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Abstract. We propose preprocessing spectral clustering with
b-matching to remove spurious edges in the adjacency graph prior to
clustering. B-matching is a generalization of traditional maximum weight
matching and is solvable in polynomial time. Instead of a permutation
matrix, it produces a binary matrix with rows and columns summing to
a positive integer b. The b-matching procedure prunes graph edges such
that the in-degree and out-degree of each node is b, producing a more
balanced variant of k-nearest-neighbor. The combinatorial algorithm op-
timally solves for the maximum weight subgraph and makes subsequent
spectral clustering more stable and accurate. Experiments on standard
datasets, visualizations, and video data support the use of b-matching
to prune graphs prior to spectral clustering.

1 Introduction

Clustering is an important tool in the machine learning portfolio, particularly
in unsupervised settings. Traditional approaches to clustering include iterative
methods such as k-means and Expectation Maximization (EM) which make para-
metric assumptions about the data and can be easily confounded by local min-
ima during their typically greedy optimizations. Recently, spectral clustering
[9,6] methods have gained prominence as principled relaxations of the NP nor-
malized cut clustering problem. These algorithms typically involve finding the
top eigenvectors after processing an affinity matrix built from pairwise similari-
ties between points in a dataset. This affinity matrix can be seen as a weighted
graph. Essentially, spectral clustering makes an appeal to spectral graph theory
[1] and approximates the NP-complete normalized cut procedure. Since a user
need only specify a similarity function, spectral clustering methods are non-
parametric and avoid explicit assumptions about the generative model of the
data. Furthermore, spectral clusterings are not plagued by local minima and
often outperform traditional greedy parametric clustering methods. Also, unlike
many greedy methods, spectral methods enjoy polynomial run-time guarantees.
Finally, spectral clustering produces the same result despite permutation and
reordering of input points (unlike some greedy methods such as single-linkage
clustering that process data-points in a sequential manner).

Currently, a gamut of spectral clustering algorithms are available and exhibit
some variability in their performance on real-world datasets. In this article, we
propose a pre-processing of the weighted graph of pairwise similarities. This can
be done prior to any spectral clustering method. This pre-processing involves
b-matching [5], a permutationally invariant (i.e. independent of the ordering of
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the points in the dataset) combinatorial procedure which eliminates edges in
the weighted graph. Conveniently, b-matching on a weighted graph is solvable
in polynomial time. The procedure finds the maximum weight subgraph in the
original graph where each vertex has an in-degree and an out-degree of b. By pre-
ceding spectral clustering with b-matching, we reduce the mismatch the spectral
clustering has to an exact normalized cut solution. We conjecture that removing
edges optimally via b-matching makes the spectral clustering relaxation more
closely approach the NP-complete normalized cut solution. Another argument
which is often cited in the nonlinear manifold embedding literature is that the
similarity metric being used is only locally reliable. It is unreliable if points are
distant or produce low edge weight in the graph [8]. In fact, embedding methods
typically resort to a k-nearest neighbor method for pruning the weighted simi-
larity graph which can be seen as a greedy variant of b-matching. Therefore, a
b-matching graph pruning procedure can compensate for a poor choice of the
similarity metric used in spectral clustering.

2 Spectral Clustering

Assume we are given N samples, x1, . . . ,xN where each datum is in a sample
space xi ∈ X . Also assume we can readily compute an affinity between pairs of
samples via the function k(xi,xj). Consider a matrix A ∈ R

N×N of affinities
between all pairs of points in the dataset such that Aij = k(xi,xj) and Aii = 0.
This matrix describes a fully connected graph G with N vertices V and N ×
N edges E. The edge between node i and node j has weight Aij . Without
loss of generality, assume that the points xi are in d-dimensional Euclidean
space R

d and the similarity function is merely a radial basis function kernel
k(xi,xj) = exp(−‖xi − xj‖2/2σ2). Therefore, Aij = Aji ≥ 0. Although we
focus on binary clustering, multi-category extensions are straightforward. Given
a weighted graph G, a good clustering criterion is the minimum normalized cut
[7]. Consider a subset B ⊂ V of the full vertex set V . Normalized cut is the
NP-complete minimization of the cost:

NCUT (B) =

∑
i∈B,j∈V/B Aij

∑
i∈B,j∈V Aij

+

∑
i∈V/B,j∈B Aij

∑
i∈V/B,j∈V Aij

.

