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Abstract

We describe a generative model for graph edges under spéegiee distribu-
tions which admits an exact and efficient inference methoddoovering the
most likely structure. This binary graph structure is otéal by reformulating
the inference problem as a generalization of the polynotima combinatorial
optimization problem known d@smatching, which recovers a degree constrained
maximum weight subgraph from an original graph. After thispping, the most
likely graph structure can be found in cubic time with reggeche number of
nodes using max flow methods. Furthermore, in some instatitesombina-
torial optimization problem can be solved exactly in culine by loopy belief
propagation and max product updates. Empirical resulte she method’s abil-
ity to recover binary graph structure with appropriate @egdistributions from
partial or noisy information.

1 Introduction

An important task in graph analysis is estimating graphcstme given only partial information
about nodes and edges. This article will consider findingygaths from an original (possibly fully
connected graph) subject to information about edges ingefrtheir weight as well as degree
distribution information for each node.

In general, a grapli: = {V, E}, where the cardinality of edge¥| = n, can contain a large
number of subgraphs (graphs that can be obtained from tgmakiby performing edge deletion).
In fact, the number of subgraphsa¥’!, and sincg E| can be up tov(n — 1)/2, this can be a large
space of possible subgraphs over which to search or perfaybapilistic inference. Working with
a probability distribution over such a large set of posgibg is not only computationally hard but
also may be misleading since some graph structures are kimobeunlikely a priori. This article
proposes a particular distribution over graphs that usasrization assumptions and incorporates
distribution priors over node degrees. Surprisingly, thésribution still allows the efficient recovery
of the most likely subgraph from the set of all possible geaprhe maximum a posteriori (MAP)
estimate under this distribution is shown to be equivalenthe combinatorial problems known
asb-matching and maximum weight degree constrained subgrsighation, both of which have
polynomial time algorithms.

In fact, the formulation introduced in this article is a strgeneralization ob-matching and max-
imum weight degree constrained subgraph optimization, hirckvall nodes must have some pre-
specified degree. In our formulation, each node can now lEngis own degree distribution lead-
ing to a generalization dfmatching by using delta functions for the degree distidsutSimilarly,

if we use uniform degree distributions, we obtailiimatching [2]. However, in the most general
setting, any set of log-concave degree distributions canb®handled within our framework.



Previous work on denoising edge observations used a sidigaibution over edges to ours, but the

authors of [6] use loopy belief propagation to obtain apprate marginals and perform approxi-

mate inference. This article indicates that, in some sgtiMAP estimation over subgraphs under
degree constraints can be solved exactly in polynomial.time

2 Generative Model for Edges

We begin by writing a distribution over all possible subdrapvhich involves terms that factorize
across (a) edges (to encode independent edge weight) atkelfitde distribution terms that tie edges

together, producing dependencies between edges. Thehiitybaf any candidate edge sét C E
can be expressed as

InPr(E|G) =Y ¢(e) + > vi(deg(vi, E)) —InZ (1)
ecE v; €V
The edge potentials can also be represented by a symmeteiotiab matrixiV whereW;; is the

potential of edgév;, v;). The functiondeg(v;, E) returns the number of edgesiihthat are adjacent
to nodev;. Thus, this probability puts different local preferencegioe edges via edge weights but
also enforces more global structural knowledge about #editiood of a subgraph by imposing
degree distributions. Unfortunately, due to the large neindd edges implicated in each degree
distribution termy;, the probability model above has large tree-width. Thersfexact inference
and naive MAP estimation procedures (for instance, usieguhction tree algorithm) can scale
exponentially withn. Fortunately, we will be able to show that concavity assuomstont; can
lead to efficient polynomial time MAP estimation.

2.1 ENCODING ASA b-MATCHING

If we also enforce concavity of the; functions in Equation 1, the above probability can be maxi-
mized by solving &-matching. Formally, we define concavity as
opi(k) = i(k) —i(k—1)

5% 1i(k) 6vi(k) — 6vhi(k — 1)
Yi(k) —i(k —1) —
(Yi(k — 1) = i(k —2)) <0.
If degree po:[entials conform to these concavjty constsaiwe can exactly mimic the probability
functionPr(E|G) which man[pulates subgraphsof G with soft degree priors, with another equiv-
alent probability functioPr(E’|G"). This larger yet equivalent probability involves a largesygh

G’ and larger subgraphs’. The key simplification will be that the larger subgraphs Wive to
satisfy hard degree constraints for each node (or priotstieadelta functions on the degrees) on its
in-degree and its out-degree (as opposed to a soft distrbaver allowable degrees).

