
Proceedings of the 2004 International

Conference on Development and Learning

Editors: Jochen Triesch and Tony Jebara

Publisher: UCSD Institute for Neural Computation

Location: The Salk Institute for Biological Studies

La Jolla California, USA

ISBN: 0-615-12704-5

1



 
Organizing Committee 

 
General Chair: Javier R. Movellan 

 
Co-Chairs: Andrea Chiba, Gedeon Deák, Jochen Triesch, Marian Stewart Bartlett 

 
Program Chairs: Jochen Triesch, Tony Jebara 

 
Program Co-Chairs: Gwen Ford Littlewort, Marian Stewart Bartlett 

 
Communications Chair: Andrea Chiba 

 
Publications: Gedeon Deák 

 
Finance: Kate Kern, Gris Arellano Ramirez 

 
InformationTechnology/Audio Visual: Luis Palacios 

 
 
 
 
 

Program Committee Members 
 

Minoru Asada, Dana Ballard, Simon Baron-Cohen, Luis Baumela, Mark Baxter, Jeff Cohn, 
 

Kerstin Dautenhahn, Kenji Doya, Martha Farah, Teresa Farroni, Masahiro Fujita, Ann Graybiel, 
 

William Greenough, Michael Hasselmo, Hiroshi Ishiguro, Shoji Itakura, Robert Jacobs,  
 

David Kleinfeld, Brian Knutson, Mark Konishi, Christoph von der Malsburg, Denis Mareshal, 
 

Risto Miikkulainen, Douglas Nitz, Roz Picard, Steven Quartz, Rajesh Rao, Matthew Schlesinger, 
 

Geoffrey Schoenbaum, Gregor Schoener, Linda Smith, Olaf Sporns, Luc Steels, Valerie Stone, 
 

Manuela Veloso, Paul Verschure, Hiroyuki Yano 
 
 
 

 ii



TABLE OF CONTENTS 
 
Section 1: Attention and Learning in Social Systems 
   

Papers 
   
Cumulative Learning of Hierarchical Skills 
Pat Langley, Seth Rogers 

 1 

   
To Care or Not to Care: Analyzing the Caregiver in a Computational Gaze Following Framework 
Christof Teuscher, Jochen Triesch 

 9 

   
Joint attention between a humanoid robot and users in imitation game 
Masato Ito, Jun Tani 

 17 

   
 
 Abstracts   

   
Explaining Eye Movements During Learning as an Active Sampling Process 
Jonathan Nelson, Gary Cottrell, Javier R. Movellan  25 

   
Neural correlates of social referencing 
Leslie J. Carver 

 26 

   
Learning to manipulate objects: A quantitative evaluation of Motionese 
Katharina J. Rohlfing, Jannik Fritsch, Britta Wrede 

 27 

   

   
   

Section 2: Social Robots 
   

Papers  
   
Can Robotic Brains be Social? Scientists Caught Back-peddling 
Colin T. Schmidt  

 28 

   
RUBI: A Robotic Platform for Real-time Social Interaction 
Bret Fortenberry, Joel Chenu, Javier R. Movellan  

 34 

   
A Development Approach for Socially Interactive Humanoid Robot 
Takayuki Kanda, Hiroshi Ishiguro  

 38 

   
 
 Abstracts   

   
Communicative behavior to the android robot in human infants 
Itakura, S., Kanaya, N., Shimada, M., Minato, T., Ishiguro, H.  44 

   
Attention detection and manipulation between autonomous four-legged robots 
Kaplan, F., Hafner, V., Whyte, A.  

 45 

   
Facial Expression in Social Interactions: Automatic Evaluation of Human-Robot Interaction 
G.C. Littlewort, M.S. Bartlett, I. Fasel, J. Chenu, T. Kanda, H. Ishiguro, J.R. Movellan 

 46 

 
 
 
 

 iii



Section 3: Social Systems 
   

Papers 
   
How children understand other's belief before they develop attentional flexibility? 
Yusuke Moriguchi, Shoji Itakura  

 47 

   
Young children's understanding of perception and false belief: Hiding objects from others 
Manuel Sprung, Martin Doherty 

 53 

   
Learning gaze following in space: a computational model 
Boris Lau, Jochen Triesch 

 57 

   
Motion Recognition and Generation for Humanoid based on Visual-Somatic Field Mapping 
Masaki Ogino, Shigeo Matsuyama, Jun'ichiro Ooga, Minoru Asada 

 65 

   
Learning to Recognize and Reproduce Abstract Actions from Proprioception 
Karl F. MacDorman, Rawichote Chalodhorn, Hiroshi Ishiguro 

 73 

   

 
Abstracts  

   
Detecting Contingency Between Self and Other Triggers Social Behavior 
Yukie Nagai, Minoru Asada, Koh Hosoda 

 80 

   
Cognitive foundations of conventions in social interaction 
Dale J. Barr 

 81 

   
Are you synching what I'm synching? Modeling infants' real-time detection of audiovisual 
contingencies between face and voice 
George Hollich, Eric J. Mislivec, Nathan A. Helder, Christopher G. Prince 

 82 

   
Attention-sharing in human infants from 5 to 10 months of age in naturalistic interactions 
Gedeon Deák, Yuri Wakabayashi, Hector Jasso 

 83 

   
Kinesthetic-visual matching and consciousness of self and other: How social minds are possible 
Robert W. Mitchell  

 84 

   
EEG dynamics during self-produced emotion feeling-states 
Julie Onton, Scott Makeig  

 85 

   
Mu rhythm modulation during intentional and unintentional human and robot actions 
Shenk, L.M., Jacoby, B.P., McCleery, J.P., Ramachandran, V.S., Pineda, J.A.  

 86 

   
The perception of direct gaze in human infants 
Teresa Farroni, Mark H. Johnson, Gergely Csibra  

 87 

 
 
Section 4: Reinforcement and Neuromodulation 

   
Papers 

   
Learning by Imitation, Reinforcement and Verbal Rules in Problem Solving Tasks 
Frederic Dandurand, Melissa Bowen, Thomas R. Shultz 

 88 

   
Caregivers and the Education of the Mirror System 
Patricia Zukow-Goldring 

 96 

   
An Emergent Framework for Self-Motivation in Developmental Robotics 
James B. Marshall, Douglas Blank, Lisa Meeden  

 104 

 iv



   
Intrinsically Motivated Learning of Hierarchical Collections of Skills 
Andrew G. Barto, Satinder Singh, Nuttapong Chentanez 

 112 

   
An imaging study on human action selection using hierarchical rules 
Hidefumi Funakoshi, Wako Yoshida, Shin Ishii  

 120 

   
MESO: Perceptual Memory to Support Online Learning in Adaptive Software 
E. P. Kasten, P. K. McKinley  

 128 

   

 
Abstracts  

   
Neuromodulation and open-ended development. 
Kaplan, F. and Oudeyer, P-Y.  

 136 

   

 
 
Section 5: Language Acquisition 

 
Papers  

   
A Model of Frame and Verb Compliance in Language Acquisition 
Rutvik Desai  

 137 

   
On-Line Cumulative Learning of Hierarchical Sparse n-grams 
Karl Pfleger  

 145 

   
A Unified Model of Early Word Learning: Integrating Statistical and Social Cues 
Chen Yu, Dana H. Ballard  

 153 

   
On Language and Age of Acquisition 
Arturo E. Hernandez  

 161 

   
Developmental Stages of Perception and Language Acquisition in a Physically Grounded Robot 
Peter Ford Dominey, Jean-David Boucher  

 167 

   

 
 
Section 6: Perceptual Learning and Development 
 

Papers   
   
Texture Segmentation in 2D vs. 3D: Did 3D Developmentally Precede 2D? 
Sejong Oh, Yoonsuck Choe  

 175 

   

 
 

Abstracts  
   
Development of emotional facial processing: Event-related brain potentials to happy and angry 
facial expressions in 7-month-old infants and adults 
Tobias Grossmann, Tricia Striano  

 183 

   
An explanation of complex cell development by information separation 
Akira Date, Koji Kurata  

 184 

   

 v



Information maximization in face processing 
Marian Stewart Bartlett, Javier R. Movellan  

 185 

   
Finding People by Contingency: An Infomax Controller Approach 
Javier R. Movellan  

 186 

   

 
 
Section 7: Developmental Disorders 
 
   

Abstracts 
   
Development of face processing in autism: A look into spatial frequencies and the inversion effect 
C. Deruelle, C. Rondan, B. Wicker  

 187 

   
A toy-like robot in the playroom for children with developmental disorder 
Hideki Kozima, Cocoro Nakagawa, Yuri Yasuda, Daisuke Kosugi  

 188 

   
Comparing emotional expressions using eyes or mouths: a perceptual advantage in autism? 
A W Hendriks, P J Benson, M Jonkers, S Rietberg  

 189 

   

 
 
Section 8: Learning and Development, Modeling, Algorithms and Architectures 
 

Papers  
   
Cognitive Development in Context: Learning to Pay Attention 
Petra Bjorne, Christian Balkenius  

 190 

   
Modeling Cognitive Development in the Human Brain 
L. Andrew Coward  

 198 

   
Solving Complex Problems Using Hierarchically Stacked Neural Networks Modeled on Behavioral 
Developmental 
Michael Lamport Commons, Myra Sturgeon White  

 206 

   
Simulating Development in a Real Robot 
Gabriel Gomez, Max Lungarella, Peter Eggenberger Hotz, Kojiro Matsushita, Rolf Pfeifer 

 213 

   
A Theory of Developmental Architecture 
Juyang Weng  

 221 

   
A Virtual Reality Platform for Studying Cognitive Development 
Hector Jasso, Jochen Triesch  

 229 

   
Sparse Regression via the Winner-Take-All Networks 
Nan Zhang, Shuqing Zeng, Juyang Weng  

 237 

   
Machine Emotional Intelligence: A Novel Method for Analysis of Spoken Affect 
Irina Gorodnitsky, Claudia Lainscsek  

 244 

   
Cross-Task Learning by a Developmental Robot 
Xiao Huang, Juyang Weng  

 252 

   

 
 

 vi



Abstracts   
   
Developmental Connectivity Schemes and Their Performance Implications 
A. Felch, R.H. Granger  

 259 

   
Exact Inference in Robots Using Topographical Uncertainty Maps 
Josh Susskind, John Hershey, Javier Movellan  

 260 

   
RobotCub: An Open Research Initiative in Embodied Cognition 
G. Sandini, G. Metta, D. Vernon  

 261 

   
Why do animals make their play more difficult? 
Stan Kuczaj  

 262 

   

 
 
Section 9: Brain, Emotion, and Social Dynamics 
 

Papers   
   
Social Dynamics: The Voice of Power and Influence 
Alex Pentland  

 263 

   

 
Abstracts   

   
Small-world Network Properties and the Emergence of Social Cognition: Evidence from Functional 
Studies of Autism 
Matthew K Belmonte, Simon Baron-Cohen  

 268 

   
The emotional brain in autism : cerebral correlates of abnormal explicit processing of emotional 
information 
B. Wicker, B. Hubert, P. Fonlupt, B. Gepner, C. Tardif, C. Deruelle  

 269 

   
Pathological brain growth patterns in Autism, and catastrophic interference in establishing long-
distance connectivity 
John D. Lewis, Jeffrey L. Elman  

 270 

 
 
Section 10: Perceptual Learning and Development 
 

Papers   
   
Project PRAKASH: Development of object perception following long-term Visual deprivation 
Pawan Sinha  

 271 

   
Seeing Blobs as Faces or Letters: Modeling Effects on Discrimination 
Lingyun Zhang, Garrison W. Cottrell 

 277 

   
Using a Robot to Reexamine Looking Time Experiments 
Andrew Lovett, Brian Scassellati  

 284 

   

  
Abstracts  

   
Color perception in sensorimotor theory, or what do we really perceive? 
David Philipona, O. J.-M. D. Coenen, J. Kevin O'Regan 

 292 

 vii



 
Section 11: Binding and Modularity 
 

Papers   
   
Cross-anchoring for binding tactile and visual sensations via unique association through self-
perception 
Yuichiro Yoshikawa, Koh Hosoda, Minoru Asada  

 293 

   
Object recognition, Adaptive Behavior and Learning in Brain-Based Devices 
Jeffrey L. Krichmar, Douglas A. Nitz, Gerald M. Edelman  

 301 

   
Modularity and Specialized Learning: Reexamining Behavior-Based Artificial Intelligence 
Joanna J. Bryson 

 309 

   

 

 viii



���������� 	��
���� � ���
�
������ ������

��� �������

	��
 �����

������������	 
������ 
���������

������ ��� ��� ����� �� 
����� ��� �����������

�������� ����������� ��������� �� ����� ���

�������

�� ���� ����	
 �� 	����� ������
 � �������� �	�����

��	� ���� �������� ���	�	���� ������ ��� ������ ��	

	������ �������� �� ������� ����	�������� �� �����

����
 �� �	����� ��� ���������� �� ��� �	�����	�� ���

�	�� �������� ��� ���	��	����� �� ���������� ������

���
 ���� ���� ��� ������ ������ ����� ������ �� �����

����� �	������� ��� ����� �������� ��� ���	��� �� ���

������ ��� ������ ���� �	� ����� �� �������� ������

���� �	���� �� 	���	� ����	������� ������� �� ����

�������� �� ��� ����� ��	��
 ���� ���� ���� ���	��

��� ���	���� �� � ��������� �����	 ���� 	����� ���

���	� 	� ��	�� �� ������ ��� ������ �� ������ ����

� ��������� �� 	������ ��	� �� ���	���� ��� �	������

��	 ���������� 	����	��

��� ����������� ��� ����������

�������� �� ��	�
�
�� ����
������� �������� ����� ���
������ �� ��������� ��� �������
���� 
���������
���� ���� ������ 
�����
	��� �����
��� � ����
�� ���
��
������ ����
��� ��� ������� �� � ��	�
�
�� �	��� ����
����
� ��� ���� ������ �
�� ��� ���� �
 ����� ���
��
��� ��� �!�
����! ��"�� �����	 ����
������ ����
��� �����������
�� �� "������	� �������� ��� ��� ����
������ ���� ������� ����� #����
�	 ��� ���� � �������
������� 
� ���� ����
������� ��������� �
�� � ���
��!
�� ������
��� ���
�	 ���� �������� �� ����� ��� ���
$
�
�
�� �� "������	� ���� �%���
�����

&� ��
� ����� �� ���
�� ������� � ����
���� ����
�
������ ���� �
���	�� ���� 
�� ������������ �� � �����
�� �
����
���� '�� 
�������� �
 ������ 
� ���� ����
��������"� ���� �� ������
�� �!������ ��
�� ���
���� "������	� �� � ()��* ��� �� ����
�
������
�� �����
������� ������ ����
��� �%��
�
� ������ ��� �
�����
��
�� �� ���� �������� ��� �"
���� &� ���
�
��� ����
��	�
�
�� ����
������� ������� ���� �����
�� �� ����
������� ����
�	� ��� ��� ���� �� ������ ����������

&� ��������� ������ 
� ��
��! �� �%���
�� ����
������
���� �����
��� ��� ������ �� �%������ ���
���������

+������� ������* ���
���� �� �
������
��� ��������
��
��� "�! $���
��� ���� ���
� ��
	
�� ,�������� ���
����
������*� ������
� �� �%���
�� ���� ��� ����
���� ������ ���
�
�
�� �
"� ������� ����
�	 ��� �
��
�������� �
��� ���! ��� ��� �� �	��� ������ ����� ���"�
��� ��
�� ������ "������	� 
� ����
������ -�� �������
�!������
� �� ��
� ����� 
� ���� �
������
��� �"
��� ���
�������� ��
��� �� ����� 
� ���! ������ ���� ��������
����
�	 �����
��� ��� ����� ���� �������� ��� �	��� ���
�� ����� �������� �� ������ �����
�� �%���
�� 
�
��� ���
��������

&� ��� ����
��� ���� ������� �� ���
�� ������* ������
������
�� ��� ��	��
.��
�� �� �������� ��� �"
���� ����	
�
�� ��� ����	��
.��
�� ��� �%���
�� ��������� ����
�
�
.� ����� ����� ��
�� �� ������� � ��� ����� ����

���������� ���������� ������� ����
�	 �
�� �%���
��
���� "���� �"
��� ��� 
��Æ�
��� �� ����� � ���"� ��%�
�� �����
�� � ������
�� ��� �����
�	 	������
.�� �"
���
��� �������� ���� ������ �� �������� ������� ����
�	
���� ������� ���� 
���������� ��� �����
�� ������

�	� /� ������ �%���
����� �
�� ��
� �����
�	 �����
��
�� ���� ����������� 
�� ��
�
�! �� ����� � ��� ��
��� �������� ��� ���� �%��
�� � ���� �� ���
�
�	 ���
���� &� ����
�	� �� �
���� ����
�� �������� �� ������

�	 ������������
�	 "������	� ��� �����
�� ������

�	� ����	 �
�� ���� �
����
��� ��� ���� ���"�

��� ������������� ��� �����������

#
"� ����� ��	�
�
�� ����
�������� ������ ��"�� ����
�
������ �� 
�� �����������
�� �� "������	�� ��� ����
��� 
� ��
�� 
� 
� ��	��
.��� ��� ��� �����
�� 
� ��
��

� ���
���� +��� �� �
���� ��� ��������"*� ���	�����
��� ���������� �����
��� 
����
�	 ������
��� ��� ��
������ ���
� ��������� /� �
�� ��"� �� �%������ ����
��� ����"� ������ �
��� ���! ������� ����� ��� ��
�
����
� ���
�
���

1



'�� �� ������* ���	����� �����
�� ������ 0������
�������� ���� �����
�� �
���
��� 
� ��� ���
��������
-���� ��! 
������ 
������� ��1����� ��� �� 
��
�
��
�� ����"�� �� ���! ��� ���� ���������
.� ��!�
��� ���
���
��� ����	 ��1����� ��� �� ��� �����
�� ���
�
���
�� ����"�� #��	����� ��������� �����! �����
�� ���
����
�
��� �� ����� ��	
��� ����	��
��� 2��� �������
����
��� ��� �������*� ���� ��� ��	������ ����	 �
��
��� ���
���� ����� 3 ���������� ��
�� �����
��� ����
������ ���
�
�� ���� ��� �� �������4 �������	���
��
�� 
��
����� ����������� �������� ���� ��� �����4
�
�����	��� ��
�� ����
��� ����������� �������� ����
��� ��� �����4 ������� ��
�� ������ ����
� �����
�
��� ���� ��� �� ���
����4 ��� ��������� ��
��

��
����� �
������ ����� ��	��
�� 
� ����
��� ���� ���
������� ������

-���� � �������� ���� �������� ���� ��� ����"�
������ 5�� �%������ �� �����
��� � �����
��� �
���
�
�� 
� ��
�� ��� ����"� ���� ��� ���� % ���
�
�� ���
��� ������ �� ��� ��� ��� ���� ! ���
�
�� �� ��� ���
�� ��� ������ -�� ������� ����� ������ �� � �
�	�� ����"�
�� ��� ���� ������ ���� ��� �����
�� �� �� ��! ������
�� ����
��� 
� 
�� �
�����	�� �����

6���
�
��� �� ��
� ���� ��	��
.� ������ ����	��
��

��� � ��������� �
������!� 7�
�
�
�� �������� ���
������ ���
���! 
� ����� �� ��������� ����
�
��� ���
����
� ������ �� ���! 
���������� ����� �������� 
�
���
� ����
�
���� -�
� 
������ � ����
�� ������� ��
��� �����!� �
�� ���� ���
� �������� �� ��� ������
��� ���� ������% �������� �� �
	��� ������� -�� ���
���
�	 �
������! 
� �
�
��� 
� ��
�
� �� ����! ������ ��
���� �����! �
"� ���� �5�
	������ ��89�� �� ����
�� �� ��������"� �
"� �����
��
�� ��	
���

������ ���� 
����������� � ������ ���	����� ����
��! ���� ������ "������	� ���� �"
��� 
� ��� �%���� 
�
��� ���
�������� 
����
�	 ���
� ����
�
��� ��� ����
���
�
�� ��� ���
� �%������ � ����� 2��� �"
�� ��� � �����
��	������ ��� � ��� �� ���
���� ������ -�� ������

���� ����
��� ��� �������� ���� ��� ���� �� 
�
�
���
��� �"
��� ������� ��� ��������� ���� 
��
����� ����
�
�
��� ���� ��� ���� ����	��� 
�� �%���
��� ��
��
��! ��$
�� ���
��� �!���� �� ��������� -�� ��������
���� ����
��� � ���1���
�� �� �������� ����� ��"�� ���
	������ �����
�� ��� �
���
�� ��� �"
�� ������� ����
����� 5�� �%������ -���� : ����� ��� �"
�� ���	
��
��
�� ��� ���
��! ��� �
�	�� ����� ����
�
��� ����	
�
���� ����	 ������� ������ 
� -���� �� -�� �"
��*�
���! ������ � ��� 
� �� ��"� �������� ����	� �����

2��� ������ �"
�� ���� 
������ � ���� ���� ����
�
��� ��� �� ��������� 
� ������� -�� �%����� �"
���

� ��� ����� �
�
.� ��� ������
� ����� ��
�� ������

����� ���� ��� ��� �� ��������� 	�
�� � ������� ������ ���

��� ��� ���
���� ��
��� 
���� � ���

�� �� � ���� �
��� ��������

Table 1. ���� ������ �������� 	�
 ��� ����� ��
��

���� ��
����� ��������� �� �������� ��
���

��� �������� ������	


������� ������� ������� ���� ��� ���� ���


������ ������	 ���� ��	 ���� ��	

����� ��	



����� ������ ��� ��	
 ��� ��� ��	


��� ��� �� ��	 ��	




������� ������ ������	




����� �������


������� ������� ������



�������� ���� ����� ������



������� ���� ����� ������




���������� ������� ���� 


������� ������� ������
����� ���� 



��������� �������� ������ ���� 


����� ������


�����! ���




�������!�������� ������� ���� ���


������� ������� ������
����� ���� 
������ ���



��������� ����������� ������ ���� 


����� ���




�� ���$� ���
��� ��� �	��� ��� �%���� �
�����! 
�
��� ���
�������� 5�� 
�������� 
�����	 
���"�� ����
������� ��
�� 	����� � ����"� ��� ���������������
��
�� ����� ��� ���� 
� ��� ����
��� �
����
��� +���
����� ��� �����
�
�
�� �"
�� ���	
������	 
������ 
��
����� �� �������� ����� ��
�� ����
��� ��� ���"
���
�� ��
�� 
� 
� ��������� 
� ��
� ���� ��� ��
�
�
�� �"
���
���	
� ��� ����	��

&� ����� ������ ���� ��� ����
�! ���
��� ��!� ��
��������� � 	
��� ������� �� �"
��� ��� �� � 7����	
���	��� ��� 
����� ���� ���� ��� +��� ����� �
��
��� ���� ����� &� ���
�
��� ���� �"
�� ��������
�
��
��� 
����� � ���� ����
�� ���� ������� ��� �
�
�! �%�
������ 
� ��� �	��� �%����� ��� �"
�� �
�� ���� ������
���
�
��� ��
���� �����
�
�! ���!� �� 
�������� ���� 
�
��
� ������ �� �� ���� �����
��� ���� 
� ���� ����
�
��������� �;��
 �� ���� :��<��

&� ���
�
�� �� ���	����� �����
��� ��
�� ������
������ "������	� ���� � ����
�� ������ 
������
���������� ������ ���� ����	� ���� ���
��!� -����
��"� ������� �
�� ���	����� �������� ��� �"
���� ��
���! ��������� ��������! ���
��� ���� ��� ���
����
���� ��� 
������� ���
�
�
��� &� ����
����� ��� ��	�

������ ����	 �����
�� �����
��
��� �� ��!�
��� ���
�
��
���� ���������� �� ��� ���� �� �������� 5�� ��� ����"�
������ ��
� 
������ �
������ �
"� ����	 � ���� �� ����

������� �
�� �������� � �������� 	�
� ��� ������

� ����

�� �� �������� � �� ������ ��� ���� �
�� � ��
� �����

2



Table 2. ���� ������ ���� 	�
 ��� ����� ��
��

������� ������� ���� 


������� ������� ������


����� ���� ����� ��



������ ����������� ������ ���� 



�������� ��"����� ������


�"�������! �� ������ �� �� �#




������ ��������� ������




������ ������� ���


������� ������� ������


������ ��� ���� �� ���� �� ����� ��



������ ���������� ������ ���



�������� ��"����$�����! �� ������ ��


�"�������! �� ������ �� �� ��



�"������� ������



������ ���� ������ ���
�����! ���




�������!����� ������� ���� ���


������� ������� ������
������ ���� 
����� ���



������ ��������!�������� ������ ���� ���



������ �������� ������ ���� 


������ ������ ���



������ ���� ������ ���




� ����� � ������ ��� ��
�� ����
�! ��� ���
�
�� ��� �
.�
�� 
��
�
��� ����"�� ,�������� ��� ���	����	� �����

���� ����	� �����
�� ���
��� ���� ��� ���
�������
���� ��� �	��� 
����� ���� 
���� ������� 
� 
�� �������
��� � �� ��� 
�� ���	����� ������� �����!� 5�� 
��
������� ��
� �
	�� �����
� ��� 
������� ��� � ��� ��
��

� �� 
������� �� ��� �� ������� 
� -���� �� 5
����!�
� ���	����	� ����� ����	� �����
�� ��� �	���*� 
�����
�
��� ���� �"
�� 
�������� 
� ����� �� �%����� ��
��
���� ��� �!���� ��	�	� 
� �����
�� ���� ����
��� ����
�
��� 2��� �
����� ����
��� ��� �"
��*� ���� ��� 
�� ���
	������ �� 
� �����	 � ���

��� ������������� ���  !�������

#
"� ���� ��	�
�
�� ����
�������� ������ �������� 
�
�
��
��� �!����� '� ���� ��� 
�����
��� ��� �!���� ��
����� 
�� ��������� � �� �! ����
�	 ��1���� 
� 
�� ����
�� �
��� -�
� ������� ��������� �������� ���� 
�
�
�
��� �����
�	 �	�
��� ���	����� ��������� -�� �������
����"� �� ��� ��
�� �������� ��� ���
����� ���� ����
������� 
������� �� ��������� ���������� �����!�
��� ������� ��� ������� �� ��� �%������ ���� &� ��
�
��!� ������ 
����� ��� 
�������� �� �������� ���� ���

���
�� �! 
�� ��������� ����
�
��� ��� ��� ��������
�� ��� ��������� � ��� &� ��� ����"� ������ ��� �	���
���� ���� ����� 
�� �����
��
��� �� ��� ����"� ��� ���
������ ���� 
���� ��
�
�
�� �������� �
"� ��� ��� �����!

���� ������% �������� �
"� 
�����	����

'� ���� �!���� ��� ����
������ �%��
��� ��� 
�����
�
��� 
� ���������� �"
�� �����! �� ������
�� ��
���

� ��!� ����! �� ��� ������ �
���
�� ��� ��
�� ���
��� ��� �
	���� �
�
�! �� ����� 5�� ���� �"
�� 
��������
������ �������� ��� �%����
��� �� ��� 	������ �"
�� ��
��� 
� ���! ��� ����
������ � �"
�� 
� ����
����� 
�� ��� 
��
������ ���
���� �
��
�	�� 
�� �������� ���� ���� ���
������ ��� ��������� ���� �������� ���� 
� ��� �!��
��� ��� ��� !�� ������� �%���
�	 
�� ��� ������ ����
������� ��� ������ �
���
��� ����� ��� �
	���������
�"
���� �� ����� ��� ���"
�� ��� �� ����
������ 0�����
��
� ���� 
� �����
��� � �"
�� 
� ����
����� ���! ����
������ ��� ��� �� ����� ��� ���������� ���� �����
���� �� �� �%������� ���
��� ������ ����
���� ��� ���
�������� ����� �������� ����	� ��� �"
�� �
������!�
�����
�	 ��� ���� �
�� ��� �
	���� �����

/��� ��� ����� ��� �$��� ������ ������� ��� �� ���
�"
�� ����� �� ������� �� �� ����� 
� ��
� ������ 5��
�%������ ������ ��� �	��� ��� ��� 
�����
�� ����	
��
����	  ���� �� 
� � �
���
�� ����� ��� ������� 
��
������� ����	
������	���  ���� �� ��� ����	
����
 ����� ����� -�
� ����� ��� ���� �����	
������	  
���� ��! ����	
�  ������ 
� ����
����� ��� ���� ��
����
����� ��� �%���
��� &� ��������� ��� ���	
� �"
��
���� ����� ��� ���
�������� ��"
�	 ���������� ���
���� �����	
������	  ���� ��! �����	  ��� �� ���
��%� �!���� -�
� ���� ������ � ����� ���� ���
����
��� � ���� �� ����	
������	  ���� ��� ��"
�	 ��!
���� 
� ��
�� 
� ����� ������������

-�� ����
������ ������� � �"
�� �
 ������! �������

�	 �� ��� 
� 
� ����������� 5�� ��
�
�
�� �"
��� ����

����� �� ������
� ����� ������ �%����� ���� �� ���
��!�
��� ���
���� ��� ����� �������� �� � �
�	�� �!����
5�� �
	��������� �"
��� ���� ���� �� �������� ����� 
�
������ ��� �
�� �� � �����
�� ���	��� ���� ����
���� ���
�"
��� 
� ������� ������ &� ��� ���� ���"
�� 
� ����
������
���� 
� ����
���� ���! ����� ��
�� 
����� ���� ���"
���
'�����
��� 
� ����
���� ��� �����
���� �"
��� ��� ���
������ ����� ��� �� ������ 7�������!� ��� ���"
���
��� ������� ������ ����� ���� ��� ������ �� ��� ������
�"
��*� ��1���
�� ��� ��� ��� ��������� ���� ����
������

"�� �����# ��� �����$ 	������

�� �%���
��� ������ ��� ����
�� ����
�� �� ������
���� �%���� ������% �
������
��� �"
��� 
� � �����
��
������� �� 
� ������ ���� ����� �"
��� ���� ������!
������� 
� ���	����� �����!� �����	� ��� ����
�����
�� 
������� ��� ����
���
�� �� ��� ���
�� �"
����
������ ��� ����� ����� �������� ���� ��$
�� ��� ����
�
���
�� �� �%
��
�	 "������	� ���������

-� ����� ��
� �����
�
�! 
� ������� �� ���� 
�����
���� � ���
��� �� ���������� ����!�
� �������� =����
> =
���� ��8�� ���� �������� ���� ��� ����
������*�

3



"������	� ��������� -���
�
���� ���������� �������
����
�	 ������� ���� ����
���� ������ �� ��� 	��� �����
�� ���
���� ���� ������� �� �������� ���� ���� ���
���

�� &� ���� ��������*� �������
�
��� ����� ��� ������
������ 
� 
� ����
��4 ������
��� ��� ������ ������� ��
����
���� �������
�
�� �� ���
���� ������� �� ��������
���� ���� ���
��� 
�� ��� �� ��� '��� � ����
�
�� 
�
���� ��� ������� 
� �������� ��
� ��� ��
	
��� 	��� ���
���
��
�� 
� ���
����� -�
� ��! ��$
�� ������� ��
��

� �!�
����! ����� 
� � ���������� ������� ,�����
���� ����!�
� ��� ���� 
���
����� ���������! 
� ����
������� ����
�	 �� ����� ���"��

������ 
��������� � ���
��� �� ��
� ������
��
�
�� � ����" ���� �����
�� 	��� �������� 
� �� �������
�
��� 2��� 	��� ������� ����
��� �� ��1���
�� �� ���
���
	��� �
������ ��� ������� 
� 
������� ���"���� ���
�
�	
� � ������� ����
�
�� �� � �"
��� &� ��� ������� ���� ���
������� ��! ����
�! � �"
�� ���� ���
���� ��� ��1���
���
����� � 	��� ������� ��! ���� � (��
���* ���� ��� �"
���
�� �������� ���� 
� ��� ��
�� ��� ��1������ '� ����
�!���� ������ ��"�� ��� �� �
% �����?

� &� ��� ����"*� ��� ����! � ��� ��1���
�� � �� ���
�� �����
���� �"
��� 
� ����
���� �"
��� �
�� � 
� ���
�
� ���� ���� ���� ��� ��
��� ������ ��� �� ��� �������
��! ���
���� 	���� ����
�� 
� ��� ����"� ������� ��

������� � ���� ��
� ���� ��� �����
���� � �
�� ��

� &� ������ ����
���� �� �"
��� ���� ���� ���
��� ���
1���
�� �� 
� ������
��� ��
�� 
������
���� ������
����� �� � ��� ��� ���� ������� ��� ��� �� �������
��� ���� � 	��� ������� �
�� � �� 
�� ��1���
���

� &� ��� ��� ����! � �� ��� ����" ��� �� �����
���� �"
��

������� � ���� 
� ����
������ 
� ��� ����� �����
���
������ ���� ������ ������� � �"
�� ���� ��� � ���
�%����� 
� 
� ��� ���
��������

� &� ��� ����"*� ��� ����! � 
������ �� �����
���� �"
��

������� � ���� 
� ��� ����
������ ���� ������ ����
� ��� ����! �� ��� �� ��� ����" �
�� ��� ����� ����
�
�
�� �� �"
�� � �� 
�� ��1���
���

� &� ��� ��1���
�� ' ��� ��� ��� ����! � �� ��� ����"

� ���
���� �! ��� ������ ���
��������� ������ ����
������ ���� � ���� ��� ����"�

� '�����
��� 
� ��� �!���� ������ ��� � �"
�� 
�������
���� ���� ��� ������ 
� ��� ����! �*� ��
��� �����
��� 
� ���
�
�	 � ��� �������� �������� �� �*�
��1���
�� ' ��� ��
���� ���� 
� ���� � ���� ��� ����"
��� ������ � 
� ��� ��
��� ���� �� �*� �������

2��� �� ����� ���
�
�
�� ��"�� � �
�	�� �!��� �� ��� ����
�
������� �
�� ��� 
�
�
�� �
���
�� ��
�	 � ����
�� ����
�� ��� ���� 
��� ���� ��
		��� ��� �������� 0����� ����
���
�	 ���� ��� �� ���
��� �� ��1���
�� ��� ��$
��
���! ���
����
��� �� ��� 	��� ����"� 
� ��"�� ����
�!���� ���� �%���
�	 � �
������
��� �"
�� ��� ���� ��1���
�
��� ���� ���� ��� �	��� ���� ��� ���� �� ���"����"�

=����� ������ 
��� ��
� �������
�� 
� ��� �������
'�� 
������� ���"���� ���
�
�	 � ��� �������� ����
����� �� � ������� ����
�
��� +��� ������ ������� � �
��
���� �������! ���� ����� ��� !�� ��
�� ��� "���� ����"
�� �
������ 
� ��� ��
��� �� ���
���� -�� ����� 
�������
���"���� ���
�
�	 � �"
��� ����� 
� �%������ ����
���
��� ��� ��1���
�� �� ��� ������ ����" ����!� +���
������ ����
���� ���! �"
�� 
�������� ���� ���� ��� !��
��
��� ��� ������� ���� ���� ���� ��� ������ �%������
������ ����
�
��� ���� �! ��� ������ ���
���������
������ �
�� ���! ������� ����
�
��� ��
�	 ���� ���
��
����� &� ����
����� �
� �� ��
� ��
���
��� 
� ������� �"
��

�������� ���� ���� � ������� �%������ ����
��� ��� 
�
�
�� ����
�� 
� ������� � ����
���� �� �������

-�"�� ��	������ ����� �
���� ������ � ���
��
� ����
�
�� �� ���������� ����!�
�� +������� ��
� ��������
����
�	 ������ 
� �
	���! 
���	����� �
�� ��� �%���
�
�� �������� ������ ���"���� ���
�� � ������� ��
�"
�� ����
�
��� ���� ��������!� �� 
� �%����� ��� �"
��
�����
���� �
�� ��� ��� ����" ����! �� ���� �� 
� ���
����� ����
������ ,�������� ������ ��� ����
������
��� ���
� ���� �
������
��� �����
�� �"
���� ���
� �%��
��
�� ��! ����
�� ��� ���! �!���� ������ �������
����
�	 
� ������� &� ��������� ���� ������ �� ����
������� ����
�	 ��� ���� �& �����
�	 �!����� ����
�� ��� 	������
�� �� ��� �%���
�� �� ������ ������ ����

��������
�	 ��� ��� ����������

'� ������ �%���
�	 � ��������� �"
�� ������ ����
�����
�	 � �������� ���� ��� ���� �� �	��� 
��� �
Æ�
���
��� �
��� 
� 
� ������ �� ���"����" 
� ��� ����� ����

� ���*� ����� -�
� ������	! ��! ���� ���� �� �����
�
��� �����
���� �� ���� 
�����
	���� 
� ���� ����
���
���
�	 ���� ���
�
.
�	� ��� 
��������
�	 �������
����
�	 �
�� �%���
�	 ��$
��� ��� ���� �����! ����
��������
�	 � ��� ���� ������ �%���
�	 
�� +�������

� ��� ������ �
���
��� ���� ��
�� ��� �	��� ������
�������� -��� 
� ������ ��� ��� ���
���� ��� ���������
��1���
�� 
� � 	��� ����" �
��
� � �!����� 
� ������ ���
���
������� 
� ��� ��
	
��� �
���
�� ��� ��
�� �	�
��
�
�� �� �����! �� 
�� ����
�� ���������

%�� ������� &�$ �����$ 	������

&� ��� ����
�� ��	��� �� �����
��� ��� ������ ��
������? 
�� �%���
�� �� �
������
��� �"
��� �� ���
��

�� ���"� ��� 
�� �� �� ������� ����
�	 �� ������ �����
����� -�� ���� ���� ��� �!���� ������� �Æ�
����!� ��
�"
��� ��� ���
�� �� �������� ������!� ������� ���
������ 	
��� ��� �!���� )�%
�
�
�! �� ��$
��� �������

�	 ��� ���������� ������� /� ���
��� ���� �����
���� ���� ���� �����
�
�
��� �� ���� ���! �� �����
�	
�� ��������� ��� ������ �� �������� ������� ����
�	

��� �
������
��� �"
���� /� ���� �
"� �� 
���������� �
�
�
��� �����
�
�! 
��� �������

4



+������� �� ���� �� �����
�	 ������
��� �� ���
)��� �����
� �������
�� ���� ������ �� ���� ��� ����
�"
�� ��$
�
�
��� '�� 
� ���� �����
�	 ����� ��"� ���
�����	� �� �%
��
�	 "������	�� ��� �� ��� ����
�
���
�� ������ �"
��� ��� ��������� &� ���
�
��� ��$
�
�
�
�� ����� �� 
���������� ��� 
���������� �
�� ���
������������
�	 �������� -�"�� ��	������ ����� 
���!
���� �����
�	 ����� �� ��������� 
� ���� 
� �
���
�
�����! �� ��� ������ �� ����
�� �����
�	� -�� �
����
���� �� �������
���� �����
�	 �����
�� �����"���!
��� ����� �� ��� �����
�� "������	� ��$
�
�
���

'� �%����
�� �� ������ ���
���� ��
� � ��� ����	�
� ���� �� 
���������
��� �����
�	 ���� 
� �
�� ������!
�� 
�� ������������
�	 ��� �%���
�� ���������� �� 
�
	
�� �#�
�� �� ���� ��@8�� ��� ������ �� �"
�� �����
�	

� �� ���
� ��� 
������� 
� ��� ����� -��� ��������
��� ����
������ ���
���� �� ��1���
�� ���� 
� �����
����
�
�� �� ����! 
� ��� 	��� ����"� ��
� ����
��� �� ������
��
�! ��� �����
�	� -�� �!���� ��$
��� ����� �
��
���
����� �� �"
��� ��
�� �� �����
�� 
� ����

-�� ���� ����	��! ������ ���� �
���
��� 
� ��
��
������ ��� ��������� �� �%���� � �"
�� 
������� �

�� ���
��� �� ��1���
�� �� �� ���� 
�� ����� ����
�
�
��� ����
���� ��� �������� ������� �"
�� 
�������� � �
�� ���
��� ����� '��� ���� �"
��� ���� ���� �%�����
���������! ��� ��� ��1���
�� �������� ��� �!���� ����
������ � ��� �"
�� � ���� ��� � ��� � �� �������
���"
���� -�� ��1���
�� �� � 
� ��� ��
	