To make the problem tractable, [9] provide a relaxation by solving for a real
valued solution instead of a discrete vertex selection (or cut). This approach
efficiently approximates normalized cut. First, we compute the N × N diagonal
matrix Dii =

∑
j Aij . We represent the discrete set B via the indicator vector

y ∈ R
N . This vector is defined as y(i) =

√
dV/B/dBd if node i is in B and

otherwise y(i) = −
√

dB/dV/Bd. Here, we take d =
∑

i Dii and dB =
∑

i∈B Dii.
Normalized cut finds a discrete y vector that minimizes yT (D − A)y subject
to yT Dy = 1 and yT De = 0. Since this is an intractable, we solve for a real-
valued y vector instead. This is done by via the generalized eigenvalue system
(D−A)y = λDy. We get y as the second smallest eigenvector of the eigensystem.
The scalar values of y determine which nodes belong to the cut.
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In practice, we will use a variant of the spectral clustering algorithm above
[6]. This variant is as follows. First, compute A and D and the normalized
Laplacian D−1/2AD−1/2. Second, find the k largest eigenvectors of L and form
the matrix X ∈ R

N×k by stacking them. Third, form the matrix Y from X by
Yij = Xij/

√∑
j X2

ij . Fourth, treat each row of Y as a point in R
k and cluster

them into k clusters using k-means. Fifth, assign the i’th point in the dataset
the same cluster label that the i’th row of the Y matrix was assigned. There is
evidence this variant of spectral clustering has better empirical performance as
well as theoretical justification. This is because it exploits a larger eigengap in the
eigensystem which prevents eigenvectors from rotating arbitrarily. Eigenvectors
with similar eigenvalues can be rotated within the subspace and can then become
unreliable for clustering. The most computationally demanding aspect of these
spectral clustering methods is the O(N3) eigensystem solution.

Clearly, the performance of spectral clustering algorithms hinges on the input
weight matrix A. But, this matrix may be corrupted with poor pairwise affin-
ity values. This intuition is also relevant for embedding methods [8] which also
encourage pruning spurious edges from a weighted graph, typically using a k-
nearest-neighbor method. One argument for pruning is that the similarity metric
is only locally valid and becomes unreliable when points are distant from each
other or produce low edge weight in the graph. Furthermore, a large eigengap
is desirable for eigenvector stability and would emerge from an affinity matrix
A that had a binary clustering structure. For instance, consider the binary clus-
tering problem with an indicator vector y ∈ R

N where y(i) = ±1. Also, assume
that the clustering is balanced such that

∑
i y(i) = 0. The resulting ideal affin-

ity matrix is Aij = 1
2 (y(i)y(j) + 1). In other words, use high affinity between

points in the same class and none between points from different classes. The
matrix A will be binary with rows and columns summing to b = N/2. Clearly,
the L matrix in the spectral clustering procedure will exhibit a large and stable
eigengap if fed such an idealized affinity matrix. Is it possible to achieve these
goals by pre-processing the A matrix without straying too far from the original
information it carries? We suggest using b-matching, a combinatorial optimiza-
tion procedure that deletes some low-edge weight entries from the A matrix to
produce an idealized affinity matrix. This is done while keeping strong edges to
produce the maximum total weight sub-graph from the original A.

3 Weighted B-Matching

We will use b-matching to prune and binarize the affinity matrix A in the pre-
vious section. Assume we are given a weighted general graph G with nodes V
and edges E. An edge connecting node i to j has weight Aij . The maximum
weight b-matching problem [7] is a maximum weight subgraph of G such that
the degree of each vertex in the subgraph is b. This is a special case of the degree-
constrained subgraph problem. We have the following combinatorial optimization.
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Given a weight matrix A ∈ R
|V |×|V |, find a binary matrix P ∈ B where B is the

space of binary matrices {0, 1}|V |×|V | that maximizes the following:

max
P∈B

∑

ij

PijAij s.t.
∑

i

Pij =
∑

j

Pij = b. (1)

The above is essentially a balanced variant of k-nearest neighbor. Nearest-
neighbor methods only enforce the row constraint