Our construction proceeds as follows. First create a newhgfd, which contains a copy of the
original graphG, as well as additional dummy nodes denofedWe will use these dummy nodes
to mimic the role of the soft degree potential functians. . . , ¥,,. For each node; in our original
setV, we introduce a set of dummy nodes. We add one dummy node ¢bresige inE that is
adjacent to each;. In other words, for each nodg, we will add dummy nodesd; i,...,d; v,
whereN; = deg(v;, E) is the size of the neighborhood of node Each of the dummy nodes in
di1,...,d; n, is connected to; in the graph’. We now have a new gragh! = {V’, E'}. defined
as follows:

D = {d1,17"-adl,N17-"adn,la'"adn,Nn}a
V' = VuD,
E' = EU{(vidij)[l <j<Ni,1<i<n}.

We next specify the weights of the edgegih First, set the weight of each edgeopied fromE
to its original potentialp(e). Next, we set the edge weights between the original nodedamadny
nodes. The following formula defines the weight between tiggreal nodev; and the dummy nodes
di1,...,d; n, that were introduced due to the neighborhood,of

w(vi,dij) = PYi(j —1) —i(j)- (2



While the) functions have outputs fap(0), there are no dummy nodes labeléd, associated
with that setting {(0) is only used when defining the weight @f;). Note that by construction,
the weightsw(v;, d; ;) are monotonically non-decreasing with respect to the indelue to the
concavity of theyp functions:

Pi(g) =il —1) < (G —1) —i(j —2)
—w(vz, ) S —w(vi,di,j_l)
w(vi, dij) > w(vi,dij—1). 3

We mimic the probability functloWr(E|G) in Equation 1 over edges i@ with a probability func-
tion on G’ calledPr(FE’|G’). However, the probability function o0&’ enforces hard degree con-

straints on the hypothesized eddés Specifically, for the (original) nodes, . . ., v, each node;
has to have exactly; neighbors (including any dummy nodes it might connect tajctliermore,
all dummy nodesD in G’ have no degree constraints whatsoever. It is known that grattebil-

ity functions onPr(E’|G’) with exact degree constraints can be maximized using caattnial
methods [2] as well as belief propagation [1, 3, 7].

The proposed approach recovers the most likely subgkAph arg max g, Pr(E'|G') as follows:

E'= arg max g, g Z w(v;, d; ;) 4)
(vidi,j)EE"
subjectto  deg(v;, E') = N; forv; € V.
In other words, we are free to choose any graph structuresintiiginal graph, but we must exactly
meet the degree constraints by selecting dummy edges mihxima

Theorem 1. The total edge weight of degree-constrained subgrdphs arg max s, log Pr(E'|G")
from graph(” differs fromlog Pr(E’ N E|G) by a fixed additive constant.

Proof. Consider the edgels’ N E. These are the estimated connectivitafter we remove dummy

edges fromE’. Since we set the weight of the original edges tog¢hmotentials, the total weight of
these edges is exactly the first term in (1), the local edgghtei

What (emajns is to confirm that the degree potentials agree with the weights of the remaining
edgest’ \ E' N E between original nodes and dummy nodes.

Recall that our degree constraints require each nod® to have degreé’;. By construction, each
nodewv; has2N,; available edges from which to choos¥; edges from the original graph amid,
edges to dummy nodes. Moreovenjfselects: original edges, it maximally seleché; — k dummy
edges. Since the dummy edges are constructed so their weighhon-increasing, the maximum
N, — k dummy edges are to the la&t — £ dummy nodes, or dummy nodés;; throughd; y;,.
The proof is complete if we can show the following:

N; N;
> wvidig) — > wlvidij) = i(k) — pi(k).
Jj=k+1 Jj=k+1

Terms in the summations cancel out to show this equivalenBabstituting the definition of
w(vi,di_j),

N; N;
Yo Wi - =)= > (i —1) =)
j=k+1 j=k'+1
N; N; N; N;
= Y i) = Dovil) =D v+ D wild)
i=k j=k+1 j=K J=k'+1

= (k) — (k')
This means the log-probability and the weight of the new grapange the exact same amount as
we try different subgraphs @f. Therefore, for any degree constrained subgrapthe quantities
E' = arg max , log Pr(E'|G") andlog Pr(E' N E|G) differ only by a constant. O
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Figure 1:Example of mapping a degree dependent problem to a hardraimesib-matching. Left: Original
weight matrix and row/column degree distributions. Middiéeight matrix of expanded graph, whose solution
is now constrained to have exactly 10 neighbors per nodehtRighe resultingh-matching, where the upper
left quadrant can be pulled out as the solution to the originablem.