��� ��1���
���
�� ��� ��� ����� ����
�
�� 
� � ��� �������� �� ���� 
��
����� ��� ����
�
��� �� � ���� ���� ���
���� 
�
�
���!�
��� �������
�
��� �� � ���� ���� ���
���� 
�
�
���!� ���
��� ����� ����
�
��� �� � � -�� ����
�
��� ���� ���
� ���
	����� �������� �! ���
����� 
� � ����
����� �������
5�� �%������ ��� �"
�� ���	
������	 
� -���� � �
	��
�� ������� ���� �%���
�	 ����	
�  ����� ��������
�! �����	  �� �� ���
��� ��� 	��� ���  ���

-�� ����� �!��� �� �"
��� ����� ���� �
���
��� 
�
��
�� ��� ������� ������ ���� ��� ��� � �"
�� ��
���
��� �� ��1���
�� �� ��� ��� ������� �� ��	����
��� �
������ ���� ��� � � � � ��� ���� ��� ����
���� ����
�
�
��� �� �*� ��������� ����
�
��� =����� �����
��	���� ���� ���� ���� ���
���� 
� ��� �! �%����

�	 ��� �"
�� 
�������� ���� ��� � � � � ���� �������
���!�
��� ���
��!
�	 ��� ������ 	��� �� /��� ��
� ������
������ ��������� � ��� �"
�� � �
�� ������� ���
�"
��� ���� ��� � � � � ���� 2��� �� 
� � A	���B �"
��
�
�� �� �� � �
�	�� ���"
��� �
�� �� � ����� ��� �
��
���� � � � � ����� �� 
�� ����� ����
�
���� ��
�� �����
���� �� 
� 
���"�� ���! ����� ����� ��1���
��� ���� ����
���� -��
� ������ �"
�� � ��� � �� 
�� � ��� ���� ��

�� ����� ����
�
��� � ��� ������� � ���� 
������ ����
��� �������� �� � ���� ���� ���
���� 
�
�
���! ��� ���
�����	�� �������� �� ��� � � � � ��� ��� �	�
�� ����
��

��	����� ��� �������� ����
������! �! ���
������
/� ���� ������
.�� ��� ��������
�� �� �
������
�

��� �"
���� ��� �� ����� ������ ������ ���� ��$
���
��� �������� 
� ��� �������� -���� ���! ��� ���� ��
����� ����
�
��� ��� ��� ��� �"
��� ��� ����� ���! ���
�%����� ���! ���� �������
���� -��� ��� ��� �
��
����� �������� �� ����
�����! ���
������ ���� ���	�
���
� ����
�
��� ��� ����! ��������� 5�� �%������ ���
������� ����	
������	��� ����	 ����� ���� ������� ��
��� ����� ����
�
�� �� �"
�� ���	
������	 ����� 
� ���
���� �� ��� ���1���
�� �� ����	
���� ����	 ������
��� ������ ����� ��
�� 
� ��� �
���
�� 
� ��
�� �%��
��
�	 ����	
� ����	 ������ �������� �! �����	 ����	
���� �
�� ���
��� ��� � ��� ��� ����	 �����

-���� �����
�	 ������
��� ��� ���! 
����������� 
�
���� ���� �����
�	 ����� ����� �� � �
�	�� ��������
����
�	 �%���
���� ��� ��� ��$
��� �� �����! �� ����
�
�� ����� -��! ������ �
��
����
�� �����
�	� �
���
�"
��� ��$
��� �� ��� ��������� ��! �� ��� �� ����
��� ����� ����������� -�� ��������� ���� �
�� �� �%�

��
�	 "������	�� �
��� ��� ��������
�� �� ��� �"
���
��� �������� 
������� ��� ������
�
�� �� ����� ���

� � ���
�
�	 �������*� ����
��� -�"�� ��	������ �����
������ � ���� �� �����
�� �����
�	� 
� ��
�� ������
������ �"
��� ��� �������� �� ��� �������� ��� ����
�� ����� � ����� �������� ��� 
����������� ���� 
���
��
�� �
	��������� �"
��� ��� ���������

'��  !���$���� (��
 )����
� �������

&�
�
�� ���
�� �
�� ��� ����"� ����� ��� ��� -���� ��
+���
 �������� ���� ��� �%������ ����
�� �� ������
������ �
������
��� �"
��� ��� �������� 
� ��� ������ ���
���
���� ,�������� ���! �������� ����� ���� 	
��� ���
���� ���" �� ����� � ������ �
��� ��� �!���� �
�
.��
��
� "������	� �� ������ 
� �
���� ������� ����
�	�
�����	� ��
� ���� ��� ���� 
� ��������� ��� �������

� � �
�	�� �!���� ������ ����� ��
"� ����
�
���� ��	�
�
�
�� ����
�������� ������ ������� �� ������� ����
�	
���! �� ������ �%���
��� ��� 
� ��� ��
�� �%���� 
��
��$
��� �"
��� �� ����� �� ��1���
��� -��� ��� � �����
��� ���� ��$
��� ��� ��
�
�
�� ������ ��� �!���� ��"��
�
% �!���� �� ��� ������ ��������� �
�� ��� �� ����
���
��� �
������
��� �"
�� ��� ��� �� ����
.� 
� ��� ��
�����

5�� ��� ����"� ������ ������ ������ �"
��� ��� ���
���

�	 ����
���� ����	���
��� ���� �
 ����� 
�
�
�� ����
�	���
���� ����	 �
�� �������� ��� ��� ����� ����
�
���
�� ���� �"
�� ��� ���"
��� C�� ������ ��� �!���� 	���
����
.�� 
�� ������� �������� ��!��� ��� ����
�� 
��
������� �� ��
�� ���! ��� ������ 
� ��� ������ �
����
������� ����
�	 ��! ���" ���� 
� 
�������
� �� ��� 
�
��� ������! ������� -�
� 
�������
�� ��� 
������ ���
���� ��1���
�� ��� ���� ��� ���� ���������� ���
����
�� ����
���� 
� ��� 
�
�
�� ���
��������

5



+������� �� ���
��� ���� ���� ��������� ������
�����
��� ���� ��� ��� ������
��� �������� �����
�
�� �����
�	 �� �"
��� ��� ��������� /� ���� ������ ���

����� ���� �!������
� �%���
����� ���� ��
� �������
"������	� ������� ���� � ���
�� �����
��� -� ��
�
���� �� �%��
��� ��� ����� ����� ��� ����"�������
�������� ���� 
������ ����� ����"�� &� ��� 
	����� 
���
�����
���� ���� ����� ��� ��� �������� ���� ��� ��
������ 
� ��� ��
�
�
�� ������ �
	�� ���"� �������� 
�
��� ������ �
�� �
%����� ��������� ��� ��� �
	�������
���������� -���� :8 ���"� �����
���� ���� ��� ���
��

�	 ��� ���� �������� ��� ��� ���!�

/� ����
��� ��� �!���� �
�� ��� ��
�
�
�� �"
���
��� ��� ��������� 
����
�	 ��� ��� ��� ���
��� ������
���� ���� �Æ�
���� 
� ��
��
���� �� ����� ����� ����"��
����� ��������� /� ���� ��������� 
� �
�� ����� �����
���� 
� ��$����� �
�	 ���� ���" �� � ���
�
�	 �����
��� �� ���� ������
�	 ��� ����� �� �!���� ��$
��� ��
�������� 
�� 0����� �
�	
��� ������ ����
��� �
��
�%���
�� ��� ���� ��� ������� ������ 
��� ����
�����
��!�
��� ������� �� ���� 
� �� ���� 
� 
� ��� ��� ��
����
� �� �
��
� D� �!���� ��� ����� ���� ���� ��� 
�
�
��
������ +������� 
� ���� ������� � 	
��� ������� ���!
��� �
���� ��� ��� ����� �� ���� D�� �!���� ������ 	
��

�	 � ���
���!� /� ���� �
�
��� ��� ����" ����� �� �
%
	��� ��������� /� �������� ����� �������
��� ��� ����
���� �� �����
���
�! ��� ������ �� ��
�" ���! ��)���
��� ������ 
� ��
�� ����� ���"�� ����� ���������

/� ��� ������ �� ��� :8 ����"������� ���������
�����
�	 ���� �! �
Æ���! ����� ��������� ���"� ����
��� �
	������� ���"� ����� �� �������! �
��
� � ������
-�� 
��
�
�� ��� ���� ��� �!���� ���� ����� ����
� ���
���! 
� �� ��������� 
� ���� �
�� �
����� �����
����� ��
�� 
� ���� ���� �� 
� ����
�	 ���� �
Æ���
����� -� ��
� ���� ������ ����
��� �"
��� ��� ��������
��$
��� �� �������� ��� ��� �� 
� ����� ���"�� +���
����� 
� ��� �!���� ��
��� �� � 	
��� ��� 
� ������� ��!
�"
��� ��� �������� ������� ��
�	 ���� ��� �� �������

�)���� �� ����� ��������� /� ��� ������ ���� :��
�������! 	�������� ������� ������ ��� �����	�� ���
����� �� �!���� ������ �� ���� ����� �� �%���
����� ��
� �������� �� ���� ��� ��� ����
������ �
�� 
�� �����
�	
������
��� � ��� ������� :�� ������ ������� �����

5
	�� � ����� ��� ����� �� ��
� �%���
����� 
�����

�	 �D ������� ��������� 
�������� ����� ���� �����
-�� ��� ����� ���� ������! ���� �����
�	 ������ ���
����� �!���� ��$
��� �� ����� �������� 
� ��� ����"�
������ 0��� ����� ��� ���� ����
��� ���� 
�������
�
�� ������� �
Æ���!� �� ��� ���� �%����� ������
��� ���� ���� �� ��� �������� ��� 
�������
�� �����	�

��� ������ ����� ���� � ��� ����� �� ������ ���� �����

����� �� �� ���� � �
��� � ��� ���� �
��� �� ��������� �
�

����
��� � ����� ��� ��������� ��� � ��

� �����	�� ������

0 5 10 15 20 25

Number of problems encountered

0
50

10
0

15
0

20
0

25
0

30
0

N
um

be
r 

of
 c

yc
le

s 
re

qu
ire

d

No learning

Learning

Figure 1. �����
 �	 ����� 
����
�� �� ������ ��

���� � ��������
� ���� �� � 	������� �	 ��� �����


�	 �
������ �
������ ���
���� ���
 ��� 
���� ����

�
��
 
��������� ������ ���� �������� �����

���! ��! 
������ 
�������
� �����"�� -�� ������ �	�
	��� ���� ������ ��"�� �������	� �� ���� �
�
��� ���
������� �� ����� 
�� � ��� �� ����� ��������� &� �
�!�
��� �� �� :8 ��������� ��� �!���� ���������� �
��� �������� ��� E< �"
���� 
����
�	 � �"
������
�
�	
�"
���� 9< �����������
�
�	 �"
���� ��� 9� 	��� �"
����

/� ��������� ������ �
�� �������� 
� 
������
�	
����� �� �
Æ���! ������ �� ���
���� ��
� ���
�
�	 ��	�

��� ���� ���� �� ������ �����
�	� '� 
��
�
�� ���
����� ������ ��� �!���� ���� �� ���� �
"��! �� �����
�
����� ��������� 
� ���� ���� ����
�! ��$
�� �"
���
��� �������� ���� ���� ����� ���� 
� ���� ����
���% ���� ���������� ������ +������� ��
� �!������
�
� ������ ����� ����
�	 �%���
�������!� �� �� ����
��
�� ������� ���! �
�� ��
� 
� �
��� &� ��
� ����� ��
���� ���" ��� ��� �
	������� ���"� ��� ����
�	� ��� ���
������ ����� ���! ���� ��� :: �
����� ���������

/� �%��
��� ����� ����
�
���� ��� 
� ��
�� ��� ���
����� �������� ���� ������� �������! �
��
� ���
� �
��
����! ������ ��� 
� ��
�� ���! ���� ������� �������!
�
���� ��
� ����
�����
��� ��� ��� 
� ��
�� �� ������

�	 �������� �	�
� �� �����	�� ��� ��$
��� �����
�� �!���� ���� :�� �
 ����� ��� ���� 
� ��
� ����� ����
��� ��� ���� ��������� �� �%������� ��� ����
�
�� �
��
�� �����
�	 ����� ��� ������ ��"
�	 :98�E@����<9 �!�����
+������� ��� �"
��� ��$
��� ���� �������� ������� �!
�
Æ���! ���" ��9�@@ � ���9E� ������� ����� �������
���� �������! ������� ���"� ���" ����8�����8� -���
�������
�	 �
����� �������� ����
�� �
� ��� ������ ��
���� ������ ����� ��! ���� � ���
���!�

-� ��������� ������ ��� ������� �� ���"� �� ���
������ ��� ������ ����� ����
�
�� �
�� ����� ���
�
�	

6



��������� �	�
� ����
�	 �� ��� ��� �
	������� ���"��
/��� ���
��� ���! �� ��� ��� �������� ��������� ���
�����	� ���� :�� ��� ��� :8:�88 � �:�E: �!����� ���
���� ��� �!���� ������� ���� ����� ��� ��� �
	�� ����
���� ��������� ��� �����	� ��� �8��9@� �:�<@ �!�����
��
�� ��� �
Æ���! �����
�	 ������� �����! ��� ����
������� -��� ������ ����� �����! 
���������� �
��
�%���
����� ���������! ��$
�
�	 ���� �"
��� ��� ����
����� ���� ���� �����
���! ������% ���
�
�	 ���������

*�� ������� ������


-�� �� �� ���"	���� "������	� �� ������ �����
�	
��� � ���	 �
����! �
��
� ���� �& ��� ��	�
�
�� ��
�����
�������� �� �%������
�������� �����
�	 ����� �
��� ��

������ �Æ�
���! �� ������������
�	 ���"� ��� ����
�
��� �%���
���� �
�� � ����
� �����! �� ������ ���
��	�
�
�� ��������� =��� �����
$�� ��$
��� �������
������� ���� �� 	
�� ������� ����
�	� �� ������ 
��
����� ���������� ��������������� ���� ��
�
�
�� ���
������� ���	�� &��� ��@@4 ,����!� ��@��� '� ��������
�� �"
�� �����
�	 ����� ������ �� ��� ������ ����
�
���
�
��� ���� 
������ ������
�	 "������	� �������� 
���
���	�� ��������� +������� ������ ������ ��
� 
��� ���
��� �����
�� �� �"
�� �
������
��� ������� ����
�� �����
��� ������� )�� ��������������� ���� �����
��� ����
������� ���� ��� ��
	
��� "������	� ������

������ ���� ��� �
�
���
�
�� �� ����� ��	�
�
�� ���
��
������� ���� 
���������� ���
��
�� �� �%������
���
����� �����
�	� 5�� �%������ #�
��� ����������� ���
������*� ���@8� 	
�� �������� ����� � ������� ������
���� �������� ��
� ��� �!���� ��������� �� 
�������

� ��
�� ���� 
� ����
�� �� ������ �� ������� 
�� '���
	
�� ��� ������� ��� 
������� 
� ������� � ���� ����
������� � 	������
.�� �%������
�� �� ��� ����� 
� �����
�� ��� ��
	
��� 	��� �����%�� ��������*� ����9� �;-��
�����!� ������� ������
��� ����������� ���� �������
� ��� ������
�� ��� ���� ���� ���� ��� 
������� 
�
��� ���� ������
�	 ���
�� -�
� ������ ������� ���!
����
�� ���� ���� ������� ���
����� �
�� ��� ��������
�
�� �������� �	�
��� ��
�� ���! �������� ������ ����
����
�	 	������
.�� ��������� &� ����� �� ��������

� ��� ������ �� ��� ������
�
�� ������� ���� ���!��
� ���� 
� ��� ����
�� ����
��� �� �;-�

-�� ����
������ ���� �"
� �� ������ 
� ��
���
�,
����� ������ ��
�� 
���"�� ���������� ����!�
� ��
����� �������� ��� ��� �� ����!�
��� ������ �� �����
�
���� �������������� ����� �� ��������������� ����
������������
�	 ������� F����� ��� ;�������� ����9�
���� �����
�� �� �%����
�� ���� ������� ����� ������ 
�
�����! ��� ������ ��� �������� �! �����	! �
�� ����
�
�� ����� ���� �� ����� ������
��� 	�������� �%��
�
�

��������� �� ���� ������� ����� � ��� ���� ���� ��

����
� �� ���� �! ��� ����������� �� 
����� ���

��

�
������
��� ��������� �� ������ ��� ������ ������
����� �� �����
������
�	 �
.�� 
� ��� ������ � ���� �
��

��� �� ��� �����
�� �����
�	 ���� 
� �������

� ��� ����������� ���� �
�� �!����� ���� ������
�����
�� �����
�	 ���
�� ��� �����%� �� ��������
����
�	 ���"�� '�� ����! �%����� ��� =���� ���
0����1
*� ���@8� ,���
�� ��
�� ������ ��	
��� ��������
���� ��� �������� �� ����� ��������� � ���� ���
���
�������� ��� �!���� �
�� �%������ �� 
������
�	�! ����
���% ��������� ����
�	 
� ��� �������� ���� ��� ������
���
�	 �� ��� ��%�� 7)�	�� �
� ������ �����
��� �������
�!���� ���� ��$
��� �
������
��� �������� 
� �� ���
����
��� ����
�� ����
�	� #
"� ,���
�� 
� ������ ����
������ �������� ���� ��� ������ �� �� ���� ����
������% �������� ��� �������� ����� �
����� ���� ����
���� ��$
���� =����..
 ��� G�	� �:��:� ������ �
��
�� �!���� ���� ������ 
� � �����
�� ����
���

��! ��� H
����*� ������ =����
�	=���� ���� ������
�� ����� ���� �
Æ��� �������� ����� �� ����
��� 	���
����
.�� ���� �
����� ����� ��
�� 
� ����
�� ����	� �
�
%��� �� ������� �����
�� ��� �%����
�� �������
0�����*� ����D� -��&# 
����������� � �����
�� ����
���� ����� ���� 
���"�� �����
�	 ���� 
� ������� ��
�%���
�� 
������� '�������
�� ��� �%���
������
��
��
�� �����
�	 ������ ���� ������� ����
�	� ��� ��� �!��
��� ��$
��� ������ ��� ��
�
�
�� ���
��� ������ ����
�
������
��� ��������� �� 
�� ����� �����
�	 �������
�� ����
�� �%���
����� &�	���
 �� ��� �:��:� ������� ���
����� �!���� ���� ��	��
.�� ���� "������	� 
� � �
���
����
��� ���" ������"� �� ������ ����
�
��� ��� ������
������
�� ������ ���� ��� ������" 
������ � ������ ����
��
�� �� ������ 
� ����! ��� -�������
*� ����E� I�
#����� ��
�� ��$
��� 	������������
�
�� ���� ���� �
��$���� �� ���
�
�	 �%���
���� -��
� �!���� ���� ���

����� �� �%���
�� ��	
��� �� 
� 	�������� �
������
�
��� ����� ��� ������ �������� 
� � �����
�� �������

+�� ���������� ��$�,�

&� ��� ������
�	 ��	��� �� ��������� ������� � ��	�
�
�
�� ����
������ ��� ��!�
��� �	���� ���� ��� ������
�������� ��� �"
���� ���� ��	��
.�� 
� �
������
��� ��
����	�
.� ���
�
�� �
���
��� ��� ������� 
�� �����
���
/� �����
��� � ��� ����� ���� ������� ����������
������� ����
�	 �� ����� ���"�� ����	 �
�� � �����
�	
������
�� ���� ������� ��� �"
��� ��� �������� ����
������ �� ������� ����
���� -�
� ������ �������� 
�
�� 
���������� ��� �����
�� ������� �����
�	 �
���
����
��� �������� ���� ����� �� ������ ������� ����
���
&� ���
�
��� �� �������� �%���
����� �
�� ��� ����"�
����� ���� ������ ��� �����
�	 ������� ���� � ���
��
�����
�� �� ����
�
�� ���������

6���
�� ����� ��������� �� ���" �� �����
��
�����
�	 
� ������ 
� ��
�� 
� 
�� ����! ���	��� 5�� 
��

7



������� �� ����� ���� 
�� ��
�
�! �� ����� �
������
���
�������� �� ����� ������������
�	 ���"� ���
��� ���
����"� ����� ��� ��� -���� �� +���
� ,��� 
���������
�� ����� ���! ������* �����
�� 
� �!���
� ����
��
���� ��$
�� 
���	���
�� �� ������� ����
�	 �
�� �����
�
�� �������� � ��
�� ����
���� 
� ��� ��
�
�	 ���
����
���� �� ���� ��� �� ������� ��� ����
������*� �����
	��
.��
�� ��� �%���
�� ������ �;��
 �� ���� :��<��

&� ���
�
��� ������* ������� ��� ������� ����
�	
��� �
������
��� �����
�	 ���� ������ ���� ��� ���
���
�
�
��� -�� ������ �!���� ������� ��	���� ����
����! ���� ���
�
�	 � � ������� ����
�
��� ��
��
����� ���� 
� ��� ����� ���"����" ���� ���� 
� ���
�"
��� ��� ��������� ����������� 2%����
�	 ��� �����
��� ������ �� ������ ��	���� ���
��
����! ���� ��� 
�
��"� ������ �������	� �� ������� ���"
���� ��� ���
������ ��$
�� �����
�� �"
��� ��� ���"� ���� 
������
��	��� �������� ��� �� �
��
�	 ������ 
� ��� ����"�
������ ����!.
�	 �����
��� ����	 ������� �"
��� ��!
����
�� ��
� ��
�
�!� ��
�� ����� ��� ��� �!���� ������
��� ������� "������	� �� �������� �
�� ���� ��1�����

/� ����� ���� ������� ��� ������� �	������ ��
��
��� ������! ������ ������ �����
�� 
� �!����� ����
����� ������������
�	 �"
���� '� ����� ���� 
������
����
�	 �� �%������ ����
�� ��� ������ ������
�
�!
�
�� ���� �"
��� ��
�� ���� ���� �� ��� 
� �%���
�
�� ��� ������� ����
�	� &�
�
�� ���
����� ���� ����
���� � �"
��*� ���������� �� ���� �� ���
��� �� ���
�	��� ��
.�� ��� �"
��� ;���
��� �
�� ����� �%����
����
��
� ����� 	
�� ������ � ���� ����� ��� � ���
��
�������� �� �����
�� �����
�	 ����� 
� 
�� ��� �
	���
�
��� �� �� �%���
���� �
�� ��� ������ ����
�������

��,��(�����$����

-�
� �������� ��� ����� 
� ���� �! J���� +�������<�
�����@ ���� 6��7� &7-' ��� �! J���� &&=��99D9D9
���� ��� ���
���� =�
���� 5�����
��� 6
����
���
�
�� J���� &��� 6��
� �
������� =������
� =�	�� ���
6�� =���
�� �����
���� �� ���! 
���� ��������� �����

��&������

��������� K� �� ����9�� !���� �� ��� ���� � +
��������
�K? #������� 2������

0������ =� ����D�� &����
�� �����
�	 �� �����
�� ���
�
�� ������� "	�������� �� ��� ������� ����	���

������ #����	��� �� $����� %��	���� ���� <E3D<��
=�� 5����
���? ,��	�� H�������

;��
� 6�� H������ ,�� #��	��!� 7�� ��1��
� ��� >
=���
��� 6� �:��<�� �� ����
������ ��� ����
�����
�����
�� �����
��� "	�������� �� ��� ���	� ����	���

������ &���� #����	��� �� '��������� '����� ���

$���� '���� (������ ���� �@@3��D�� �;, 7�����

5�
	������ 2� �� ���89�� -�� �
����
�� �� ������
�����
�	 �����
��� &� 2� �� 5�
	����� > K� 5����
��� �2����� #������	� ��� ������� � ��� C��"� �C?
,�J����+
���

&��� J��� ���@��� � ���
��
� �������� �� ��� �
������!
�� ���������������� $����� %��	���� � ) � :@D39�E�

&�	���
� '�� ��� 6� =�� ,L��.���
��� +�� > ���� 6�
/� �:��:�� ;�,�#? #����
�	 ������ �������
�
���
��� +-� �����
�	� "	�������� �� ��� (���� ����	�

�������� #����	��� �� '� "������� ��� (��������

���� �9�3�<�� -������ 5������

#�
��� K� 2�� ����������� 7� =�� > ������� �� ���@8��
;��"
�	 
� =���? -�� ������! �� � 	������ �����
�	
������
��� $����� %��	���� � * � ��3<8�

,
����� =� �� ������� M���
���
�� ������ �������
�	
��� �
�
�! �� �%������
�������� �����
�	� '	������

������������ +, � 98939���

,����!� �� K� ���@��� -�� � ��� �� ��� �� �� ���
�
�
�! �� �%������
�������� �����
�	� "	�������� ��

��� -������� ����	�������� &���� #����	��� �� '	���

���� ����������� ���� E:D3E9��� ,��	�� H�������

������� ��� =���� K� ;�� > =
���� +� �� ���8��� ������
�� � 	������ ������������
�	 ���	��� ��� � ����
����� ����	������ "	�������. "	�������� �� ���

����	�������� #����	��� �� ����	������ "	�������

���� :D83:8<�� G�2=;' +���� 7��
��

������� �� ������� /����� ����	��� �� ��������� ;���
��
�	�� ,�? +������ G�
����
�! 7�����

7)�	��� H� �
� ������� '���
�� �����
�� �����
�	
�� �
������
��� ������ ��	����� "	�������� �� ���

���	� ����	�������� #����	��� �� 0���������� ���

%��	���� � =�� 6
�	�� ;�? &222 7�����

����!� ;�� > -�������
� 7� ����E�� #����
�	 	����
��������
�
�� ���� �
�	 �%���
���� "	�������� ��

��� 1��	������ ����	�������� #����	��� �� $�����

%��	���� ���� :E@3:@8�� ,��	�� H�������

��!� 6�� > H
����� 6� ������� =����
�	=����? �� ���
�
�
��� ��� ����!�
��� ������
��� "	�������� �� ���

����� 2������� #����	��� �� '	������ �����������

���� D:E3D9:�� ,���� 7��"� ;�? ���& 7�����

=����� ;�� > 0����1
� �� 0� ���@8�� #����
�	 ����
����� �! ��"
�	 $���
���� &� �� =� ,
�����"
� K� J�
;��������� > -� ,� ,
������ �2����� $����� ���	��

���. '� �	������ ����������� ���	��� �F��� :�� #��
������ ;�? ,��	�� H�������

G�	� � 7�� > =����..
� 6� �:��:�� ,��!���!���� ������

�	� "	�������� �� ��� (���� ����	�������� #����	�

��� �� 0���������� ��� %��	���� ���� �<�3�<8��

F������ ,� ,�� > ;��������� K� J� ����9�� 6��
���
����
�����	! 
� ��
���? ������
�	 ���� ��$
�
�
���
�����	�� ��� �
�
.��
��� $����� %��	���� � *3 � :<�3
:E@�

8



To Care or Not to Care: Analyzing the Caregiver in a Computational

Gaze Following Framework

Christof Teuscher and Jochen Triesch

University of California, San Diego, Department of Cognitive Science

9500 Gilman Drive, La Jolla, CA 92093–0515, USA

christof@teuscher.ch, triesch@ucsd.edu

Abstract

We first present a computational framework of the
emergence of gaze following that is based on a generic
basic set of mechanisms. Whereas much attention has
been focused so far on the study of the infant’s behavior,
we systematically analyze the caregiver and show that
he plays a crucial role in the development of gaze fol-
lowing in our model, especially for virtual infants with
“developmental disorders”.

We first create two nearly optimal infant parame-
ter sets by means of an evolutionary algorithm and test
their behavior with a simple standard caregiver. Based
on these findings we then propose new caregiver mod-
els and evaluate them on normally developing and on
infants with “developmental disorders”.

1 Introduction

Humans and many animals live in social groups,
which confers a number of benefits and costs to its
members. But living in groups also requires differ-
ent cognitive abilities for social interactions, which of-
ten rely on visual inputs since they are less ambigu-
ous than auditory and olfactory signals and allow for
a much richer and more complex communication. One
such cognitive skill—with an immediate benefit to the
members of a group—is the capacity to imitate other
members and to learn from them, reason why humans
share with a number of non-human primates the abil-
ity to use the eyes, the head, and the body of oth-
ers to orient to important objects and events in their
environment [18, 20]. The ability to follow the direc-
tion of conspecifics’ visual gaze does not only help to
localize interesting or dangerous entities in the envi-
ronment, but also provides rich information about the
group mates. For example, gaze following can be used

to determine the position of an individual in the domi-
nance hierarchy of large groups, where each individual
receives attention as a function of its social rank [7].

Compared to other mammals, human newborns are
nearly helpless, but rather quickly begin to show bur-
geoning social responsiveness [8], and by 3–6 months,
infant and caregiver typically engage in complex pat-
terns of reciprocal interaction [14]. By their first birth-
day, normally developing infants show a robust gaze fol-
lowing [9]. The child then gets more and more adept
at recognizing diverse social cues, such as eye direc-
tion and pointing gestures. These skills serve as a
developmental basis for more complex social commu-
nication skills such as the development of the infant’s
theory of mind [1] and the development of language,
which starts around 13 months and is largely based
on joint attentional interactions with adults and ob-
jects [4, 24]. Note that in the literature, a distinction
is sometimes made between shared attention and joint
attention [10]: in joint attention, two individuals are
attending the same object only, whereas shared atten-
tion requires each having knowledge of the directions
of the other’s attention. In this paper, we only deal
with joint attention.

Gaze following has been addressed in a number of
computational and embodied models (see Section 1.1)
where most attention has been focused on the infant.
The goal of this paper is to systematically investigate
the role of the caregiver in a computational gaze fol-
lowing framework.

We first present a computational framework (Sec-
tion 2) of the emergence of gaze following that is based
on a generic basic set of mechanisms. In order to have
a nearly optimal infant opposite to the fixed caregiver,
we optimized the infant’s parameters by means of an
evolutionary algorithm in Section 2.5. The outcome are
two infants which perform almost equally well, but have
different “personalities”. Section 2.6 analyzes the care-
giver’s parameters of the original computational model
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as presented in [6]. Section 3 describes and analyzes
four new caregiver models with respect to our two ref-
erence infants, including versions with developmental
disorders. Section 4 concludes the paper.

1.1 Related Work

One of the main questions is how shared attention
develops and what the necessary and sufficient condi-
tions are. There are basically two alternative hypothe-
ses at the extremes, whereas a combination of both
could also be imagined: (1) it is hard-wired into the in-
fant’s brain or (2) it emerges through a learning process
while the infant interacts with its environment. The
most prominent exponent of the hard-wired hypothesis
is Baron-Cohen’s theory of social-cognitive modules [2],
which consists of four modules. This nativist and mod-
ularist description provides little explanatory and pre-
dictive power and does not explain how the modules
develop.

In 2001, Matsuda and Omori [16] proposed a re-
inforcement learning model for acquiring joint visual
attention in infants. In their model, the infant’s be-
havior is supervised and rewarded when it follows the
mother’s gaze. Further, they concluded that three abil-
ities are required for joint visual attention to emerge:
(1) the recognition of the mother’s face, (2) detection
of the eye gaze direction, and (3) a reward system.

Recently Carlson et al. [6] proposed a new and more
realistic dynamical systems approach which takes into
account that complex behaviors can emerge from sim-
ple learning mechanisms and which is based on a dif-
ferent and more complete basic set of hypotheses (see
Section 2). It basically relies on Moore’s suggestion [17]
that gaze following might emerge because infants learn
that the caregiver’s direction of gaze is a reliable pre-
dictor of where interesting things are located. The
proposed approach is the outcome of a more general
framework seeking to combine embodied models and
empirical research [11]. In contrast to the work of Mat-
suda and Omori, the infant learns without supervision
and only receives a reward when he sees an interesting
object or looks at the caregiver’s face (see Section 2.3),
i.e., the model therefore learns how to use the care-
giver’s face as a predictor for where interesting things
are.

Nagai et al. [19] present a constructive model by
which a real robot acquires the ability of joint attention
with a human caregiver without supervised feedback.
Although the model develops according to the three
developmental stages as proposed by Butterworth and
Jarret [5], it cannot deal with ambiguous object situa-
tions, therefore Lau and Triesch [15] recently proposed

a new approach which uses the infant’s depth percep-
tion to resolve such ambiguities.

A number of other researchers (see for Example [3,
21]) proposed and implemented mechanisms for joint
attention for their robots, however, the behaviors were
usually fully programmed in advance.

2 A Simple Computational Model

The computational model proposed in [6] relies on
a basic set of plausible mechanisms [11], which were
shown to be sufficient for gaze following to emerge:

• Perceptual preferences: Normally developing
infants enjoy looking at faces in general and their
caregivers in particular. In contrast, many chil-
dren with autism do not show such a social pref-
erence.

• Habituation: Infants tend to shift gaze from one
target to another after some time.

• Reward driven learning mechanisms: The in-
fant shifts gaze between social stimuli and interest-
ing targets in order to maximize internal rewards
resulting from visual stimuli.

• Contingent interactions and a structured

environment: There must be a correlation be-
tween where the caregiver is looking and where
interesting things are.

The basic set of mechanisms is then formalized
within the framework of a biologically plausible tem-
poral difference reinforcement learning algorithm [23].
The framework shall be briefly summarized in the fol-
lowing.

2.1 Environment and Object

The environment is represented as a set of N dis-
tinct spatially unattributed regions where exactly one
interesting object is present at any discrete time step t

in one of the N locations. After an initial fixation time
Tfix, the object has a relocation probability of pshift at
each upcoming time step t. Once relocated to a new
location it will remain fixed again for at least Tfix time
steps before the cycle restarts. Carlson et al. [6] used
an environment with N = 10 regions, Tfix = 4, and
pshift = 0.5.

2.2 The Caregiver (CG)

The caregiver can either look at the object, at one
of the N − 1 remaining empty regions, or at the in-
fant. Each time the object is relocated to a new loca-
tion the caregiver decides to look at either the infant
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with probability 1
N+1 , at the object with probability

N
N+1pvalid, or at an empty location with probability

N
N+1(1− pvalid). He then fixates the location or the in-
fant until the target is relocated again as described in
the previous section. Carlson et al. [6] set pvalid to 0.75,
which means that the CG spends about 10% of its time
looking at the infant, 68% at the object and 22% at an
empty location in an N = 10 region environment.

2.3 The Infant (INF)

The infant is modeled as a pleasure-driven tempo-
ral difference (TD) reinforcement learning agent [23],
which tries to maximize the rewards it receives for
looking at interesting things. At each time step, the
infant can look at one of the N regions or at the
caregiver, whereby, the infant can see four possible
things: (1) the object, (2) no object, (3) the care-
giver’s frontal view, or (4) the caregiver’s profile. As-
sociated with these views are four base reward values
Rfix ∈ {Robject, Rnothing, Rfrontal, Rprofile}. The infant
can only tell where the caregiver is looking when he
directly gazes at him. When the infant is looking at
something he habituates to it. For each location N , the
caregiver, and the object the infant has a habituation
value. As the infant continues to fixate on something,
this value decreases, likewise, the infant dishabituates
to all other possible looking locations. The habituation

change at each time step is given by h(t + 1) = h(t)
eβ ,

the dishabituation by h(t + 1) = 1 − 1−h(t)
eβ . In our

experiments, all habituation values are set to 1 at ini-
tialization and β = 1. The actual or instantaneous
reward received by the infant at time t is given by
rinst(t) = Rfix(t)h(t).

Based on the work of Findlay and Walker [12], the
decision of when and where to shift gaze is implemented
in two separate agents in our infant model. The when-
agent decides whether to continue to fixate on the same
location or two shift gaze. It’s state space has two
dimensions: (1) the time the infant has been fixated on
the current location and (2) the instantaneous reward
received by the infant. The where-agent provides the
new gaze location if the when-agent decides to shift
gaze. It has one dimension only, namely, the caregiver’s
gaze direction, which can be one out of the N locations,
the infant (N + 1), or unknown (N + 2) in the case
the infant is not looking at the caregiver. Both agents
make use of a standard TD learning algorithm with
tabular SARSA [23] to estimate the state-action values
Qt(s, a):

Qt+1(s, a) = Qt(s, a)

+ α[rt + γQt(st+1, at+1) − Qt(st, at)]
(1)

The action selection is made with a standard soft-
max decision rule, where action a is chosen with prob-
ability

pt(a|s) =
eQ̃t(s,a)/τ

∑N
a′=1 eQ̃t(s,a)/τ

, (2)

where Q̃t(s, a) = Qt(s,a)
maxa′ |Qt(s,a′)| .

The following parameters are important for the
model:

1. α, learning rate: A small learning rate induces slow
learning, a large learning rate oscillations.

2. γ, discount factor: Specifies how far in the future
rewards should be taken into account. For small γ

the agent is only interested in immediate rewards
and does not consider long-term consequences of
its actions.

3. τ , temperature: The lower τ , the more likely it is
for the model to chose the action with the highest
Q-value (exploitation). For τ → ∞, all actions will
be chosen with equal probability (exploration).

In many applications these parameters are hand-
tuned and fixed, but ideally they should be dynami-
cally adapted to the environment and the agent’s per-
formance. Schweigerhofer and Doya [22], for exam-
ple, propose a meta-reinforcement learning algorithm
to tune α, γ, and τ . For our purpose, the parameters
were fixed in order to allow for comparisons between
the various experiments.

2.4 Performance Measure

In order to measure the gaze following performance,
we will only use the gaze following index (GFI) in this
paper:

GFI =
# gaze shifts from CG to location looked at

# gaze shifts

The gaze following index measures the frequency
of gaze shifts that lead from the location of the
caregiver—where the infant can determine the care-
giver’s gaze location—to where the caregiver is look-
ing. During our experiments, the learning was sus-
pended every 1000 time steps and the gaze following
performance was tested for 1000 time steps before the
learning process resumed.

Note that the maximum GFI with the original care-
giver as described in Section 2.2 is GFImax = N

2(N+1)

as the caregiver spends on the average 1
N+1 of his time
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looking at the infant. For N = 10 regions, GFImax be-
comes 0.45 on the average. For N = 2, the maximum
GFI drops to 0.33.

2.5 Finding Optimal Infant Parameters by Means
of an Evolutionary Algorithm

Carlson et al. [6] used an experimentally determined
set of parameters which consisted of the following val-
ues: α = 0.0025, γ = 0.8, and τ = 0.095. For our care-
giver experiments, however, we were interested in using
a nearly“optimal”infant as a vis-à-vis and we therefore
decided to use an evolutionary algorithm (EA) [13] to
find optimal parameters for α, γ, and τ with regards
to the speed of learning and the gaze following index
at the end of the learning process.

The optimization was performed by means of a
standard elitist genetic algorithm with a generation
gap of 0.9, a cross-over probability of 0.7, a mutation
rate of 0.01, fitness-based reinsertion, and a single-
point cross-over operator. The variables α, γ, and τ

use a 20 bit representation for the interval [0.0001, 1]
on a binary genotype. The fitness function was de-
fined as the average GFI over T simulation time steps:
fitness = 1

T

∑T
t=1 GFI(t).

We ran the algorithm over ten trials for (1) a pop-
ulation size of ind = 15 individuals, gen = 50 genera-
tions, T = 300, 000 simulation steps (5 trials), and (2)
a population size of ind = 20 individuals, gen = 100
generations, T = 50, 000 simulation steps (5 trials).

The results suggest that the algorithm gets easily
stuck in a local optimum (independently of the two
trial setups) around α2 = 0.5, γ2 = 0.03, τ2 = 0.05,
whereas a global optimum seems to be located around
α1 = 0.075, γ1 = 0.5, τ1 = 0.007. We decided to simply
retain these two showcase candidates without further
investigating the EA’s underlying fitness landscape.

Figure 1 shows the evolution of the GFI as a function
of four different parameter sets. Origus represents the
original infant used by Carlson et al. [6], Optimiss and
Optimuse are the two parameter sets found by the evo-
lutionary algorithm, whereas Mediocrus is an example
of a suboptimal solution for comparison (his parame-
ters were experimentally determined).

What can we learn from these results? As one
can see, Optimuse and Optimiss both perform almost
equally well and are much faster learners than Origus
and Mediocrus. Optimuse learns gaze following slightly
faster than Optimiss, but both have approximatively
the same final GFI. Due to the higher learning rate,
his performance slightly oscillates. Origus ultimately
also reaches almost the same GFI as a the two evolved
infants.

