution P(0©, ). For example, {© \ b, b,v} provides such a factorization.
As a result of this factorization, the bias term could be eliminated by imposing
additional constraints on the Lagrange multipliers [4]. This is analogous to the
handling of the bias term in support vector machines [9].

We consider now a few specific realizations such as support vector machines and a
class of graphical models.



2.1.1 Support vector machines

It is well known that the log-likelihood ratio of two Gaussian distributions with equal
covariance matrices yields a linear decision rule. With a few additional assumptions,
the MRE formulation gives support vector machines:

Theorem 2 Assuming £(X,0) = 67X —b and Py(©,7) = Py(0) Py (b)Po(7y) where
Py(0) is N(0,1I), Po(b) approaches a non-informative prior, and Py(vy) is given by
eq. (3) then the Lagrange multipliers \ are obtained by maximizing J(\) subject to
0< X <cand) My =0, where

J(\) = Z[/\t +log(l =M /e)] — % Z Ao yeye (X{ Xy) (5)

t tt!

The only difference between our J(A) and the (dual) optimization problem for
SVMs is the additional potential term log(l — A\;/c). This highlights the effect
of the different miss-classification penalties, which in our case come from the MRE
projection. Figure 1b shows, however, that the additional potential term does not
always carry a huge effect (for ¢ = 5). Moreover, in the separable case, letting
¢ — 00, the two methods coincide. The decision rules are formally identical.

We now consider the case where the discriminant function £(X,©) corresponds to
the log-likelihood ratio of two Gaussians with different (and adjustable) covariance
matrices. The parameters © in this case are both the means and the covariances.
The prior Py(0) must be the conjugate Normal-Wishart to obtain closed form
integrals® for the partition function, Z. Here, P(©1,0_1) is P(m1, V1) P(m_1,V_1),
a density over means and covariances.

The prior distribution has the form Py(01) = N'(my;mo, V1 /k) IW(V1; kVp, k) with
parameters (k, mg, Vo) that can be specified manually or one may let £ — 0 to get
a non-informative prior. Integrating over the parameters and the margin, we get
Z =7y x Z1 X Z_1, where

Zy o< NTY2 w8y =N T D((N) + 1 - 5)/2) (6)

N, & S we, Xu = > N X, S = Y, we Xy X[ — N1 X, XT. Here, wy is a scalar
weight given by wy = u(y:)+y:Ae. For Z_1, the weights are set to wy = u(—ys) —ye Ae;
u(+) is the step function. Given Z, updating A is done by maximizing J(A). The
resulting marginal MRE distribution over the parameters (normalized by Z; x Z_;)
is a Normal-Wishart distribution itself, P(©,) = N'(my; X1, Vi /Ny) IW(V1; S1, N1)
with the final A values. Predicting the label for a new example X involves taking
expectations of the discriminant function under a Normal-Wishart. This is

Epo,)[log P(X|0;)] = constant — %(X - X)PsH(x - X)) (7)

We thus obtain discriminative quadratic decision boundaries. These extend the
linear boundaries without (explicitly) resorting to kernels. More generally, the
covariance estimation in this framework adaptively modifies the kernel.

2This can be done more generally for conjugate priors in the exponential family.



2.1.2 Graphical models

We consider here graphical models with no hidden variables. The ME (or MRE)
distribution is in this case a distribution over both structures and parameters. Find-
ing the distribution over parameters can be done in closed form for conjugate priors
when the observations are complete. The distribution over structures is, in general,
intractable. A notable exception is a tree model that we discuss in the forthcoming.

A tree graphical model is a graphical model for which the structure is a tree. This
model has the property that its log-likelihood can be expressed as a sum of local
terms [8]

log P(X,Elf) = D hu(X,0) + D wu(X,0) (8)

weFE

The discriminant function consisting of the log-likelihood ratio of a pair of tree
models (depending on the edge sets Ey, E_;, and parameters 61, #_1) can be also
expressed in this form.

We consider here the ME distribution over tree structures for fixed parameters?.
The treatment of the general case (i.e. including the parameters) is a direct exten-
sion of this result. The ME distribution over the edge sets Fy and E_; factorizes
with components

1 =3 e wEl(X,,0 B (X:,0 ht!
P(Ey) = —e¢ 2y [EuveEil (Xe04)+3 0, hu(Xe021)] = — H Wqﬁl (9)

Zt1 ZﬂweEﬂ

where Zi1,h™", W*! are functions of the same Lagrange multipliers A. To com-
pletely define the distribution we need to find A that optimize J(\) in Theorem 1;
for classification we also need to compute averages with respect to P(Ey;). For
these, it suffices to obtain an expression of the partition function(s) Z1;.