In practice, we find the maximum weight degree constrainégisph to maximiz&@r(E’|G’) us-
ing classical maximum flow algorithms [2], which requi®én| E'|) computation time. In the special
case of bipartite graphs, we can use a belief propagatiamitig [1, 3, 7], which is significantly
faster. Furthermore, since the dummy nodes have no degnstraimts, we only need to instanti-
atemax;(N;) dummy nodes and reuse them for each The process described in this section is
illustrated in Figure 1.

3 Experiments

3.1 Graph Reconstruction

In this section, we describe a simple experiment that detreties one possible usage of our formu-
lation. We consider the problem in which we are given infaioreabout nodes and and approximate
degree distribution of the hidden graph. One natural aggrtathis task is to compute a kernel be-
tween the nodes such that;; represents the affinity between nodeandwv;, and threshold the
kernel to predict if edges exist.

Using this method, the problem can be expressed as the nzation of;

In other words, we pick a threshaldthen compare each kernel entry independently to the tblésh
and predict an edge when it is greater thain this setting, we can think of the edge weighiss
being set tak;; — ¢, and they) degree functions as uniform (such that the degree of a noetemuiut
influence the prediction).

An equivalent formulation of this simple thresholding nadhis

InEglJX Z Kij—theg(vi).

(i.5)€E i

This can (surprisingly) be interpreted as having the locleeweightsy((4, j)) = K;; and the
degree functiong (k) = —tk, which, recalling that the objective is the log-probalgjlis an expo-
nential distribution over the edges.

We conduct our toy experiments by inducing features for thdes of a real graph by spectral em-
bedding. We perform an eigenvalue decomposition of thecadjgy matrix and treat the projections
onto the first ten eigenvectors as the “features” of the notdssthen compute a linear kernel be-
tween all nodes, which essentially means our kernel is a cesspd representation of the original
adjacency matrix.

An obvious drawback of kernel thresholding that becomesenatwious when we consider that it
is equivalent to the exponential distribution is that fitithe distribution well means many nodes
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Figure 2:Results of reconstruction experiment on Dolphin sociavoek. Left: Spectral embedding of true
graph and histogram of true degrees. Middle: Best simpkstiold graph and the resulting degree histogram.
Right: Best concave-constrained graph and histogram. tiateall nodes have at least one edge. We show the
maximum-likelihood exponential curve derived usikg= N/ ", deg(v;), but since we sweep over scaling
factors, we essentially used a range of exponential pasamet

will have zero neighbors. Since our formulation allows aog-toncave distribution, we can set
the probability of a degree of zero to a smaller value, whitdugd encourage our method to prefer
that all nodes are connected. For both methods we sweepsabresholds or, equivalently for the
exponential baseline, scalings of thdunctions. In general, a high scaling resulted in predictd
too few edges and a low threshold resulted in prediction@htany edges, with a moderate setting
providing the lowest 0-1 error.

The minor correction (penalizing isolation) to the expadierdegree distribution of the threshold
model improves reconstruction accuracy as displayed inrEgy2 and 3. The results in Figure 2
were obtained on a graph of dolphin social interaction [SjMeen 62 dolphins in a community
living off Doubtful Sound, New Zealand, and the results igute 3 were obtained on a graph of
character co-appearance between the 64 characters in\ibELres Misérables [4]. By enforcing

that all nodes are connected, the Hamming distance betweerriginal adjacency matrix and the
predicted adjacency is reduced.

Spectral Embedding of original graph Best thresholded graph, Hamming error 58 Best predicted graph, Hamming error 52
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Figure 3: Results of reconstruction experiment on Les Misérablesadier co-appearance network. Left:
Spectral embedding of true graph and histogram of true dsgididdle: Best simple threshold graph and the
resulting degree histogram. Right: Best concave-comstdhgraph and histogram. Note that all nodes have at
least one edge.

These experiments show only the minimal usage of what ourdtation can model because we are
still using the same exponential distribution for all nodelsen the) degree functions can be of any
non-parametric log-concave shape. This means applicatibour method should take advantage
of different degree distributions for different nodes. Egample if nodes are categorized, different
categories of nodes may have different degree statistics.



4 Discussion

We have provided a method to find the most likely graph fromstrithution that uses edge weight
information as well as degree-dependent distributionse &kact MAP estimate is recovered in
polynomial time by showing that the problem is equivalent-tmatching or the maximum weight
degree constrained subgraph. These can be efficiently addlyixmplemented using maximum
flow and belief propagation methods. Our method generaliraatching pd-matching, and simple

thresholding. A limitation of the approach is that the degdéstributions that can be modeled in
this way must be log-concave. This prevents the model fromking with the degree distributions
in power-law and scale-free networks, which is the subjédétimre work. However, in practice,

log-concave degree distributions are still useful for aetsirof real graph problems.
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