Interestingly, although Optimuse and Optimiss show
very similar performance, they have very different pa-
rameters. Let us try to characterize their different be-
haviors in order to understand why they perform al-
most equally well. Optimiss could be described as fast-
learning, risky, nearsighted, and exploratory because
she has a high learning rate (fast-learning) and a higher
temperature (more exploratory) than Optimuse. She
also takes more “risk” because she prefers immediate
rewards (low discount factor). Her smartness, how-
ever, allows her to make up for the risk due to the
exploratory short-term oriented behavior. Optimuse,
on the other hand, might be described as tenacious,
perspicacious, and exploitive because of her low learn-
ing rate and the low temperature. She is interested in
getting long-term rewards and therefore closely stands
by her policy without taking too much risk and with-
out being seduced by tempting decoys. Interestingly,
both of these characteristic personalities perform al-
most equally well, but with a very different strategy.

Why, one might ask, do Mediocrus and Origus per-
form less good? What do they do wrong? According
to his parameters, Mediocrus is a quick learner, but all
the same sticks to his conservative policy (exploitive).
One might say that he uses a wrong combination of his
capacities and therefore only reaches a GFI of about
0.3. Finally, Origus is a really slow learner, but makes
otherwise good use of his exploitive behavior and inter-
est in long-term rewards, which ultimately also brings
him to the top.

In the remainder of this paper we shall use our two
virtual toddlers Optimuse and Optimiss and their dif-
ferent behavioral strategies to evaluate and compare
the performance of various caregivers.

2.6 Analyzing the Parameters Tfix, pshift, and pvalid

In order to analyze the influence of the caregiver and
the environment on the infant’s gaze following behav-
ior we ran several simulations with different parameter
sets for the caregiver as described in Section 2.2—who
shall be baptized Ancestrus—while the infant’s param-
eters were that of Optimuse and Optimiss (see previous
section).

Figure 2 shows Ancestrus’ average gaze following
index as a function of each of the three parameters
pvalid, pshift, and Tfix. The parameter values (two were
fixed during each run) were as following: pshift = 0.5,
pvalid = 0.75, and Tfix = 4.

As one can see, the predictiveness of the caregiver’s
gaze pvalid is the sole parameter which significantly af-
fects the infant’s GFI, i.e., for pvalid < 0.5, the GFI
begins to dramatically drop for both toddlers because
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Figure 1. Learning curves for different α,
γ, and τ . Average GFI over 10 runs with
standard error. The evolved infants Optimiss
(α2 = 0.5, γ2 = 0.03, τ2 = 0.05) and Optimuse
(α1 = 0.075, γ1 = 0.5, τ1 = 0.007) perform al-
most equally well and better than Origus. In-
fant Mediocrus is suboptimal.

the caregiver gradually becomes less predictive. On the
other hand, Tfix and pshift almost have no influence on
the GFI, at least not when modified individually1. Op-
timiss has a slightly lower GFI for all three caregiver
parameter sweeps and the GFI begins to drop earlier
than for Optimuse, which suggests that she is more
sensitive to the caregiver’s behavior.

Figure 3 shows four plots for characteristic param-
eter sets. With Ancestrus as a vis-à-vis, Optimuse
quickly learns to follow the caregiver’s gaze. Caregiver
Ancestrus I performs less good with pvalid = 0.2 be-
cause he less often looks at the object. Ancestrus II has
the same pvalid as Ancestrus but a relocation probabil-
ity of pshift = 1 and an object fixation time of Tfix = 1,
which prevents the infant from learning gaze following
because the object is relocated et every time step and
the caregiver is “nervously” shifting gaze. Finally, al-
though Ancestrus III has a fixation time of Tfix = 1
only and a low pshift, the infant learns gaze following
fairly well due to pvalid = 0.3 (compare also with the
average GFI of Figure 2).

Simulations for Optimiss show a different picture for
Ancestrus I and Ancestrus III: they have a much lower
GFI (average of about 0.1 and 0.15 respectively) than
for Optimuse, which confirms the foregoing finding that

1Note that the minimal Tfix is 1, i.e., the object moves at each

time step if pshift = 1.
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Figure 2. Average GFI as a function of pshift,
pvalid, and Tfix over T = 100, 000 time steps for
Optimuse and Optimiss. The fixed values were:
pshift = 0.5, pvalid = 0.75, and Tfix = 4. Average
GFI over 4 runs without standard error for bet-
ter legibility.

she is more sensitive to the caregiver’s behavior and
well adapted to Ancestrus only.

It can be concluded—what seems intuitively obvi-
ous for this setting and these toddlers—that the more
predictive and structured the environment is (i.e., the
higher pvalid), the better and faster the infant learns
gaze following. Thereby, the predictiveness of the care-
giver plays a crucial role, whereas the object’s behavior
is less important.

In the next section we will analyze four new care-
givers and compare them with our two toddlers in com-
bination with two developmental disorders.

3 New Caregiver Models

The caregiver used so far did not adapt to the in-
fant’s behavior, which certainly represents a gross over-
simplification of a real mother-infant interaction. One
might hypothesize that an adaptive caregiver would al-
low the infant to learn gaze following faster and more
reliably. In order to test this hypothesis, we imple-
mented several caregiver models and environments and
evaluated the gaze following performance of normally
developing and autistic infants as well as of children
with the Williams syndrome. The caregivers used are
as following:

• Ancestrus: Original caregiver as described in Sec-
tion 2.2.
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Figure 3. Optimuse’s learning curves for four
different caregiver parameter sets pshift, pvalid,
and Tfix. Average GFI over 10 runs with stan-
dard error, α = 0.075, γ = 0.5, τ = 0.007.

• Randomus: Random caregiver and object, i.e., at
each time step the object and the caregiver’s gaze
are individually moved to a random location. The
caregiver therefore looks at the infant with proba-
bility 1

N+1 and even less rarely looks at the infant.

• Careus: This caregiver waits until he can estab-
lish mutual gaze contact with the infant. He then
moves the object to a random location and directs
his gaze to the very same location where he waits
until the infant looks at the object. The caregiver
then returns his gaze to the infant and waits again
for mutual gaze contact.

• Avoidus: Same as Ancestrus, but he never looks
at the infant.

• Boreus: The object and the caregiver’s gaze both
move together, stepwise, and indefinitely from lo-
cation 1 to N and back, one step each Tfix = 4
time steps.

Figure 4 shows Optimuse’s gaze following perfor-
mance vis-à-vis of the five above described caregivers.
One can see that the random caregiver Randomus does
not provide a sufficiently structured environment to
the infant, whereas Ancestrus only allows the infant
to slowly acquire gaze following. Careus performs
best as he adapts to the infant and “guides” his gaze.
Avoidus still allows the infant to learn gaze following
very well, although he never establishes mutual gaze
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Figure 4. Optimuse’s GFI for the new care-
givers. Average over 10 runs with standard
error, α = 0.075, γ = 0.5, τ = 0.007.

Optimuse Optimiss

avg GFI N A W N A W

Ancestrus 0.44 0.004 0.05 0.41 0 0.38

Randomus 0.04 0 0.05 0.04 0 0.04

Careus 0.5 0 0.5 0.5 0 0.5

Avoidus 0.48 0.27 0.42 0.43 0.05 0.5

Boreus 0.47 0.45 0.24 0.49 0 0.5

Table 1. Summary of the average GFI for the
two toddlers facing the new caregivers. Av-
erage values over T = 300, 000 time steps
and over two runs. N=Normal, A=Autist,
W=Williams syndrome.

contact. Similarly, Boreus provides a highly structured
environment because of the deterministic object trajec-
tory and his fully predictive gaze direction. Columns
“N” (normal) of Table 1 summarize the simulation re-
sults for this experiment for both infants. As one can
see, the results are very similar for Optimiss.

3.1 Developmental Disorders

Some autistic children show little or no eye con-
tact and tend to avoid looking at faces whereas chil-
dren with the Williams syndrome have an abnormally
high preference for faces. Note that there seems to
exist controversial evidence whether autistics perceive
direct gaze as aversive or not. Carlson et al. [6] have
demonstrated that simple changes in the infant’s re-
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ward structure can lead to behaviors reminiscent of
autism and the Williams syndrome. In this paper we
used the following reward structures:

• Autist: Rfrontal = −1, Rprofile = 0;

• Williams syndrome: Rfrontal = 2, Rprofile = 2.

Columns “A” (autist) and “W”(Williams syndrome)
of Table 1 summarize the simulation results for this ex-
periment for both infants. In addition, Figure 5 illus-
trates the GFI of Optimuse as an autist and as a toddler
with Williams syndrome. She faces Ancestrus, Avoidus
for the autist, and Careus for the Williams toddler. As
one can see, gaze following does not emerge with An-
cestrus and the autist, whereas the Williams toddler
only learns it badly. Avoidus, however, helps the autist
to successfully learn gaze following because he avoids
mutual gaze contact (i.e., avoids negative rewards for
the infant), whereas Careus succeeds in “guiding away”
the Williams toddler from staring at his face to the
object.

From Table 1 we can also see that the random care-
giver Randomus is unsuccessful in all situations. Look-
ing at Optimuse, we find that Boreus performs even
better than Avoidus for the autist because he too never
looks at the infant, but provides an even more deter-
ministic behavior. For the same infant with Williams
syndrome, Avoidus performs also very well because he
avoids mutual gaze.

The situation is a little different for Optimiss. In
her autistic version, she prevents any gaze following
to evolve whereas she does a much better job as a
“Williams infant”: all caregivers, except Randomus,
succeed in “teaching” her gaze following. This is some-
how surprising as she was the one who was more sen-
sitive to the environment. However, this might exactly
be the explanation: she is more likely to be disturbed
and drifted away, which is beneficial for a Williams
toddler, i.e., to shift attention away from the highly
attracting face.

4 Conclusions

We presented a computational gaze following frame-
work as first introduced by Carlson et al. [6] and op-
timized the infant’s parameters by means of an evo-
lutionary algorithm. The outcome were two infants
which performed almost equally well, but used different
strategies. We then analyzed the original and several
new caregiver models and showed that the caregiver be-
havior plays a crucial role in the development of gaze
following, especially for virtual infants with “develop-
mental disorders”. A second finding is that no “univer-
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Figure 5. GFI of disordered Optimuse who
faces caregivers Ancestrus, Avoidus, and
Careus. Average over 10 runs with standard
error, α = 0.075, γ = 0.5, τ = 0.007.

sally” optimal caregiver exists: every virtual toddler—
whether with a developmental disorder or not—has its
own needs and requires a particular caregiver. This
immediately suggests that the ideal caregiver should
itself be a learning agent that constantly adapts to the
developing infant.

This finding might seem intuitively obvious and sim-
ply goes into the direction of developing more realistic
computational models of the emergence of gaze follow-
ing, and eventually shared attention. Nevertheless, the
current simplicity of the model can also be considered
as a strength since it brings the computational essence
of the underlying mechanisms into focus.
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Abstract

This paper studies a synthetic model for joint attentions
and turn taking by conducting experiments of robot-user im-
itative interactions. A Sony humanoid robot learns multiple
cyclic movement patterns as embedded in a neural network
model proposed by us and each of memorized movement
patterns can be retrieved and generated by means of en-
trainment by external inputs in terms of users’ movement
patterns perceived. Our experiments on a simple imitation
game showed that multiple movement patterns are gener-
ated as synchronized between the robot and users while the
shared patterns shift spontaneously from one to another.
Based on the experimental results, we show possible dy-
namical systems accounts for the underlying mechanisms
for joint attentions and turn taking.

1 Introduction

In entertainment robotics, achieving natural interactions
between robots and their users is one of the most essen-
tial issues to be solved. The ultimate goal for this is to de-
velop communicative abilities on robots like humans. Hu-
man communications involve dynamic processes such as
joint attention and turn taking with others. Joint attention
is to share behaviors, events, interests and contexts in the
world among agents from time to time. It requires mutual
awareness of companion’s attentions. On the other hand,
turn taking is to switch the initiatives in interactions among
agents spontaneously. Turn taking is considered to be pre-
requisite for joint attention. Speculating that such dynamic
processes might appear as a consequence of mutual adapta-
tion among agents, we develop a synthetic model for exper-
iments of interactions between robots and their users.

Recent research on robotics have implemented a model
of joint visual attention [3] between robots and humans
[9, 11]. In such models, the robot guess the human’s at-
tentional target by detecting their gazing and pointing, and

also pays attention to it. And then joint attention can be
archived by the recognition of the robot’s attention by hu-
man. However, in human communications, it seems that
there are more complex situations of joint attention that can
never be achieved by simply using such static and explicit
cues [8]. For example, to share topics in dialogues and to
share goals in collaborative works. It seems that the targets
of such joint attention are determined in the flow of ongoing
interactions in contextual ways. We speculate that such con-
text dependent communicative interactions could emerge in
terms of a class of dynamical structures appeared in the mu-
tual adaptation processes between robots and humans.

In this study, we assume simple movement imitation
game between a robot and human subjects where the prob-
lems of imitations are simplified from the reality. The imi-
tation in our robot platform is not yet goal-oriented ones as
have been discussed by [17]. Also the correspondence prob-
lems [4] between the perceptual space for others and motor
space of own in learning are simplified. Rather, our focus is
to observe dynamic interaction processes which take place
in the coupling between robots and human in the simplified
imitation game.

Firstly in this paper, we will introduce our neural net-
work model: recurrent neural network with parametric
biases (RNNPB) [15, 16]. The robot learns multiple
cyclic movement patterns as embedded distributedly in self-
organized dynamic structures of the RNNPB. Then, each
of memorized movement patterns can be regenerated by
means of entrainment by a corresponding users’ movement
pattern perceived. This is done by the on-line adaptation
scheme of the parametric biases (PB). Then, two types
of imitative interactions will be demonstrated using this
model. In the first experiment, the on-line adaptation only
in the robot side is considered in the imitation game. In
the second experiment, the on-line adaptation in both of
the robot and the users is performed. By going through the
close examinations of different aspects in these two exper-
iments, a novel theory for joint attentions and turn taking
will be elucidated.

17



2 Task setting and neural network modeling

2.1 Task setting

In the current study, the Sony humanoid robot QRIO
(SDR-4X II) [5] was used as the experimental platform (see
Figure 1). In this experiment, only movement patterns of
both arms were considered. Other movements were frozen.

Figure 1. A user is interacting with the Sony
humanoid robot QRIO SDR-4XII.

Before interaction experiments with users, the robot
learns a set of robot movement patterns with different pro-
file with associated with the corresponding user’s visually
perceived hand movement patterns as off-line in the learn-
ing phase. It is actually done in the form of sequence pre-
diction learning for sensory-motor flow as will be detailed
in later.

In the learning phase, the target trajectories of the robot
are obtained by mapping the user’s arm position to the robot
joint angles. This mapping was conducted using the follow-
ing engineering scheme. First, the user’s hands’ spatial co-
ordinates were optically measured by tracking colored balls
on the user’s hands. (The depth information was obtained
by using the measured size of the ball.) The obtained spa-
tial coordinates of the user’s hands are simply mapped to
the robot’s hand’s 3-D positions in robot centered cartesian
coordinates. Next, they are mapped to the robot joint angles
(shoulder roll, pitch, yaw, and elbow pitch for each arm)
by solving the inverse kinematics of the robot arm, assum-
ing the constraint that elbow pitch is dependent on shoulder
pitch. Note that this 3-D measuring is utilized only for gen-
erating the motor trajectories for the training data, and not
used in the interaction phase.

As summarized in Figure 2(a), the learning process uti-
lizes the paired trajectories of the robot joint angles, ob-
tained by the mapping, and the user’s hand positions, as vi-
sually perceived by the robot. The training of the employed

RNNPB Vision System

Training Patterns(Pattern 1, 2, ..., n)

Robot Arm Joint Angle
(8 DOF)

User Hand Position 
(4 DOF)

(a) Learning Phase

Mapping (Robot Arm IK)

Training
Maker Position 

(6 DOF)

RNNPB

User Hand Movement

User Hand Position 
(4 DOF)

(b) Interaction Phase

Optical Measure

Vision System

User Arm Movement

User Arm Movement

Robot Movement 
Joint Angles (8 DOF)

Figure 2. System configurations in learning
phase (a) and interaction phase (b).

neural network model (RNNPB) is conducted by using a
set of training patterns, corresponding to multiple robot and
user movement patterns.

In the interaction phase, the robot attempts to follow syn-
chronously the user’s hand movement patterns with predict-
ing their sequences. As shown in Figure2(b), the robot per-
ceives the user’s hand movement patterns visually and gen-
erates its corresponding movement patterns in robot joint
angles. The robot’s ability to follow the user depend on the
degree to which the user patterns are familiar to the robot,
based on prior learning.

It is important to note that the robot learns not just a static
mapping from user hand positions to robot joint angles. In-
stead, the robot learns the intrinsic dynamics hidden in the
target movement patterns. Actually, the robot can generate
its movement patterns autonomously without perceiving the
user’s hand movements, but by imagining it by means of a
prediction mechanism, as will be described later. The per-
ception of the hand movement patterns just triggers regen-
eration of the corresponding dynamic patterns of the robot
movement. The underlying mechanism of how the percep-
tual patterns can trigger the generation of the motor patterns
will be the focus of the current study.

Next, the employed neural network model (RNNPB) is
explained.
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2.2 RNNPB modeling

RNNPB is a version of the Jordan-type RNN [7] where
the PB units allocated in the input layer play the roles of
mirror neurons since their values encode both of generat-
ing and recognizing the same movement patterns. In gen-
erating patterns, the PB values function as control parame-
ters for modulating the forward dynamics of the RNN. On
the other hand in recognizing patterns, the corresponding
PB values for currently perceiving patterns can be dynam-
ically obtained by using the inverse dynamics of the RNN.
It is, however, important to note that these recognition and
generation processes are conducted simultaneously in the
interaction phase i.e.– the robot generates corresponding
patterns while recognizing the user’s movement patterns.
These ideas are detailed in the following associated with
descriptions of the learning scheme.

A set of movement patterns is learned, in terms of the
forward dynamics of the RNNPB, by self-determining both
the PB values, that are differently assigned for each move-
ment pattern, and a synaptic weight matrix that is common
for all patterns. The information flow of the RNNPB in the
learning phase is shown in Figure 3(a). This learning is con-
ducted using both target sequences of the robot joint angles
rt and the user’s hand positions ut. With given rt and ut in
the input layer, the network predicts their values at the next
time step in the output layer as ˆrt+1 and ˆut+1. The outputs
are compared with their target values rt+1 and ut+1 and the
error generated is back-propagated [12] for the purpose of
updating both the synaptic weights and PB values. Note that
the determined synaptic weights are common to all learning
patterns, but the PB values are differently determined for
each pattern. This scheme will be described in more detail
later. ct represents the context units where the self-feedback
loop is established from ct+1 in the output layer to ct in the
input layer. The context unit activations represent the inter-
nal state of the network.

In the interaction phase, the pre-learned network is uti-
lized without updating the synaptic weights. While the for-
ward dynamics of the RNNPB generates the prediction of
the sensory-motor sequences, the PB values are inversely
computed by utilizing the error information obtained be-
tween the sensory prediction and the outcome. See Fig-
ure 3(b) for the information flow of the network in the in-
teraction phase. The visually perceived hand positions are
fed into the RNNPB as the target sequences. The RNNPB,
when receiving ut, attempts to predict its next value ˆut+1

in the outputs. The generated prediction error from the tar-
get value ut+1 in the outputs is back-propagated to the PB
units and the PB values are updated in the direction of mini-
mizing the error. Note that although the PB plays the role of
the inputs for the forward computation, its values are slowly
modulated in order to adapt to the current target sequence

pt

rt (inputs)

ut (inputs)

rt+1 (target)

ut+1 (target)

(a) Learning Phase

(b) Interaction Phase

ut+1^rt+1^

errortuerrortr

pt
rt

ut (inputs)

ut+1 (target)

ct

ct+1ut+1^rt+1^

errortu

Robot Movement   
Pattern Generation

ct

ct+1

Figure 3. The system flow of RNNPB in learn-
ing phase (a) and interaction phase (b).

patterns. If pre-learned hand movement patterns are per-
ceived, the PB values tend to converge to the values that
have been determined in the learning phase while minimiz-
ing the prediction error. It is guaranteed that by minimiz-
ing the prediction error to zero the forward dynamics does
not modulate anymore since the PB values converge. Then,
the network becomes able to generate the associated motor
patterns ˆrt+1 as previously learned. The robot movement
patterns are generated based on the PB values while these
values are adapted by perceiving the hand movement pat-
terns. An interesting feature of this model is that generation
and perception are performed simultaneously in one neural
dynamic system.

In the next section, the computational algorithm for mod-
ifying the PB values is reviewed.

2.3 Computational algorithm

The PB values are determined through regression of the
past sequence pattern. In the interaction phase, the regres-
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sion is applied for the immediate past window steps L and
the temporal profile of pt from L steps before to the current
step ct is updated. Then, the current time motor outputs rct

are generated by using the pct−1 determined by this regres-
sion process. The window for the regression shifts as time
goes by while pt is updated through the iterations. In the
learning phase the regression is conducted for all steps of
the training sequence patterns. (This means that the win-
dow contains the whole sequence and it does not shift.)

The temporal profile of pt in the sequence is computed
via the back-propagation through time (BPTT) algorithm
[12]. In this computation ρt, the internal value of the para-
metric bias, is obtained first. The internal value ρt changes
due to the update computed by means of the error back-
propagated to this parametric bias unit, which is integrated
for a specific step length in the sequence. Then the paramet-
ric bias, pt, is obtained by a sigmoid function of the output
of the internal value. The utilization of the sigmoid func-
tion is just a computational device to bound the value of the
parametric bias to a range of 0.0 to 1.0. In this way, the
parametric bias is updated to minimize the error between
the target and the output sequence.

For each iteration in the regression of the window, L
steps of look-ahead prediction, starting from the onset step
of the window, are computed by the forward dynamics of
the RNN. Once the L steps of the prediction sequence are
generated, the errors between the targets and the prediction
outputs are computed and then back-propagated through
time. The error back-propagation updates both the values
of the parametric bias at each step and the synaptic weights.
The update equations for the ith unit of the parametric bias
at time t in the sequence are:

δρt
i = kbp ·

t+l/2∑

step=t−l/2

δbp
step

i
+ knb(ρi

t+1 − 2ρi
t + ρi

t−1)(1)

�ρi
t = ε · δρt

i + η · �ρt−1 (2)
pi

t = sigmoid(ρt) (3)

In Eq. (1), δρt, the delta component of the internal value of
the parametric bias unit, is obtained from the summation of
two terms. The first term represents the summation of the
delta error, δbp

t

i
, in the parametric bias units for a fixed time

duration l. δbp
t

i
, which is the error back-propagated from the

output units to the ith parametric bias unit, is summed over
the period from t − l/2 to t + l/2 time step. By summing
the delta error, the local fluctuations of the output errors will
not affect the temporal profile of the parametric bias signifi-
cantly. The parametric bias should vary only with structural
changes in the target sequence. Otherwise it should become
flat, or constant, over time. The integration period, l, is
taken as 20 steps in the experiment which is close to the
time constant of the movement patterns in the training set.

The second term plays the role of a low pass filter
through which frequent rapid changes of the parametric bias
are inhibited. knb is the coefficient for this filtering effect.
ρt is updated based on δρt obtained in Eq. (1). The ac-
tual update �ρt is computed by utilizing a momentum term
to accelerate convergence as shown in Eq. (2). Then, the
current parametric bias pt is obtained by means of the sig-
moidal outputs of the internal values ρt in Eq. (3).

In the interaction phase, the window step length for the
regression L is taken as 30 steps. The regression, by means
of the forward computation, and the error back-propagation
iterates about 100 times in the real-time computation while
the window shifts one step ahead. In the learning phase,
the regression is iterated 50000 times for the fixed window
containing the whole training sequence.

3 Experiments on imitation game

Two types of imitation game experiments are conducted
using the proposed model. In the Experiment-1, the imi-
tation game is set such that the on-line adaptation is con-
ducted only in the robot side. In the Experiment-2, mutual
adaptations between the robot and human subjects are con-
ducted in the imitation game.

3.1 Experiment-1: robot adaptation only

In the Experiment-1, the robot learns three movement
patterns shown by user’s hand movements in the learn-
ing phase. In the interaction phase, we examined how the
robot could follow target patterns while the user switched
to demonstrate among various learned patterns.

The results of the experiment are plotted in Figure 4. It
is observed that when the user hand movement pattern is
switched from one pattern to another, the patterns in the
sensory prediction and the motor outputs are also switched
correspondingly by accompanying substantial shifts in the
PB vector. Although the synchronization between the user
hand movement pattern and the robot movement pattern is
lost once during the transitions, the robot movement pat-
tern is re-synchronized to the user hand movement pattern
within several steps.

3.2 Experiment-2: mutual imitation game

The previous experiments focused mainly on the adap-
tation in the robot side. We conducted another experiment
which focus on bi-directional adaptation in mutual interac-
tion between the robot and users. In this new experimental
set-up, after the robot learns 4 movement patterns in the
same way as described previously, subjects who are igno-
rant of what the robot learned are faced with the robot. The
subjects are then asked to find as many movement patterns
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as possible for which they and the robot can synchronize to-
gether by going through exploratory interactions. Five sub-
jects participated in the experiments. The settings of the
network and the robot were exactly the same as those in the
previous interaction experiments. Each subject was allowed
to explore the interactions with the robot for one hour, in-
cluding four 5 minute breaks. Although most of the subjects
could find all movement patterns by the end, the exploration
processes were not trivial for the subjects. If the subjects
merely attempted to follow the robot movement patterns,
they could not converge in most situations since the PB val-
ues fluctuated when receiving unpredictable subject hand
movement patterns as the inputs. If the subjects attempted
to execute their desired movement patterns regardless of the
robot movements, the robot could not follow them unless
the movement patterns of the subjects corresponded with
the ones learned by the robot.

One example of the interaction in imitation game is plot-
ted in Figure 5.

It is observed that joint attention to a certain movement
pattern between the robot and the subject as synchronization
is achieved after some exploratory phase. It is also observed
that this joint attentional state is break down once but joint
attention to another pattern is achieved again.

There are interesting points in this new experiment as
compared to the previous one. First, the master-slave re-
lation, which was fixed between the subjects and the robot
in the previous experiments, is no longer fixed but is in-
stead spontaneously switched between the two sides. (Re-
call that the subjects initiated new movement patterns while
also switching among multiple learned patterns in the pre-
vious experiments.) When the subjects feel that the robot
movement patterns become close to theirs, they just keep
following the robot movement patterns passively in order
to stabilize the patterns. However, when the subjects feel
that they and the robot cannot match each other’s move-
ments, they often initiate new patterns, hoping that the robot
will start to follow them and become synchronized. Second,
there are autonomous shifts between the coherent phase and
the incoherent phase after the subjects become familiar with
the robot responses to some extent. When the subjects hap-
pen to find synchronized movement patterns, they tend to
keep the achieved synchronization for a moment in order to
memorize the patterns. However, this coherence can break
down after a while through various uncertainties in the mu-
tual interactions. Even small perturbations in the synchro-
nization could confuse the subjects if they are not yet fully
confident of the repertoire of the robot’s movement patterns.
Also, the subjects’ explorations of new movement patterns
makes it difficult for the robot to predict and follow their
movements.

4 Discussion

The authors speculate that appropriate analysis of these
observed phenomena might shed a ray of light on the mech-
anism of joint attention [2, 10] as well as turn taking behav-
iors [18]. In our new experiment, when movement patterns
of the robot and human are synchronized, joint attention
is assumed to have been achieved for the pattern. How-
ever, the current joint attention can break down and another
joint attention (attending to another movement pattern) can
emerge after a while. Although joint attention itself might
be explained simply by synchronization [1], a more inter-
esting question is how a joint attention can break down and
flip to another one spontaneously. This sort of spontaneity
is also essential in turn taking behaviors. It was observed
that the initiatives leading to synchronization switch spon-
taneously between the robot and the subjects. The essential
question here is how the spontaneous shifts in turn taking
behaviors can emerge.

Although extensive analysis of the observed data is re-
quired for further reasoning of the underlying mechanisms,
the authors speculate that they might be closely related to
the so-called open dynamic structure [14]. It was argued
that the system state tends to flip between the coherent and
the incoherent phases if stability, in terms of rational goal-
directedness, and instability, caused by unpredictability of
the open environment, coexist in cognitive systems. Tani
[14] proposed one possible explanation of the spontaneous
breakdown of self-consciousness through dynamic system
characteristics. A more theoretical framework of this idea
has been explained by the chaotic itinerary [19]. Further-
more, Ikegami and Iizuka [6] recently showed that spon-
taneous turn taking behaviors can emerge by evolving the
coupled-dynamics for a simulated pair of agents. Their
analysis indicated that both stable and unstable manifolds
are generated in the evolved coupled dynamics. In our
experiments of mutual interactions, the stability originated
from the synchronization mechanisms for shared memories
of movement patterns between the robot and the subjects.
The instability arose from the potential uncertainty in pre-
dicting each other’s movements. It is likely that the coexis-
tence of stable and unstable characteristics in the system dy-
namics might be the main cause for the spontaneous shifts.
Recently, Sato [13] related this characteristics to the unde-
cidability of the turing test in the theoretical analysis of imi-
tation game, although further examination is required in this
part of the analysis. Future collaborative research among
developmental psychology, synthetic modeling studies, and
theoretical nonlinear dynamics studies would gain further
understanding of the essential mechanisms in joint attention
and turn taking behaviors.

In the mutual interaction experiments, most of the sub-
jects reported that they occasionally felt as if the robot had
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its own “will” because of the spontaneity in the generated
interactions. It is speculated that the spontaneity originated
from the total system dynamics including the users in the
loop might play an important role in attracting people to
play with entertainment robots.

5 Summary

Our experiments with a humanoid robot have shown that
diverse dynamic interactions can emerge in the form of ei-
ther coherence or incoherence between the robot and the
user. The robot can follow the learned user movement pat-
terns synchronously by generating coherent dynamic states.
It can be said that joint attention is accomplished for the
current movement pattern shared in both the memories of
the robot and the user. Our experiments of the mutual adap-
tation suggest that the essential mechanism for autonomous
shifts in joint attention and turn taking behavior could be
explained by the open dynamic structures in which stabil-
ity, in terms of rational goal-directedness, and instability,
caused by unpredictability of others coexist.
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Figure 4. Switching of the robot movement pattern among three learned patterns as initiated by
switching of user hand movement. User hand position and its prediction by the robot are shown in
the first and the second row, respectively. The third row an the fourth row show motor outputs and
PB vector, respectively.
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Abstract 

Savage [1]  proposed analyzing active sampling prob-
lems as decision problems in which the goal is to maxi-
mize expected utility, relative to a probability distribution 
describing one's beliefs.  In the past 20 years this frame-
work has been applied to several psychological tasks [2].  
We use this framework to model eye movements in a con-
cept formation task [3], [4]. 

Introduction 

In Shepard's classic concept learning task [3], partici-
pants gradually learn which of eight objects are consistent 
with a category unknown to them.  The objects comprise 
each of 23 possible combinations of three binary stimulus 
dimensions.  Objects include large black circle, small 
black triangle, small white circle, and so on.  In each trial, 
the subject is shown a random object, guesses whether the 
object  is consistent with the true concept, and receives 
feedback.  This continues until the subject achieves near-
perfect classification accuracy or a maximal number of 
trials is reached.  Several theories make specific claims 
about how selective attention to different stimulus dimen-
sions, for example shape or color, is deployed throughout 
learning.  Rehder & Hoffman [4] devised a new version of 
Shepard's concept learning task to provide direct evidence 
of selective attention.  Rehder & Hoffman separated the 
stimulus dimensions spatially, representing each binary 
dimension as a character that could take one of two values 
($ or ¢, x or o, ? or !), at each vertex of a large triangle on 
a computer screen.  Three primary findings were reported: 
1.  Early in learning, all stimulus dimensions are fixated. 
2.  There is gradual improvement in classification accu-

racy throughout learning. 
3. After the concept is mastered, eye movements become 

efficient, restricted to only the dimensions needed to 
classify objects given the true concept. 
Rehder & Hoffman suggested that RULEX [5], a 

prominent rule-based model of category learning, and 
ALCOVE [6], a prominent similarity-based model, each 

appeared to be contradicted by different features of their 
data, but did not specify a model to account for their data.   

We show that a concise probabilistic model can ac-
count for the different amounts of learning required to 
master concepts in the classic task.  Our generative 
Bayesian model gives higher probability to concepts that 
a priori criteria judge to be less complex, and that human 
subjects find easier to learn.  Information obtained by 
fixating particular stimulus dimensions is assimilated in 
an optimal Bayesian manner.  To calculate the usefulness 
of each possible eye movement we use a principled utility 
function, based on information theory [7], taking into 
account all learning to date.  Results show that the eye 
movement model accounts for eye movement patterns 
observed both early and late in learning in the eye move-
ment task.  We further propose that this task exemplifies 
Helmholtz' idea [8] of vision as unconscious inference. 
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Abstract 

 
Social referencing refers to the ability to look at other 

people for information in novel situations. By the end of 
the first year of life, infants reliably look to adults when 
confronted with new situations, and regulate their 
behavior according to the adult’s emotional response [1, 
2]. The brain basis for this regulation of infants’ 
emotional behavior is unclear.  Because methods for 
measuring neural function in infants are highly 
constrained, there has been little research on the brain 
basis of social cognition. We report the results of a new 
method designed to evaluate the neural correlates of 
social referencing.  We exposed infants to three novel, 
ambiguous stimuli and trained their caregivers to provide 
positive, negative, or neutral information about each of 
the stimuli. The association between emotion and 
individual stimuli was counterbalanced, such that no 
emotion was related to any one stimulus more frequently 
than any other emotion. Infants’ behavior in this situation 
was rated by coders blind to the main hypothesis of the 
study.  We then measured infants’ brain activity in 
response to pictures of the stimuli used in behavioral 
testing. Infants show increased brain electrical activity in 
response to objects for which their caregivers provided 
negative emotional information (see Figure1). 

  
Figure 1.  ERP response to picutres of objects associated 
with positive, negative, and neutral adult emotion. 

 

 This brain activity response is thought to reflect 
increased allocation of attention, and parallels behavioral 
results that suggest infants look more at toys associated 
with negative adult emotion.  These results suggest that 
infants form associations between the emotional 
information and the stimulus with which it is associated.  
This method provides insight into the brain basis of 
infants’ use of emotional information provided by a 
caregiver, and may prove useful in future studies of the 
brain basis and development of social cognition. We 
discuss the significance of these results for understanding 
the neural basis for the development of social referencing. 
. 
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It is a well-known phenomenon that adults are speak-
ing differently when addressing children. The purpose and
the perceptual parameters of the child directed speech or
Motherese have been discussed over the last three decades.
Recently, this particular behavior has been characterized
as directing the child’s attention to relevant aspects of the
speech signal [2]. What if - not limited to the speech sig-
nal - children are learning from input that is specifically de-
signed for them? This is an idea that has barely been con-
sidered in the classical view on learning in pattern recog-
nition but is gaining popularity in developmental psychol-
ogy. Brand et al. [1] characterize a modification in mothers’
infant-directed action as Motionese. In their studies, they
observed that mothers’ infant-directed actions reveal dis-
tinctive characteristics that amplify or exaggerate meaning
and structure within their bodily motions. These character-
istics were identified using 8 intuitive categories: range of
motion, rate, repetitiveness, proximity to partner, enthusi-
asm, interactiveness, punctuation and simplification. Hu-
man coders gave each object demonstration a rating (0-4)
for each category. However, the definition of the categories
was tailored for human coders and often a single feature
like, e.g., velocity was contained in several categories.

We present an algorithmic solution to identify visually
observable modifications in actions in a quantitative man-
ner requiring only the video stream. Our approach is based
on a system for recognizing manipulative gestures [3]. The
human hands are tracked based on skin color and the acting
hand is related to objects in its vicinity based on their dis-
tance. Based on these processing steps, a variety of param-
eters like, e.g., hand velocity can be measured objectively.
While our findings are in accordance with Brand’s observa-
tions, we also provide insights into which specific aspects
of the demonstration are relevant for motionese.

In our case study, we looked at an adult addressing either
a child or another adult in his actions. Our approach allows

1This work has been supported by the German Research Foundation
within the Emmy Noether-Program, the Collaborative Research Center
’Situated Artificial Communicators’ as well as the Graduate Program ’Task
Oriented Communication’.

us to identify the differences with respect to infant-directed
action. In addition to the features extracted from visual data
we performed an analysis of the sound signal to achieve a
quantification of the multi-modal information directed to-
wards the child. We hypothesize that cues in the acoustic
signal can help to guide attention to relevant parts of ac-
tions. For example, the end of many actions like placing
a cup on a table is signaled by the noise of the cup hitting
the table top thus indicating the goal position of both the
hand and the object. Analyses of the acoustic signal allow
to highlight the action structure by (1) aligning noise from
actions to the trajectories of gestures and (2) identifying es-
pecially emphasized regions in the speech signal.

Our findings suggest that techniques such as tracking
manipulative gestures are an important step towards the
analysis of qualitative and quantitative differences in the
multi-modal input. They also indicate that multi-modal
cues can help in understanding (and learning) of actions
and their meaning. This will help research in robotics to
develop ways of how to reduce the complexity of the acqui-
sition problem, i.e. to reduce the requirements on built-in
architectural constraints of learning mechanisms [4]. We
will also discuss the potential application possibilities (such
as plug-ins to transcription programs) to make these tech-
niques available to developmental psychologists.
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Abstract

The year 2001 was a "fast year" for research in
Natural Computation and Robotics. In that year, the
author of an article in Minds & Machines asks two
highly pertinent questions for robotics: 1) If a robot
is able to participate in simple language games as
adequately as a child, should we concede true
meaning and intelligence to it? and 2) How would
we go about developing a robot which could
possibly live up to a positive answer to the first
question? My approach is straightforward: a) refute
the first question, so as to b) forget the last. I then
argue in favour of supporting another well-known
sub-domain of AI/HCI/Robotics thought in order to
stimulate research in the artificial sciences.

 I. PREAMBLE ON ROBOTIC BRAINS
I herein address an issue that has a 50-year and more

history in the Sciences of the Artificial. Important research
being carried out at top-notch scientific institutions like MIT,
Carnegie Mellon University and still yet many others seem
to be having difficulty with the mind-body problem in
creating robots that think. Weng, McClelland, Pentland,
Sporns, Stockman, Sur & Thelen teamed up to confirm this
in their Science article a few years back (2001) with
discussion on "automous mental development" that was
limited to brain and body building1. Whether their intention
included outright occultation of the mind or not,
reductionism cannot account for mind as it cuts this latter off
from its socio-communicative dimension (i.e. relations with
other minds), the very features that make a mind a mind and
not a brain to state things in a 'folkish' manner. A few
months later in that same year, Brian Scassellati (at MIT AI
                                                          
1 WENG J., MCCLELLAND J., PENTLAND A., SPORNS O., STOCKMAN
I., SUR M. & THELEN E. (2001), "Automous Mental Development
by Robots and Animals", Science Magazine, Vol. 291 N° 5504,
The American Association for the Advancement of Science
(AAAS), pp. 599-600.

Lab. at the time) used the following citation from Turing's
famous article presumably in order to sum up his Doctoral
Dissertation (first citation, placed top centre-page, Chapter
1).

Instead of trying to produce a program to simulate
the adult mind, why not rather try to produce one
which simulates the child's? (A. Turing 1950, p.
456)2.

I do not have the impression that exponential progress in the
area or "humanoid robotics" has since overcome this
philosophical hurdle to capture the dialogical essence of
mind.

With his "embodied theory of mind" Scassellati may
have been referring to —or taking inspiration from— Jordan
Zlatev's 1997 work on Situated Embodiment.

Whatever the relation, academics working in Robotics
and related fields like Human-Machine Interaction and
Artificial Intelligence often seem to undergo an out-of-
proportion positivistic enthusiasm for their 'babies'. Why is
this? Do not any of them have the liberty to really express
their doubts? There surely must be some conceptual
hesitation in their mind when the action implied by their
work constitutes replacing human beings. It is a good thing
that when they do replace a human being with a machine, it
is quite often in the context of repetitive task handling that
the human being no longer likes to do. But there are a few
academics that work on technological challenges that remain
purely technological in nature (i.e. not that useful since man
does not want to give up the action concerned —examples
involving speaking come to mind). Their technological
audacity does not stem from usability reports or interviews
with users. Simply defying physical laws is what they seek to
do.

