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Abstract

We describe a generative model for graph edges under specificdegree distribu-
tions which admits an exact and efficient inference method for recovering the
most likely structure. This binary graph structure is obtained by reformulating
the inference problem as a generalization of the polynomialtime combinatorial
optimization problem known asb-matching, which recovers a degree constrained
maximum weight subgraph from an original graph. After this mapping, the most
likely graph structure can be found in cubic time with respect to the number of
nodes using max flow methods. Furthermore, in some instances, the combina-
torial optimization problem can be solved exactly in cubic time by loopy belief
propagation and max product updates. Empirical results show the method’s abil-
ity to recover binary graph structure with appropriate degree distributions from
partial or noisy information.

1 Introduction

An important task in graph analysis is estimating graph structure given only partial information
about nodes and edges. This article will consider finding subgraphs from an original (possibly fully
connected graph) subject to information about edges in terms of their weight as well as degree
distribution information for each node.

In general, a graphG = {V,E}, where the cardinality of edges|V | = n, can contain a large
number of subgraphs (graphs that can be obtained from the original by performing edge deletion).
In fact, the number of subgraphs is2|E|, and since|E| can be up ton(n− 1)/2, this can be a large
space of possible subgraphs over which to search or perform probabilistic inference. Working with
a probability distribution over such a large set of possibilities is not only computationally hard but
also may be misleading since some graph structures are knownto be unlikely a priori. This article
proposes a particular distribution over graphs that uses factorization assumptions and incorporates
distribution priors over node degrees. Surprisingly, thisdistribution still allows the efficient recovery
of the most likely subgraph from the set of all possible graphs. The maximum a posteriori (MAP)
estimate under this distribution is shown to be equivalent to the combinatorial problems known
asb-matching and maximum weight degree constrained subgraph estimation, both of which have
polynomial time algorithms.

In fact, the formulation introduced in this article is a strict generalization ofb-matching and max-
imum weight degree constrained subgraph optimization, in which all nodes must have some pre-
specified degree. In our formulation, each node can now be given its own degree distribution lead-
ing to a generalization ofb-matching by using delta functions for the degree distribution. Similarly,
if we use uniform degree distributions, we obtainbd-matching [2]. However, in the most general
setting, any set of log-concave degree distributions can now be handled within our framework.
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Previous work on denoising edge observations used a similardistribution over edges to ours, but the
authors of [6] use loopy belief propagation to obtain approximate marginals and perform approxi-
mate inference. This article indicates that, in some settings, MAP estimation over subgraphs under
degree constraints can be solved exactly in polynomial time.

2 Generative Model for Edges

We begin by writing a distribution over all possible subgraphs which involves terms that factorize
across (a) edges (to encode independent edge weight) and (b)degree distribution terms that tie edges
together, producing dependencies between edges. The probability of any candidate edge set̂E ⊆ E
can be expressed as

ln Pr(Ê|G) =
∑

e∈Ê

φ(e) +
∑

vi∈V

ψi(deg(vi, Ê)) − lnZ (1)

The edge potentials can also be represented by a symmetric potential matrixW whereWij is the
potential of edge(vi, vj). The functiondeg(vi, Ê) returns the number of edges in̂E that are adjacent
to nodevi. Thus, this probability puts different local preferences on the edges via edge weights but
also enforces more global structural knowledge about the likelihood of a subgraph by imposing
degree distributions. Unfortunately, due to the large number of edges implicated in each degree
distribution termψi, the probability model above has large tree-width. Therefore, exact inference
and naive MAP estimation procedures (for instance, using the junction tree algorithm) can scale
exponentially withn. Fortunately, we will be able to show that concavity assumptions onψi can
lead to efficient polynomial time MAP estimation.

2.1 ENCODING AS A b-MATCHING

If we also enforce concavity of theψi functions in Equation 1, the above probability can be maxi-
mized by solving ab-matching. Formally, we define concavity as

δψi(k) = ψi(k) − ψi(k − 1)

δ2ψi(k) = δψi(k) − δψi(k − 1)

= ψi(k) − ψi(k − 1) −

(ψi(k − 1) − ψi(k − 2)) ≤ 0.

If degree potentials conform to these concavity constraints, we can exactly mimic the probability
functionPr(Ê|G) which manipulates subgraphŝE ofG with soft degree priors, with another equiv-
alent probability functionPr(Ê′|G′). This larger yet equivalent probability involves a larger graph
G′ and larger subgraphŝE′. The key simplification will be that the larger subgraphs will have to
satisfy hard degree constraints for each node (or priors that are delta functions on the degrees) on its
in-degree and its out-degree (as opposed to a soft distribution over allowable degrees).