∑
i Pij = b instead of en-

forcing both row and column summation. Meanwhile, b-matching ensures that
each point has b neighbors and only b other points may choose it as a neighbor.
This prevents, for example, a single centrally-located point from dominating
the data and acting as a neighbor to too many other points. B-matching is
also a generalization of the 1-matching problem or linear assignment problem
(LAP) which finds a permutation matrix P (i.e. b = 1). LAP is solvable via the
Kuhn-Munkres or Hungarian method in O(|V |3) time. Tutte [10] shows that is
possible to transform an instance of the b-matching problem into a 1-matching
problem on general graphs. The later can be solved by the Blossom algorithm,
a linear programming formulation developed by Edmonds [2]. A direct linear
programming approach to general matching is not possible because one cannot
guarantee that the algorithm will produce integral solutions. Edmonds solves
this issue by adding an exponential number of constraints to the linear program.
The added constraints enforce that no odd-length circuit (called a blossom)
could have more matched edges than appropriate. These constraints are un-
necessary for bipartite matching since bipartite graphs don’t have odd circuits.
The Blossom algorithm uses the primal-dual method to solve the linear pro-
gram. A special search procedure avoids working explicitly with the exponential
number of constraints. In particular, the algorithm works by shrinking blossoms
into single pseudo-nodes, ensuring that the algorithm can detect a way to im-
prove the current matching. The primal-dual method starts with a feasible dual
solution and searches for a feasible primal solution that satisfies the complemen-
tary slackness conditions. The search is performed on a restricted primal (RP)
problem. If unsuccessful, the dual solution is updated via an update rule, and
the entire procedure is repeated. The algorithm moves from one basic feasible
RP solution to another. The cost decreases monotonically and no basis is re-
peated. Hence the algorithm will terminate in polynomial time. The b-matching
problem can also be solved directly by a variant of the blossom algorithm. One
difference during b-matching is the blossom structure is more complicated than
just odd circuits [5]. The current best exact algorithm for b-matching is due
to Gabow [4] and runs in O(min(|E| log |V |, |V |2)|V |b) time. Recently, this and
other matching problems have been reformulated in terms of Balanced Network
Flow problems [3]. We used the b-matching software package: www.math.uni-
augsburg.de/opt/goblin.html.

4 B-Matching for Spectral Clustering

We will use the b-matching procedure to find an idealized affinity matrix that is
closest to (in the Frobenius norm sense) the original affinity matrix. Suppose we



B-Matching for Spectral Clustering 683

have N objects and we wish to find a vector y ∈ {−1, 1}N which gives a binary
clustering of the objects. If y were the true labeling of the objects, then we would
like our kernel matrix to be P ∗ = 1

2 (y · yT + 1). However, the kernel or affinity
matrix is normally computed from real world data, and hence does not have the
simple structure of P ∗. We address this by finding an approximation to A that
has the structure of matrix P ∗. In particular, we find a binary symmetric matrix
with rows and columns summing to b which we will typically set to b = N

2 . We
thus have the following minimization:

min
P

‖P − A‖2
F subject to

∑

i

Pij =
∑

j

Pij = b Pij ∈ {0, 1}.

The cost function is simplified as follows:

‖P − A‖2
F = tr[PPT ] + tr[AAT ] − 2 tr[PT A] = Nb + ‖A‖2

F − 2 tr[PT A].

Only the last term depends on P . Note that tr[PT A] =
∑

i,j PijAij Therefore,
the Frobenius norm minimization problem is exactly equivalent to b-matching
maximization in Equation 1. In other words, we can equivalently solve for the
b-matching that is most correlated with the input affinity weight matrix A.
Thus, we precede spectral clustering algorithms with this b-matching procedure
applied to the A affinity matrix and get the binary b-matching matrix P . For
binary clustering, we set b = N/2 just as in the idealized affinity matrix. This
essentially encourages a balanced clustering problem. We then use the P matrix
in a spectral clustering procedure instead of the original A matrix. Since this
matrix is binary, this may result in lost information so we also consider using the
matrix P ⊗ A (where ⊗ is the element-wise product of the two matrices) as the
affinity matrix for spectral clustering. This leads to two variations on spectral
clustering. We find P via b-matching with weights in A and with b = N/2.
One approach, permute performs spectral clustering with P as the affinity
matrix. The other approach, permute-prune instead uses the element-wise
product of P ⊗ A as the affinity matrix. We compare these two approaches to
direct spectral clustering called spectral on the original affinity matrix. We
also compare the performance where we replace the b-matching procedure with
a k-nearest-neighbor procedure. Here, k is set to equal b to obtain a similar
effect. This approach yields two more competitor methods, namely knn and
knn-prune. Note, to go beyond binary clustering we find M clusters. This is
done by setting b = N/M in the b-matching procedure and using multi-class
spectral clustering tools. We next show experiments with these various spectral
clustering methods.