                                                          
2 Cf. SCASSELLATI B. (2001). Foundations for a Theory of Mind for
a Humanoid Robot, Ph.D. Dissertation, May 6: Massachussetts
Institute of Technology.
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Scassellati gets his expectations about machine
intentionality the wrong way around when he writes about
the "Implications to Social Robotics" of his work: "Rather
than requiring users to learn some esoteric and exact
programming language or interface, more and more systems
are beginning to use the natural social interfaces that people
use with each other. People continuously use this extremely
rich and complex communication mechanism with seemingly
little effort. The desire to have technologies that are
responsive to these same social cues will continue to drive
the development of systems [...] Theory of mind skills will
be central to any technology that interacts with people.
People attribute beliefs, goals, and desires to other agents so
readily and naturally that it is extremely difficult for them to
interact without using these skills. They will expect
technology to do the same".3

But interlocutors in human-resembling communication
like to be reassured that their interlocutor is human. In fact, if
one wishes to escape from the Electrical Engineering and
Computer Science point of view, one has to read for example
the works of D. Norman, a cognitivist who addressed the
DARPA/NSF Conference on Human-Robot Interaction in...
yes, the year 2001. He then gave an analogy to persuade any
human being to understand why machine speech should not
be flawless in the human sense4. And he is not the only one
that argues in this direction (cf. infra).

Brain-child projects are fine, but may they ever lead to
"mind-childs"? Perhaps. Let us now turn to the further
specialised field of Natural Computation. At least one
influential author has caught my eye.

 II. "ARTIFICIAL PROBLEMS"

Some  authors like to delve into "thought experiments"
using such examples to study the possibilities of resolving
some of the problems of the Artificial Sciences. Let us try to
understand in simple terms what J. Zlatev meant in his (yes!)
2001 article in Minds and Machines5. His goal was to use
one of these “thought experiments” in order to up-grade the
                                                          
3 Cf. ibidem p. 159.
4 After exposing a version of the Asimovian laws of robotics, he
states the following: "while speech input is still imperfect, the
robot must make this clear [...]." He them gives the maxims the
first of which is: "Don't have flawless, complex speech output at a
level far more sophisticated than can be understood. If the robot
wants people to realise it has imperfect understanding of language,
it should exhibit these imperfections in the way it speaks. (If a
foreign speaking person could speak fluent English but only
understand pidgin speech, the more it spoke flawlessly, the less
other people would understand the need to speak in pidgin)". Cf.
NORMAN D. (2001), "How Might Humans Interact with Robots?
Human-Robot Interaction and the Laws of Robotology", keynote
address, The DARPA/NSF Conference on Human-Robot
Interaction, San Luis Obispo CA, September.
5 Cf. ZLATEV J. (2001), "The Epigenesis of Meaning in
Human Beings, and Possibly in Robots", Minds and
Machines n° 11, Kluwer.

position of the Artificial —robots— on the social status
scale, or perhaps quite possibly, to argument in favour taking
robotic technology even further ahead. Or was it only to test
the plausibility of lifting them up to our level?

In any event, he devises a fictive situation for this
purpose. A two-year old child is sitting on the floor and
interacting with his father through eye contact as they pass
things likes balls and blocks back and forth. The child
gestures towards an object that is out of reach and says
"train". Dad says "Oh, you want the train-engine". In
receiving it, the child repeats "train-engine", thereby
indicating that the adult's slight correction concerning the
proper of term of reference has not passed unnoticed; etc. etc
(cf. p. 155). Zlatev then tells us that, when it comes to
playing simple language games like this, you can remove the
two-year old and put a robot in the very same spot on the
floor to occupy Dad; he says that today we can build a robot
that would have the same physical and intellectual capacities
as this person's son or daughter. I agree with him so far.

My endeavour is to focus on the communication part of
his proposal as I believe this is where genetics-based robotics
would stand to gain the most from my critique.

As communication is a social activity that does not have
anything really to do with genes themselves, I am sure the
author pointed out here will have no objection: he does in
fact carry his point of view well outside of the materialistic
topics spoken about traditionally in robotics.

One does not really have to read beyond the Introduction
of Zlatev’s rather lengthy article (though it does read quite
nicely) to find out whether his version of "Epigenetic
Robotics" will not be able to defy the tormenting
philosophical questions that Strong AI has been battling with
since the days of R. Schank in the 70s, Herbert Simon and A.
Newell at Rand Corporation and CMU in the early and mid
50s, A. de Groot (1946) and still yet others, questions namely
such as “is it possible for Man to build a machine to think?”.
As Zlatev (p. 157), I do not have the philosophical
wherewithal, but I esteem myself to be in a position to be
able to bring a certain number of issues to his attention,
though perhaps only really in point form. A glance over my
notes would nevertheless seem to indicate that what I have to
say could be somewhat important for specialists in Natural
Computation (cf. infra, Conclusive Remarks).

I understand epigenetics to be a field of study that
involves mainly the "physicalist options" of the Cognitive
Sciences; the work of Zlatev and Dennett are encouraging as
they do endeavour to look into the other options possible
under this banner, even if the latter author mentioned here
has confused the notions of mind and brain in the past (cf. D.
Dennett 1996).

 III. MY APPROACH

My vision of the way things are for the sciences of the
Artificial in general, and thus Natural Computation and
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Robotics in particular, will quite simply be based on the two
questions brought forth by the author:

If a robot is able to participate in simple language games
as adequately as a child, should we concede true meaning
and intelligence to it?

How would we go about developing a robot which could
possibly live up to a positive answer to the first question?

My approach is straightforward: a/refute the first,
b/forget the last. In order to not leave specialists in robotics
following the example targeted here in the dark, I will
c/deploy a prospective epistemology which will introduce
discussion leading to the reinforcement of another well-
known sub-domain of AI/HCI/Robotics thought (cf. the last
section): Weak machine intelligence.

 IV. ZLATEV'S HOW-TO’S

If I understand correctly, what the author means by
“reverse engineering” is that in recreating the behaviour of
communicative intelligence, while working with the smaller
units of behaviour to form the larger ones of the robot
language acquisition process, the robot builder must situate
his action within a long set of implications enunciated in the
exact opposite order: “linguistic meaning presupposes shared
conventions, as a form of mutual knowledge. Conventions
presuppose reflexive consciousness, allowing them to be
learned and followed. Self-consciousness presupposes the
perception of oneself as an intentional agent. Perception of
oneself as an intentional being presupposes the perception of
others similarly. Hence, other-intentionality, self-
intentionality, self-consciousness and language form a
possibly necessary developmental progression and an
artificial system aiming at real —as opposed to simulated—
language use …” (p. 189). This does appear to give a more
pragmatic aspect to the ‘usual implementation technique’ in
the artificial technologies fields, but is there not something
very paradoxical here?

If these are presuppositions proper, they would indicate
rather that one should start by building a robot by taking the
larger chunks on and then the smaller ones. In his initial
explanation of the thought experiment involving a child
playing with toys and talking with Dad (p. 155-156), Zlatev
starts off with intentions, goes through meaning and
understanding to get to the grammar part. In fact this type of
discourse is typical of positivistic science that has, so to
speak, bit off too much to chew and then wonders what to
do.

At this point in the game one may ask if robotics really
does have a set methodology and direction to follow… or is
it just heuristically (or hysterically) shooting in the dark? I
could even say that the (almost not) implicit goal being
chased after here, recreating man in behaviour as well as
social role, is so difficult that, however big the steps robotic
technology is taking towards this goal (excuse the pun!), we
do have a very long way to go.  As I see it, a more plausible

way of seeing things would be to take the larger components
for the smaller ones: simple intentionality features of
members of the human race put end-to-end to build very
complex grammatical constructions. Why should the
linguistic utterances of language users be considered any
less complex then human intentionality? It would seem
obvious that —after saying over the last 25 years that
utterances lacking their intentions-driven component cannot
have meaning— we could and should be able to imagine
positive responses to this epistemological question. Zlatev
seems to be going in the right direction but shows here the
sentiment that the Robotics community will have trouble
following his initiative; hence the need for an adjective on
the banner, (i.e. “epigenetics”).

 V. DIALOGICAL COMMUNICATION

In Section 4.2, it becomes clear that Zlatev’s approach is
based on a rather dated account of interpersonal
communication. Although Grice inaugurated the discursive
study of ordinary language use with his studies on
"implicatures" —a welcomed advance from the area between
Philosophy and ‘plain linguistics'—, his (and Gazar’s) results
are not sufficient for what we are expecting of robotics
intelligence today. Whatever we may expect, it is entirely
clear that Zlatev's model of intersubjectivity is not able to
escape that of Grice’s presentation pattern of intentional
layering: A knows X, B knows that A knows X, A knows
that B knows that A knows X, etc. (cf. p. 182).
Communication theory has come a long way since then (cf.
Vernant, Vanderveken, Jacques, Shotter and my own work in
the 90’s). It has come to fully accept asymmetry as the basic
nature of the communicative link. The layering of intentions
performed by Grice would suggest that a symmetric alibi
was still necessary.

The progress that has been made in communication
theory could quite simply be stated as follows, though I run
the risk of being accused of over-simplification:

A cannot do with B what B does with A, whatever the
communicative activity is (i.e. discussing explicitly or
implicitly about knowing X).

So if the authors means to speak about a Robot that
participates in simple language games, how can his analysis
of the situation be water tight if the pragmatic nature of the
relation in question here is not solid? Who is speaking to
whom? is a simple question that resumes what I mean by the
pragmatic nature of the relation and this is important as the
father in the thought experiment here, as Zlatev pointed out,
does not know who or what he is interacting with. Is that
really his daughter on the floor in front of him? Is that not his
daughter?

One of the most relevant things I have to say in this
article is that it would appear that the field of robotics is too
materialist to succeed in tackling the myth of humanity. Its
endeavours only represent reproducing/replacing the mere
manifestation of communicative intelligence; the dialogical
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profundity of human cognition and communication skills are
hard to replace over and above the toddler level. This is why
the AI project has been reduced. What level of dialogism can
robotics-embedded AI produce? At the outset, Turing and
post-Turing discussion was about adult dialogical capacities,
Zlatev tackles two-year olds (behaviour only?), and in
relation to this, Scassellati drastically gears the
argumentation down once again in his work: "The systems
presented here will not begin to approach some of the
complex social skills that children master even in the first
year of life".6 In fact, there exists a logical impossibility for a
robot to participate in dialogical activities because of the
primium relationalis in human communication as defined by
F. Jacques as early as in the beginning of the 80s. This means
that for any propositional content flow to obtain success, it is
dependent on the relationship between interlocutors that must
exist prior to it. AI tries things the other way around if it
even considers the pre-imminence of the relation at all.

 VI. SOCIAL STATUS

I would have to add a few itilicised characters to Zlatev’s
first question:

If a robot is able to participate in simple language games
as adequately as a child at least in appearance, should we
concede true meaning and intelligence to it?

P. Bourdieu7 would say that mechanical 'objects' like
Robot Sapiens are only simple artefacts, whatever that
species may be capable of: it is so-to-speak Made in the
Republic of Human Society and is thus subjected to the rules
therein, rules that go beyond the boundaries of mechanics,
genes, synthetic flesh and other physical paraphernalia.

But what Zlatev does well in his article is point out that it
is important for machines, if they are to have success in
performing operations in a human way, to learn over a period
of time, to have a history. They need to have the opportunity
to acquire the skills to evolve their on knowledge. The
programming-in method is, I think we are safe to say now,
out since people working in robotic have started to take into
account, as Zlatev, the more philosophical discourse on their
subject (Dennett, Dreyfus, Turkle, Turing, etc.).

 VII. ROBOTIC "INTELLIGENCE" TWEAKED
DOWN FOR PARENTS AND OTHER ADULTS

One of our main points today is that, other than for all the
logico-philosophical and relational points exposed above,
society is far from being in a position to accept the advanced
                                                          
6 SCASSELLATI B. (2001). Foundations for a Theory of Mind for a
Humanoid Robot, Ph.D. Dissertation, May 6: Massachussetts
Institute of Technology, p. 19.
7 Cf. BOURDIEU, P., (1982). Ce que parler veut dire : L'économie

des échanges linguistiques, Fayard.

products to come of “robotology”, even if robotics,
epigenetic or otherwise, is making good progress now. These
products are for our utilitarian society but, in order to be
fully accepted by the Self —as is the Other in a dialogical
setting (context which remains exclusively inter-human for
the time being)—, without the proper identity features they
will remain at the fringe of human communities. Zlatev finds
it necessary to play with our emotions to get his point across
and so speaks of the remembrance of persons dear to oneself
while they are in a deceased state (cf. the second thought
experiment at p. 160-161); I do not for the moment find it
necessary to go this far, but it is a rather good idea to use
strong emotions —they enhance argumentation. Think about
a young boy, say in the 5-10 year-old range, who comes into
the living room to alert his parents of some happening and, in
the middle of their discussion, our eavesdropping reveals the
following utterance:

“The robot is bothering my two-year old sister”.

Would the adults react in the usual manner? That is to say in
the same way as when another human sibling bothers the
two-year old? Would the parent regularly "commissioned" to
handle such a scenario go into the recreation room with the
intent to, say, scold the robot?

The robot will not possess the proper identity features in
our society for some time yet to receive the treatment that
might habitually correspond to bothering, teasing, pushing,
hitting and so forth. For example, I doubt that, even in ten
years time, sincerely scolding (and I mean with authentic
sincerity) robots would come into practice —oh, and taking
one over one’s knee, even less so.

 By "proper identity features" for a robot to function in a
normal way at a societal level, I quite simply refer to social
status, family-induced selfhood and moral existence, features
perceived as so by humans. Furthermore, purely logical
reasons for artefacts like robots not being equipped for total
integration into human society do exist in the literature in
Human Sciences, such as those pertaining to the pragmatic
aspects of communication (cf. supra, section V): I
demonstrate this elsewhere in Italy at another time8.

I will have to maintain the question I asked of the
robotics community in 2002 “Can simulating Man’s physical
abilities meet up to the expectations we have of Robot
Technology?” (cf. my Berlin Ro-Man paper). The fact that T.
Watanabe (et al) "abandoned" his InterRobot (iRT)
technology for a "lesser embodied" form of communicative
interaction with humans —iRT's on-screen version called
InterActor— is indicative of the difficulties of human
speakers to interact with very similar-looking creatures9,
which I think is the intention of the Natural Computation

                                                          
8 Cf. SCHMIDT C.T. (Forthcoming 2004), "A Relational Stance in
the Philosophy of Artificial Intelligence", European Conference on
Computing and Philosophy, E-CAP 2004, 3-5 June, University of
Pavia, Italy: Kluwer.
9 Cf. WATANABE T. (2002), "InterActor: Speech-Driven Embodied
Interactive Actor", Proceedings of the IEEE International
Workshop on Robot and Human Interactive Communication RO-
MAN 2002, Sept. 25-27 2002, Berlin Germany: IEEE, p. 430-435.
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Community. Of course, writers as influential as H. Dreyfus
(1972) have strongly suggested that the lack of corporal
extension was the hindrance computer programmers met up
against in the project of simulating human intelligence, but it
has been proven (both experimentally and argumentatively)
that fully simulating natural language (D. Luzzati 1989) and
full simulation of human features (C. Schmidt 2001, 2002)
goes against all sensible logos to improve interaction (though
at more advanced levels, i.e. adult interaction). This goes to
confirm the well-fitting of D. Norman's 'law-like' advice for
designers about the flawlessness of machines.

All in all, I argue in this article for the use of Weak AI,
Reduced Robotics and Invisible Interfaces (a
Cog/InterRobot/Kismit type of creature does get one's
attention). This is necessary for producing useful robotics for
adults too. Taking research in this area back up to the adult
level is the main idea, is it not?

I would like to sum up with the words of a very active
researcher in the Robotics field:

"[...] humanising technology does not necessarily require
creation of humanoid technology, it could rather push
forward to develop technology which meets the specifically
human ways and strategies of (socially) living and
surviving"10.
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Abstract

The majority of our waking hours are spent engaging
in social interactions. Some of these interactions occur at
the level of long-term strategic planning while others take
place at faster time scales, such as in conversations or card
games. The ability to perceive subtle gestural, postural, and
facial cues, in addition to verbal language, in real-time is
a critical component of social interaction. An understand-
ing of the underlying perceptual primitives that support this
kind of real-time social cognition is key to understanding
social development.

This paper presents a humanoid robot designed for re-
search on real-time social interaction between robots and
humans. We discuss many aspects of the current system
including motor control, face tracking, and speech recog-
nition and how it is utilized for human to robot social in-
teraction. We also describe plans to increase the system’s
capabilities and communication skills. Last, we describe
planned research for the study of real-time social interac-
tions.

1. Introduction

Robots present an ideal opportunity to study the devel-
opment of social interaction in infants and children [2]. It
is possible to create robots that exhibit precisely controlled
contingency structures. By observing how infants interact
with these robots we gain an opportunity to understand how
infants identify the operating characteristics of the social
agents with whom they interact. In this paper we present
progress on the development of a social interaction robot,
‘RUBI’, designed to communicate and interact with chil-
dren and to serve as a platform on experiments for social
interaction and social development with children.

Figure 1. The current appearance of RUBI was
chosen by Kai Movellan, the 2 year old child
on the picture. Kai refused to interact with
the early versions of RUBI and proved to be a
wonderful critic for the design team.

2 System Architecture

2.1 Robot Structure

RUBI is a three foot tall, pleasantly plump robot with a
head and two arms (See Figure 1). It stands on four non-
motorized rubber wheels for moving it easily from place to
place. RUBI is self-contained; all of its components (com-
puter, microphone, speakers, etc.) are inside its body struc-
ture. The external connections consist of a single power
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cable and a wireless Ethernet card. The computer (specified
below) is on a sliding vibration-reducing rack. The head
consists of two cameras 13.5 inches apart representing the
eyes, and a disk-shaped face with a small button nose and
permanent smile. An omni-directional camera is on a rod
that extends above the head for a clear view of the world.
The body is a wooden night-stand that is spacious enough
to hold all of the RUBI’s components, but short enough to
keep RUBI non-threatening to children.

Pilot experiments with 2-4 year old children helped
shape RUBI’s physical design. Children were frightened
of the original design, but several iterations of experiments
helped make it more child-friendly. Some of the most effec-
tive changes included adding clothing to cover mechanical
parts, giving RUBI a ”smile”, and making it shorter.

2.2 Motor System

RUBI’s head is based on the early Robovie design from
Hiroshi Ishiguro’s group [5, 4]. It has 9 degrees of freedom:
Three degrees of freedom (pan, tilt and roll) implemented
by stepper motors that are driven by a Galil DMC-1832 PCI
motor controller. The neck can move 54 degrees up and
30 degrees down from center position and 54 left and right
of center The maximum pulse rate of the motor drivers is
144,000 degrees/sec, but the motors for RUBI’s neck slip at
high rates (over 480 degrees/sec). However, we have man-
ually set RUBI’s maximum speed to 60 degrees per second;
faster motor control is possible but has an unnatural appear-
ance. The remaining six degrees of freedom are in the eyes,
both of which have pan, tilt and zoom motors. The eye
cameras are SONY EVI-G20 PTZ (Pan-Tilt-Zoom) cam-
eras. Their horizontal range is±30 degrees and their verti-
cal range is±15 degrees. Maximum speed on both horizon-
tal and vertical axes is 150 degrees/sec. They are controlled
via a 9600 bit/sec VISCA-protocol serial connection.

2.3 Vision System

RUBI’s vision sensors consist of two SONY EVI-G20
color cameras which are the ”eyes”. The third input is a
low-resolution stationary omni-directional camera acting as
RUBI’s peripheral vision. All three use a component out
and are routed through a quad video splitter that combines
the images into one 640x480 image. The single image is
then captured via a BT848 video capture card at 30 Hz.

RUBI’s two eyes handle the main face tracking tasks.
The commands given to the motor controller are determined
by a convolutional HMM architecture that combines both a
color-based and a Frontal Face-Detector to produce a dis-
tribution of possible locations and scales for faces on the
image plane [6, 3].

2.3.1 Frontal Face-Detector

The face-detector system is explained in [3]. It can detect
over 98% of faces with minimal false-alarms in difficult
background conditions running in real time at 30 frames
per second. Its main limitation is that it only detects upright
frontal faces. Because of this, the frontal face-detector is
complemented by a color-based detector that handles non-
frontal views. Source code for the face detector is avail-
able athttp://kolmogorov.sourceforge.netas part of the Kol-
mogorov project.

2.3.2 Color Tracker

The color-based system utilizes a convolutional HMM ar-
chitecture desribed in [6]. The system uses standard HMM
equations to update a probability distribution of 100000
states representing the possible location and scale of faces
on the image plane. The color model uses two 1000 bin hue
histograms, one for faces and the other for backgrounds.
The initial face histogram model is defined a follows

p(c) ∝ exp(−d2(h, 17.95)
12.22

), (1)

whereµ = 17.95, σ = 12.2 andd is the angular distance
in degrees, betweenh andµ. The initial background his-
togram model is uniform. Each time the face detector finds
a face, the color models for faces and background are up-
dated with a weighted average of the current and past his-
togram. The most probable location and scale is chosen for
display and for use by the head controller.

2.3.3 Peripheral Vision

RUBI’s peripheral vision is handled by an omni-directional
camera. Since the motors have limited range of motion the
omni-directional camera vision software uses only a±55
degree field of view. The omni-directional camera uses a
motion detection and a non-adaptive color model to search
for people. The color model is based on statistics of hue of
many example faces.

2.3.4 Head Control: Explore Mode

The goal of RUBI’s head controller is to maximize the ex-
pected number of face detections. To do so it switches back
and forth between two operation modes: (1) Explore mode,
and (2) Face tracking mode.

While in explore mode RUBI orients towards motion
detected in its peripheral vision (with the omni-directional
camera). RUBI’s head movement is controlled by a stochas-
tic difference equation that favors a combination of contin-
uous trajectories and areas with high motion energy as de-
tected by the peripheral vision system. Once a face is de-
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Figure 2. Here are the views that RUBI sees
while tracking a face. Top are views from
left and right eyes, red box is response from
color tracker, black box is response from
face-detector. Bottom left is the view of the
omni-directional camera.

tected by the face-detector in either eye, RUBI’s head con-
troller switches to Face Tracking Mode.

2.3.5 Head Control: Face Tracking Mode

While in face tracking mode, RUBI actively moves its head
by means of a Kalman controller whose goal is to minimize
the distance from the most-likely probable position of the
face and the center of the image plane, average across the
two camera views (See Figure 2).

RUBI stays in face tracking mode if a running average
X̄t of the number of faces found by the face detector is
above a given threshold. The value of the threshold param-
eter is dynamically set via reinforcement learning with the
goal of optimizing the expected number of faces found by
the face detector.

2.4 Auditory and Speech System

RUBI sound sensor is a VoiceTracker 8 microphone ar-
ray with adaptive beam-forming. Speech detection and
speech recognition is handled by the SONIC speech recog-
nition engine from the Center for Spoken Language Re-
search at the University of Colorado Boulder. We are cur-
rently training a new noise model to reduce the speech
detector’s sensitivity to robot motor noise. The detected
speech is used to trigger contingent speech-like responses.
These speech-like responses consist of baby vocalizations
of varying length and pitches. The length of speech spoken

to RUBI modifies the length of the response such that longer
speech gives longer responses. By changing the character-
istics of these responses we can test contingency parameters
when interacting with infants in social experiments.

2.5 Social Movements

RUBI combines motor control with three social behav-
iors: face tracking, speech detection and response, and ex-
ternal environment contingency. RUBI’s motor control sys-
tem currently has 3 components; neck control (azimuth, el-
evation, roll), eye control (azimuth, elevation, zoom), and
control of external objects. In adding to tracking faces, the
eyes and head are used to perform social motor actions such
as head nodding and gaze shifting. External objects can
also be controlled via wireless Ethernet to allow RUBI to re-
spond in a contingent manner to toys or lights when turned
on or off. RUBI’s architecture combines these smaller ac-
tion into groups of behaviors and allows for recording and
playback of social interactions. Currently RUBI’s behaviors
are not coordinated for socially interaction. The planned re-
search will determine the timing of switching behaviors and
the contingency of motor control for each behavior to opti-
mize social interaction between robot and humans.

2.6 Computational System

RUBI is powered by two dual-processor 2.8 GHz Intel
P4 Xeon PCs with 512 RAM connected via gigabit Eth-
ernet. RUBI’s PCs use Red Hat Linux 7.3 with open-
source drivers. The first PC currently handles the face-
detection and color-detection on both eyes, voice detec-
tion, and peripheral vision. In the future the first PC will
handle the face-detection, color-tracking, periphery vision,
and all eye movements (neck movements are handled by
the Galil DMC-1832). The second PC will handle speech-
detection/recognition, arm/hand movements, and emotion
recognition.

3 Current Performance

Currently RUBI is capable of updating the color tracker
for each eye in 15 milliseconds and the face detector in 70
milliseconds. To account for both eyes RUBI spends 15
milliseconds correcting for the error in the left eye and 15
milliseconds correcting the error in the right eye. With a
frame rate of 30 Hz RUBI is capable of tracking a face at
speed up to a 60 degrees/sec.
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Figure 3. RUBI in a pilot study with an infant.
Here RUBI (near the camera) and the subject
attending to a toy.

4 Planned Research

4.1 Autistic Children Study

RUBI is being developed as part of the MESA project
sponsored by the National Association for Autism Research
(NAAR). The goal is to investigate the effects of contin-
gency and timing on real-time social interaction in typi-
cally developing children and in children with autism. Ex-
periments will be conducted in the near future at UCSD’s
Autism Research Laboratory. The child will be held by a
parent to keep her/him comfortable (see figure 3). There
will be electronic toys in the room that RUBI can attend
to and actively turn off and on via wireless communication.
During the course of the experiment we will alter the timing
of three different social components. The first is the timing
and duration of RUBI attending to the children. The second
is the probability of response and timing and length of re-
sponses contingent on the children’s speech. The third is the
probability of response to the behavior of toys, and timing
and duration of this response.

4.2 Infant Study

The infant study will have the same setup and environ-
ment as the Autistic study. The only difference between
the two studies is that the experiment will be run with 18
month old infants. This will minimize the possibility of the
participants having prior knowledge or expectations about
robots. The infant study will have two control groups: a

human (stranger) and an object to replace RUBI. The ob-
ject will contribute the same level of human-like features as
RUBI. RUBI’s timing and contingency factors will be al-
tered to find infant responses that are more consistent with
the results of the human control study than to the results of
the object control study.

5 Conclusion

The goal for the design of RUBI is to create a robot that
can test child/infant responses to variances in robot behav-
iors. We want to determine general robot movements and
behaviors that will combine current Artificial Intelligence
programs and to create social behaviors that Breazeal refers
to as believable behaviors [1]. For robots to work with autis-
tic children, students or the elderly they will need the par-
ticipants to be socially engaged. From the research we per-
form using RUBI we hope to gain a better understanding of
how to keep people socially engaged while interacting with
robots.
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Figure 1: Development approach for social ability 
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Abstract 

This paper describes our social approach for an inter-
active humanoid robot that understands human social 
relationships. Our interactive robot autonomously inter-
acts with humans with its human-like body properties, 
and as a result, induces humans’ friendly group behavior 
in front of it. Based on these feature as well as inspired by 
the survey in psychology research about friendship, we 
suggest a friendship estimation model for the interactive 
robot, which is an ability that is probably essential for 
interactive robots to establish social relationships with 
humans. As a result of a field experiment, the fundamental 
part of the estimation model is supported. We believe 
these results suggest the positive perspectives of our de-
velopment approach. 

1. Introduction 

Recent progress in robotics has brought with it a new 
research direction known as “interaction-oriented robots.” 
These robots are different from traditional task-oriented 
robots, such as industrial robots, which perform certain 
tasks in limited applications. Interaction-oriented robots 
are designed to communicate with humans and to be able 
to participate in human society. We are trying to develop 
such an interaction-oriented robot that will exist as a 
partner in people’s daily lives. We believe these robots 
will not only used for entertainment, but also provide it 
with communication support task such as route-guidance 
and mental support task. 

Several researchers are endeavoring to realize the 
interaction-oriented robots, such as Aibo, and Kismet [1]. 
Moreover, there are several research works that explore 
the application of the interactive robots. Shibata et al. 
successfully applied a seal-like pet robot Paro for mental 
care for elderly person [2]. Dautenhahn et al. has applied 
a simple interactive robot for autism therapy [3]. These 
research efforts seem to be devoted to social robots that 
are embedded in human society. 

The research question we are struggling to solve is 
“how can interaction-oriented robot participate in human 
daily life, establish social relationships with humans, and 
contribute to the society?” In other words, our purpose is 

to realize a peer-partner robot that socially communicates 
with humans to support their daily lives. 

We believe that the social ability of the robots will be 
greatly improved by putting these robots into human 
society. The initial tasks of the robot will be limited and 
perhaps not so important, because current interaction 
abilities of the robots are not so much as human infants’ 
and the social skill is very little. However, we can 
improve the social skills of the robot in society by finding 
various problems that robots will suffers, which are 
similar development steps as human infants’. Figure 1 
describes our development approach toward such the 
interaction-oriented robot. 

Currently, robots are applied to work in our daily lives 
as interactive robots, and gradually growing their 
interactive abilities; but not to social works that requires 
to socially communicate with more than one people. 
While previous research works have developed robots’ 
interactive abilities for only one people in front of the 
robots, we believe it is also indispensable to improve 
robots’ social ability to make robots work in our daily 
lives, which is the approach described as broken lined 
arrow in the figure. We believe that robots’ task will be 
emerged according to the improvements of robots’ ability, 
even if current robots equipped with a little skills to 
accomplish useful tasks in human society. 

We are achieving this development approach of making 
robots to gradually work in our daily lives for improving 
their social abilities as well as for exploring the possible 
tasks of the robots. While there are several learning-based 
approaches for understanding human-beings such as 
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cognitive developmental robotics [4], we rather 
implement interactive behaviors into robots with a try-
and-error manner [5]. Because, at an early stage of 
development, we do not know the appropriate strategy for 
learning-based development. Instead, we try to implement 
the interactive robot that is capable of socially 
communicating with humans, which is probably 
connected to such learning-based approach in future. 

The first step of this development approach was a field 
trial in an elementary school where interactive robots 
behave as peer tutor of foreign language, as reported in 
[6]. The robot Robovie equipped with person 
identification function to distinguish children, such as for 
calling names of children, and simultaneously interacted 
with more than one child. As a result, it proved the 
positive possibility that interactive robots can motivate 
children to learn foreign language through the interaction 
with robots. Meanwhile, we have observed the group 
behavior among friend around the robot. For instance, a 
boy and his friend counted how many times the robot 
called their respective names, and his name was called 
more often, so he proudly told his friend that the robot 
preferred him. If the robot would understand their 
friendship, it could promote the interaction with the boys 
and the interaction between the boys. That is, the ability 
of friendship estimation will enable robots to mediate 
interaction between humans. Moreover, the friendship is 
tightly connected to social relationships (described in the 
next section in detail). Thus, this friendship estimation is 
essential to accomplish more general social relationship 
estimation, which probably make possible of the future 
social robot that helps to solve bullying problem or isolate 
children problem. In this paper, we report our approach to 
estimating human friendship by using an interactive robot, 
an ability that is probably essential for interactive robots 
to establish social relationships with humans. 

2. Friendship estimation model from obser-
vation 

2.1. Related research about friendship 

It is a well-grounded finding from psychological 
research that children at a very young age engage in 
dyadic relationships, for example in the form of pretend 
play which then increase in size and complexity with age, 
forming many different peer relationships in the form of 
social networks. As children gradually establish social 
networks, each child gets a different social status, such as 
popular, average, isolated, and rejected [7, 8]. 

A sociometric test have been used to investigate the 
peer relationships and social networks, which lets a 
human directly answer the name of others whom he/she 
likes and dislikes. It is well validated and considered as 

reliable forms of assessment for human peer relationships. 
It distinguishes each child’s social status in the groups: 
popular, average, neglected, rejected and controversial [9, 
10]. It has been widely used to determine the relationships 
in a classroom or a company. 

On the other hands, there are observation-based 
methods for understanding peer relations and social status. 
Children forms group and behaves with the group, along 
with their friendly relationships. Children usually play 
with peers, while boys tend to play in group and girls tend 
to play with only 1 other girl [11]. Ladd et al. investigated 
the relationships between observed group behavior and 
their relationships. They coded videotape about children’s 
play with the four of the behavioral measure: cooperative 
play, rough play, unoccupied, and teacher-orientation. It 
revealed that cooperative play was associated with 
positive nominations while rough play related to negative 
nominations. In addition, they revealed that past behavior 
was successfully predict the current peer status, such as 
time spent in cooperative play was significant predictor to 
positive nomination [8]. Coie et al. have investigated the 
difference between popular and rejected children in terms 
of their behavior, and revealed the relationships between 
rejected children and their aversive behaviors [12]. We 
believe these findings positively support the possibility 
that social robots can recognize humans’ peer 
relationships and social status by observing their group 
behavior. 

2.2. Friendship estimation model 

Human behavior is largely based on social relationships 
which can be in the form of dyadic relationships, known 
as friendship, or larger groups known as social networks 
where there are complex peer relationships between 
different individuals. Since the previous research works 
have proved the correlations children’s group behavior 
and their relationships [8, 11, 12], we believe we can 
estimate their peer relationships and social networks from 
observation of their group behavior. We focused on the 
estimation of peer relationships, which are the 
fundamental parts of the social network, as the early 
attempt for recognition of peer relationships and social 
network. Yet it is not recognition (find all correct 
information accurately) but estimation (partly find correct 
information with moderate accuracy), robots can utilize 
these obtained information to further promote human-
robot interaction. 
The basic idea is “a robot autonomously interacts with 
several children simultaneously to cause their 
spontaneous group behavior, and observe the group 
behavior to recognize their relationships,” which is our 
hypothesis to verify. Our friendship estimation model is 
based on the association of social group behavior and 
social relations, which is inspired by previous 
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Figure 2: Relations between social relationships and 
group behavior 

  
Figure 3: Scenes of friend accompanying behavior 

in front of an interactive humanoid robot 

Figure 4: Current estimation model for friendship 
 

  

Figure 5: Robovie (left) and Wireless tags

psychological research such as the above mentioned ones. 
In general, humans’ social relationships affect on their 
group behavior, such as accompanying, distance among 
them, facial expression during conversation, and so forth. 
For instance, human is accompanied by friendly one, but 
not willingly approach to dislike one (accompanying and 
close distance). Sometimes, such the dislike relations 
might cause a quarrel or fight (distance will be close, but 
facial expression will be far from friendly). Meanwhile, 
official relationships rather than private one sometimes 
cause non-spontaneous group behavior. For instance, 
teacher may organize co-working activity such as 
“children collaborate to carry a heavy box.” The left 
figure in Figure 2 describes these examples of the 
associations between group behaviors and peer relations 
in general situation. 
On the other hand, according to our hypothesis, 
interactive robot mostly causes spontaneous friendly 
behaviors. In fact, we observed such the situation where a 
child is accompanied by his/her friend to interact with the 
robot as shown in Figure 4. We are going to verify this 
hypothesis in this paper later. Thus, we believe we can 
estimate such the friendly relationships by simply 
observing their group behavior. This idea is described in 
Figure 4-right. As the beginning step for the estimation, 
we will only utilize “accompanying” behavior that will be 
recognized by using wireless tag system. 

2.3. Algorithm 

Figure 4-left indicates the mechanism of the friendship 
estimation. From a sensor (in this case, wireless ID tags 
and receiver), the robot constantly obtains the IDs 
(identifiers) of individuals who are around it. The robot 

continuously accumulates its interacting time with person 
A (TA) and the time that person A and B simultaneously 
interact with it (TAB, which is equivalent to TBA). We 
define the estimated friendship from person A to B 
(Friend(A→B)) as 
Friend(A→B) = if (TAB / TA > TTH), 
TA = Σ if (observe(A) and (St < STH) ) ⋅ ∆t, 
TAB= Σ if (observe(A) and observe(B) and (St < STH) ) ⋅ ∆t , 
where observe(A) becomes true only when the robot 
observes the ID of person A, if() becomes 1 when the 
logical equation inside the bracket is true (otherwise 0), 
and TTH is a threshold of simultaneous interaction time. 
We also prepared a threshold STH, and the robot only 
accumulates TA and TAB so that the number of persons 
simultaneously interacting at time t (St) is less than STH 
(Eqs. 2 and 3). In our trial, we set ∆t to one second. 

3. Robovie: An Interactive Humanoid Robot 

3.1. Hardware of An Interactive Humanoid Ro-
bot 

Figure 5 shows the humanoid robot “Robovie” [13]. The 
robot is capable of human-like expression and recognizes 
individuals by using various actuators and sensors. Its 
body possesses highly articulated arms, eyes, and a head, 
which were designed to produce sufficient gestures to 
communicate effectively with humans. The sensory 

(1) 
(2) 
(3) 
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Figure 6: Environment of the elementary school 
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Figure 7: Frequency of friend accompanying behavior

equipment includes auditory, tactile, ultrasonic, and vision 
sensors, which allow the robot to behave autonomously 
and to interact with humans. All processing and control 
systems, such as the computer and motor control 
hardware, are located inside the robot’s body. 

3.2. Person identification with wireless ID tags 

To identify individuals, we used a wireless tag system 
capable of multi-person identification by partner robots 
(Detailed specification and system configuration is 
described in [14]). Recent RFID (radio frequency 
identification) technologies have enabled us to use 
contact-less identification cards in practical situations. In 
this study, children were given easy-to-wear nameplates 
(5 cm in diameter) in which a wireless tag was embedded. 
A tag (Fig. 4, lower-right) periodically transmitted its ID 
to the reader installed on the robot. In turn, the reader 
relayed received IDs to the robot’s software system. It 
was possible to adjust the reception range of the receiver’s 
tag in real-time by software. The wireless tag system 
provided the robots with a robust means of identifying 
many children simultaneously. Consequently, the robots 
could show some human-like adaptation by recalling the 
interaction history of a given person. 

3.3. Interactive behaviors 

 “Robovie” features a software mechanism for 
performing consistent interactive behaviors (detailed 
mechanism is described in [5]). The objective behind the 
design of Robovie is that it should communicate at a 
young child’s level. One hundred interactive behaviors 
have been developed. Seventy of them are interactive 
behaviors such as shaking hands, hugging, playing paper-
scissors-rock, exercising, greeting, kissing, singing, 
briefly conversing, and pointing to an object in the 
surroundings. Twenty are idle behaviors such as 
scratching the head or folding the arms, and the remaining 
10 are moving-around behaviors. In total, the robot could 
utter more than 300 sentences and recognize about 50 
words. 
Several interactive behaviors depended on the person 
identification function. For example, there was an 
interactive behavior in which the robot called a child’s 
name if that child was at a certain distance. This behavior 
was useful for encouraging the child to come and interact 
with the robot. Another interactive behavior was a body-
part game, where the robot asked a child to touch a body 
part by saying the part’s name. 
 The interactive behaviors appeared in the following 
manner based on some simple rules. The robot sometimes 
triggered the interaction with a child by saying “Let’s play, 
touch me,” and it exhibited idling or moving-around 
behaviors until the child responded; once the child reacted, 

it continued performing friendly behaviors for as long as 
the child responded. When the child stopped reacting, the 
robot stopped the friendly behaviors, said “good bye,” and 
restarted its idling or moving-around behaviors. 

4. Experiment and Result 

We conducted a field experiment in an elementary school 
for two weeks with the developed interactive humanoid 
robot, which was originally designed to promote 
children’s English learning. As we reported in [4], the 
robots had a positive affect on the children. In this paper, 
we use the interaction data during that trial as a test-set of 
our approach to reading friendship from the children’s 
interaction. 

4.1. Method 

We performed an experiment at an elementary school in 
Japan for two weeks. Subjects were sixth-grade students 
from three different classes, totaling 109 students (11-12 
years old, 53 male and 56 female). There were nine 
school days included in those two weeks. Two identical 
robots were placed in a corridor that connects the three 
classrooms (Figure 6). Children could freely interact with 
both robots during recesses (in total, about an hour per 
day), and each child had a nameplate with an embedded 
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Table 1: Estimation results with various parameters 
coverage TTH  (simultaneously interacting time) 
reliability 0.3 0.2 0.1 0.05 0.01 0.001

2 0.01  0.02  0.03  0.04  0.04  0.04 
  1.00  0.93  0.79  0.59  0.54  0.54 

5 0.00  0.02  0.06  0.11  0.18  0.18 
  1.00  1.00  0.74  0.47  0.29  0.28 
10 0.00  0.00  0.04  0.13  0.29  0.31 
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  - 1.00  0.74  0.46  0.23  0.20 
(‘-’ indicates that no relationships were estimated, so 

reliability was not calculated) 

wireless tag so that each robot could identify the child 
during interaction. 
We administered a questionnaire that asked the children 
to write down the names of their friends. This obtained 
friendship information was collected for comparison with 
the friendship relationships estimated by our proposed 
method. 