Our construction proceeds as follows. First create a new graphG′, which contains a copy of the
original graphG, as well as additional dummy nodes denotedD. We will use these dummy nodes
to mimic the role of the soft degree potential functionsψ1, . . . , ψn. For each nodevi in our original
setV , we introduce a set of dummy nodes. We add one dummy node for each edge inE that is
adjacent to eachvi. In other words, for each nodevi, we will add dummy nodesdi,1, . . . , di,Ni

whereNi = deg(vi, E) is the size of the neighborhood of nodevi. Each of the dummy nodes in
di,1, . . . , di,Ni

is connected tovi in the graphG′. We now have a new graphG′ = {V ′, E′}. defined
as follows:

D = {d1,1, . . . , d1,N1
, . . . , dn,1, . . . , dn,Nn

},

V ′ = V ∪D,

E′ = E ∪ {(vi, di,j)|1 ≤ j ≤ Ni, 1 ≤ i ≤ n}.

We next specify the weights of the edges inG′. First, set the weight of each edgee copied fromE
to its original potential,φ(e). Next, we set the edge weights between the original nodes anddummy
nodes. The following formula defines the weight between the original nodevi and the dummy nodes
di,1, . . . , di,Ni

that were introduced due to the neighborhood ofvi:

w(vi, di,j) = ψi(j − 1) − ψi(j). (2)
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While theψ functions have outputs forψ(0), there are no dummy nodes labeleddi,0 associated
with that setting (ψ(0) is only used when defining the weight ofdi,1). Note that by construction,
the weightsw(vi, di,j) are monotonically non-decreasing with respect to the indexj due to the
concavity of theψ functions:

ψi(j) − ψi(j − 1) ≤ ψi(j − 1) − ψi(j − 2)

−w(vi, di,j) ≤ −w(vi, di,j−1)

w(vi, di,j) ≥ w(vi, di,j−1). (3)

We mimic the probability functionPr(Ê|G) in Equation 1 over edges inG with a probability func-
tion onG′ calledPr(Ê′|G′). However, the probability function onG′ enforces hard degree con-
straints on the hypothesized edgesÊ′. Specifically, for the (original) nodesv1, . . . , vn each nodevi

has to have exactlyNi neighbors (including any dummy nodes it might connect to). Furthermore,
all dummy nodesD in G′ have no degree constraints whatsoever. It is known that suchprobabil-
ity functions onPr(Ê′|G′) with exact degree constraints can be maximized using combinatorial
methods [2] as well as belief propagation [1, 3, 7].

The proposed approach recovers the most likely subgraphÊ′ = arg max
Ê′ Pr(Ê′|G′) as follows:

Ê′ = arg max
Ê′⊆E′

∑

(vi,di,j)∈Ê′

w(vi, di,j) (4)

subject to deg(vi, Ê
′) = Ni for vi ∈ V.

In other words, we are free to choose any graph structure in the original graph, but we must exactly
meet the degree constraints by selecting dummy edges maximally.

Theorem 1. The total edge weight of degree-constrained subgraphsÊ′ = argmax
Ê′ log Pr(Ê′|G′)

from graphG′ differs fromlog Pr(Ê′ ∩E|G) by a fixed additive constant.

Proof. Consider the edgeŝE′ ∩E. These are the estimated connectivityÊ after we remove dummy
edges fromÊ′. Since we set the weight of the original edges to theφ potentials, the total weight of
these edges is exactly the first term in (1), the local edge weights.

What remains is to confirm that theψ degree potentials agree with the weights of the remaining
edgesÊ′ \ Ê′ ∩ E between original nodes and dummy nodes.

Recall that our degree constraints require each node inG′ to have degreeNi. By construction, each
nodevi has2Ni available edges from which to choose:Ni edges from the original graph andNi

edges to dummy nodes. Moreover, ifvi selectsk original edges, it maximally selectsNi−k dummy
edges. Since the dummy edges are constructed so their weights are non-increasing, the maximum
Ni − k dummy edges are to the lastNi − k dummy nodes, or dummy nodesdi,k+1 throughdi,Ni

.
The proof is complete if we can show the following:

Ni∑

j=k+1

w(vi, di,j) −

Ni∑

j=k′+1

w(vi, di,j)
?= ψi(k) − ψi(k

′).

Terms in the summations cancel out to show this equivalence.Substituting the definition of
w(vi, di,j),

Ni∑

j=k+1

(ψi(j − 1) − ψi(j)) −

Ni∑

j=k′+1

(ψi(j − 1) − ψi(j))

=

Ni∑

j=k

ψi(j) −

Ni∑

j=k+1

ψi(j) −

Ni∑

j=k′

ψi(j) +

Ni∑

j=k′+1

ψi(j)

= ψi(k) − ψi(k
′)

This means the log-probability and the weight of the new graph change the exact same amount as
we try different subgraphs ofG. Therefore, for any degree constrained subgraphÊ′ the quantities
Ê′ = arg max

Ê′ log Pr(Ê′|G′) andlog Pr(Ê′ ∩ E|G) differ only by a constant.
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Figure 1:Example of mapping a degree dependent problem to a hard-constrainedb-matching. Left: Original
weight matrix and row/column degree distributions. Middle: Weight matrix of expanded graph, whose solution
is now constrained to have exactly 10 neighbors per node. Right: The resultingb-matching, where the upper
left quadrant can be pulled out as the solution to the original problem.