P is a discrete distribution over all possible tree structures for n variables (there
are n"~2 trees). However, a remarkable graph theory result, called the Matriz Tree
Theorem [10], enables us to perform all necessary summations in closed form in
polynomial time. On the basis of this result, we find

Theorem 3 The normalization constant Z of a distribution of the form (9) is

Z = h-Y [ Wu = h-|QW)|, where (10)
FE wveFE
Quiwy = { et ()

This shows that summing over the distribution of all trees, when this distribution
factors according to the trees’ edges, can be done in closed form by computing the
value of a determinant in time O(n?). Since we obtain a closed form expression,
optimization of the Lagrange multipliers and evaluating the resulting classification
rule are also tractable.

Figure 2a provides a comparison of the discriminative tree approach and a maximum
likelihood tree estimation method on a DNA splice junction problem.

3Each tree relies on a different set of n — 1 pairwise node marginals. In our experiments
the class-conditional pairwise marginals were obtained directly from data.
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Figure 2: ROC curves based on independent test sets. a) Tree estimation: discrim-
inative (solid) and ML (dashed) trees. b) Anomaly detection: MRE (solid) and
Bayes (dashed). c) Partially labeled case: 100% labeled (solid), 10% labeled + 90%
unlabeled (dashed), and 10% labeled + 0% unlabeled training examples (dotted).

3 Extensions

Anomaly detection: In anomaly detection we are given a set of training ex-
amples representing only one class, the “typical” examples. We attempt to cap-
ture regularities among the examples to be able to recognize unlikely members
of this class. Estimating a probability distribution P(X|f) on the basis of the
training set {X1y,..., X7} via the ML (or analogous) criterion is not appropriate;
there is no reason to further increase the probability of those examples that are al-
ready well captured by the model. A more relevant measure involves the level sets
X, ={X e X:logP(X|f) >~} which are used in deciding the class membership
in any case. We estimate the parameters 6 to optimize an appropriate level set.

Definition 2 Given a probability model P(X|0), 60 € ©, a set of training examples
{X1,...,Xr}, a sel of margin variables v = [y1,...,7yr], and a prior distribution
Py(6,7) we find the MRE distribution P(6,y) such that minimizes D(P| Pp) subject
to the constraints [ P(6,v)[log P(X¢|0) — v¢]dfdy >0 for allt =1,...,T.

Note that this again a MRE projection whose solution can be obtained as before.
The choice of Py (7y) in Py (0,7) = Po(0)Po(7y) is not as straightforward as before since
each margin 7; needs to be close to achievable log-probabilities. We can nevertheless
find a reasonable choice by relating the prior mean of ; to some a—percentile of the
training set log-probabilities generated through ML or other estimation criterion.
Denote the resulting value by [, and define the prior Py(v:) as Po(y:) = ce ¢ (la—n¢)
for 44 <l,. In this case the prior mean of v is [, — 1/c.

Figure 2b shows in the context of a simple product distribution that this choice of
prior together with the MRE framework leads to a real improvement over standard
(Bayesian) approach. We believe, however, that the effect will be more striking
for sophisticated models such as HMMSs that may otherwise easily capture spurious
regularities in the data. An extension of this formalism to latent variable models is
provided in [4].

Uncertain or incompletely labeled examples: Examples with uncertain la-
bels are hard to deal with in any (probabilistic or not) discriminative classification
method. Uncertain labels can be, however, handled within the maximum entropy
formalism: let y = {y1,...,yr} be a set of binary variables corresponding to the
labels for the training examples. We can define a prior uncertainty over the labels
by specifying Py(y); for simplicity, we can take this to be a product distribution



Po(y) =TI, Pro(y¢) where a different level of uncertainty can be assigned to each
example. Consequently, we find the minimum relative entropy projection from the
prior distribution Py(0,v,y) = Po(O)Py(v)Py(y) to the admissible set of distribu-
tions (no longer a function of the labels) that are consistent with the constraints:
>y fG),v P(©,7,y) [y:L(X¢,0) —v]dOdy > 0 for all t = 1,...,7. The MRE
principle differs from transduction [9], provides a soft rather than hard assignment
of unlabeled examples, and is fundamentally driven by large margin classification.
The MRE solution is not, however, often feasible to obtain in practice. We can
nevertheless formulate an efficient mean field approach in this context [4]. Figure
2c demonstrates that even the approximate method is able to reap most of the ben-
efit from unlabeled examples (compare, e.g., [6]). The results are for a DNA splice
junction classification problem. For more details see [4].

4 Discussion

We have presented a general approach to discriminative training of model param-
eters, structures, or parametric discriminant functions. The formalism is based on
the minimum relative entropy principle reducing all calculations to relative entropy
projections. The idea naturally extends beyond standard classification and cov-
ers anomaly detection, classification with partially labeled examples, and feature
selection.
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