4.2. Results for frequency of friend-
accompanying behavior 

As we compared the questionnaire on friendships and the 
interacting time with the robot, we found the higher 
frequency with which children interacted with the robot in 
the company of his/her friend (see Figures 7). Seventy-
two percent of their interaction time with the robot was in 
the company of one or more friends. We believe that this 
result supports our hypothesis “our interactive robot 
mostly cause friendly accompanying behavior of children 
around it rather than the other behavior associated with 
non-friendly relationships, such as hostile, dislike, co-
working”. It implies we can estimate their friendship by 
even simply observing their accompanying behavior. 

4.3. Results for friendship estimation 

Since the number of friendships among children was 
fairly small, we focused on the appropriateness (coverage 
and reliability) of the estimated relationships. This is 
similar to the evaluation of an information retrieval 

technique such as a Web search. Questionnaire responses 
indicated 1,092 friendships among a total of 11,772 
relationships; thus, if we suppose that the classifier always 
classifies a relationship as a non-friendship, it would 
obtain 90.7% correct answers, which means the 
evaluation is completely useless. Thus, we evaluate our 
estimation of friendship based on reliability and coverage, 
which are defined as follows. 
Reliability = number of correct friendships in estimated 
friendships / number of estimated friendships 
Coverage = number of correct friendships in estimated 
friendship / number of friendships from the questionnaire 
Table 1 and Fig. 8 indicate the results of estimation with 
various parameters (STH and TTH). In Fig. 8, random 
represents the reliability of random estimation where we 
assume that all relationships are friendships (since there 
are 1,092 correct friendships among 11,772 relationships, 
the estimation obtains 9.3% reliability with any coverage). 
In other words, random indicates the lower boundary of 
estimation. Each of the other lines in the figure represents 
the estimation result with different STH, which has several 
points corresponding to different TTH. There is obviously a 
tradeoff between reliability and coverage, which is 
controlled by TTH ; STH has a small effect on the tradeoff, 
S=5 mostly performs better estimation of the friendship, 
and S=10 performs better estimation when coverage is 
more than 0.15. As a result, our method successfully 
estimated 5% of the friendship relationships with greater 
than 80% accuracy (at “STH=5”) and 15% of them with 
nearly 50% accuracy (at “STH=10”) (these early findings 
about friendship estimation, which are reported in this 
subsection, has been already appeared in our previous 
paper [15]). 

5. Conclusion 

  We proposed a social development approach for an 
interactive robot that is capable of communicating with 
humans socially. According to the approach, we have 
applied an interactive humanoid robot for a language-
education task, where we have found a lack of social skill 
of the robot. As we have found the robot cause a friend-
accompanying behavior, the robot causes human social 
behavior to understand their social relationships. This 
friend estimation model for social robot was partly 
verified by the field experiment. In the field experiment, 
two identical interactive humanoid robots placed in an 
elementary school for two weeks, where children freely 
interacted with the robots during recesses. These 
developed interactive humanoid robots identify individual 
child by using wireless tag system, which is utilized for 
recording individual and friend-related interaction time as 
well as for promoting the interaction by such as calling 
their names. The result suggested that mostly children 
were accompanied with one of more friend (72% of the 
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total interacting time), and the robot was successfully 
estimated friendly relationships partly (for example, 5% 
of the all relationships with 80% accuracy). We believe 
that this early findings would encourage further research 
in social skill of social robots as well as the sensing 
technology for autonomous observation about inter-
human and human-robot interaction. 
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Communicative behavior to the android robot in 
human infants -Preliminary report- 

Itakura, S., Kanaya, N., Shimada, M., Minato, T., & Ishiguro, H. 

 

Abstract 

We investigated whether human infants show some social behavior to the 
android robot when it behaves like human. Infant sat mother�s lap and 
face to the robot. There were two toys which can move by remote 
controller. A procedure was as follows: When the infant looked at the 
robot, it turned her head toward one of the toys until the infant followed 
her head turn. In-focus condition, as soon as the infant followed the head 
turns of the robot to look at the In-focus toy, the experimenter activated 
the In-focus dog which began to move. Out-of-focus condition, the 
experimenter activated the dog at which the robot was not looking. We 
recorded infant�s behaviors, such as referential looking or pointing or 
vocalization. The ratio of occurrence of visual checking increased when 
the robot did not look at the moving toy. Visual checking is looking at the 
moving toy and the robot alternatively. Infant produced more visual 
checking in the out-of-focus condition than in the in-focus condition. 
Infants seem to understand robot�s attentional state. This result is 
different from Legerstee�s study. Our robot is not just life-sized doll, it 
looks just like a human.  
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Skills for attention detection and manipulation are cru-
cial prerequisites underlying the development of social cog-
nition. Through a series of steps of increasing complexity,
children manage to make progress in directing the attention
of their parent and in interpreting gaze direction and point-
ing gestures. Building robots capable of engaging in such
kind of interactions is now a major topic in the developmen-
tal robotics community (e.g. [4, 5]). We report results of a
set of experiments conducted with a population of AIBO
ERS-7 robots showing how it is possible for a robot to (a)
interpret the attentional behavior of another robot and (b)
use pointing gestures in order to influence the attentional be-
havior of another robot. One of the robots takes the role of
an adult and points to an object, the other robot, the learner,
has to interpret the pointing gesture correctly in order to find
the object [2]. We show that motivation and intrinsically re-
warding stimuli play a crucial role in this development (as
already advocated by Carlson and Triesch [1]). These initial
results permit a better understanding of the challenges that
remain to be addressed for building robots capable of joint
attention [3]. In the line of Tomasello’s views [6], we argue
that joint attention is much more than simultaneous look-
ing. Beside attention manipulation and detection it involves
the development of skills for social coordination and more
importantly some form of intentional understanding. Con-
structing robots capable of developing a shared intentional
relation to the world is probably one of the hardest problem
developmental robotics has to tackle.
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Figure 1. The adult robot point an object out
to the other one.
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Evaluation of Human-Robot Interaction. 
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Abstract 

We present a pilot study to evaluate the automatic facial expression 
classification system (AFEC) developed at the Machine Perception 
Laboratory, as a tool for automatically measuring the quality of human-
robot social interaction (Movellan 2003).  
 
The AFEC system automatically detects frontal faces in the video stream, 
using a cascade of weighted integral image features (Fasel 2002) and 
codes them with respect to 7 dimensions in real time: neutral, anger, 
disgust, fear, joy, sadness and surprise. The expression classification 
combines Adaboost feature selection and SVM's. The generalization 
performance to new subjects for a 7-way forced choice was over 90\% 
correct on two publicly available datasets. (Littlewort 2003) The output 
codes change smoothly as a function of time, providing a potentially 
valuable representation to code facial expression dynamics in a fully 
automatic and unobtrusive manner.  
 
The AFEC system was deployed for measuring spontaneous facial 
expressions in the continuous video stream during unconstrained 
interaction with a social robot. Subjects interacted with RoboVie, a 
communication robot developed at ATR and the University of Osaka. 
Facial expression measurement of joy obtained by the automated system 
was compared to human judgments of joy obtained by turning a dial. The 
system predicted human judgments of joy in test sequences. Equipping 
robots or computer animated agents with the perceptual primatives 
necessary to use and learn from sub-second nonverbal communications 
opens a new realm of possible applications for machine intelligence, from 
entertainment robots to perceptive teaching software.  
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Abstract 

 Recent studies had shown that there is developmental 
link between theory of mind and self-control ability.  
According to those studies, 3-year-old children who were 
not supposed to have theory of mind did not develop at-
tentional flexibility, one of the main functions of self-
control ability. In this study, we investigated how 3-year-
old children understand other’s belief before they develop 
attentional flexibility. In the Experiment, preschoolers 
were given a card sorting task. Prior to starting the task, 
they were shown that the demonstrator sorts the cards 
incorrectly. There were four conditions, control condition 
correct belief condition, false belief condition and misun-
derstanding condition, according to the demonstrator’s 
belief. Children needed attentional flexibility to solve this 
task correctly. The results showed that there was signifi-
cant difference of performance between conditions in 3-
year-old children, and that other’s belief affected the 
performance of children in the task which needed atten-
tional flexibility. This suggested that even 3-year-old 
children, whose attentional flexibility was immature, 
could discriminate the other’s belief implicitly. We dis-
cussed the relationship between theory of mind and self-
control ability from our results and proposed the new 
theory. 

1. Introduction  

1.1. Self-control ability 

The ability to control attention and behaviour be-
comes more efficient during preschool years [1, 2]. One 
task frequently used to examine children’s self-control is 
the dimensional change card sorting task (DCCS) [3]. In 
this task, children were given two target cards (e.g., red 
rabbits and blue boats) and sorting cards (red boats and 
blue rabbits), featuring two dimensions, and matched one 
target on one dimension and the other target on the other 
dimension. The task had two phases. In the first phase, the 
children were told a rule of the game which specifies how 
to sort the test cards according to a particular dimension, 

e.g. shape dimension. The experimenter said to children 
“Let’s start a game. This game is the shape game. In this 
game, all the rabbits go here (pointing to a blue rabbit 
target) and all boats go there (pointing to a red boat tar-
get).” When the children finished five trials, the rule was 
changed to the color rules. The experimenter said to chil-
dren “Now we are playing another game. We are playing 
the color game. In this game, all the red cards go here 
(pointing to a red boat target) and all blue cards go there 
(pointing to a blue rabbit target)” The children were given 
five trials without feedback. In this task, three-year-old 
children could sort the cards according to first dimension, 
but they could not inhibit the preceding response and 
showed perseverance with the old dimension when they 
were requested to sort according to the new dimension. 
On the other hand, most of the 4- and 5-year-old children 
could switch between the rules and sort the cards correctly 

Gerstadt, Hong and Diamond [4] had observed simi-
lar difficulty in preschoolers using a Stroop-like task. In 
their study, children were required to keep to rules set by 
the experimenter and resist the temptation to say what the 
stimuli really represented. When presented with 
black/moon cards, the correct response was “day”, and 
when presented with white/sun cards, the correct response 
was “night”. Children between 3 and 4 years of age 
showed difficulty performing this task, saying “night” 
when they saw the black/moon cards and “day” when they 
saw the white/day cards. On the other hand, 5-6-year- old 
children age were able to respond correctly..   

One of the theories used to explain young children’s 
difficulty in this kind of task is attentional inflexibility 
theory. Moriguchi and Itakura [5] postulated that children 
should develop the ability to inhibit attention to irrelevant 
information and behavior. Younger children’s persevera-
tion is caused by a failure to inhibit attention to old rules.  
The tasks used included two alternatives (e.g., shape rule 
and color rule). One of two alternatives was salient for 
children for various reasons (e.g. familiarity, reinforce-
ment by feedback, more attractive object) and in the tasks 
children needed to suppress their attention to the salient 
alternative in order to use another alternative. Five-year-
old children were able to inhibit their attention to the 
salient alternatives and switch their attention to less sali-
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ent ones and thus control their choices, but 3-year-old 
children could not; the latter perseverated to the salient 
alternative. 

  

1.2. Theory of Mind 

Theory of mind is one of the most important topics 
in developmental science. Young children show difficulty 
understanding that people have the mental state such as 
belief and knowledge, but as they get older they acknowl-
edge the representational quality of mental states [6]. 
Most popular task to measure theory of mind is the false 
belief task. Two puppets  (Bert and Ernie) played with a 
ball bliefly and then Bert put the ball in a blue container 
and left. Ernie retrieved the ball, played briefly with it and 
then put it away in a red container and left. Finally, Bert 
returned , wanting to play with the ball, and children were 
asked the False belief question (“Where does Bert think 
the ball is?”) followed by the reality question.  

Wellman, Cross and Watson [7] presented a meta-
analysis of these kind of tasks and showed that children 
who were 3 years 5 months or younger performed below 
chance and made the error in the false belief question. 
Children who were 4 year or older performed above 
chance and could recognize that people held the false 
belief.  

 

1.3. Self-Control Ability and Theory of Mind 

Recent studies suggest that the development of self-
control is related to the development of theory of mind. 
Perner and Lang [8] reviewed studies of the relationship 
between self-control and theory of mind, and concluded 
that self-control tasks (e.g. DCCS) and theory of mind 
tasks (e.g. false belief task) have something in common. 
For example, although typically developed children 
showed a four-year shift in both tasks, difficulties are 
encountered by many atypically developed children (e.g. 
autism) on both tasks. Many studies have shown a strong 
correlation between theory of mind tasks and self-control 
tasks in preschoolers [9,10]. Perner, Lang and Kloo [10, 
Experiment1] gave preschoolers two versions of a false 
belief task to assess theory of mind, and the Dimensional 
Change Card Sorting task (DCCS) as a self-control task. 
They found a significant positive correlation between two 
of false belief tasks and the card sorting task.  

Self-control ability consisted of several functions 
such as planning, attentional flexibility, inhibitory control , 
error detection and correction, and so on [11,12]. Morigu-
chi and Itakura [5] suggested that one function of self-
control ability might be related to the development of 
theory of mind. They used the card sorting tasks which 
had the correlation with theory of mind tasks and showed 

the possibility that the development of attentional flexibil-
ity was related to the development of theory of mind. 

In their study, they modified the DCCS and gave the 
children three phases. The first phase was the same as 
DCCS. In the second phase, the children practiced direct-
ing their attention to the new dimension and then in the 
third phase they were asked to sort the cards according to 
the new dimension. Compared with the standard DCCS, 
the children’s performance did not improve. This result 
suggested that the children could not switch their attention 
to the new dimension in the presence of conflicting cues, 
which were cues related to old rules. Therefore, in the 
subsequent experiment, there were two phases and they 
removed the old dimension from the targets in the second 
phase. Thus the children did not face conflicting situations 
in this phase. In this experiment, the children were able to 
direct their attention to the new dimension easily. This 
result suggested that the 3-year-old children have 
difficulty switching attention when faced with conflicting 
situations, and that 3-year-old children lacked the atten-
tional flexibility. 

From this result and the fact that there is the positive 
correlation between theory of mind tasks and DCCS, the 
development of attentional flexibility might be related to 
the development of theory of mind 

1.4. Purpose of the present study  

Earlier studies suggested that the development of 
theory of mind was related to the development of the 
attentional flexibility, but it is not still clear that how 
children might understand other people’s mental states 
before they develop attentional flexibility. Some studies 
suggested that children who were 3 year or younger had 
the implicit understanding of theory of mind [13], but 
there were no studies about their implicit understanding 
with respect to the attentional flexibility. In the present 
study, using the new paradigm, we investigated how 3-
year-old children could understand the other’s belief when 
their attentional flexibility was immature. In a card sorting 
task requiring attentional flexibility, children watched 
another person performing the task after being told the 
rule, but the demonstrator sorted the cards according to 
the wrong rule. After the demonstrator’s performance, 
children were required to sort the cards according to the 
rule experimenter had announced first.  There were two 
conditions; in each condition the demonstrator showed the 
same sorting behaviour, but the demonstrator’s belief was 
different. In one condition she (the demonstrator) believed 
that her sorting was correct, whereas in the other condi-
tion she noticed that her sorting was wrong. To perform 
the task correctly, children needed to keep the correct rule 
in memory and inhibit attention to the wrong rule regard-
less of the demonstration, that is, children needed the 
attentional flexibility.  
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If 3-year-old children might understand and dis-
criminate other’s belief before they develop attentional 
flexibility, there was the difference of the performance 
between conditions.  

 
２．Experiment  

2.1 Method 

Participants 
Sixty-eight 3-year-old children (M = 42.8 months, 

range = 37 months to 46 months, 34 boys and 34 girls), 
Sixty eight 4-year-old children (M = 54.0 months, range 
48 months to 59 months, 35 boys and 31 girls) and sixty5-
year-old children (M = 67.8 months, range 61 months to 
71 months, 30 boys and 28 girls) were recruited from 
nursery schools in Kyoto as participants. In this experi-
ment, there were four conditions in which the behavior of 
the demonstrator was different; control condition, correct 
belief condition, false belief condition, and misunder-
standing condition. In each condition, there were 17 3 
year old children, 17 4 year old children, and 15 5 year, 
old children. Most children came from middle-class back 
grounds and had developed normally. 
 
Materials  

Laminated cards (12 cm × 8 cm) were used as 
stimulus. There were two target cards （a yellow house 
and a blue cup）to be matched. There were 6 sorting 
cards (3 blue houses and 3 yellow cups). The trays (13 cm 
×13 cm) on which the children put the cards were trans-
parent and were placed near the targets. 
 
Procedure 
     Each child was tested individually for 5 - 10 min-
utes. The participant was seated at a table. There were two 
conditions: a correct belief condition, and a false belief 
condition. In both conditions two experimenters were 
present. Experimenter A sat at a table across from the 
child and Experimenter B sat next to the child. The ex-
perimenters spoke briefly with the child, and once the 
child appeared relaxed, the experiment began. Each con-
dition had three phases: pretest phase, observation phase 
and sorting phase.  

 In the correct belief condition, Experimenter B 
was instructed to sort the cards according to the wrong 
dimension, to maintain a neutral facial expression, and not 
to express any cues that the child might identify.  In the 
pretest phase, Experimenter A presented the child with the 
cards and asked the child to name the pictures (“What is 
this picture?”). Children were asked to label the objects 
according to the two dimensions (e.g. “yellow” “cup”).  
If they answered correctly, Experimenter A  announced 
the rule of the game, the shape rule (”In this game, all the 
cups go in this tray, and all the houses go in this tray). 

Earlier studies [5] showed that the order of dimension did 
not affect children’s performance, so in the present study 
we used the shape rule only.  We then asked the child 
knowledge questions to make sure that the rule was un-
derstood. Experimenter A asked “Where does this (yellow 
cup or blue house) card go?”  The child was asked to 
answer two questions by pointing. 

  After confirmation that the child could answer 
knowledge questions correctly, Experimenter A said, 
“Now she (Experimenter B) will sort the cards, so please 
wait and see her,” and she started to sort the cards.  Al-
though experimenter B was instructed to sort the cards 
according to the same dimension as the child, she failed to 
do this; instead she sorted the cards according to color 
dimension. On every one of three or four trials Experi-
menter A asked Experimenter B “Is this sorting right?” 
Experimenter B noticed her mistake and said “Oh, I am 
mistaken.” This was the observation phase. 

  After the observation phase, Experimenter B said 
“I want to go to the toilet” and went out of the room and 
then Experimenter A asked the child whether Experi-
menter B’s performance was correct or not. If the child 
did not answer correctly, Experimenter A stated that Ex-
perimenter B had sorted the cards incorrectly. The child 
was then told: ”Please sort the cards according to the rule 
I told you first.”  The child was given five sorting trials, 
with no feedback about the cards were sorted correctly.  

The false belief condition was identical except that 
Experimenter B had a false belief in  the observation 
phase.  In the observation phase, the child watched while 
Experimenter B sorted the cards according to the color 
(wrong) dimension. On each trial, Experimenter A asked” 
Is this sorting right?” Experimenter B pretended not to 
notice her mistakes and she confidently nodded “Yes.” 
After the observation phase, Experimenter B said “I want 
to go to the toilet” and went out of the room and then 
Experimenter A asked the child whether Experimenter B’s 
performance was correct or not. If the child did not an-
swer correctly, Experimenter A stated that Experimenter B 
had sorted the cards incorrectly. 

In the misunderstanding condition, the pretest phase 
was the same as that in the correct belief condition. After 
the pretest phase, Experimenter A said, “Now she (Ex-
perimenter B) will sort the cards, so please wait and see 
her,” and she started to sort the cards. She could sort the 
cards correctly. On every one of three or four trials Ex-
perimenter A  asked Experimenter B “Is this sorting 
right?” Experimenter B misunderstood the rule of the 
game and said “Oh, I am mistaken.” This was the obser-
vation phase.       

After the observation phase, Experimenter B said 
“I want to go to the toilet” and went out of the room and 
then Experimenter A asked  the child whether Experi-
menter B’s performance was correct or not. If they could 
not answer correctly, Experimenter A told the child “Her 
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performance was correct.” The child was then 
told: ”Please sort the cards according to the rule I told you 
first.”  The child was given five sorting trials, with no 
feedback about the cards were sorted correctly. 
      The control condition had no observation phase. 
When they finish the pretest phase, children were given a 
short delay, and then asked to sort the cards according to 
the rule the Experimenter A instructed on the pretest 
phase.  
 
2.2 Result 

The result was shown in Table 1. Three 3-year-old 
children (from the correct belief condition) were excluded 
from the analysis because they did not answer the pretest 
phase knowledge questions correctly. Also two 5-year-old 
children (from the misunderstanding condition) were 
excluded from the analysis because the experimenters 
failed the procedure of the experiment. The rest of chil-
dren could answer the knowledge questions perfectly.  

 In each condition, children were instructed to sort 
the cards according to the shape rule on the pretest phase, 
so children should sort the cards according to the shape 
rule on the sorting phase. The dependent measure was 
how many trials children sorted the cards according to the 
shape rule.  

Preliminary analyses confirmed that no significant 
effect of gender was found, so all data were collapsed 
across this variable. The score was analyzed using a 3 
(age) × 4 (condition) between subject ANOVA. There 
was significant main effect of age F (2, 177) = 11.038, p 
< .0001, significant main effect of condition F (3, 177) = 
7.019, p < .001 and significant interaction F (6, 177) = 
2.294 p < .05. 
 Follow-up one-way ANOVA’s were performed to 
examine the interaction effect, the effect of conditions in 
each age. They revealed no significant difference between 
condition for 5 year old children , but marginally differ-
ence for 4 year old children F (3, 62 ) = 2.4961 p = 0.68, 
and significant difference between conditions for 3 year 
old children F (3, 61) = 6.0838 p < .01. Post hoc analysis 
using Tukey’s HSD test revealed that children in the con-
trol condition and correct belief condition performed the 
task better than children in the false belief condition (P 
<.05), but there were no significant difference between 
false belief condition and misunderstanding condition. 

Follow-up one-way ANOVA’s were also performed 
to examine the developmental change. They revealed no 
significant developmental change between control condi-
tion, correct belief condition and in the misunderstanding 
condition. These results, especially the result of the control 
condition, might be caused by the ceiling effect. On the 
other hand, there was significant developmental change in 
the false belief condition F (3, 62 ) = 10.2297, p < .001. 

 
 

 
 3 year old 4 year old 5 year old 
Control 4.41 4.71 4.87 
Correct Belief 3.79 4.47 4.53 
False Belief 1.59 3.18 4.80 
Misunderstand 3.18 4.07 4.31 
 
 
Table1 mean number of correct trials in the Experiment 
 
2.3 Discussion 

In the present study, we investigated whether 3-year-
old children, who were not supposed to have theory of 
mind and mature attentional flexibility, could understand 
and discriminate other’s belief implicitly. In this experi-
ment, children needed to keep the rule the experimenter 
instructed on the pretest phase when they were shown 
other’s demonstration on the observation phase and sorted 
cards according to the correct rule on the sorting phase.  

We found significant main effect of age, and this 
suggested that children improved the performance of the 
task as they get older. This improvement might reflect the 
result of the earlier studies [3, 5], which suggested that 
children developed the attentional flexibility during pre-
school years. In this study, in each condition including the 
control condition, children needed to suppress the color 
rule when they sorted the cards on the sorting phase. Es-
pecially in correct belief condition, false belief condition 
and misunderstanding condition, children were shown the 
demonstration with wrong behavior and/or false belief, 
and some of the younger children were affected by the 
demonstrator, this suggested that they did not develop 
attentional flexibility. On the other hand, older children, 
who develop the attentional flexibility, were less affected 
by the demonstration.  

We also found significant interaction between age 
and condition, and follow up analysis showed that there 
was significant difference between conditions in 3 year-
old children, but no significant difference in 4 and 5 year 
old children. This result suggested that older children 
could keep the correct rule in each condition while the 
difference of the condition affected the performance of 3-
year-old children. Post hoc analysis revealed that children 
in the false belief condition performed worse than those in 
the control condition and correct belief condition. 

In the control condition, children were not shown 
any demonstration, which meant that no one interfered 
children’s sorting according to the shape rule. In fact 
children in the control condition had the greatest score in 
each age. In the correct belief condition, the experimenter 
B showed wrong sorting behavior, but she had correct 
belief, that is, she knew that the rule of the game was 
shape rule. In this condition 3-year-old children per-
formed as well as children in the control condition. This 
suggested that the demonstration with wrong action only 
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didn’t affect children’s performance. 
On the other hand, children in the false belief condi-

tion were more affected by the demonstrator than the 
control condition and correct belief condition. Especially 
it was surprising that we could find the significant differ-
ence between correct belief condition and false belief 
condition. In the observation phase of both conditions, 
children observed Experimenter B’s demonstration as she 
mistakenly sorted cards according to color. This was in-
consistent with the children’s knowledge because in the 
pretest phase they were asked to sort the cards according 
to shape. In each condition, the experimenter’s behavior 
was the same, but the effect on children’s sorting was 
different. In the correct belief condition, most of the chil-
dren sorted cards correctly in the sorting phase. In con-
trast, younger children in the false belief condition were 
inclined to imitate Experimenter B, probably due to being 
influenced by Experimenter B’s mental state. In the cor-
rect belief condition Experimenter B noticed her mistakes, 
possibly reinforcing the children’s confidence in the rule 
for this task. They paid attention to the shape-rule. How-
ever, in the false belief condition Experimenter B “be-
lieved” that her performance was correct, which might 
have led children to doubt their knowledge (the rule of the 
game) and instead think that the rule Experimenter B used 
was correct. Even if Experimenter A stated that Experi-
menter B was wrong at the start of the sorting phase, 
children perseverated with the color dimension. For these 
children, the correct rule was the color rule, so most 3-
year-old children in the false belief condition sorted the 
cards according to color. This result suggested that 3-year-
old children whose attentional flexibility was immature 
could discriminate other’s belief implicitly. 
      Does this study support the notion that there is the 
relationship between theory of mind and self control abil-
ity ? As described above, earlier studies showed a positive 
correlation between self-control and theory of mind [9]. 
However as Perner and Lang [8] point out, several hy-
potheses exist concerning this relationship. For example, 
Russell [14] emphasized that self-control ability is neces-
sary for developing theory of mind. He suggested that 
monitoring of action and the ability to act at will is needed 
to develop self-awareness, and that this self-awareness is 
necessary for acquiring a mental concept. On the other 
hand, Perner [15] suggested that children need to acquire 
the meta-representation before they can perform self-
control tasks successfully. According to Perner, children 
develop meta-representation when they develop theory of 
mind; therefore, developing theory of mind leads the 
development of self-control ability.  

The present study suggests that children who have 
immature attentional flexibility might have implicit un-
derstanding of theory of mind. From this result, we would 
support the notion that self-control ability is necessary for 
developing theory of mind. We proposed that the devel-

opment of attentional flexibility was needed when implicit 
understanding theory of mind becomes explicit. When 
children’s attentional flexibility is immature, they can not 
pass the tasks which measures self-control ability (e.g. 
DCCS) and theory of mind tasks (e.g. false belief task), 
but they can discriminate other’s belief implicitly. When 
they develop the attentional flexibility and they can pass 
the tasks which measures self-control ability, they come 
to understand other’s belief explicitly and pass the theory 
of mind tasks. In the further research, we would investi-
gate the causal relationship between the development of 
attentional flexibility and the development of theory of 
mind. 
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Abstract

This  paper  challenges  the  common  assumption  that
children understand other’s visual attention from infancy.
Some classic research (Flavell, Shipstead & Croft, 1978)
suggests  that  two-year-old  children  can  hide  an  object
from an adult observer, by placing it behind a screen, but
not by placing a screen in front of it. In a more recent
study,  McGuigan  and  Doherty  (2002)  replicate  this
classic  finding  and  explain  this  effect  in  terms  of
engagement,  a  concept  introduced  by  O’Neill  (1996).
According to McGuigan and Doherty, occluding barriers
block  vision  and  can  stop  people  every  becoming
engaged  with  an object,  but  do not  necessarily  disrupt
engagement  when it  has already been established.  This
hypothesis implies that children should be better able to
occlude objects if the person is not yet engaged with the
object.  The  present  study  tests  this  prediction  with  a
hiding game in which children must stop an experimenter
witnessing the act of hiding by placement of a screen. The
results of two experiments with forty-seven 2- to 5-year-
old  children  confirmed  that  children  were  much  better
able to occlude objects if the adult observer was not yet
engaged with the object, in its final location.

1. Introduction 

Children’s knowledge about visual perception has been
considered to be quite sophisticated by the age of 2 years
(e.g.  Lempers,  Flavell,  &  Flavell,  1977)  and  before
(Baron-Cohen, 1995), but as some recent studies suggest a
more  complex  picture  emerged.  As  McGuigan  and
Doherty (2002) believe this has been already evident in a
study by Flavell, Shipstead and Croft (1978). They placed
an opaque screen on a table, gave children a toy and asked
them to hide it from the experimenter (the  Move-Object
task). Almost all children from the age of 2 ½ years were

able to hide the toy behind the screen. Flavell et al. then
placed the toy on the table and asked children to use the
screen  to  conceal  it  from  the  experimenter.  Younger
children  performed  surprisingly  poorly  at  this  Move-
Screen  task,  despite  the  fact  that  it  seems  to  require
exactly the same understanding as the Move-Object task.
McGuigan  and  Doherty’s  study  represents  a  strait
replication of Flavell et al. findings and they explain the
results in terms of engagement, a concept introduced by
O’Neill (1996), who argues that children are sensitive to
adults’ general involvement in their activities. According
to McGuigan and Doherty, occluding barriers block vision
and  can  stop  people  every  becoming  engaged  with  an
object, but do not necessarily disrupt engagement when it
has  already  been  established.   Since  2-year-olds
understand engagement but not vision, they are unable to
disrupt vision by placing the screen in front of the object.

This  account  generates  the  clear  prediction  that
younger  children  should  pass  the  Move-screen  task  in
cases where the adult is not yet engaged with the object.
This  study set  out  to  test  this  prediction  with a  hiding
game  in  which  children  must  stop  an  experimenter
witnessing the  act  of  hiding  by placement  of  a  screen.
Children  should  understand  that  they  can  prevent  the
experimenter  ever  being engaged  with the  object  in  its
hiding location.  .

2. Experiment 1

2.1. Method

2.1.1. Participants

Twenty-four  children  (14  boys,  10  girls)  from  two
nursery schools in Salzburg (Austria) participated in this
study. Their age ranged from 2;3 (years; months) to 5;5
with a mean age of 3;8 (SD= 1;0). 
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2.1.2. Design

Each  child  was  tested  on  three  tasks:  Move-object,
Move-Screen  and  Hiding  game.  The  three  tasks  were
administered in a full balanced order. Children were tested
in one single sessions lasting between 15 and 20 minutes.

2.1.3. Procedure

The procedure for the Move-object  and Move-screen
task followed the procedure used Flavell et al. (1978) and
McGuigan and Doherty (2002).

Figure 1. Move-object task

Figure 1 illustrates the procedure for the Move-object
task.  The  child  was  sitting  on  one  side  of  a  small
rectangular table and an adult observer (B) was sitting on
one of the other sides of the table. An opaque screen was
placed in the middle of the table and the child was asked
to put an object somewhere so that the adult observer (B)
can’t see it.

However,  in  the  Move-screen  task,  the  object  was
placed in the middle of the table and the child was then
asked to put  the opaque screen somewhere so the adult
observer  (B)  can’t  see  the  object  anymore.  This  is
illustrated in Figure 2.     

In the Hiding-game (see Figure 3) children were shown
an object and two boxes in which it was to be hidden from
an adult observer (B). In this task, children were asked to
use the opaque screen to prevent the adult observer (B)
from witnessing the final hiding location of the object and
were told to “put this somewhere so Sarah can’t see us
hide the duck”.

Figure 2. Move-screen task

Figure 3.  Hiding-game task   

2.2. Results and discussion

Performance  in  the  Hiding-game task (54% success)
was  intermediate  between  performance  on  the  Move-
object  and  Move-screen  task  (79%  and  39%  success
respectively,  p  <.05  for  all  comparisons).   The
corresponding percentages correct responses are given in
Figure 4. The results support the engagement hypothesis,
especially considering the added general task complexity
in the Hiding-game.    
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Figure 4. Percent correct response in the three
tasks of experiment 1

3. Experiment 2

Experiment 2 assessed the possibility that performance
in  the  Move-object  task  and  in  the  Hiding-game  was
inflated  by  an  artefact:  If  children  simply  placed  the
screen in the nearest convenient location - just in fronton
them- this would inflate performance in the Move-object-
and  the  Hiding-game  task,  but  not  in  the  Move-screen
task. Therefore, the objects (and the boxes) were placed
right at the edge of the table, in the present study.

Besides,  performance  in  the  Move-object-,  Move-
screen-  and  Hiding-game  task  was  compared  to
performance  in  a  standard  false  belief  task  (Perner,
Sprung & Zauner, 2003).      

3.1. Method

3.1.1. Participants

Twenty-seven children from one kindergarten and two
nursery schools in Salzburg (Austria) participated in this
study. The age of these children ranged from 2;5 (years;
months) to 5;0 and the mean age was 3;5.  

3.1.2. Design and Procedure

Each child was given four tasks: Move-object, Move-
screen,  Hiding-game  and  False-belief.  The  tasks  were
administered in a full balanced order. Children were tested
in two sessions (each session lasted between 15 and 20
minutes), approximately one week apart.

The procedure for the Move-object-, Move-screen- and
Hiding-game task was the same as in the previous study,
expect that the objects (and the boxes) were placed right
at the edge of the table.

 
The procedure for  the  False-Belief  task followed the

procedure used by (Perner, Sprung & Zauner, 2003). Two

traditional false-belief stories were administered by acting
out stories with Playmobile people toys. For instance, in
the book story, Max put his book in one location. In his
absence  another  story  character  moved  the  book
unexpected to a new location. When Max returns, children
were asked the false belief test question, assessing their
understanding of Max’s erroneous belief:

False-belief question: “Where will Max look first for
his book?”   

3.2. Results and discussion

Although  the  present  study  controlled  for  false
positives in the Move-object- and hiding-game task,  the
Move-object- and Hiding-game task remained easier than
the  Move-screen  task.  Performance was very similar  in
difficulty  for  the  Move-object-  and  Hiding-game  task.
Hence there is no evidence that the difference between the
Hiding-game and  the  Move-screen  task  in  the  previous
study  was  due  to  an  artefact.  The  corresponding
percentages correct responses in the four task of this study
are presented in Figure 5.   

Figure 5. Percent correct response in four
tasks of experiment 2

Performance in the Move-object and Hiding-game was
significantly higher than in the false-belief tasks (all p < .
01). However, there was no significant difference between
children’s  performances  in  the  Move-screen- and  false-
belief task.

4. General Discussion

The results of both experiments replicate the findings
by  Flavell  et  al  (1978)  and  McGuigan  and  Doherty
(2002),  that  children  are  much  better  able  to  occlude
objects, from an adult observer, in the Move-object task
than in the Move-screen task. Moreover, it has been found
that children were also much better able to occlude objects
in the new Hiding-game (when the adult observer was not
engaged with the object, in its final location), than in the
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Move-screen task (when the adult  observer was already
engaged  with  the  object).  This  finding  supports  the
hypothesis  that  although young children  (<  2  ½  years)
understand engagement, i.e.  they are sensitive to adult’s
general  involvement  in  their  activities,  but  they do  not
fully comprehend visual perception.

That children’s performance in the Move-Screen task
was not superior to their performance in the false-belief
task,  suggests that  understanding visual  perception (i.e.,
success  the  Move-screen  task)  is  not  a  precursor  to
understanding theory-of-mind (i.e.,  success  in  the  false-
belief  task),  but  rather  that  there  is  a  developmental
relationship between these two task.        
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Abstract

Following another person’s gaze in order to achieve joint
attention is an important skill in human social interactions.
This paper analyzes the gaze following problem and pro-
poses a learning-based computational model for the emer-
gence of gaze following skills in infants. The model acquires
advanced gaze following skills by learning associations be-
tween caregiver head poses and positions in space, and uti-
lizes depth perception to resolve spatial ambiguities.∗

1 Introduction

1.1 Shared attention and gaze following

The capacity for shared attention or joint attention is a
cornerstone of social intelligence. It refers to the match-
ing of one’s focus of attention with that of another person,
which can be established for example by gaze following.
The importance of attention sharing in infancy and early
childhood is hard to overstate. It plays an important role in
the communication between infant and caregiver [8]. It al-
lows infants to learn what is important in their environment,
based on the perceived “distribution of attention” of older,
more expert individuals. In conjunction with a shared lan-
guage, it makes children able to communicate about what
they perceive and think about, and to construct mental rep-
resentations of what others perceive and think about. Con-
sequently, episodes of shared attention are crucial for lan-
guage learning [13].

Some authors make a subtle distinction between joint
and shared attention: Joint attention only requires that two
individuals attend to the same object, whereas shared at-
tention also implies that each have knowledge of the other
individual’s attention to this object. In this paper, we will
only be concerned with joint visual attention, which has
been defined as looking where somebody else is looking,

∗An earlier version of this paper has been presented at the workshop
SOAVE2004 (Self-organization ofadaptivebehavior), Ilmenau, Germany.

and which we view as an important precursor to the emer-
gence of true shared attention. While initially, joint visual
attention is mostly initiated by the caregiver, young infants
soon acquire gaze following skills and initiate joint atten-
tion themselves [2]. There has been a significant body of
research studying how these skills develop since the pio-
neering work by Scaife and Bruner [10].

Two different kinds of theories of the emergence of gaze
following have been proposed. Themodular or nativist the-
oriesposit the existence of innate modules, which are typ-
ically thought to be the product of evolution rather than to
emerge from learning (e.g. [1]).Learning based accounts
explain the emergence of gaze following by postulating that
infants learn that monitoring their caregiver’s direction of
gaze allows them to predict where interesting visual events
occur. This idea goes back to Corkum & Moore [5]. At
present, the experimental evidence for or against a learning
account of the emergence of gaze following in infants is still
inconclusive, but computational models have shown that it
is possible to acquire gaze following skills through learning
(see Sect. 2).

1.2 Developmental stages in gaze following

Different distinguishable stages and effects during the
development of gaze following have been discovered in
cross-sectional studies: Butterworth and Jarret tested gaze
following abilities of 6-, 12- and 18-month-old infants in
a controlled environment [3]. In their experiments the in-
fants were seated facing their mothers at eye level in an
undistracting laboratory. Two or four targets of identical
shape and color were presented at the same time as pairs
on opposite sides of the room, also at the infants’ eye level.
Mother and infant were facing each other in every trial, un-
til the mother shifted her gaze to a designated target. The
infants’ reactions were monitored and analyzed. Figure 1
(left) shows a typical setup of the experiments. All tested
infants could shift their gaze to the correct direction and
were able to locate targets presented within their field of
view. However, only the 18-month-old infants followed
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Figure 1. Left: Gaze following experiment with frontal (F), lateral (L) and rear (R) objects. Caregiver
(C) and infant (I) are facing each other. Right: The caregiver looks at the lateral target. Six-month-old
infants shift their gaze in the correct direction, but will most likely attend to the first object along
their scan path (Butterworth error). 18-month-olds follow gaze to the correct lateral object, second
in their scan path.

gaze to rear targets, while younger infants would not turn to
search for targets behind them. When multiple target pairs
were presented at the same time, for example the frontal
and lateral targets in Fig. 1, 6-month-old infants were not
able to tell which target their mother was looking at: when
the mother turned to look at a lateral object, they shifted
their gaze in the correct direction, but were likely to end the
gaze shift at the first (frontal) object along their scan path,
as shown in Fig. 1 (right). We call this effect the “Butter-
worth error”. The infants in the 12 month group attended
significantly more often to the correct object, but only the
18-month-old infants reliably followed their mother’s gaze
to the second (lateral) target.