In practice, we find the maximum weight degree constrained subgraph to maximizePr(Ê′|G′) us-
ing classical maximum flow algorithms [2], which requireO(n|E|) computation time. In the special
case of bipartite graphs, we can use a belief propagation algorithm [1, 3, 7], which is significantly
faster. Furthermore, since the dummy nodes have no degree constraints, we only need to instanti-
atemaxi(Ni) dummy nodes and reuse them for eachvi. The process described in this section is
illustrated in Figure 1.

3 Experiments

3.1 Graph Reconstruction

In this section, we describe a simple experiment that demonstrates one possible usage of our formu-
lation. We consider the problem in which we are given information about nodes and and approximate
degree distribution of the hidden graph. One natural approach to this task is to compute a kernel be-
tween the nodes such thatKij represents the affinity between nodevi andvj , and threshold the
kernel to predict if edges exist.

Using this method, the problem can be expressed as the maximization of:

max
Ê

∑

(i,j)∈Ê

(Kij − t).

In other words, we pick a thresholdt, then compare each kernel entry independently to the threshold
and predict an edge when it is greater thant. In this setting, we can think of the edge weights,φ as
being set toKij − t, and theψ degree functions as uniform (such that the degree of a node does not
influence the prediction).

An equivalent formulation of this simple thresholding method is

max
Ê

∑

(i,j)∈Ê

Kij −
∑

i

t deg(vi).

This can (surprisingly) be interpreted as having the local edge weightsφ((i, j)) = Kij and the
degree functionsψ(k) = −tk, which, recalling that the objective is the log-probability, is an expo-
nential distribution over the edges.

We conduct our toy experiments by inducing features for the nodes of a real graph by spectral em-
bedding. We perform an eigenvalue decomposition of the adjacency matrix and treat the projections
onto the first ten eigenvectors as the “features” of the nodes. We then compute a linear kernel be-
tween all nodes, which essentially means our kernel is a compressed representation of the original
adjacency matrix.

An obvious drawback of kernel thresholding that becomes more obvious when we consider that it
is equivalent to the exponential distribution is that fitting the distribution well means many nodes
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Figure 2:Results of reconstruction experiment on Dolphin social network. Left: Spectral embedding of true
graph and histogram of true degrees. Middle: Best simple threshold graph and the resulting degree histogram.
Right: Best concave-constrained graph and histogram. Notethat all nodes have at least one edge. We show the
maximum-likelihood exponential curve derived usingλ = N/

P

i
deg(vi), but since we sweep over scaling

factors, we essentially used a range of exponential parameters.

will have zero neighbors. Since our formulation allows any log-concave distribution, we can set
the probability of a degree of zero to a smaller value, which should encourage our method to prefer
that all nodes are connected. For both methods we sweep across thresholds or, equivalently for the
exponential baseline, scalings of theψ functions. In general, a high scaling resulted in prediction of
too few edges and a low threshold resulted in prediction of too many edges, with a moderate setting
providing the lowest 0-1 error.

The minor correction (penalizing isolation) to the exponential degree distribution of the threshold
model improves reconstruction accuracy as displayed in Figures 2 and 3. The results in Figure 2
were obtained on a graph of dolphin social interaction [5] between 62 dolphins in a community
living off Doubtful Sound, New Zealand, and the results in Figure 3 were obtained on a graph of
character co-appearance between the 64 characters in the novel Les Misérables [4]. By enforcing
that all nodes are connected, the Hamming distance between the original adjacency matrix and the
predicted adjacency is reduced.
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Figure 3: Results of reconstruction experiment on Les Misérables character co-appearance network. Left:
Spectral embedding of true graph and histogram of true degrees. Middle: Best simple threshold graph and the
resulting degree histogram. Right: Best concave-constrained graph and histogram. Note that all nodes have at
least one edge.

These experiments show only the minimal usage of what our formulation can model because we are
still using the same exponential distribution for all nodes, when theψ degree functions can be of any
non-parametric log-concave shape. This means applications of our method should take advantage
of different degree distributions for different nodes. Forexample if nodes are categorized, different
categories of nodes may have different degree statistics.
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4 Discussion

We have provided a method to find the most likely graph from a distribution that uses edge weight
information as well as degree-dependent distributions. The exact MAP estimate is recovered in
polynomial time by showing that the problem is equivalent tob-matching or the maximum weight
degree constrained subgraph. These can be efficiently and exactly implemented using maximum
flow and belief propagation methods. Our method generalizesb-matching,bd-matching, and simple
thresholding. A limitation of the approach is that the degree distributions that can be modeled in
this way must be log-concave. This prevents the model from working with the degree distributions
in power-law and scale-free networks, which is the subject of future work. However, in practice,
log-concave degree distributions are still useful for a variety of real graph problems.
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