5 Experiments

To evaluate the clustering schemes, we applied them to classification problems
where labels are hidden from the learning algorithm. The labels are used af-
terward to report a classification accuracy by seeing how well the clustering
algorithms agree with the true labeling.
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In a synthetic experiment, we generated data along two S-shaped curves with
a different spread value c between them. The larger the value of c is, the further
apart the two S-curves are. The desired classification is to separate each S-curve
from the other. As c gets small, clustering algorithms will misplace a point from
one curve onto another. We also vary the σ parameter in the RBF to see its effect
on the algorithms. Figure 1 shows the accuracy of (a) the permute method, (b)
the permute-prune method which does best for the range of settings for c and σ
and (c) the traditional spectral clustering method which does worst.
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Fig. 1. Classification accuracy for c and σ settings

We evaluated the clustering methods on UCI binary classification problems
across varying RBF σ settings. Figure 2(a) shows the accuracy on the UCI
OptDigits dataset. The average accuracy over ten folds of size N = 100 training
examples is shown. Permute is the top algorithm throughout and peaks at over
90% at the best choice of σ. In the PenDigits dataset in Figure 2(b), we down-
sampled to N = 80 training examples and show the mean accuracy for all
algorithms. Permute-prune is the top performer here. For the UCI Vote dataset
with 80 training examples, Figure 2(c), shows both permute and permute-prune
performed well and above the other methods.

We finally evaluated the clustering methods on video sequences composed of
two scenes. In a scene, actors move and cameras pan smoothly. However, more
abrupt changes occur during a scene transition (i.e. a sudden cut). If images
are represented as vector coordinates in a Euclidean space (i.e. by rasterizing
each image into a vector) a video sequence of two scenes looks like two nonlinear
strands that are highly intertwined yet disconnected. Therefore, a good clustering
algorithm should separate the two scenes. We obtained video sequence 1 and
identified scene transitions manually to obtain a labeled classification problem.
We evaluated the various clustering schemes as they discover the labeling just
from RBF kernels between pairs of vectorized images. One class is the first scene
and the other is the second scene in a video sequence. The order of the frames is
randomized and we select N = 48 random samples. Interestingly, nearby frames
1 The video, a real-life parody of the Simpsons television show, is available at:

video.google.com/videoplay?docid=-2231271827736577327&q=simpsons+intro.
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Fig. 2. Accuracy of Spectral Clustering Procedures on UCI Data

have a strong RBF similarity values with each other yet only weak similarity
values to other frames in the dataset. Thus, if the video sequence was sorted in
time, we would expect the affinity matrix A to look like a thin banded matrix.
We randomize the set of training examples to obtain an average classification
accuracy for all five algorithms over 10 folds under various settings of the RBF σ.
The goal is to split the video into the two scenes, one with the actress Maggie and
one with the actress Marge. Figure 3(a) shows that permute is the only strong
clustering method with almost 90% accuracy while the other methods perform
close to random chance. A similar experiment was performed with another pair
of scenes in the video sequence. One scene contains the actor Bart and one scene
contains the actor Homer. Figure 3(b) shows the results of the various clustering
approaches. Clearly permute does best and can achieve 100% accuracy (although
knn does approach it somewhat). The b-matching solution is able to lock onto
the two clusters or threads of video sequences. We conjecture that these video
examples are actually reminiscent of our toy S-curves example since each scene
forms a windy nonlinear curve from the nearby adjacent frames. These two video
curves may be so close together that it is impossible to uncover the clustering
unless an aggressive b-matching procedure finds the binary maximum weight
b-matching and propagates information across the nearby neighbors on the non-
linear curves.

6 Discussion

We showed how b-matching, a polynomial time combinatorial algorithm, can
prune and binarize the weighted affinity graph prior to spectral clustering. This
procedure improves the accuracy of spectral clustering in applied problems and
does better than a k-nearest-neighbor pre-processing. The preprocessing also
reduces the variability of spectral clustering over different splits of a dataset.
Furthermore, the performance advantage is maintained over a wider range of pa-
rameters of the similarity function (i.e. the RBF σ parameter). The b-matching
algorithm takes cubic time which is close to the cost of the eigensystem solvers
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Fig. 3. Clustering Accuracy on Simpsons Video Sequences

that underly spectral clustering. Nevertheless, we are investigating faster ap-
proximate b-matching algorithms to further reduce computational limitation.
Finally, we are also looking into theoretical arguments for b-matching. 2
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