Butterworth and Jarret associate a developmental stage
with each of the age groups: Infants in the “ecological
stage” around 6 months follow gaze in the right direction
but locate only frontal targets correctly, and only if they are
the first along the scan path. 12-month-old infants in the
“geometric stage” are able locate the target objects more ac-
curately and overcome the Butterworth error in some of the
trials. Infants that have reached the “representational stage”
around 18 months reliably overcome the Butterworth error
and are also able to reliably locate targets behind them. The
emergence of those stages is explained with three different
mechanisms of gaze following that become effective in a
sequential order and correspond to the observed stages [3].

1.3 Contribution of this paper

In order to explain the emergence of gaze following one
has to explain the underlying dynamical processes of devel-
opment, rather than just the snapshots provided by cross-

sectional studies. In the remainder of this paper we will
analyze the gaze following problem more carefully with an
emphasis on its spatial properties, and isolate the different
effects observed in the experimental studies. We propose a
computational model, in which the infant acquires sophisti-
cated gaze following skills and is able to overcome the But-
terworth error by utilizing depth perception. It shows that
the observed behaviors can emerge from the same learning
mechanism and thus provides a more parsimonious account
for the emergence of gaze following than the three different
mechanisms proposed by Butterworth and Jarrett.

2 Gaze following and computational models

Following somebody’s gaze in order to establish joint at-
tention is a non-trivial task in cluttered environments. By
observing someone’s head pose, one can only infer the per-
son’s direction of gaze, rather than the distinct focus of the
person’s attention. Gaze following therefore requires scan-
ning for an object along an estimate of a person’s line of
sight. For a precise estimate, infants have to evaluate the
orientation of the caregiver’s head and eye, as well as their
own relative position to the caregiver. We will use the term
‘head pose’ in a general sense, referring to both head or eye
orientations. The better the infants can discriminate differ-
ent head poses, the better they can narrow down the region
in space where they expect the caregiver’s gaze target to be.
Accurate depth perception can help to judge if objects are in
the estimated line of gaze, and seems to be critical in situ-
ations where objects are in the projection of the caregiver’s
line of gaze but at different distances, as in Butterworth’s
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experiments. There is evidence that infants’ perception of
some depth cues continues to develop until at least 7 months
[14]. This could have an impact on infants’ ability to ac-
quire advanced gaze following skills and may be part of an
explanation of the staged development of gaze following.

We believe that infants typically learn the ambiguous
mapping from caregiver head poses to locations in space
without explicit supervision. Our goal is to plausibly ex-
plain this learning process by developing computer models
that show how these skills can be acquired. In general, com-
putational models have been developed that address differ-
ent aspects of the gaze following problem. To our knowl-
edge, two of them show how infants can learn gaze fol-
lowing without external task evaluation (no special reward
for establishing joint attention) in a self-organizing manner.
Both are discussed in the remainder of this section.

Carlson and Triesch recently proposed a computational
model for the emergence of gaze following [4]. Their model
infant predicts where salient objects are on the basis of the
caregiver’s head pose. They use a temporal difference (TD)
learning approach [11] to show how an infant can develop
these skills only driven by visual reward. The infant re-
ceives different rewards for looking at the caregiver and
looking at salient objects. This reward structure can be ad-
justed to simulate certain symptoms of developmental dis-
abilities like Autism or Williams Syndrome. Experiments
with the model make predictions of the emergence of gaze
following in children with those disabilities. Further ex-
periments with this model were conducted by Teuscher and
Triesch [12], focusing on the effect of different caregiver
behaviors on infants’ gaze following skills.

The model operates on a finite set of possible object lo-
cations without any spatial relationships. Each location has
a one-to-one correspondence with a distinct caregiver head
pose. One object is located at any time at any one of these
positions. The caregiver agent has a certain probability of
looking at that object. The model infant consists of two
reinforcement learning agents: The ‘when-agent’ decides
whether to continue fixating on the same location or to shift
gaze, while the ‘where-agent’ determines the target of each
gaze shift. Both agents try to maximize the long term re-
ward obtained by the infant. The infant perceives the care-
giver’s head pose whenever it attends to the caregiver, and
learns to exploit the correlation between the head pose and
the location of salient objects. This model supports the the-
ory of the acquisition of gaze following by learning. How-
ever, it is not adequate for simulating or explaining the But-
terworth stages since it does not deal with geometrical rela-
tionships and spatial ambiguities.

Nagai et al. proposed a model for an infant agent that
has been implemented on a robot platform [9]. The robot
learns to follow the gaze of a human caregiver by offline
training with recorded examples. Two separate modules,

one for visual attention and one for learning and evalua-
tion, output motor commands for turning the robot’s camera
head. A probabilistic gate module decides which of the two
proposed motor commands gets executed. The probability
for selecting the output of the learning module is changed
from zero to one according to a predefined sigmoid function
during the learning process. The visual attention module
locates faces and salient objects by extracting color, edge,
motion, and face features from the camera images. It uses
a visual feedback controller to shift the robot’s attention to-
wards interesting objects. The learning module consists of
a three-layered neural network that learns a mapping from
gray-level face images to motor commands by backpropa-
gation. The network is trained with the current motor po-
sition as teacher signal and the caregiver image as input,
whenever a salient object is fixated.

The authors mention that every head pose only speci-
fies a line of gaze rather than a distinct location in space.
They deal with this ambiguity by moving the cameras in-
crementally towards the learned coordinates and stopping
the movement at the first encountered object. Their model
does not include depth perception and cannot resolve situ-
ations where distracting objects lie in the projection of the
caregiver’s line of gaze in the camera images, but at a differ-
ent distance (compare Fig. 1, right). The model is not able
to overcome the Butterworth error, which seems to be an
essential characteristic of geometrical gaze following skills
in infants.

3 A model of gaze following in space

Our new model specifically addresses the spatial ambi-
guities in the learning process of gaze following, and is able
to faithfully reproduce infants’ abilities to resolve them.
It consists of a simulated environment and two different
agents, an infant (Inf) and its caregiver (CG). The infant
learns to follow the caregiver’s gaze by establishing asso-
ciations between the caregiver’s head pose and positions in
space where interesting objects or events are likely to be
present. This online learning mechanism is driven by vi-
sual feedback, based on the infant’s preference to look at
the caregiver’s face and salient objects in its environment.
The infant exploits the correlation between the caregiver’s
line of gaze and the locations of salient objects to learn asso-
ciations between those two. The perceptual preferences and
the ability to shift gaze to interesting objects are important
prerequisites for the learning process, which we assume to
begin before infants show simple gaze following behaviour
(i.e. before an age of six months).

The environment is similar to the setups in the experi-
ments by Butterworth and Jarrett [3], with both agents’ eyes
and all objects being at the same height from the floor. The
learning process is divided into trials. Objects are placed at

59



CG head pose φ
CG

New gaze

φ'
Inf 

, d'
Inf

+

–

Σ+

Σ
+

x

Object Saliencies S

Head pose estimate h
Estimate of CG line of gaze E

Combined interest CVisual Input V

Fully connected

with adaptive weights w
ij

(*)

(**)
E selects from two inputs:
(*) if Inf looks at CG
(**) otherwise

Inf gaze φ
Inf 

, d
Inf

t-1
delay

Focus of attention F

Figure 2. The infant agent with spatial representations in body-centered coordinate systems. Dark
shading in the grid cells stands for high activation. The visual input V is the product of the object
saliencies S and the focus of attention F . If the infant looks at the caregiver, the estimated caregiver
head pose h is mapped to an estimate of the caregiver’s line of gaze E. Otherwise the activation in
E is held, inhibited by F to decrease the activation of locations along the line of gaze that the infant
has already observed. E and V are summed up to the infant’s combined interest in space C. The
infant shifts its gaze to the area with the highest activation in C.

random positions in the environment in every trial. One of
them is selected as the caregiver’s focus of attention. The
object locations and the caregiver direction of gaze do not
change during a trial. The infant is looking at the care-
giver at the beginning of every trial but can change its di-
rection of gaze. The model operates on discrete time steps
t = 0, . . . , T . Each trial lasts for 10 time steps.

3.1 Environment, objects, and a caregiver

The environment is represented by a two-dimensional
7x9 grid with cartesian coordinates. Objects indexed with
i = 1, . . . , N are introduced by specifying their grid co-
ordinates(xi, yi) and a scalar saliencysi ∈ [0, 1]. Both
agentsa ∈ {Inf, CG} are defined by their positions in space
(xa, ya), a base orientationϕ0

a and the current direction of
gazeϕa(t) ∈ [−180◦,+180◦], relative toϕ0

a. In addition to
the current angle of gaze we introduce the functionda(t),
which measures the distance from an agent to the point that
the agent is currently looking at. The caregiver also has
a saliencysCG = 0.1. All angles and distances are dis-
cretized. We use 16 different values for angles (each cor-
responds to a range of22.5◦), and 6 different values for
distances (covering all possible distances in the 7x9 grid).

Since we focus on the spatial aspects of the learning
problem and the infant’s ability to learn gaze following

without external task evaluation, we use a simple caregiver
agent that does not react to the infant’s actions. In ev-
ery learning trial we let the caregiver look at the objecti
with the highest saliencysi by setting its head/eye rotation
ϕCG(t) to the appropriate value.

3.2 The infant agent

The infant has to use its limited visual perception to gain
information about the environment. The architecture of the
infant agent is shown in Figure 2. It consists of different
layers of neurons: the visual inputV , the estimate of the
CG line of gazeE, the combined interestC and the en-
coded caregiver head poseh. Their activations are repre-
sented with scalar values, assigned to the grid cells of a
body-centered polar coordinate grid with discretized angle
θ and radiusr. The connections between those layers link
only neurons encoding the same area in space. The object
salienciesS and the encoded focus of attentionF are also
represented in body-centered coordinates. The infant’s in-
terest in the different locations in space is encoded by the
combined interest layerC(θ, r, t). The activation ofC is
the sum of the visual inputV and the estimate of the care-
giver’s line of gazeE:

C(θ, r, t) := V (θ, r, t) + E(θ, r, t). (1)
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The infant shifts its gaze in every time stept to the area
in space it is most interested in. This is done by setting
its gaze orientationϕInf(t) and looking distanced(t) to the
coordinatesθ andr with the highest activation inC(θ, r, t).

Visual Perception is the infant’s only source of informa-
tion about its environment. It receives two different kinds of
visual data: The caregiver head pose, encoded in the layer
h(θ, t), and the actual visual inputV (θ, r, t), which is the
foveated transformation of the object’s saliencies into the
discretized polar coordinate system.V is used as a gate in
the learning mechanism.

Generally we use discrete gaussian distributionsGσ(x)
as tuning curves for encoding input data for the infant agent.
Extra normalization is necessary to ensure that the sum of
the discrete distributions over all integersz is equal to one:

G̃σ(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
(2)

Gσ(x) = G̃σ(x)/
∑
z∈Z

G̃σ(z). (3)

The caregiver’s head posẽϕCG is encoded with a popula-
tion of neuronsh with gaussian tuning curves. The variance
σh

2 models the level of accuracy in head pose discrimina-
tion:

h(θ, t) := Gσh
(ϕCG(t)− θ) . (4)

The locations(x, y) of the salient objects and caregiver
are expressed in the infant’s body-centered polar coordi-
nates(θ′, r′). The saliency value for each grid cell inS is
the sum of all salienciessk, k ∈ {1, ..N, CG} falling into
the particular area of space. The infant’s accuracy in depth
perception is modeled with the varianceσd

2 of the tuning
curve encoding the distance of the objects:

S(θ, r, t) :=
∑

k | θ′
k
=θ

sk(t) ·Gσd
(r′k(t)− r) . (5)

The infant’s visual inputV is the product of the object
salienciesS and the focus of attentionF , which is encoded
in the same body centered coordinate system as the neural
layers. It is a product of two gaussians (not normalized).
It has its highest value at the focused point in the center of
gazeθ = ϕInf(t), r = dInf(t) and values close to zero for
angles and distances further away from the infant’s current
focus of attention. This causesV to be a foveated view.
The variancesσθ

2 andσr
2 influence the sharpness of the

foveation:

V (θ, r, t) := S(θ, r, t) · F (θ, r, t) (6)

F (θ, r, t) := e
− (θ−ϕInf(t))2

2σr2 · e−
(r−dInf(t))2

2σθ
2 . (7)

Our model acquires gaze following skills by learning as-
sociations between the caregiver’s head poseh and loca-
tions in space, forming the estimate of the caregiver’s line of
gazeE(θ, r, t). The associations are represented as connec-
tions with variable weights. We use a Hebbian-like learning
rule that strengthens all connections from each active input
neuron encoding a specific caregiver head pose to those lo-
cations where the infant saw a salient object shortly after
observing the same head pose (activation inV ). A small
learning rateαHebb = 0.1 combined with a slow decay of
all synaptic weights, given byαforget = 0.9999, enables the
network to ‘forget’ wrong associations that could be estab-
lished when multiple objects are present during the train-
ing. The synaptic weight between a neuronj with activa-
tion h(ω, t) and a neuroni with activationE(θ, r) is given
by wij(t) and adapted with the following learning rule:

wij(t+1) := αforget·wij(t)+αHebb·h(ω, t)·V (θ, r, t). (8)

The activation associated with the head pose encoded in
h overwrites the activity inE whenever the infant is looking
at the caregiver. When the infant has shifted its gaze away
from the caregiver,E keeps its activation and is used as a
short-term memory: the activation of the neurons encoding
areas in space that the infant has already observed is sup-
pressed by the activations of the neurons inF , encoding the
focus of attention:

E(θ, r, t) :=

{ ∑
j {wij(t) · h(ω, t)} , if Inf looks at CG,

E(θ, r, t− 1) · (1− F (θ, r, t)) otherwise.

The selective inhibition of activity inE causes the infant
to shift its gaze to unobserved locations, because it always
attends to the area with the highest activation inC. This
“scanning” continues as long as the activation along the line
of gaze is higher than the activation due to the foveated vi-
sual input. It usually ends when the infant looks directly at
an object.

4 Experiments

We present a number of experiments to show that our
model infant is able to acquire gaze following skills and
learns to overcome the Butterworth error. Each experiment
is run 20 times under the same conditions for 1000 learn-
ing trials. The performance is measured in testing periods
interposed every 25 trials during which no learning takes
place. Every testing period consists of several trials with 10
time steps each, one trial for every tested object location.
A trial is considered successful when the infant is looking
where the caregiver is looking at the last time step of the
trial. The performance of the model is measured with the
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Figure 3. Gaze following performance for frontal, lateral and rear targets. Left: Geometrical setup and
situation at the end of a successful trial. The individual directions of the gaze of infant and caregiver
are displayed with pairs of solid lines. The dotted lines indicate the agent’s base orientation. The
dashed lines display the borders of the infant’s field of view. Right: Gaze Following Index for frontal,
lateral and rear target pairs as functions of learning trials. The infant quickly learns to follow gaze to
frontal and lateral targets. Gaze following to rear targets is acquired slowly. Data points are averaged
from 20 runs, the error bars indicate the standard error.

Gaze Following Index (GFI), which is defined as the num-
ber of successful trials divided by the total number of trials.

4.1 Gaze following performance

This experiment is designed to measure the model in-
fant’s gaze following performance separately for frontal,
lateral and rear targets. We therefore split the testing trials
in three groups, depending on the position of the caregiver’s
target object relative to the infant: a trial is considered a
front target trial, when the caregiver’s target is in the infants
field of view while watching the caregiver. When the target
object is initially out of view but not behind the infant, this
is considered a lateral target trial. All other conditions are
rear target trials.

Even the untrained model infant is able to locate frontal
targets and to attend to them by simply using its periph-
eral vision. In order to eliminate this influence of sim-
ple preferential looking on the gaze following performance
we present pairs of targets with a small difference in their
saliency during the testing trials. Different from the learn-
ing trials we constrain the caregiver to look at the slightly
less salient object in the testing trials, just by setting its
head/eye rotationϕCG(t) to the appropriate value. The in-
fant will turn to the other, more salient object unless it fol-
lows the caregiver’s gaze.

All individual target positions in space are tested, except
the line connecting infant and caregiver. The setup is shown
in Fig. 3 (left). We use tuning curves with small variances
for encoding the caregiver head pose and the infant’s per-
ception of distances (σh = σd = 0.1) in order to test the

gaze following performance independent from limitations
in depth perception or face processing.

The result of this experiment is displayed in Fig. 3
(right). The infant learns to reliably follow the caregiver’s
gaze to frontal objects in about 100 learning trials, to lateral
objects in about 200 learning trials, and to rear targets (with
a little lower GFI) in about 500 trials. This corresponds
to the results of the experiments by Butterworth and Jarret,
where only the infants in the oldest age group shifted their
gaze to rear targets.

The infant has not necessarily learned the complete set
of associations for the frontal targets and every caregiver
head pose until trial number 100. In fact, turning the head
in the correct direction moves the target object closer to the
infant’s focus of attention and the other one further away.
This can cause a higher activation in the foveated visual per-
ception for the correct object than for the originally more
salient distractor. In this case the infant will attend to the
correct object. This corresponds to the ecological stage in
the development in real infants.

A similar effect is exploited when the infant learns asso-
ciations between a head pose and rear objects, outside the
infant’s field of view: Turning in the correct direction brings
lateral targets into the infant’s field of view and enables the
infant to learn the corresponding associations. Learning to
follow the caregiver’s gaze to objects that are behind the in-
fant requires a prior ability to follow gaze to lateral targets.
This explains why it takes longer for the infant to achieve
reliable gaze following skills for rear targets as seen in real
infants.
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Figure 4. Overcoming the Butterworth error. Gaze Following Index for trials with lateral targets and
frontal distractor objects, tested with different levels of accuracy in depth perception and head pose
discrimination. High accuracy corresponds to using low variances for the tuning curves encoding
object distances and caregiver head pose. Data points are averaged from 20 runs, the error bars
indicate the standard error.

4.2 Overcoming the Butterworth error

In this experiment we test the infant’s gaze following
performance in the presence of distractor objects. Two
salient distractors are placed as a pair of frontal targets be-
hind the caregiver like shown in Fig. 1 (left). The slightly
less salient target object, which the caregiver is attending to,
is placed at different lateral and frontal locations, but not be-
hind the infant or the caregiver. We test the gaze following
performance with different settings for the infants ability to
discriminate distances and head poses, by varying the vari-
ancesσh

2 andσd
2 for the tuning curves encoding the head

pose and the distances of the objects.
The results of this experiment are displayed in Fig. 4.

The infant is able to overcome the Butterworth error and
to ignore the distractor objects in the background for the
majority of target positions, if depth perception and the dis-
crimination of head poses are sufficiently accurate (σh =
σd = 0.1). A higher variance (less accuracy) for depth per-
ception or head pose discrimination leads to significantly
worse gaze following performance. Unlike our model in-
fant we assume real infants to improve their skills of depth
perception and face processing over time. Our experimen-
tal results suggest that an infant cannot acquire geometrical
gaze following skills before its depth perception and face
processing skills are sufficiently developed. It is important
to note that those skills seem to be critical not only for the
actual gaze following, but for the acquisition as well.

Our model needs more than 200 learning trials to achieve
reliable gaze following performance in the presence of dis-
tractors, compared to 100 trials in a simple setup with only
one pair of objects. In both cases the model used high accu-
racy in depth perception and face processing from the first
learning trial on. With only gradually developing depth per-

ception skills the model would overcome the Butterworth
error even later. These results correspond to the results of
Butterworth where only older children are able to follow
their caregiver’s gaze correctly in ambiguous situations.

5 Discussion

We have analyzed the gaze following problem with an
emphasis on its spatial characteristics, and presented a new
model for the emergence of gaze following. The infant in
our model learns to follow the caregiver’s gaze by learn-
ing associations between observed head poses and positions
in space. These associations form an ambiguous mapping
from every head pose to several locations where salient ob-
jects are likely to be present. We demonstrated in experi-
ments that our model is able to reach all stages of gaze fol-
lowing: first it is able to resolve spatial ambiguities when
distractor objects are present in the background by using
depth perception, and second it follows the caregiver’s gaze
to locations even behind its back. Furthermore, the temporal
progression of the different stages is similar to the develop-
ment observed in real infants: gaze following to frontal tar-
gets early in the development, overcoming the butterworth
error and finding lateral targets later, and locating rear tar-
gets even later.

The model also makes predictions about the effect of
limitations in depth perception and face processing on in-
fants’ ability to gain advanced gaze following skills: The
better an infant can discriminate different head poses and
object distances, the smaller is the region in space that will
be associated with each head pose. If one of these two skills
is not sufficiently developed, the model cannot overcome
the Butterworth error. This suggests that children who are
late to acquire accurate face processing and depth percep-
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tion may develop geometric gaze following skills later than
their peers.

Butterworth and Jarrett proposed that the development
of a representation of space that contains infant, caregiver,
and objects corresponds to the infants’ ability to follow gaze
to rear targets. The body-centered coordinate systems that
we use in the infant agent provide such a spatial represen-
tation. The results of our first experiment show that gaze
following to rear targets might occur later, even with such a
representation of space already in place.

Our model, like most models, makes many abstractions
and simplifications. While focusing on the spatial problems
of gaze following we especially simplified the dynamic as-
pects in this problem by running the simulation in discrete
trials. Different problems occur with a continuous time line
in a dynamic environment: The longer the infant turns away
from the caregiver, the more likely it is that the caregiver has
already shifted its gaze again, causing a growing uncertainty
in the infant’s estimate of the caregiver head pose.

Popular approaches from the research areas of active vi-
sion and machine learning could be applied to the gaze fol-
lowing problem. One can understand the infant’s search for
salient targets as a state estimation process, based on limited
observations of the real state, which is the actual distribution
of salient objects in the room. Research on Partially Observ-
able Markov Decision Processes (POMDPs) deals with the
problem of decision making in environments with hidden
states (e.g. [7]). Denzler and Brown developed an informa-
tion theoretical approach to optimal sensor parameter selec-
tion in object recognition [6]. A similar approach could be
used in the infant agent to learn how to efficiently integrate
information from the available sources, namely accurate but
visual perception with a limited field of view and ambigu-
ous information from evaluating the caregiver’s head pose.
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Abstract

This paper presents a method of imitation learning based
on visuo-somatic mapping from observing the demonstra-
tor’s posture to reminding the self posture via mapping from
the self motion observation to the self posture for both mo-
tion understanding and generation. First, various kinds of
posture data of the observer are mapped onto posture space
by self organizing mapping (hereafter, SOM), and the tra-
jectories in the posture space are mapped onto a motion
segment space by SOM again for data reduction. Second,
optical flows caused by the demonstrator’s motions or the
self motions are mapped onto a flow segment space where
parameterized flow data are connected with the correspond-
ing motion segments in the motion segment space. The
connection with the self motion is straightforward, and is
easily acquired by Hebbian Learning. Then, the connec-
tion with the demonstrator’s motion is automatic based on
the learned connection. Finally, the visuo-somatic mapping
is completed when the posture space (the observer: self)
and image space (the demonstrator: other) are connected,
which means observing the demonstrator’s posture associ-
cates the self posture. Experimental results with human mo-
tion data are shown and the discussion is given with future
issues.

1 Introduction

Humanoid robot is expected to have behaviors like hu-
man as it is supposed from its appearance. The motion
programming for such a robot with multiple joints is a
hard task, therefore, imitation is one of the plausible solu-
tions for humanoid motion programming [9]. This attempt
has already achieved success to some extent in real robots.
Nakazawa et al. [5] have realized a dancing humanoid robot
that can imitate human dance performances. They segment

human dancing motion into typical motion primitives with
parameters. Ijspeert et al. [2] have focused on dynamical
aspects of imitation and proposes the methods to describe
the observed motion using the basic non-linear dynamics
primitives.

On the other hand, imitation is also supposed to a fun-
damental framework for motion recognition in biological
system. Billard and Mataric [1] emphasized importance of
motion primitives, and constructed the motion control sys-
tem based on the CPG modules and the learning modules.
Inamura et al. [7] proposed a system that describes the self
and the demonstrator’s motions in the same mimesis loop,
in which motions are recognized and generated in the hid-
den Markov models.

However, almost existing approaches to imitation in
robotics assume that the angles of others’ links are avail-
able. The somatosensory signals or motion commands of
others are not accessible and it is necessary to have a mech-
anism that converts visual information observing others to
self motion. Recently, Kuniyoshi et al. [4] proposed a learn-
ing system for early imitation. They suppose the optical
flow information is the key to induce the self motion cor-
responding to the observed motion. However, they didn’t
mention how the early imitation can be extended to the
higher level of learning.

This paper presents a method of imitation learning based
on visuo-somatic mapping from observing the demonstra-
tor’s posture to reminding the self posture via mapping from
the self motion observation for both motion understanding
and generation. First, various kinds of posture data of the
observer are mapped onto aposture spaceby self organiz-
ing mapping [3] (hereafter, SOM), and the trajectories in
the posture space are mapped onto amotion segment space
by SOM again for data reduction. Second, optical flows
caused by the demonstrator’s motions or the self motions
are mapped onto aflow segment spacewhere parameterized
flow data are connected with the corresponding motion seg-
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Figure 1. System overview

ments in the motion segment space. The connection with
the self motion is straightforward, and is easily acquired by
Hebbian Learning. Then, the connection with the demon-
strator’s motion is automatic based on the learned connec-
tion. Finally, the visuo-somatic mapping is completed when
the posture space (the observer: self) and image space (the
demonstrator: other) are connected, which means observing
the demonstrator’s posture associates the self posture like a
mirror system [10]. Experimental results with human mo-
tion data are shown and the discussion is given with future
issues.

2 A System Overview

2.1 Basic assumptions

Here, we assume the followings to realize the visual im-
itation based on the visuo-somatic mapping:

1. No a priori knowledge on the link structure, that is,
connections between joints.

2. No a priori knowledge on the body part (joint) corre-
spondence between the demonstrator and the observer.

3. Both the demonstrator’s and the self motions can be
observed in terms of a temporal sequence of joint vec-
tors.

4. The joint angles of the self posture can be observed,
but no relationship between the self posture and the
flow segment space is given.

5. Currently, we focus on the mirror image imitation.
This is the right (left) side of the demonstration corre-
sponding to the left (right) side side of the observation.

2.2 Imitation system

Fig. 1 shows the proposed system, consisting of two
sub-processing systems,Visual Information processing sys-
temandSomatic Information processing system. In these
processing sub-systems, row sensory data are mapped onto
the corresponding two dimensional Self-Organizing Maps
(SOMs) [3]. The images observing the demonstrator’s mo-
tion are first mapped ontoimage spacewhich includes the
posture image of the demonstrator, and thenflow segment
spacein which the changes in posture are represented. The
visual feature space is also utilized to represent the self
motion, too. On the other hand, the self somatic sen-
sory data are mapped ontoposture spaceand their changes
are mapped ontomotion segment space. After generation
of these maps independently, the flow segment space and
the motion segment space are connected based on Hebbian
learning.

The connection between the visual feature space and the
motion segment space is easily carried out by using Hebbian
learning based on the simultaneous activations of segments
in both spaces during the self motions. Once this connec-
tion is acquired, the connection between the flow segment
space for the demonstrator’s motion and the motion seg-
ment space is automatic based on the learned connection
between the visual feature space and the motion segment
space. Through these connections, the mapping from the
image space of the demonstrator’s posture to the self pos-
ture space is enabled, that is, visuo-somatic mapping can be
obtained.

In the followings, the details of each sub processing sys-
tem are explained in section 3, and the mapping among
them is shown in section 4.
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2.3 Sensory data

We prepare the sensory data by using human motions
acquired by a motion capturing system. The captured data,
which are three dimensional data sets in the global coordi-
nate system, are converted to the two dimensional data on a
virtual camera images captured by the observer (self). The
angles between links in a human model are also calculated
to be used as the self posture data. Figs.??(a) and??(b)
show the attached place of labels as joints to be captured
and a sample of captured data of the demonstrator’s mo-
tion, respectively. A joint angle vector is mapped onto the
self posture space and the segmented trajectories on the map
are mapped on motion segment space. The spherical image
projection from the camera position at the observer head is
assumed to capture the whole self body image. Fig. 3 shows
examples of the self body image (a) and the demonstrator’s
one (b) on the spheres, and their development onto a plane
(c).

Twelve kinds of motions are captured from the human
motion performances. They are combinations of motion,
side, and part such as “raise,” “wave,” and “rotate” as mo-
tions, “left,” “right,” or “both” as sides, and “hand,” and
“knee” as parts. Also a “walking” motion is added as a
whole body motion.

Camera Optical Center
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z

(a) Position of the camera op-
tical center

(b) An example of captured motions

Figure 2. Capturing data
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Figure 3. Image data to be input to the system

3 Construction of SOMs for behavior recog-
nition and generation

3.1 Posture space and motion segment space

We construct aposture spaceSOM from thesomatic sen-
sation information, which is the sequence of the vectors
consisting of sixteen angles calculated from the captured
motion data. The size ofposture spaceSOM is 15× 15,
and it is constructed by 240 [frames] ( 8 [sec]) per each mo-
tion. Fig. 4 (a) shows the resultant SOM.

Since the posture data are input sequentially, we can vi-
sualize how posture data are connected each other in the
posture space. Fig. 4 (b) shows such data indicating that the
trajectries of motions are roughly segmented and construct
the clusters corresponding to performed actions. These tra-
jectories are divided into small segments, each of which
includes 10 [frames] of trajectories on the posture space
SOM, and are clustered in the upper layer SOM, motion
segment space, (Fig. 4 (c)).

3.2 Demonstrator’s posture image space

A demonstrator’s posture image space (hereafter, image
space in short) consists of the representative image position
vectors obtained by self organizing mapping of image po-
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sitions of joints of the human model in Fig.??. Fig. 5
(a) shows the image space where various postures are clus-
tered into 15× 15 representative postures. Similar to the
posture space based on the somatic information, we can vi-
sualize how posture image data are connected each other in
this space. Fig. 5 (b) shows such data which indicate that
the trajectories of motions are roughly segmented and con-
struct the clusters corresponding to performed actions.

(a) Demonstrator’s posture
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Figure 5. A demonstrator’s posture image
space

3.3 The flow segment space

The problem here is how to associate the observed flow
caused by the demonstrator’s motion with the self motion.
If the flows by the demonstrator’s motions are similar to
the flows by the self motions, the desired association seems
easy to find because the connection between the observed
self motion and the self motion segment can be easily found
based on the simultaneous activations during the self mo-
tion. However, it would not be so due to the viewpoint
difference. Then, as the common features of the flow seg-
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ments, we chose the direction and the relative position of the
flow segments. Fig. 6 indicates the directions of flow seg-
ments by the demonstrator (other) and the observer (self),
where we can see that the directions are very similar to each
other although there are slight differences in the directional
changes between them. The relative positions are quantized
into four regions (top left, top right, bottom left, and bot-
tom right) by setting the centroid of posture image vectors
as the origin. These four regions are called attention areas.
Fig. 7 shows that the positions of joints are similar to each
other between the demonstrator’s and the observer’s in spite
of large shape difference.
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By using the quantized directions and the normalized
magnitudes of the flows, and the attention area, the flow
segment space is constructed. A data structure for the flow
segment space is shown in Fig. 8 (a).

Although Fig. 6 shows the directions of flow vectors
in the same parts of self and a demonstrator are almost
the same in spite of the camera position, the correspon-
dence between self and a demonstrator’s body are unknown.
We construct the perceptive field of motion, flow segment
space, based on the flow directions and the relative magni-
tude of flow vectors. The flow segment space has the same

number of layers as observed labels (joints), which consists
of Fp unit. Each unit has the representative direction corre-
spondent to quantized direction ranging from0 to 2π (see
Fig. 8).

The directions of the flows are segmented when the sign
of horizontal or vertical element of flow vector is inverted.
In each segment, the directions are averaged. Suppose the
time whenn-th flow inversion happens isTn, then the aver-
aged flow direction is given by

§φ
i (t) =

1
Tn+1−Tn

∫ Tn+1

Tn

φF
i (s)ds (Tn < t < Tn+1), (1)

whereφF
i (t) indicates the flow direction of body segment

i at timet. The averaged direction data are sorted by their
length of the flow vectors. And thei-th data is assigned to
the i-th layer in flow segment space. In each layer, the unit
that has the nearest direction to the input data is activated.

3.3.1 Attention area

Although the positions of flow vectors in the robot’s view
are quite different between the self and the demonstrator,
the relative positions among them (upper right, upper left,
lower right and lower left) are roughly maintainted well as
shown in Fig. 7. Using this feature, theattentional area
describes what part of the self image includes first flow vec-
tors.

Let Nf the number of observed points of the self and the
demonstrator’s body and the regions around the center of
observed pointsR1,R2,R3 andR4 as shown in Fig. 7, then
the total flow speed included in each regionRi is given by

Fj(t) =
∫ Nf

i=1
pi(t)||vi(t)||, (2)

pi(t) =
{

1 i f ui(n) ∈ Rj

0 else
( j = 1, · · · 4), (3)

wherevi(t) is the observed flow vector, andui(t) is the po-
sition vector of observed pointi at timet. Note thati does
not correspond to the labeled point of the body. We define
the relative total strength of flow among regions as

A j(t) =
Fj(t)

∑4
n=1Fn(t)

( j = 1, · · · 4). (4)

The input vector to attention area,SA(t), consists of bina-
rizedA j(t),

SA(t) = (AS
1(t),A

S
2(t),A

S
3(t),A

S
4(t)) (5)

AS
j (t) =

{
1, i f A j(t)≥ 0.20
0, else

(6)

Attention area space consists of all the combinations of ac-
tivated areas,24 = 16, as shown Fig. 8.
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(a) Flow direction

Attentin Area
Infomation

(b) Attention
Area

Figure 8. The flow segment space

4 Mapping between visual and somatic field

4.1 Self visual-somatic sensation mapping

The simultaneous activations of the units in the flow seg-
ment space and the self posture space during self motion
make it possible to find correspondence between the units
in those spaces (see Fig. 9). The connection coefficients
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Figure 9. Self visual-somatic sensation map-
ping

between the units in each space are learned based on Heb-
bian learning. All the connection coefficients are initialized
to 0s, and during the self motion the coefficient,wAB, which
is the connection coefficient betwen thei-th unit in space A
and thej-th unit in space B, is updated during self motion,
as follows,

wAB
i j (t +1) = wAB

i j (t)+ ε(yA
i (t)yB

j (t)−yA
i (t)2wAB

i j (t)). (7)

At the same time, the time sequences of the activated units
in motion segment space during various motions are mem-
orized as the motion modules inmotion memory.

4.2 Recognition of other person’s motion

After acquisition of self visual-somatic mapping, the in-
put of image data observing a demonstrator’s motion acti-

Figure 10. Arrangement of each space

vates the units in the motion segment space through the flow
segment space via connections between them (Fig. 11). Let
the activation level of thei-th unit in flow directionyF

i (t)
and that of thej-th unit in attention areayA

j (t), the activa-
tion level of thek-th unit in motion segment space,yM

k (t) is
given by

yM
k (t) =

NF

∑
i=1

wFM
ik yF

i +
NA

∑
j=1

wAM
jk yA

j (8)

The quantization in the flow segment space is coarse and
the mapping between the flow segment space and the mo-
tion segment space is not one-to-one mapping. The motion
of a demonstrator activates multiple units in the motion seg-
ment space at a time, which makes it difficult to identify the
corresponding motion module. So, we compare the tem-
poral sequences of activated units of observed motion with
those of memorized motion modules in the motion segment
space. To do that, we define the evaluation function,Em,
which indicates the similarity of the time sequence of acvti-
ated units of an observed motion to that ofm-th memorized
motion as follows,

Em = max
st

∫ T

0

NM

∑
i=1

yi(t)mi(ts+ t)dt. (9)

Thus, the observed motion is recognized as the same as the
motion module that maximizesEm.
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Figure 11. recalling the motion
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4.3 Mapping between a self posture image space
and a demonstrator’s posture image

Recalling the self motion from the observation of a
demonstrator’s motion makes it possible to correlate the
demonstrator’s posture image space in visual information
processing system with the self posture space in somatic
sensation information processing system (Fig. 12). When
observing a demonstrator’s motion, the unit in the image
space and the unit in the posture space activate simultane-
ously. So we can use Hebbian learning again between these
two maps.
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Figure 12. Self-Other Visual-Somatic sensa-
tion mapping

Fig. 13 shows the recalled posture (the rightmost fig-
ure) from the observed image (the leftmost figure). The two
maps in the middle of the figures describe the activated units
in image space(left) and that posture space (right) after heb-
bian learning.

5 Conclusions

In this paper, we proposed a learning system for imita-
tion based on visuo-somatic mapping. This system excludes
the pre-designed model of a demonstrator as much as possi-
ble. The demonstrator’s model is made through demonstra-
tor’s images in the demonstrator’s posture image space. The
model of self is not pre-designed, either. It is constructed
by self-organizing the self motion information in self pos-
ture space and motion segment space. The primitive visual
features are related to the representative vectors in motion
segment space during self motion. This connection induces
the self motion when observing demonstrator’s motions and
further mapping between demonstrator’s posture image and
self posture space is made. After constructing the visuo-
somatic mapping, this system can directly activate the self
posture corresponding the observed demonstrator’s image.

Figure 13. Recalling somatic sensation by
Self-Other visual-somatic sensation mapping
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Although initial aims to construct the visuo-somatic
mapping through learning are accomplished in this system,
it has many problems for practical use as an imitation sys-
tem. First this system assumes that an observer always
stands face to face with a demonstrator, and this sytem
does not have concept about the translation or rotation to
the ground of the demonstrator. An observer can recog-
nize only jestures of the demonstrator. Second, the resul-
tant visuo-somatic mapping is not so accurate as to make
new motion modules only from observation of demonstra-
tor’s motion, because the sequence of the activated postures
is not smooth.

For the first problem, we are now extending our model so
that it can describe the transition and rotation of a demon-
strator relative to the ground. The second problem can be
solved by using velocity information acquired by another
pathway. Acquiring new motions which are not experienced
through observation is the next challenge for us.
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Abstract

We explore two controversial hypotheses through robotic
implementation:(1) Processes involved in recognition and
response are tightly coupled both in their operation and epi-
genesis; and(2) processes involved in symbol emergence
should respect the integrity of recognition and response
while exploiting the fundamental periodicity of biological
motion. To that end, this paper proposes a method of recog-
nizing and generating motion patterns based on nonlinear
principal component neural networks that are constrained
to model both periodic and transitional movements. The
method is evaluated by an examination of its ability to seg-
ment and generalize different kinds of soccer playing activ-
ity during a RoboCup match.

1 Introduction

Complex organisms recognize their relation to their sur-
roundings and act accordingly. The above sentence sounds
like a truism owing in part to the almost ubiquitous dis-
tinction between recognition and response in academic dis-
ciplines. Engineering has successfully developed pattern
recognition and control as independent fields, and cogni-
tive psychology and neuroscience often distinguish between
sensory and motor processing with researchers specializing
in one area or the other. Nevertheless, in some sense recog-
nition and response entail one another. Recognizing an ob-
ject, action, or sign is largely a matter of recognizing what
it does for us and what we can do with it. Indeed, much of
what we perceive can be described in terms of potential ac-
tions. Doing andseeingcannot so readily be distinguished
because we acquaint ourselves with our world through what
we do and our actions drive what distinctions we learn to
make. None of this is meant to deny that we can experimen-
tally isolate purely motor centers in the brain from purely

Figure 1. In the proposed approach, a neural network
learns each kind of periodic or transitional movement
in order to recognize and to generate it. Recent senso-
rimotor data elicit activity in corresponding networks,
which segment the data and produce appropriate an-
ticipatory responses. Active networks constitute an
organism’s conceptualization of the world since they
embody expectations, derived from experience, about
the outcomes of acts and what leads to what. It is as-
sumed that behavior is purposive: affective appraisals
guide the system toward desired states.

sensory ones, but rather to assert that these centers are inti-
mately linked both in their everyday operation and in their
epigenetic development. Thus, as scientists and engineers,
we may have reified the distinction between recognition and
response, when their main difference is merely in descrip-
tive focus.

In this paper, we will entertain and begin to explore
two controversially and, as yet, unproven hypotheses: First,
there is an integrity of recognition and response. We recog-
nize an object or event largely because it elicits expectation
about what we can do with it — or at least piggybacks on
those kinds of expectations. In addition, these expectations
are expressed in terms of (or decontextualized from) how
motor signals transform sensory data. Second, biological
motion is fundamentally periodic. To put it simply, patterns
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Figure 2. Actroid, the actress android, has 33 motors,
which are driven by compressed air, to move its head,
neck, arms, body, eyes, eyelids, and mouth. Actroid
can make smooth and natural movements, including
large and small gestures. Actroid has touch sensors
in the arms and can access floor and infrared sensors
and video cameras placed in the environment.

repeat. (If they did not, there would be little point in learn-
ing.) That is as much a function of the ‘hardware’ as it
is the often routine nature of existence. Joints, for exam-
ple, have a limited range and will eventually return, more or
less, to a given configuration. Moreover, bodies have cer-
tain preferred states: for people walking is a more efficient
means of locomotion than flailing about randomly. All gaits
exhibit a certain periodicity as do many gestures and vocal-
izations.

This paper proposes a method of generalizing, recogniz-
ing, and generating patterns of behavior based on nonlinear
principal component neural networks that are constrained
to model both periodic and transitional movements. Each
network is abstracted from a particular kind of movement.
Learning is competitive because sensorimotor patterns that
one network cannot learn will be assigned to another net-
work, and redundant networks will be eliminated and their
corresponding data reassigned to the most plausible alterna-
tive. Recognition is also competitive because propriocep-
tive data is associated with the network that best predicts
it. (The data can be purely kinematic or dynamic depend-
ing on the dimensions of the sensorimotor phase space.)
Since each network can recognize, learn, and generalize a
particular type of motion and generate its generalization,
the integrity of recognition and response are maintained.
These generalizations are grounded in sensorimotor expe-
rience. They can be varied, depending on the networks’
parametrization. They may be viewed as a kind of pro-
tosymbol. While we do not claim that the networks have
neural analogues, we believe the brain must be able to im-
plement similar functions.

1.1 The emergence of signs in communication

In one vein, we are exploring the application of
periodically-constrainedNLPCA neural networks to vocal
and gesture recognition and generation. Our aim is to de-
velop robots whose activity is capable of supporting the
emergence of shared signs during communication. Signs
take on meaning in a given situation and relationship, as
influenced by an individual’s emotional responses and mo-
tivation (see Figure 1). They reflect mutual expectations
that develop over the course of many interactions. We hy-
pothesize that signs provide developmental scaffolding for
symbol emergence. For infants, the caregiver’s intentions
are key to fostering the development of shared signs.

We believe that periodically-constrainedNLPCA neural
networks could be one of the embedded mechanisms that
support the development of shared signs. We are testing
this hypothesis by comparing the behavior generalized by
these neural networks with Vicon motion capture data from
mother-infant interactions.1 The results of behavioral stud-
ies are applied to the android robot, Actroid, which has 33
degrees of freedom (See Figure 2).

Bayesian-wavelet neural networks

Feature selection and classification

Activity of self and others

Dynamics compensation

p

Distributed regulators

Self-other visuo-kinematic mapping Periodic representations in phase space

Nonlinear PC neural networks

p

(2)

(1)

(3)

(4)

Figure 3. Periodic nonlinear principal component net-
works may characterize motion patterns in a much
larger system for recognizing, learning, and respond-
ing behavior.

1.2 Mimesis loop

In a separate vein, we are applyingNLPCA neural net-
works to the learning of cooperative behavior in robot soc-
cer. Although techniques from reinforcement learning can
be borrowed to guide a robot’s behavior toward goals, they
cannot be directly applied to the state space of a humanoid
robot because of its enormous size. The approach outlined

1From this we have ascertained that certain important micro-behaviors
that make movement seem lifelike may have been overlooked in the ap-
proach outlined here, and we are starting to develop a micro-behavior filter.
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in this paper can vastly reduce the size of the state space by
segmenting it into different kinds of movements. A mime-
sis loop [3] may be used to capture many aspects of the sort
of imitation involved in learning to play soccer and other
sports. This paper addresses one aspect of the mimesis loop:
the abstraction of a robot’s own kinematic motions from its
proprioceptive experience. Figure 3 roughly outlines how a
mimesis loop might be realized in a soccer playing robot.
Attentional mechanisms direct the robot’s sensors toward
the body parts of other players, and the robot maps success-
fully recognized body parts onto its own body schema. This
paper introduces a method to abstract the robot’s own kine-
matic patterns: our segmentation algorithm allocates propri-
oceptive data among periodic temporally-constrained non-
linear principal component neural networks (NLPCNNs) as
they form appropriate generalizations.

The robot can useNLPCNNs to recognize the activities
of other players, if the mapping from their bodies to its own
has already been derived by some other method. Since each
network correspond to a particular type of motion in a pro-
prioceptive phase space, it can act as a protosymbol. Thus,
the robot would be able to recognize the behavior of others
because it has grounded their behavior in terms of its own
body.

Although periodicNLPCNNs may be used to generate
motion patterns, the robot must continuously respond to un-
expected perturbations. There are a number of approaches
to this control problem that do not require an explicit model.
For example, distributed regulators [2] could set up flow
vectors around learned trajectories, thus, converting them
into basins of attraction in a phase space of possible actions.

1.3 Outline

This paper is organized as follows. Section 2 extends an
NLPCNN with periodic and temporal constraints. Section 3
presents a method of assigning observations toNLPCNNs to
segment proprioceptive data. Section 4 reports experimen-
tal results usingNLPCNNs to characterize the behavior of a
FujitsuHOAP-1 humanoid robot that has been developed to
play RoboCup soccer.

2 A periodic nonlinear principal component
neural network

The human body has 244 degrees of freedom [15] and
a vast array of proprioceptors. Excluding the hands, a
humanoid robot generally has at least 20 degrees of free-
dom — and far more dimensions are required to describe its
dynamics precisely. However, many approaches to control-
ling the dynamics of a robot are only tractable when sensory
data is encoded in fewer dimensions (e.g., [9]). Fortunately,
from the standpoint of a particular activity, the effective di-
mensionality may be much lower.

feature layer
nonlinear principle 
components

decoding

encoding

output layer

input layer

Figure 4. Target values presented at the output layer
of a nonlinear principal component neural network are
identical to input values. Nonlinear units comprise the
encoding and decoding layers, while either linear or
nonlinear units comprise the feature and output layers.

feature layer

decoding

encoding

output layer

input layer

p  qθperiodic 
component

Figure 5. An NLPCA neural network with the activa-
tions of nodes p and q constrained to lie on the unit
circle.

Given a coding functionf : RN 7→ RP and decoding
functiong : RP 7→ RN that belong to the sets of continuous
nonlinear functionsC andD, respectively, whereP < N ,
nonlinear principle component networks minimize the error
functionE

‖~x− g(f(~x))‖2, ~x ∈ RN

resulting inP principal components[y1 · · · yp] = f(~x).
Kramer (1991) first solved this problem by training a mul-
tilayer perceptron similar to the one shown in Figure 4 us-
ing the backpropagation of error, although a second order
method such as conjugant gradient analysis converges to a
solution faster for many large data sets. Tatani and Naka-
mura (2003) were the first to apply anNLPCNN to human
and humanoid motions, though for dimensionality reduc-
tion only.

Nonlinear principal components analysis, unlikePCA

(Karhunen-Lòeve expansion), which is a special case where
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C andD are linear, does not have a unique solution, and no
known computational method is guaranteed to find any of
the globally optimal solutions. Nevertheless, for a 20-DoF
humanoid robot, a hierarchically-constructed2 NLPCNN has
been shown to minimize error several times more thanPCA

when reducing to two-to-five dimensions [13].

2.1 The periodicity constraint

Because the coding functionf of an NLPCNN is con-
tinuous,(1) projections to a curve or surface of lower di-
mensionality are suboptimal;(2) the curve or surface can-
not intersect itself (e.g., be elliptical or annular); and(3)
projections do not accurately represent discontinuities [8].
However, since the physical processes underlying motion
data are continuous, discontinuities do not need to be mod-
elled. Discontinuities caused by optimal projections can
create instabilities for control algorithms (e.g., they allow
points along the axis of symmetry of a parabola to be pro-
jected to either side of the parabola). Moreover, anNLPCNN

with a circular node (Ridella et al., 1995, 1997) at the fea-
ture layer can learn self-intersecting curves and surfaces.

Kirby and Miranda (1996) constrained the activation val-
ues of a pair of nodesp and q in the feature layer of an
NLPCNN to fall on the unit circle, thus acting as a single
angular variable:

r =
√

y2
p + y2

q , yp ← yp/r, yq ← yq/r

The delta values for backpropagation of the circular node-
pair are calculated by the chain rule [4], resulting in the
update rule

δp ← (δpyq − δqyp)yq/r3, δq ← (δqyp − δpyq)yp/r3

at the feature layer.
The hyperbolic tangent and other antisymmetric func-

tions (i.e.,ϕ(x) = −ϕ(x)) are generally preferred to the
logistic function as the sigmoid in part because they are
compatible with standard optimizations [6].3 In addition,
antisymmetric units can more easily be replaced with linear
or circular units in the feature layer, since these units can
produce negative activations. We propose using a slightly
flatter antisymmetric function for the sigmoidal units with a
similar response characteristic totanh (see Fig. 6). The ad-
vantage of this node is that it can be converted to a circular
node-pair while still making use of its perviously learned
weights.

2The joint encoder dimensionality of limbs is independently reduced,
then the arms and the legs are paired and their dimensionality further re-
duced, and then finally the dimensionality of the entire body.

3These include mean cancellation, linear decorrelation using the K-L
expansion, and covariance equalization.
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Figure 6. The popular hyperbolic tangent activation
function y ← 1.7159 tanh( 2

3
y) can be approximated

by a pair of circular nodes where the activation of the
second node yq is fixed at

√
1.9443 and the activa-

tion of the first node is calculated accordingly yp ←
1.7159yp/

√
y2

p + 1.9443.

2.2 The temporal constraint

Neither linear nor nonlinear principal components anal-
ysis represent the time, relative time, or order in which data
are collected.4 This information, when available, can be
used to reduce the number of layers and free parameters
(i.e., weights) in the network and thereby its risk of con-
verging slowly or settling into a solution that is only lo-
cally optimal. Since the activationsyp andyq of the cir-
cular node-pair in the feature layer in effect represent a
single free parameter, the angleθ, if θ is known, we can
train the encoding and decoding subnetworks separately
by presentingk cos(θ) and k sin(θ) as target output val-
ues for the encoding subnetwork and as input values for
the decoding network.5 Once a single period of data has
been collected, temporal values can be converted to an-
gular valuesθ = 2π tk−t0

tn−t0
for data collected at any arbi-

trary time tk during a period, starting att0 and ending at
tn. A network may similarly learn transitions between peri-
odic movements when using a linear or sigmoidal activation
node in the feature layer because these open-curve transi-
tions do not restrict us to using nodes capable of forming a
closed curve.6 NLPCNNs with a circular feature node remain
useful to identify the period of a motion pattern, especially
when the pattern is irregular and, thus, begins and ends at
points that are somewhat far from each other.

4Although a temporal dimension could be added to an autoassociative
network, one drawback for online learning is that this dimension would
need to be continuously rescaled as more data is collected to keep it within
the activation range of the nodes.

5k ≈ 1.7 for zero-mean data with variance equal to 1 based on princi-
ples discussed in [6].

6ytarget = 2k( tk−t0
tn−t0

− 1
2
), with k ≈ 1.4.
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3 Automatic segmentation

We conceived of the automatic segmentation problem as
the problem of uniquely assigning data points to nonlinear
principal component neural networks. It is possible to par-
tition the points without reference to the predictions of the
networks.7 However, for our method each network’s per-
formance influences segmentation with more networks as-
signed to regions that are difficult to learn.

A B

Figure 7. The thick line shows the output of an
NLPCNN and the thin line shows the underlying dis-
tribution. The dots are data points. A. Before learning
converges, allowing the network to learn data points
despite a high prediction error accelerates learning.
B. However, after convergence, it leads to segmenta-
tion errors.

As the robot begins to move, the first network is assigned
some minimal number of data points (e.g., joint-angle vec-
tors), and its training begins with those points. This gets
the network’s learning started quickly and provides it with
enough information to determine the orientation and cur-
vature of the trajectory. If the average prediction error of
the data points assigned to a network is below some thresh-
old, the network is assigned additional data points until that
threshold has been reached. At that point, data points will
be assigned to another network, and a network will be cre-
ated, if it does not already exist. To avoid instabilities, only
a single data point may shift its assignment from one net-
work to another after each training cycle.

Since a network is allowed to learn more data points as
long as its average prediction error per point is low enough,
it may learn most data points well but exhibit slack near
peripheral or recently learned data points. At the start of
learning, the network should be challenged to learn data
points even when its prediction error is large (see Fig. 7A).
As learning converges, however, the slack leads to segmen-
tation errors (see Fig. 7B). Therefore, we alter the method of
segmentation once the network nears convergence (as deter-
mined by Bayesian methods [7] or crossvalidation) so that

7For example, data points may be partitioned at the point at which a
trajectory most closely doubles back on itself, if the distance between the
two paths is within a certain threshold and the paths then diverge beyond
another threshold.

j ← 1, bucket ← 1, E ← 0
∀~xi {

train (networkj , ~xi)
Ei = ‖~xi − g(f(~xi))‖2, E ← E + Ei

if ( bucket > Bmax ∨
( learning? (networkj) ∧ E/bucket > Emax ) ∨
Ei > Ei+1 )
j ← j + 1, bucket ← 1, E ← 0 }

Listing 1: Pseudocode for segmentation.

a network may acquire neighboring points if its prediction
error for those points is lower that the network currently as-
signed to those points.

4 Humanoid experiments

This section shows the result of automatic segmentation
and neural network learning. We assess the accuracy of the
result based on a manual segmentation of the data points
and an analysis of how they are allocated among the net-
works.

First, we recorded motion data while aHOAP-1 hu-
manoid robot played soccer in accordance with a hard-
coded program [1]. Each data point is constituted by a 20-
dimensional vector of joint angles. A standard (noncircu-
lar) NLPCNN reduced the dimensionality of the data from
20 to 3, which was determined to be the intrinsic dimen-
sionality of the data by theISOMAP procedure [14] We then
applied our algorithm to segment, generalize, and generate
humanoid motion.

Our algorithm uniquely assigned the data points among
a number of circularly-constrainedNLPCNNs. Each of the
networks learned a periodic motion pattern by conjugate
gradients. Our algorithm successfully generalized five out
of six primary motion patterns: walking forward, turning

Figure 8. Fujitsu HOAP-1 robots are playing RoboCup
soccer.
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Figure 9. Recognized motion patterns embedded in
the dimensions of the first three nonlinear principal
components of the raw proprioceptive data. The top
and bottom plots differ only in the viewpoint used for
visualization.

right or left, and side-stepping to the right or left. It failed
to generalize as a single periodic trajectory the kicking mo-
tion, which has a highly irregular, self-intersecting shape.
However, human subjects were also unable to determine the
kicking trajectory from the data points.

Figure 9 shows that the automatic segmentation algo-
rithm successfully employed circularNLPCNNs to separate
and generalize five of the periodic motions. (The open-
curve segmentation of transitions between periodic motions
are omitted for clarity.) The periodic trajectories were gen-
erated by varying from0 to 2π the angular parameterθi

at the bottleneck layer of each of the circularly-constrained
networks and mapping the result to the output layer for dis-
play. This demonstrates our method’s capacity to generate
periodic motions.

We calculated statistics based on running the automatic
segmentation for 20 trails. The algorithm resulted in five
decoding subnetworks for 45% of the trials, which is the
most parsimonious solution. It resulted in six subnetworks
for 50% of the trials, and seven for the remaining 5%.

Since the data was generated by the predefined behav-
ior modules used by the Osaka University team in the 2003
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Figure 10. The average distance between the predic-
tion of a network trained on manually segmented data
and each of the automatically generated networks.

RoboCup humanoid competition, each data point was al-
ready labelled and could be segmented into the five types of
motion that had been successfully abstracted. To assess the
accuracy of the automatic segmentation algorithm, we man-
ually assigned the data points corresponding to each type of
motion to five periodic temporally constrainedNLPCNNs.
Figure 10 shows the average distance between the predic-
tion for each of these networks and each of the networks
resulting from automatic segmentation.

The lowest bar indicates which pattern the networks,
numbered 1 to 6 best match in terms of least average dis-
tance. Hence, the first network represents walking; the sec-
ond represents turning right; the third turning left; the fourth
and fifth sidestepping right; and the sixth sidestepping left.
The fact that the fifth network is redundant, abstracting the
same type of motion as the fourth, does not prevent the ab-
stracted actions from supporting the mastery of soccer or
some other task. Both networks can be used. The algo-
rithm’s capacity to reduce a vast amount of complex, raw
data to just a few states may help reinforcement learning
approaches to finesse the curse of dimensionality [12].

In a separate run of the learning and segmentation al-
gorithm, the motion sequence of recorded data during soc-
cer playing was walking forward, turning right, turning left,
walking forward, sidestepping to the right, sidestepping to
the left, and kicking. We counted the number of point
belonging to each network before and after removing re-
dundant networks. Redundant networks were removed by
means of linear integration. The angular valueθ was var-
ied from 0 to 2π at the bottleneck layer of one network
to obtain its predicted output. This value was fed into an-
other network to obtain its predicted value. If the integral
of the sum of the squared distances of the predicted outputs
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Figure 11. The percentage of data points allocated to
each network before and after eliminating redundant
networks and reassigning their data.

was less than a threshold, one network was removed and its
points reassigned to the other network (see Figure 11). This
method removed all redundant networks.

5 Conclusion

Our proposed algorithm abstracted five out of six types
of humanoid motion through a process that combines
learning and data point assignment among multiple neu-
ral networks. The networks perform periodic, temporally-
constrained nonlinear principal component analysis. The
decoding subnetworks generate motion patterns that accu-
rately correspond to the five motions without including out-
liers caused by nondeterministic perturbations in the data.
During 45% of training episodes, the algorithm generated
no redundant networks; a redundant network appeared in
50% of the training episodes, and two appeared in 5% of
them. Although the fourth and fifth networks represent
the same type of motion, this does not prevent them from
serving as action symbols for learning a complex task. By
means of linear integration, we were able to remove redun-
dant networks according to the proximity of their predic-
tions.

A kind of behavior can be recognized by selecting the
network that best predicts joint-angle values. It can be gen-
erated by varying the value ofθ in the bottleneck layer. This
shows the effectiveness of a tight coupling between recog-
nition and response since the same networks may be used
for both processes and they developed by the same mecha-
nisms. The significance of periodicity may be more limited,
however. Some motions are not periodic, and in the ex-
periment the kicking motion, although it occurs repeatedly,
was difficult to segment because of its highly irregular, self-

intersecting shape.
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Detecting Contingency Between Self and Other Triggers 
Social Behavior. 
Yukie Nagai, Minoru Asada, and Koh Hosoda 

 
Abstract 

This study investigates what triggers the shift of human infants'  behaviors from self-
centered (ScB) to other-depended ones (OdB) for  the emergence of social capabilities. 
Joint attention ability is  known to be acquired through a three-staged process, in which 
infants  gradually shift their behaviors from ScB to OdB. The authors have  proposed a 
constructivist model by which a robot learns joint  attention through experiences of visual 
attention. Visual attention  is a ScB to gaze at a salient visual stimulus. Employing the 
model,  our robot acquired the sensorimotor coordination of joint attention by  detecting a 
contingency between the image of a human face and a motor  command to look at a 
object. Analysis of the relationship between the  learning convergence and the behavioral 
shift showed that: (a) when  gradually shifting from ScB to OdB according to the 
contingency  detection, the robot can acquire joint attention ability; (b) when  producing 
only ScB over the learning phase, the robot cannot acquire a  consistent sensorimotor 
coordination; (c) when adopting only OdB, the  robot falls into locally biased behaviors 
that were experienced  earlier. These results suggest that the emergence of infants' social  
behaviors is triggered when they detect a contingency between their  own and other 
behaviors.  
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I present results from a set of psycholinguistic studies 
that challenge the view that the establishment and use of 
conventions requires mutual knowledge.  Instead, the 
results suggest that people use conventions in ways that 
routinely violate mutual knowledge.  Based on these 
findings, I argue that conventions are grounded not in 
complex assessments about what others know, but in 
simple, low-level cognitive heuristics that provide a 
robust, but fallible, basis for coordination at a minimal 
cognitive cost. 

 
 
One of the hallmarks of human intelligence is the 

ability to make use of socially shared conventions in 
order to solve coordination problems.  Language use 
provides perhaps the most conspicuous example of how 
social interaction is governed by conventions.  
Languages are comprised of multiple levels of 
conventions—conventions of phonology, morphology, 
syntax, and discourse.  An important question is how 
people establish and use such linguistic conventions. 

An influential proposal is that the establishment and 
use of conventions depends on the accumulation of a 
certain kind of shared knowledge, what is known as 
“mutual knowledge” or common ground [1, 2].  Mutual 
knowledge is defined as the set of knowledge that 
interlocutors share, know that they share, know that they 
know that they share, and so on.  An emerging 
alternative view suggests that much of convention use 
may not require participants to explicitly access mutual 
knowledge, and that the coordination phenomena 
observed in conversation might be an emergent effect of 
low-level cognitive processes [3, 4].  However, little is 
known about the on-line processing that underlies these 
emergent effects. 

To investigate this issue I tracked the eyes of 
speakers and listeners as they coordinated reference in a 

referential communication task.  I examined how the use 
of scalar adjectives (e.g., "small") became 
conventionalized through repeated use.  The experiment 
focused on factors of frequency and mutual knowledge. 

The results indicated that convention use was 
determined by frequency, but not mutual knowledge:  
speakers and listeners continued to use newly-
established conventions even when they interacted with 
partners who lacked mutual knowledge of these 
conventions.  Although this egocentric behavior may 
seem sub-optimal from the point of view of successful 
coordination, it is argued to be ecologically valid 
because of the existence of rich feedback loops that 
promote a commonality of cognitive representation in 
the dyad and in the community [5]. 
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Abstract 

Audio-visual synchrony is one of the earliest and most 
salient properties to which infants are sensitive.1 Fur-
thermore, it is likely that detection of contingent relations 
in and across modalities is a critical beginning point for 
autonomous mental development.2 While there are nu-
merous ecological examples of the need for contingency 
detection, one of the strongest is connecting face and 
voice. Dodd3 demonstrated that infants would look longer 
to a face that is synchronized to speech than one that is 
asynchronous with speech (see also Pickens4).  

The goal of the research reported here is to explicitly 
contrast detailed empirical data capturing infants’ real-
time detection of speech/face synchrony with a formal 
model of audio-visual synchrony detection. The empirical 
data comes from the Purdue University Infant Labora-
tory. Infants, 4, 8, and 12 months of age, were tested in a 
cross-sectional design using the splitscreen preferential 
looking paradigm. In the procedure, two female faces 
(talking in infant-directed speech) were presented side-
by-side on a large video screen, with the audio alternately 
matching one of the faces. By following the developmental 
trajectory of the preference for the synchronous face and 
by examining reaction times when the synchrony switches 
between faces, we gain a better understanding of the 
temporal resolution of infants’ sensitivity to synchrony at 
different ages. This method also gives us frame-by-frame 
coding of infant looking preferences that can be directly 
compared with the output of the formal model. In the 
model, we use an algorithm that directly computes mo-
ment-by-moment audio-visual synchrony relations be-
tween low-level audio-visual features (e.g., RMS audio 
and grayscale pixels) based on Gaussian mutual informa-
tion across a time window of audio-visual information.5  

While the ability of the model to discover and localize 
sources of synchrony is still in its infancy, it already 
shows strikingly similar overall and moment-by-moment 
performance to some of the data from the infants. This 
suggests that infants and the model may be tapping simi-
lar aspects of the audio-visual contingencies in the video. 
It is our hope the model will ultimately capture even more 
detailed aspects of infants’ behavior and scale to more 
general models of infant attention and autonomous devel-
opment. Following this motivation, we are extending the 
model to utilize audio-visual synchrony to train within-
visual-modality categorization and to bootstrap aspects of 
facial recognition. 
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ATTENTION-SHARING IN HUMAN INFANTS  
FROM 5 TO 10 MONTHS OF AGE IN  

NATURALISTIC INTERACTIONS 
 

Gedeon Deák , Yuri Wakabayashi & Hector Jasso  

Abstract  

Attention-sharing is fundamental for learning in social contexts. Some accounts of 
shared attention skills (Baron-Cohen, 1995) explain them as unverified, innate 
modules. An alternative account (Deák & Triesch, in press) proposes that 
attention-sharing skills like gaze- and point-following emerge from a combination 
of perceptual routines, affective dispositions, learning capacities, and exposure to 
structured social input. Thus, shared attention behaviors like gaze- & point-
following should emerge gradually from interactive processing of predictable 
adult behaviors. In this study, 11 parent-infant dyads, with infants between 5 and 
10 months of age (i.e., before or during the emergence of reliable laboratory-
based gaze- and point-following skills) were videotaped at play at their home. The 
object was to observe how gaze- and point-following change from 5 to 10 months 
in everyday social interactions. Dual-video files (2 synchronized, 15 min DV 
streams, one each focused on parent and infant) were coded for events and 
variables including infant's direction and target of gaze, parent's direction and 
target of gaze, and parent's manual actions. The results for "showing" interactions 
(when parents were told, with no specific instructions, to _try to get [your baby] 
to pay attention to these [4 toys]_), and for _peek-a-boo_ interactions, were 
coded. Inter-coder reliability for gaze target was acceptable; parent kappa = .73; 
infant kappa = .70. Results showed that infants and parents spent a mean of 12% 
(range = 1-25%) of the sharing episode in mutual gaze, and 9% (range = 3-23%) 
in shared gaze. Frequency of infant following events was positively correlated 
with infant_s age, r (10) = .69. From 5 to 10 months, infants' following rate for all 
gestures reliably and gradually increased, and no sudden change around 9-10 
months evident, as modular theories would predict. Unexpected from the 
experimental literature, we found that infants followed only 3.6% of parents_ 
gaze shifts, versus 40.1% of parents_ pointing gestures. across the age range 
followed parents' points far more than gaze. It has been claimed that infants 
younger than 10 months do not understand others_ pointing gestures; these data 
disconfirm that claim. The results indicate that gaze- and point-following emerge 
gradually in the first year, implying learning processes based on structured input, 
rather than the "turning on" of a specialized module or modules. 
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In 1925, the developmental psychologist Paul Guillaume argued that young children
were able to recognize themselves in mirrors and to imitate another's actions because
they were able to match between their kinesthetic experiences of their own body and
their visual experiences of another body: either their own (in the mirror) or another's (in
imitation). Through this kinesthetic-visual matching, the young child knows how it
looks even without a mirror, in that it can imagine, from its kinesthetic experiences, a
visual appearance of itself. And from a visual experience of a body, it can imagine how
that body feels kinesthetically. Guillaume recognized that his solution to the problems
of explaining self-recognition and imitation also solved another problem: how it is that
we ever develop the notion that there are subjects of experience. Guillaume's solution
offered a better explanation than the traditional argument by analogy. According to the
argument by analogy, any given person knows that others have conscious experiences
by extrapolation from his or her own experience. Yet this argument is clearly inaccurate
because, as the philosopher P. F. Strawson argued, unless one can apply generally the
idea of a subject of experience (what Strawson calls the concept of a "person"), one
would be unaware that one is a subject of experience. Kinesthetic-visual matching
provides a person with the ability to recognize itself as a subject of experience, as well as
to recognize that others have subjective experiences like itself: the visual experience of a
body, whether one's own or another's, is perceived as endowed with kinesthetic
experience. Similarly, philosophical psychologist Merleau-Ponty observed that one
needs a schema that is transferable from one's own body to others' bodies and back
again in order to experience oneself and others as psychological beings, and kinesthetic-
visual matching fits the requirement. It is kinesthetic-visual matching that allows
individuals a foothold on the notion that oneself and others are persons. Although
psychologists Meltzoff and Moore posited (many years after Guillaume) a mechanism
for interpersonal understanding similar to kinesthetic-visual matching, it is unlikely that
the newborns to whom they attribute the mechanism are capable of understanding others
in the same way that older children who self-recognize and engage in generalized bodily
imitation can. The mature kinesthetic-visual matching present in self-recognizers who
can imitate innumerable bodily actions seems essential for other skills as well, including
recognizing that one is being imitated, extensive planning involving imagination of one's
body moving through space, pretending to be another, and communicating via imitation.
The ability for kinesthetic-visual matching appears to be localized in the brain's parietal
region, an area responsible for motor imagery and other imaginative movement of one's
body through space. In fact, it appears likely that the self-other relational properties of
kinesthetic-visual matching derive evolutionarily from motor imagery skills. In this
presentation I examine the implications of kinesthetic-visual matching for self-
understanding and understanding of other minds in adult humans, young children, great
apes, and dolphins who are capable of both self-recognition and generalized bodily
imitation.

84



EEG dynamics during self-produced 

 emotion feeling-states 
 

Julie Onton, Scott Makeig 
 

 

85



 

Mu rhythm modulation during intentional and 
unintentional human and robot actions 

Shenk, L.M., Jacoby, B.P., McCleery, J.P., Ramachandran, V.S., & 
Pineda, J.A. 

 

Abstract 

Previous studies have found that electroencephalogram (EEG) oscillations 
in the mu frequency band (8-13 Hz) are suppressed during the 
performance and observation of human actions. Mirror neurons, originally 
discovered in the macaque premotor cortex, are characterized by their 
activity in response to both self-performed and observed actions. Based on 
this functional correlation, mu wave suppression is believed to be an index 
of activity of the human mirror neuron system. Accumulating evidence 
suggests that the mirror neuron system serves to create an internal 
simulation of actions that are perceived as either biological or intentional. 
The present study seeks to investigate the flexibility of the mirror neuron 
system by exploring its response to both intentional and unintentional 
biological and non-biological movement. Fourteen adult participants 
viewed a series of videos including 1) Visual white noise (baseline 
condition) 2) Balls bouncing (non-biological unintentional movement), 3) 
A human hand opening and closing (biological intentional movement), 
and 4) A human hand being pulled by a string (biological unintentional 
movement). Power in the mu frequency was significantly suppressed 
during both biological movement conditions. This finding suggests that 
biological movement is sufficient to suppress the mu wave independent of 
intentionality. Thus we conclude that the human mirror neuron system is 
responsive to both intentional and unintentional biological movement. To 
further explore this question, we are currently collecting data on 
intentional non-biological (i.e., robot) movement. Based on preliminary 
data from on-going fMRI mirror neuron studies, we hypothesize that non-
biological intentional movements will also be sufficient to suppress the mu 
wave.  
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The perception of direct gaze in human infants

Authors: Teresa Farroni, Mark H. Johnson, Gergely Csibra

Direct eye contact with another human face is one of the most important foundations of our social

behavior. A major debate in cognitive neuroscience concerns the origins of the "social brain" in

humans, and the extent to which this is acquired through experience. In the first of two

experiments, we measured 4-month–old infants' brain electrical activity to assess the neural

processing of faces when accompanied by direct or averted eye gaze. High-density event-related

potentials (ERPs) were recorded in response to the direction of eye gaze of this face stimulus.

The results show that, consistent with previous studies (de Haan, Pascalis, & Johnson, 2002), an

"infant N170" component peaked around 240 msec post-stimulus. Further, the amplitude of this

component over mid-line occipital channels was higher in response to direct than averted gaze.

To rule out alternative explanations, in a second experiment we showed babies inverted female

faces, with either direct or averted gaze. Inspection of averaged ERPs time-locked to the onset of

the stimulus revealed no effect on the “infant N170” corresponding to that observed in

Experiment 1. These results suggest that from at least 4 months of age there is enhanced brain

processing of upright faces with direct eye gaze.
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Abstract 

 Cognitive psychologists have extensively studied feed-
back and explicit learning in problem solving. In contrast, 
they often dismissed learning by imitation as “rote memo-
rizing”, and therefore considered it trivial and uninterest-
ing. Our work shows that this assumption might be un-
warranted. Research on learning in infants and animals 
regards imitation learning as a powerful and pervasive 
process for acquiring new knowledge, namely the overall 
arrangement of actions (sequencing and planning) in 
complex tasks. Similarly, we propose that problem solvers 
can infer a complex hierarchical problem representation 
from observation alone.  

We compared three types of learning in problem solv-
ing tasks: imitation learning (a group that viewed suc-
cessful problem solving demonstrations), feedback learn-
ing (a group that got feedback indicating whether their 
answer was correct or not) and explicit rule learning (a 
group that was presented instructions to solve the prob-
lem).  Participants were required to find, with three uses 
of a scale, the one ball which was either heavier or lighter 
than the rest of a set of 12 balls.  

We found that participants in the imitation learning 
and explicit learning groups were more accurate (solved 
more problems correctly) than those in the feedback 
learning group. We also found that all participants got 
faster, but not more accurate, over problem solving trials.  

More research is required to understand the mecha-
nisms underlying imitation learning and the nature of 
problem representations constructed. However, we con-
clude that learning by imitation rivals learning by explicit 
instructions as an efficient learning technique in our 
problem solving task.  While both methods were superior 
to feedback learning, imitation learning has additional 
benefits such as being more informal and omnipresent, 
while imposing a minimal cost to the mentor. 

1. Introduction  

Problem solving is “thinking that is directed toward the 
solving of a specific problem that involves both the for-

mation of responses and the selection among possible 
responses” [25]. It is therefore a very important area of 
cognitive psychology, and it is considered a crucial com-
ponent of intelligence. “The ability to solve problems is 
one of the most important manifestations of human think-
ing.” [12].  

Information-processing theory is currently the domi-
nant approach to problem solving [12]. Problems are 
construed in terms of states, transitions and operators. The 
essence of problem solving is a search through the state 
space for a solution state using the operators available at 
each point while satisfying a set of problem-specific con-
straints.  

1.1. Learning in Problem Solving Tasks 

Several types of learning can occur during problem 
solving efforts, either in isolation or in various combina-
tions.  

1.1.1. Reinforcement or Feedback Learning 

Feedback learning, or learning by trial-and-error, is a 
mechanism whereby systems (humans, animals or ma-
chines) seek to maximize rewards and minimize punish-
ments. In general, rewarded behaviors tend to increase in 
frequency whereas punished behaviors tend to decrease in 
frequency as learning progresses [2, 16]. By rewarding 
searches that yield correct solutions and punishing those 
that do not, feedback learning allows problem solvers to 
learn which tactics are successful and which ones are not.. 
It is the most common learning mechanism in problem 
solving because feedback information is usually embed-
ded in the problem itself or is available in the environ-
ment. The main problem with feedback learning is that 
the information available is typically very limited, in the 
form of binary data (correct/satisfactory or incor-
rect/unsatisfactory answer). 

Although he used a different terminology, Holyoak de-
scribes a form of feedback learning as the learning 
mechanism involved in information-processing theory: 
“An intelligent problem solver uses the results of solution 
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attempts to acquire new knowledge that will help solve 
similar problems more readily in the future” [12]. 

1.1.2. Explicit Learning 

Explicit verbal learning, is based on having access to 
explicit instructions for solving problems. They are typi-
cally expressed as abstract symbolic rules in the form of 
if… then… statements. Western cultures particularly value 
explicit verbal instructions such as problem solving algo-
rithms typically described in textbooks, documents and 
other “how-to” manuals [29]. 

Explicit learning is somewhat limited in scope because 
it assumes the availability of a domain expert and a 
skilled author who have the time, energy and ability to 
express problem solving reasoning explicitly, concisely, 
completely and coherently. 

1.1.3. Imitation Learning 

Imitation learning, rooted in the long tradition of social 
learning [4], can be defined as a mechanism where behav-
iors or skills are acquired by watching others perform.  
[24]. In the natural world, learning by imitation makes 
evolutionary sense for social animals because it allows 
them to learn and transmit successful methods and strate-
gies, possibly acquired over many generations.  

There is still a lot of controversy around a precise and 
detailed definition of imitation learning. Definitions can 
generally be regarded on a spectrum from inclusive to 
restrictive. For instance, Thorndike (1898) defined imita-
tion as any situation in which animals “from an act wit-
nessed learn to do an act.” [1] In contrast, Thorpe (1963) 
defined “true imitation as the copying of a novel or oth-
erwise improbable act or utterance, or some act for which 
there is clearly no instinctive tendency” [1].  

Most of the controversy originates from the fact that 
other mechanisms (generally based on some kind of prim-
ing) can also account for imitative behaviors. Those 
mechanisms include [1, 17]: 

1. Social Facilitation / Social Enhancement – The 
mere presence of conspecifics encourages similar 
behaviors. 

2. Local Enhancement – The attention of the ob-
server is drawn to a place or location due to activi-
ties of the demonstrator. 

3. Stimulus Enhancement – The attention of the ob-
server is drawn to an object (e.g., tool) due to ac-
tivities of the demonstrator. 

4. Goal Emulation – The imitator does not try to 
copy the action, but tries to reproduce the result. 

Most imitation researchers agree about the importance 
of ruling out these other mechanisms. To truly qualify as 
imitation, it appears that some kind of understanding of 
the demonstrator’s intentions is important. Recent re-

search has found evidence of such understanding of inten-
tions in animals and in human infants [8, 9, 27]. 

Byrne and Russon [7] proposed the idea of a program 
level imitation consisting in imitating the overall ar-
rangement of actions in a hierarchical fashion, particularly 
the planning of and sequencing of actions. They con-
trasted this with action level imitation where the fine 
details of the actions are copied or imitated. They argued 
that program level imitation qualifies as “true imitation” 
because it implies that the imitator understands the inten-
tions of the demonstrator in terms of goals and sub-goals. 
They consider the learning of a new arrangement of be-
havioral units, already present in the behavioral repertoire, 
to be novel.  

In the context of problem solving, imitation learning 
takes the form of demonstrations. Byrne and Russon’s 
theory suggests that imitation learning might enable a 
problem solver to infer a complex hierarchical problem 
representation from observation alone.    

Learning by imitation does not have the limitations of 
explicit learning. Because it conveys information or in-
structions implicitly in problem solving demonstrations, it 
can be applied to tasks learned implicitly and to tasks for 
which no written instructions can be found. In fact, the 
demonstrator need not be conscious he is being imitated, 
although awareness of his role might facilitate learning 
because he can emphasize or highlight critical steps dur-
ing the demonstration. This makes learning by imitation 
more efficient and adaptive than explicit learning in many 
contexts. 

Learning by imitation and by feedback are probably 
mediated by different brain mechanisms, namely mirror 
neurons for imitation learning [18] and the activity of 
mesencephalic dopaminergic neurons for reinforcement 
learning  [14]. Both types of learning are used in machine 
learning [6, 26]. 

1.2. Supplemental Approaches to Problem Solv-
ing 

Several methods for complementing, supplementing or 
replacing feedback learning have been proposed. Tech-
niques traditionally favored include: teaching of heuristics 
[20], hints [15] and reasoning by analogy [13]. Heuristics 
are used to limit search complexity by considering only a 
small number of alternatives that seem most likely to lead 
to a solution [12].  

In contrast, the importance of learning by demonstra-
tion (imitation) has been minimized because it was con-
sidered rote memorization [15], and therefore trivial and 
uninteresting. In light of the more recent research just 
reviewed, we believe that this assumption is unwarranted, 
and instead, we argue that learning by imitation is actually 
complex and cognitively challenging. 
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For instance, Katona [15] explored a matchstick prob-
lem with three groups:  a creative group that was provided 
hints for solving the problem, a memory group that saw 
demonstrations, and a control group that had no help.  The 
creative group performed the best on the experimental 
task, and the memory group outperformed the control 
group.  A striking result that attracted little attention was 
that the memory group, which arguably had an opportu-
nity for learning by imitation, outperformed the control 
group even on novel problems.  This outcome suggests 
that with a demonstration of even one problem to imitate, 
people may be able to generalize those strategies to new 
problems. 

Furthermore, heuristics, hints and analogies share 
many of the problems of explicit learning, namely the 
need for availability of a mentor, a significant time and 
effort investment by the mentor, and the need of a task to 
which hints, heuristics or analogies can be applied. Also, 
Nisbett and Wilson [19] found that subjects are typically 
not aware that hints are given, and they are not accurate in 
determining which hints (among real and false ones) are 
useful. Gick and Holyoak [10, 11] found that people often 
fail to make use of potentially useful analogies unless 
their relevance is explicitly pointed out to them. 

2. Project Description 

In this research, we compared the effect of learning by 
imitation, feedback learning and explicit learning on prob-
lem solving performance. To the best of our knowledge, 
learning by imitation has never been explicitly studied in 
adult humans in the context of higher-level cognition, 
such as problem solving tasks, with the goal of under-
standing its underlying mechanisms. Katona’s work 
aimed to show the superiority of hints over demonstra-
tions (memory group). He did not compare the memory 
group with an instruction group to control for the amount 
of information subjects got, and did not study the mecha-
nisms underlying learning by imitation.  

We limited our study to so-called well-structured prob-
lems [22]. Such problems are characterized by their clear 
initial and goal states, and by their precisely defined op-
erators and constraints. Furthermore, this research focused 
on planning-intensive tasks.  The Towers of Hanoi prob-
lem is a classical example of a well-structured, planning-
intensive task. 

For this research, a well-known mathematical problem, 
the ball-weighing problem, was selected. This class of 
problems has been previously used in a psychological 
experiment, the Coin problem [21]. It can be described as 
follows: “Suppose you have eight coins and a balance. 
One of the coins is counterfeit, and therefore is lighter 
than the others. How can you find the counterfeit coin by 
using the balance only twice?” [5] We used a variant of 
this problem which involved weighing balls. Our prob-

lems used 12 balls, the target ball could be heavier or 
lighter than the rest and, the scale could be used only 
three times. 

Appendix 1 presents a complete instruction set for 
solving this problem - only minor variants are possible. 
The reason for selecting a relatively difficult problem 
with counter-intuitive solutions was to require learning, 
and thus enable differential performance between the 
experimental groups. Simple problems might not enable 
the various learning techniques to effectively show how 
they vary in efficiency. 

3. Experimental Design  

This section presents the experimental design for studying 
learning on the ball-weighing problem.  

3.1. Design Variables 

There were two independent variables in this design. The 
first one, the experimental Group, was a between-subject 
factor with three levels: 

1. Imitation learning group – had access to 5 success-
ful demonstrations of how to solve the target prob-
lem (for 5 different ball/weight combinations) 

2. Explicit learning group – had access to verbal in-
structions for solving the problem that they could 
view once before starting to work on the problem, 
and study for 10 minutes. Those instructions con-
veyed the same amount of information as the 5 
demos presented to the imitation learning group, 
and exposure times were matched. 

3. Feedback learning group – got feedback on their 
performance (whether their answers were correct 
or not). 

Note that the imitation learning and explicit learning 
groups did not receive any feedback. 

The second variable, called trial Quartiles, was a 
within-subject factor.  A trial is a single problem instance 
from its initial presentation until the answer is given. Each 
trial had a different target ball and weight selected at 
random among the 24 possibilities (12 balls x 2 weights 
{heavy, light}). Trials were clustered in four quartiles to 
mark the progression of time within the problem solving 
session. Besides accommodating the unequal number of 
completed trials between subjects, this clustering allowed 
the study of dynamic effects, i.e., how dependent vari-
ables evolved over trials. 

The design had two dependent variables: elapsed time 
and accuracy (i.e., whether the answer was correct or not). 
Both dependent variables were measured on each trial and 
averaged over trials within each quartile. 
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3.2. Experimental Hypotheses 

Two experimental hypotheses were tested in this ex-
periment. First, the imitation learning and the explicit 
learning groups were expected to outperform the feedback 
learning group, both in terms of accuracy (i.e., higher 
correct answer rate) and speed (i.e., shorter elapsed time 
per trial). The imitation and explicit learning groups got 
full information on exactly what to do; in machine learn-
ing and connectionist terms this was supervised learning 
using fully specified target vectors. In contrast, the feed-
back group only got an impoverished binary signal indi-
cating whether the answer was correct or not. In the ma-
chine learning literature, reinforcement learning is consid-
ered difficult “because the agent is never told what the 
right actions are, nor which rewards are due to which 
actions” [26].  

Furthermore, assuming that the verbal instructions 
were understandable, no differences between the imitation 
and explicit learning groups were expected because the 
amount of information given was identical, although pre-
sented in a different form. 

Second, some kind of learning effect was hypothesized 
for all groups. Participants were expected to get both 
more accurate and faster with practice. This effect was 
expected to be largest in the feedback learning group 
because, in the absence of any information on correct 
solutions, subjects were expected to initially spend con-
siderable time exploring solutions of limited efficiency, 
and thus have more opportunity to gain speed and accu-
racy though practice. 

3.3. Methods and Procedures 

Participants were McGill undergraduate and graduate 
students. Testing 68 participants yielded 63 (17 males and 
46 females) usable data samples (21 per experimental 
group). Participants were excluded when they could not 
finish the warm-up task within 30 minutes (n=3), or when 
they were identified as statistical outliers on a q-q plot 
graph (n=2). Participants were randomly assigned to ex-
perimental groups. The chance to win a $50 prize encour-
aged maximal performance by keeping participants moti-
vated. 

A warm-up task (level 1) was first presented (3 balls, 2 
uses of scale) to allow participants to become familiar 
with the task and the user interface.  

The target task (12 balls and 3 uses of the scale) was 
presented as level 2. Upon entering that level, participants 
were given demonstrations or instructions depending on 
the condition. They next worked on problem trials for 30 
minutes, or until they successfully solved all 24 different 
trials consecutively. Trials were selected in random order 
from a list of unsolved trials. When solved successfully, a 

trial was removed from the list. However, when an error 
was made, the list was reset back to the whole 24-trial set.  

Participants were instructed to label (categorize) balls 
to reflect the information they gathered about the balls’ 
weights as trial progressed. Each ball could be labelled as 
follows: “Unknown” (heavy, light or normal weight), 
“heavy or light”, “heavy or normal”, “light or normal”, 
“heavy”, “light”, or “normal”. 

Figure 1 shows a screenshot of the Java computer pro-
gram designed to implement the ball-weighing task and 
record problem solving data for further analysis.  

 

  
Figure 1. Computer Program Screenshot 

 
Appendix 1 presents a complete set of instructions for 

solving the problem. Each participant in the explicit learn-
ing group read a subset of these instructions. Each subset 
was designed to provide the same information as a set of 
five randomly selected demonstrations used for the imita-
tion learning group. 

In terms of task analysis, the ultimate goal of this prob-
lem is to identify the target ball, which is either heavier or 
lighter.  To do this, the problem solver must loop through 
a pair of sub-goals until the problem solver finds a solu-
tion or exceeds the maximal number of scale uses allowed 
(solution fails in the latter case). The first sub-goal is to 
select which balls to weigh in order to maximize the in-
formation obtained from the scale. The second sub-goal is 
to appropriately extract new information acquired using 
the weight trial and to update categorization of the balls 
with the appropriate color markings. Appendix 1 presents 
detailed operations to be performed for all sub-tasks.  
Typically the operations to perform depend on the result 
of the previous weighing. 

4. Results, Analysis and Discussion 

4.1. Correct answer rates 

Table 1 presents mean correct answer rates. Values 
were computed by averaging trial values for all partici-
pants and all quartiles. Correct answer rates were not 
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normally distributed and could not be transformed to a 
normal distribution because of a ceiling value at 1.00. 
Therefore, Kruskal-Wallis and Median non-parametric 
tests had to be performed to determine the statistical sig-
nificance of the group differences in means. Separate 
analyses had to be done for the effect of group and the 
effect of quartile because those tests allow only one inde-
pendent variable to be tested at a time. Note that standard 
deviation measures were high, but, as we will see, some 
differences are nonetheless significant.  

 
Table 1. Mean correct rate1 

Group Correct Rate Std Deviation 
Feedback learning 0.59 0.49 
Imitation learning 0.76 0.42 
Explicit learning 0.71 0.45 

 
On the one hand, Kruskal-Wallis and Median tests 

showed significant differences in correct answer rate 
across Group (Chi-square=7.054, df=2, p=0.029* and 
Chi-square=7.255, df=2, Median=0.667, p=0.027*, re-
spectively). Pairwise Kruskal-Wallis tests were performed 
to determine which differences were significant. The 
results are the following: 

1. Feedback vs. Imitation learning groups: Chi-
square=5.368, df=1, p=0.021* 

2. Feedback vs. Explicit Learning groups: Chi-
square=4.793, df=1, p=0.029* 

3. Imitation vs. Explicit Learning groups: Chi-
square=0.430, df=1, p=0.512 

On the other hand, the main effect of Quartile was not 
significant under the Kruskal-Wallis test (Chi-
square=3.443, df=3, p=0.328) nor under the Median test 
(Chi-square=6.43, df=3, p=0.092).  
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Figure 2. Mean correct rate per trial quartile (i.e., 
4 bins) (n=63 participants) 
                                                           
1 Computed as follows: Total number of correct answers / 
Total number of completed trials 

Figure 2 presents the mean correct answer rate per 
group and quartile.  

The performance decrease in the last quartile might 
suggest a fatigue effect. However, this effect is not reli-
able. When trials are grouped into different numbers of 
clusters, the shape of the distributions varies, as illustrated 
in figure 3, which presents the mean correct answer rates 
across 8 bins.  
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Figure 3. Mean correct rate for 8 bins (n=59 par-
ticipants2) 

 
Two conclusions can be drawn. First, the feedback 

learning group significantly underperformed compared to 
the other two groups, which did not differ significantly 
from each other. Second, visual inspection of correct 
answer rates with sufficient numbers of bins (e.g., figure 
3) suggests a small learning effect, which fell below the 
statistical power available in this experiment perhaps due 
to an insufficient sample size. 

4.2.  Contingency tables analysis 

Contingency tables 2 and 3 present the number of per-
fect performers and number of correct and incorrect an-
swers for each group respectively. A perfect performer 
was defined as a participant who made no errors, and thus 
completed level 2 in exactly 24 trials. 

 
Table 2. Numbers of perfect and imperfect per-

formers 
Group Subjects Perfect 

Score 
Imperfect 
score 

Feedback learning 21 0 21 
Imitation learning 21 5 16 
Explicit learning 21 2 19 
 

                                                           
2  Four participants were excluded because they 
completed fewer than 8 trials. 
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Table 3. Numbers of correct and incorrect an-

swers  
Group Trials 

count 
Correct Incorrect 

Feedback learning 350 207 143 
Imitation learning 209 311 98 
Explicit learning 390 276 114 

 
The two Chi-square tests performed on contingency 

tables of correct answer data were both significant. In 
other words, Group had a significant effect on the number 
of perfect performers (Chi-square=6.11, df=2, p<0.05) 
and on the overall number of correct and incorrect an-
swers (Chi-square=21.08, df=2, p<0.05). Most of perfect 
performers and correct answers are found in the Imitation 
Learning group. 

4.3. Elapsed time 

Table 4 presents mean elapsed times. Values were 
computed by averaging trial values for all participants and 
all quartiles.  

 
Table 4. Mean elapsed times (sec per trial) 

Group Elapsed time Std Deviation 
Feedback learning 10.4 7.9 
Imitation learning 8.8 5.1 
Explicit learning 9.5 6.1 

 
An ANOVA test was performed across the two inde-

pendent variables (Group (3 levels) and Quartile (4 lev-
els)) after a log transformation was applied to achieve 
better normality in elapsed time distributions. Similarly to 
correct answer rate values, standard deviation measures of 
elapsed time were high, but nevertheless significant. 
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Figure 4. Log of average elapsed time per trial 
quartile  

 

There was no significant main effect of Group (F2,60= 
1.42, p= 0.25). However, the main effect of Quartile was 
highly significant (F3,180= 85.7, p<0.001) suggesting a 
learning effect across quartiles within each group. Fur-
thermore, the interaction effect of Group and Quartile was 
significant (F6,180= 2.63, p= 0.018) indicating that groups 
differ in their decrease in elapsed time across Quartiles. 
These results suggest different rates of learning, and in-
spection of figure 4 suggests that the explicit learning 
group shows the highest speedup. It may have taken time 
and practice for participants in the explicit learning group 
to figure out how to effectively make use of the abstract 
instructions they were given.   

4.4. Analysis of Strategies 

The use of strategies for selecting balls in the first 
weighing was investigated. The correct strategy is to 
weigh four balls on the right side of the scale against four 
balls on the left side (abbreviated as 4/4 below) because it  
maximizes the information obtained from the three possi-
ble scale outcomes (left heavy, right heavy or equal 
weights). Besides the 4/4 strategy, two other ones were 
frequently used: 6/6 (six balls on each side of the scale) 
and 3/3. Table 5 presents the use of each strategy in each 
group at the beginning (init) and the end (final) of the 30-
minute problem solving session. A strategy was tagged as 
n/n only when it was consistently and exclusively used 
during the first 20% of trials (init) or the last 20% of trials 
(final). Unequal ball counts and use of multiple strategies 
were categorized as Other. 

 
Table 5. Use of initial and final strategies during 
the problem solving session for all experimental 

groups 
Strategy Experimental Group 

 Feedback 
learning 

Imitation 
Learning 

Explicit Learn-
ing 

 Init Final Init Final Init Final 
1/1 0.0% 0.8% 0.0% 0.0% 0.0% 0.0% 
2/2 1.2% 4.0% 0.0% 0.0% 1.2% 0.0% 
3/3 22.9% 21.0% 0.0% 0.0% 10.3% 16.7% 
4/4 31.5% 62.3% 100% 99.2% 83.3% 83.3% 
5/5 4.8% 0.0% 0.0% 0.0% 2.0% 0.0% 
6/6 34.9% 11.9% 0.0% 0.8% 3.2% 0.0% 

Other 4.7% 0.0% 0.0% 0.0% 0.0% 0.0% 
 
As Table 5 exhibits, participants in the imitation learn-

ing group consistently used the correct strategy (4/4) all 
through the problem solving session.  

Participants in the explicit learning group mainly used 
the correct strategy from the beginning (about 83%), but 
also explored other possibilities, suggesting it was diffi-
cult for them to map the abstract verbal description into 
action. Results also suggest that a significant proportion 
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of participants in that group interpreted “use 1/3 of the 
balls on each side of the scale” as suggesting a 3/3 strat-
egy instead of 4/4. The effect persisted until the end: 
about 17% of subjects were still using the wrong strategy. 
This suggests that these verbal rules (see Appendix 1) are 
more difficult to turn into correct action than a demonstra-
tion is, and that although the rules are properly written, 
they might be misinterpreted. 

Finally, participants in the feedback learning group in-
creased their use of the correct strategy by 31%, indicat-
ing a learning effect. The 6/6 strategy was the most popu-
lar initially, possibly showing a natural (yet incorrect) 
heuristic bias that testing all the balls gives the most in-
formation. The fact that uses of incorrect strategies (3/3 
and 6/6) still remains high in the feedback learning group 
suggests that it is difficult for participants to abandon the 
use of incorrect strategies. In fact, even incorrect strate-
gies are rewarded because they do yield some correct 
answers. Many sub-optimal strategies leave two possible 
answers at the end, which means 50% of correct answers 
when participants guess between the two. If participants 
“satisfice” [23] on getting 50 or 60% of correct answers, 
they may well remain stuck with a sub-optimal strategy.  
Only an optimal solution strategy, such as the one out-
lined in Appendix 1, will always yield the correct answer.   

5. Conclusions 

Based on the non-parametric and ANOVA tests per-
formed on accuracy and speed, our first prediction was 
partially confirmed: the imitation and the explicit learning 
groups both outperformed the feedback learning group in 
terms of accuracy. However, the other part of our hy-
pothesis was not supported: no significant overall differ-
ence in speed (response time) was observed across 
groups. 

The difference in accuracy shows that demonstrations 
and instructions were significantly better sources of in-
formation than simple binary feedback, consistent with 
machine learning theories such as connectionism. The 
experiment also suggests that demonstrations were more 
effective than instructions based on the contingency tables 
analysis of correct answers and perfect performers. How-
ever, the difference was not large enough to yield a sig-
nificant effect under the Kruskal-Wallis and the Median 
tests. Furthermore, this experiment reminded us that it is 
challenging to write abstract rules to be used without any 
external feedback on their correct interpretation or any 
chance to ask clarification questions. In fact, about 15% 
of participants misinterpreted the explicit instructions 
given. 

Learning effects were also found in all groups, al-
though we did not find that the feedback learning group 
was generally slower than the other groups, nor that its 
speed increased more over trials. If anything, it was ob-

served that the explicit learning group’s speed increased 
most perhaps because it requires practice for participants 
receiving information in an abstract form to figure out 
how to use it. 

In short, accuracy was affected most by the type of 
learning, whereas elapsed time was affected most by the 
number of trials completed (i.e., quartile) and by quartile 
in interaction with group. 

This work represents an initial step towards showing 
the importance of learning by imitation in problem solv-
ing. The next step will consist in determining more pre-
cisely which mechanisms underlie improved performance 
in problem solving tasks. Possible mechanisms are rote 
memorization of the solution, priming of certain states 
and operations, and acquisition of a complex hierarchical 
problem representation. Individual differences are also 
possible.  For example, participants might use different 
learning mechanisms or even combinations of mecha-
nisms. To explore those potential underlying imitation 
learning mechanisms, follow-up experiments will be 
devised. For instance, a group could be presented with a 
simpler version of the target task (e.g., 9 balls). Because 
the task demonstrated is not the same as the target 12-ball 
task, rote memorizing could be discounted as an explana-
tion for improved performance in this group. 

Our ultimate goal is to model human imitation learning 
in problem solving tasks. We plan to apply various learn-
ing systems, both symbolic and connectionist to the phe-
nomena observed in the present experiment. 

Early simulation results using neural networks suggest 
that performance in the imitation group cannot be ac-
counted for solely by learning and generalizing the pre-
sented demonstrations. It is possible that reasoning and/or 
prior knowledge could account for differences between 
the participants in this experiment and these first simula-
tions. We expect that further experiments and simulations 
will help to elucidate the mechanism underlying imitation 
learning.  
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Appendix 1 – Symbolic Rules for solving the 
ball-weighing problem (12 balls variant) 

Rules for Selecting Balls for Weighing 
• Put 1/3 of the balls on each side of the scale (i.e. 4/4) 
1. if the scale does not move then use 3 “unknown” vs. 

3 “normal” balls. 
• if the scale moves then use 1 “light or normal” 

vs. 1 “light or normal” ball, or 1 “heavy or nor-
mal” vs. 1 “heavy or normal” ball 

• if the scale does not move then use 1 “unknown” 
vs. 1 “normal” ball  

2. if the scale moves then use 1 “heavy or normal” + 2 
“light or normal” vs. 1 “normal” + 1 “heavy or nor-
mal” + 1 “light or normal” balls 
• if the scale moves then use 1 “normal” vs. 1 

“heavy or normal” ball, or use 1 “normal” vs. 1 
“light or normal” ball, or use 1 “light or normal” 
vs. 1 “light or normal” ball  

• if the scale does not move then use 1 “heavy or 
normal” vs. 1 “heavy or normal” ball  

 
Rules for Marking Balls 
1. if the scale does not move then all balls on it are 

“normal”.  
2. if the scale moves then all balls left in the bank are 

“normal”.  
3. if there are “unknown” balls located on the side of the 

scale that moves up then those are "light or normal”  
4. if there are “unknown” balls located on the side of the 

scale that moves down then those are “heavy or nor-
mal”. 

5. if there are "light or normal” balls located on the side 
of the scale that moves down then those are “nor-
mal”. 

6. if there are "heavy or normal” balls located on the 
side of the scale that moves up then those are “nor-
mal”. 
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Abstract 

The paper presents an approach to infant cognitive 
development that emphasizes how caregivers bracket 
ongoing actions with gestures that direct the child’s 
attention to perceptual information embodied in action 
sequences as well as the perceivable correspondence 
between word and referent. Such supervised learning 
narrows the search space and enhances the speed of 
achieving a common understanding.  

1. Introduction 

Arbib’s [1] evolutionary framework delineating the 
neural and functional grounds for modern human 
language extends and elaborates Rizzolatti & Arbib’s 
“mirror neuron hypothesis [2]. They argued that the brain 
mechanisms underlying human language abilities evolved 
from our non-human primate ancestors' ability to link self-
generated actions and the similar actions of others. On 
this view, communicative gestures emerged eventually 
from a shared understanding that actions one makes 
oneself are indeed similar to those made by conspecifics. 
Thus, what the self knows can be enriched by an 
understanding of the actions and aims of others, and vice 
versa. From this view, the origins of language reside in 
behaviors not originally related to communication. That 
is, this common understanding of action sequences may 
provide the "missing link" to language. 

In answering the question, "What are the sources from 
outside the self that inform what the child knows?", the 
basic idea is that a shared understanding of action grounds 
what individuals know in common. In particular, this 
perspective roots the ontogeny of language in the 
progression from action and gesture to speech. What then 
might the evolutionary path to language and the ontogeny 
of language in the child have in common? We hope that 
the examples presented here will engender discussion of 
how this process might illuminate/relate to language 
learning in automata. This view characterizes the source 
of the emergence of language in both as arising from 
perceiving and acting, leading to gesture, and eventually 
to speech. 

We report here on an ongoing research program 
designed to investigate how perceiving and acting ground 
the emergence of language. This effort entails an analysis 

of the influences of the environment and, in particular, of 
the ways in which caregivers attune the infants to that 
environment. Building on what infants might "know" from 
birth, this work delineates the interplay of perceptual 
processes with action that might allow them to come to 
know "what everyone else already knows", including 
word meaning.  

2. Imitation and attention: Affordances and 
effectivities 

The ability to imitate has profound implications for 
learning and communication as well as playing a crucial 
role in attempts to build upon the mirror system 
hypothesis [3,4]. The focus here is to understand how 
imitation, especially assisted imitation, contributes to 
communicative development.  

Chimpanzees imitate some actions of others in the wild 
[5], but learn much more complex actions with objects 
when raised by humans [6]. However, the pace and extent 
of their imitation is very limited with respect to that of 
humans. Indeed, the vast majority of human children do 
imitate, albeit to varying degrees at different ages and for 
behaviors that differ in modality and complexity of 
content [7,8]. 

Non-human primates in the wild learn fewer new skills 
or behavioral complexity, requiring many more trials or 
attempts than do human children or enculturated chimps. 
The former learn in a painstaking manner, engaging in 
random sequences of behavior by design or naturally, 
eventually detecting patterns of moves/behaviors that lead 
to predictable consequences and a basis for repeating 
them in similar circumstances. In the case of wild 
chimpanzees, tasks such as learning to crack a nut with a 
hammer on an anvil takes years to acquire [9]. In contrast, 
human infants and chimps raised in enriched 
environments similar to that of human infants learn to use 
objects far more rapidly. 

Byrne [10] has noted that scholars use the term 
imitation in two ways: (1) the correspondence problem 
(how can the child match observed actions with self-
executed actions? [different from the correspondence 
problem of vision]) and (2) the transfer of skill problem 
(how can the child acquire novel, complex behavior by 
observing?). In the main, researchers have focused on this 
correspondence problem, overlooking or subsuming, 
perhaps, the transfer of skill problem within it. For the 
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sake of argument, assume that if a child knows that she is 
herself like the other (e.g., the caregiver), perhaps she can 
learn to do what the other does to achieve similar benefits 
or avoid risks, given the movement is already part of the 
child's repertoire. But can a novice spontaneously or after 
a delay imitate just any novel and/or complex, 
"developmentally appropriate" behavior not yet in her 
repertoire without assistance? I argue, probably not. 
Instead, I suggest that investigating the transfer of skill 
problem may provide answers to the correspondence 
problem as well. That is, grasping the methods that 
promote the transfer of skill may illuminate how, as the 
child learns new bodily skills, s/he may literally get in 
touch with both sides of the correspondence problem, the 
match between the other's actions and those of the self. 
(See [11] for modeling of the development of grasp-
related mirror neurons, suggesting how the mirror system 
grounds imitation as a core component of communicative 
and linguistic development within an action/perception 
framework.) 

Most research investigating the development and 
implications of imitation focuses on what the child knows, 
rather than how the child comes to know. Accounting for 
these achievements usually takes the form of proposing 
some combination of cognitive precursors, socio-
pragmatic knowledge, or maturing modules hypothesized 
to be necessary for the activity [12-14]. This literature 
documents the age at which the average child can observe 
someone else's action and repeat it accurately either 
promptly or after a delay – but may underestimate sources 
of the infants' accomplishments located in the caregiving 
environment. Informed by an integrative view of action 
and perception, a somewhat different perspective suggests 
how imitation may foster the emergence of language. 

Greenfield [15] observed that children imitate those 
actions that are entering their repertoire. Why might these 
particular actions be ripe for imitation and not others? Are 
the children's imitations usually autonomous 
accomplishments or do they have a robust history of 
assistance from others? According to Piaget [16], only the 
infant's independent achievements contribute to cognitive 
development, whereas he referred to the "pedagogical 
mania" of those who tend children as interfering at best. 
Indeed, caregivers do invite infants to imitate, but I 
suggest for the better. On those occasions, caregivers both 
direct attention [17-21] to aspects of the ongoing events 
and tutor actions to "achieve consensus" [22-23]. These 
interactional opportunities give infants crucial practice in 
(and a refining of) what to notice and do, and when to do 
it. Further, when demonstrating an activity, the caregiver 
marks the child's subsequent suitable attempts to imitate 
with speech and gestures of approval or may elaborate the 
ongoing activity, whereas repeated and revised messages, 
dropping the current activity, or remarking on the child's 

lack of interest follow inadequate responses. These 
interactions also may be central to communicative 
development. In particular, engaging in these activities 
may provide the means to grasp important prerequisites 
that underlie communicating with language. These basics 
include knowing that words have an instrumental effect on 
the receiver of a message [24,25], words refer [21, 26-
28], and coparticipants share or negotiate a common 
understanding of ongoing events [20,21,29,30]. 

Our normal experience is highly multi-sensory, not 
restricted to the limited perceptual input of, say, a video 
clip. Indeed, Stoffregen and Bardy [31] have argued that 
"multisensory perception is not merely the primary type of 
perception; it's the only type of perception". Caregivers 
and children detect “the something that something is 
happening to” as well as "the something that is 
happening" through vision, touch, sound, taste, and touch 
[21,32]. Especially relevant to this idea is the young 
infant's known ability to detect regularities or invariants in 
the continuous stream of perceptual information [33].  

Gibson [34] proposed the notion of affordances, 
referring to opportunities for action for creatures in their 
environment. Further, he argued that creatures detect the 
perceptual structure that specifies the unchanging, 
invariant aspects of ongoing events as well as the structure 
specifying transformation and change. Research informed 
by Gibson's ecological realism emphasizes that the 
relation between a creature and its environment have 
consequences for behavior. The classic example is that as 
we walk across a room we see more and that more that we 
see tells us which surfaces will support our walking, what 
objects block our way and so on. Some characterize the 
relation as emergent properties of the animal-environment 
system [35], others add the notion of effectivities to that of 
affordances as dual complements [36,37]. That is, an 
affordance (environmental disposition) takes as its 
complement an effectivity (acting itself is informed by 
what the body can do) or vice-versa [38]. Effectivities 
expand as an individual gains skill participating in new 
activities and differentiating what the environment affords 
for action. The question, however, is how does an infant 
become more adept? 

Can infants, novice members of their culture, detect 
affordances and consummate an activity without 
assistance, if the action is not present at birth? (See [39] 
for the development of grasping that is present at birth). 
What to do with objects, except for the most rudimentary, 
stereotyped, self-directed actions, such as sucking and 
grasping, presents a challenge. I have argued that objects 
can not "tell us" what they afford [21]. Nor can caregivers 
of young infants tell them, as verbal instructions directed 
to infants before they know "what and that" words mean, 
prove most ineffective [22,23]. Novices learn affordances 
as they engage in daily life in a particular time, place, and 
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culture [20,40]. However, even careful nonverbal 
guidance pointing out aspects of elements, configuring 
them in time/space, and/or modeling actions may not be 
sufficient. Shaw [41] has argued that effectivities 
transform potential experiences into actual ones; that is, 
affordances dispose, while effectivities deliver (actualize).  

I propose that the child at first lacks the ability to 
detect by observation alone how the body relates to the 
physical layout and to the furniture of the world, except 
for the most rudimentary actions. In this regard, these 
empirical studies of communicative development (Zukow-
Goldring, 1996, 2001) have stressed, in addition, that 
during interaction, the perceiving and acting of one person 
continuously affects the perceiving and acting of the 
other. I argue that caregiver practices guide infants to 
perceive possibilities for action [21,23,42]. Further, as 
infants respond to caregiver guidance, the infants' 
misdoings that may ensue pinpoint possible misperceiving 
as well as lack of bodily skill that, in turn, inform the 
caregiver's subsequent seeing and doing.  

The point is not to deny that children can learn certain 
things for themselves by trial-and-error. Clearly the 
physical environment or layout affects us and we surely 
affect it continuously, but we should not overlook the 
person and the social environment. That is, by directing 
the children's attention to their own effectivities in relation 
to affordances in the environment, the caregiver greatly 
narrows the search space for learning, and consequently 
enhances the speed and extent of learning. Further, these 
caregiver practices or methods may educate infants to 
notice that the infant is "like the other" through 
interactions that explicitly foreground the correspondence 
between the effectivities of the infant-actor's body and 
that of the caregiver. In any novice-expert interaction, 
whether infant and caregiver or student and teacher, the 
perceiving and acting of one person continuously informs 
that of other interactional partners.  

3. Educating attention: From being a body to 
becoming a cultural being "like the other" 

What do infants have to learn about the world in order 
to communicate about what’s happening? Infants must 
learn the most basic things (even about), e.g., taking a 
bath, eating with utensils, walking. During mundane 
activities, infants must detect and participate in 
assembling the structure and organization of everyday 
events before they can communicate with others about 
these events. Out of the unceasing perceptual flow, which 
is quite unlike the highly edited cuts of most movies, 
caregivers continuously educate attention to aspects of 
ongoing events. This assistance guides infants to notice 
key elements of what persists and what changes. 
Caregiver gestures make perceptual structure prominent 

through translational movements that often occlude other 
information in a scene. In the same vein, placing objects 
close to the child’s face ensures attention and the 
inescapability of details [21].  

Caregivers embody or put infants through the motions 
of activities as well as direct attention to the similarity of 
the one's own body to those of others, to the relation of 
such a body to specific objects and animate beings, and to 
what these objects and animate beings afford for action 
and interaction. In contrast, many studies and theories 
assume that children know and/or learn autonomously 
how their bodies move in space and in relation to animate 
and inanimate things [16,43] and thus do not explore what 
experiences might underlie eventual adept performance. I 
stress again the role of the caregiver in directing attention 
to effectivities as well as affordances – the two sides of 
the mirror system. These interactive sequences eventually 
invite imitation. 

Caregivers talk about what they are doing as they do it. 
Often children initially misunderstand these actions and 
spoken gestures, in part, because words cannot explain 
unless the child already knows what the words means. 
Given these circumstances, how is consensus achieved as 
the child becomes an adept member of the community? 
My approach integrates discovering the interactional 
methods or practices that inform perceptual 
differentiation, the assembling of action sequences, and 
the detecting of word meaning, despite the fact that many 
studies of language acquisition assume that gestures entail 
ambiguity of reference [27,44]. These authors rely on 
Quine's classic essay [45] in which he discussed the 
ambiguity of reference entailed in, say, speaking about 
and pointing to a rabbit. But caregivers tend to focus 
attention with precision. They do not simply say an 
unfamiliar word (such as Quine's gavagai) while pointing. 
Instead, caregivers may rub a rabbit's fur while saying, 
“fur”; trace the topography of its ears while saying, “ear”, 
stroke the entire rabbit or rotate the whole animal when 
saying, “rabbit”, etc. 20,22 ,46]. Successful teaching 
entails marking the correspondence between what is said 
and what is happening. 

In what follows, I illustrate the findings from a number 
of studies of infant development with some qualitative 
examples [20,21,23].  

4. The naturalistic experiments 

Infants are immersed in talk: some directed to them, 
some to others, some to prohibit action, some to direct 
attention to something new or when the child does not 
understand an utterance. We argue that at early stages of 
communicative development, learning that words mean 
and what they mean entails having an embodied 
understanding of the organization and structure of 
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relevant aspects of daily life. Concomitantly, the child 
must notice that others mark the relation between what is 
said and what is happening, and how they do so. To 
support this view, key results from a series of naturalistic 
experiments conducted to clarify how children come to 
comprehend initially misunderstood messages are 
summarized [22,23]. In these studies the following 
hypotheses were tested:  

1. Providing a child with more perceptual structure will 
assist caregiver and child to achieve the consensus needed 
for communication, including, where appropriate, explicit 
guidance of the child's movements. 

2. Additional or more specific verbal information will 
not enhance understanding when no basis for that 
understanding has yet been embodied. 

The studies reported illuminate how a human child 
learns about the world. Of course, I do not denying the 
utility of verbal instruction for older children. Rather, the 
purpose is to illustrate how the fundamental link between 
perception and action provides the information upon 
which communication can build. It is a separate study to 
understand the later "bootstrapping" that occurs when 
words can take a far greater role in advancing what the 
child knows. 

5.Qualitative examples: Assisted imitation  

The caregiver demonstrates the action(s) and then 
gives the infant a chance to act. Quite often the infant's 
attempt is inadequate. Caregivers take care to arrange the 
physical layout, so that the configuration in space of 
caregiver, infant, and object(s) makes them suitably 
aligned in space so that action is within reach. In addition, 
optimal proximity makes perceptually prominent what the 
object or some aspect of it affords for action. Frequently 
the caregiver embodies the infant, so that the child can 
perceive the relation of his or her body in terms of 
posture, motor actions, rhythm as it changes over time to 
accomplish the action or action sequence.  

In the following examples, the infant’s unsuccessful 
attempt at imitation with a toy displays some familiarity 
with the culturally relevant use of objects, but were initial 
attempts on the part of the infant to engage in this 
sequence of activities. Grasping an object is the fulcrum 
around which novel action grows. The first example 
focuses less on tutoring effectivities and affordances and 
more on learning a sequence of actions to consummate an 
activity (Vibrating Toy). Even though such objects and 
their uses are not entirely novel, what is required to 
imitate apparently is. That is, the ability to notice the 
relevant affordances and coordinate them with particular 
effectivities that are necessary to accomplish these tasks is 
not available to the infant without assistance. Their 
fragmentary, flawed attempts to imitate actions observed 

in the past elicit very careful and elaborate tutoring on the 
part of the caregivers to direct attention to relevant 
affordances and effectivities. Going further, we need to 
understand how picking-up the perceptual information 
that the caregiver has picked out allows the infant to get a 
grip on what to do. Getting a feel for what to do can 
provide the basis for detecting the affordances that will 
guide children in their attempts to imitate that action. 

5.1. Vibrating toy (14.5 months) - Caregiver and 
"toy" tutoring of a sequence of actions  

 

Figure 1. Vibrating toy sequence 

This infant, Elsa, and her mother, Kathy, engage in a 
familiar routine with a reindeer toy that has a hidden 
affordance, a spring inside the toy to which a string is 
attached (Figure 1). Family members had played this 
"game" with Elsa quite frequently during the prior eleven 
months. However, she had never attempted to imitate the 
others. In this routine, when the caregiver pulls on a ring 
that protrudes from the back of the toy, the string 
unwinds. Releasing the ring/string at the apex of its 
extension retracts the string so quickly that the toy 
vibrates strongly accompanied by a loud pulsing noise. 
Elsa expresses delight when she feels the vibrating toy 
placed on her stomach. Elsa, however, cannot make the 
toy vibrate by herself. This "game" entails a sequence of 
actions: (i) someone grasps the string by the ring, (ii) the 
string unwinds as it is pulled and (iii) retracts within the 
toy as the tension on the string lessens. Finally, (iv) 
someone places the reindeer toy on the infant's stomach. 
In this example, more emphasis is placed on the sequence 
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of actions than on the briefly noted affordances and 
effectivities that mother and toy make perceptually 
available. For conciseness sake, this sequence has been 
abbreviated by omitting repetitions and variations leading 
to the child's final adept enactment of this activity. 

Elsa, sitting in front of her mother, turns to give her 
mother, Kathy, the toy that she wants her to animate 
(Figure 1, R1). Kathy pulls the string out by the ring (R2), 
releases the string and places the vibrating toy on Elsa's 
stomach (R3). When Elsa wants her mother to continue, 
Kathy says, You do it!, as she partially demonstrates by 
orienting the back of the toy toward Elsa, making the ring 
for pulling (affordance) prominent and within the infant's 
reach. The infant grasps the ring (R4). The mother 
embodies by holding Elsa's hand and the toy steady as she 
pulls the toy away from them, presumably so the infant 
can feel the tension (affordance) as the string unwinds 
(R5). The spring attached to the string embodies Elsa by 
pulling her hand back toward the toy (R6). Subsequently, 
the infant pulls the string out herself (R7) and holds on as 
the spring embodies by retracting the string back into the 
toy (R8). At this point, the toy vibrates weakly, if at all. A 
few seconds later, Elsa pulls the string so quickly and 
fully out, that the tension on the string embodies her by 
snapping the ring from her fingers. This adept use of her 
body when pulling the string forcefully (effectivity) 
allows her quite serendipitously to experience how to take 
advantage of the vibratory properties of the toy 
(affordance). Note that her arm recoils from the force 
moving quickly away from its former position, while the 
hand holding the strongly vibrating toy moves far in the 
opposite direction (R9). Within seconds, Elsa first pulls 
and lets go of the string and then places the base of the toy 
on her stomach to best perceive the vibrations as she 
expresses evident joy (R10).  

Note the free building up of a sequence, as the child 
understands each new element. Both caregiver and toy 
educate Elsa's attention to new affordances and the 
refining of her actions (effectivities) to fill in the gap 
between grasping the ring and feeling the vibration of the 
toy on her stomach. Elsa experiences bodily the tension of 
the string unwinding as her mother pulls the toy away 
from her and as the spring hidden in the toy that controls 
the string retracts as the string appears and disappears. 
Pulling the string out is within Elsa's grasp. However, the 
accidental snapping back (letting go) of the string at the 
apex of its path and at its highest tension made evident the 
relation between the effectivity of releasing the string and 
the ensuing affordance of the toy's vibrations. By the 
second attempt, Elsa had placed the toy to bring the most 
enjoyment. Within the next several minutes, she changed 
her grasp from a finger crooked through the ring to a 
pincer grip, could pull the string with both right and left 
hands, and attempted to give her doll the same experience. 

Although she knew "that" the toy held potential for 
vibrating, she did not know "how" to make it happen until 
she received very careful tutoring. This educating of 
attention and action contrasts sharply with the effort it 
takes to tutor the attention and action of monkeys as well 
as autistic children (Leo Fogassi, personal 
communication; [7]).  

5.2. Pop beads (13 months): Caregiver tutoring 
of effectivities and affordances when 
concatenating beads 

 

Figure 2. Pop beads sequence. 

Pop beads, easily graspable by infants and toddlers, 
have affordances that allow concatenation. Play with this 
toy consists of (i) orienting toward each other the parts of 
each bead that afford concatenation (the dual 
complements of protrusion and opening), (ii) moving the 
appropriately oriented beads toward each other on a 
converging path, and (iii) applying enough force when the 
parts meet to embed the protrusion of one in the opening 
of the other.  

The infant, Angela, begins by pressing a block lacking 
the appropriate affordances and a pop bead together. She 
displays an understanding that completing the task 
requires two small graspable objects and the application 
of some force to bring them together (Figure 2, PB1). Her 
behavior provides no evidence that she knows that a set of 
objects with specific parts must come together, nor that 
they must sustain an orientation as they meet along a 
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converging path. Her mother, Cecilia, provides perceptual 
information to Angela, gradually foregrounding the 
affordances of the objects and the effectivities of the body 
required to put the beads together. At first, Cecilia 
provides a bit of both, point-touching the opening on one 
bead (but not the protrusion in the other) as she directs 
attention to an affordance (PB2) and then reorients 
another bead (PB3), enacting a movement that aligns the 
beads on the same converging path. Lacking at this point, 
however, is information displaying the path itself or the 
force required to push the converging objects together. 
After an unsuccessful attempt by Angela, Cecilia shows 
her what the body must do to move the beads along a path 
with the required orientation as she pushes the protrusion 
into the opening with appropriate force (PB4). The infant 
remains unable to put the beads together (PB5) The 
mother then more elaborately provides perceptual 
information as she slowly point-touches both the 
affordances of protrusion (PB6) and opening (PB7), 
followed by demonstrating the effectivities required for 
connecting and then disconnecting of the beads (PB8). As 
the infant watches more intently, Cecilia eventually 
invites Angela to imitate, "¿A ver, tu?/Let's see, you (do 
it)?". She assists her daughter's imitation by partially 
demonstrating what to do by orienting a bead opening 
toward Angela and holding it in a fixed position as she 
makes the protrusion easy to see on the second 
(affordances for action) (PB9). Angela moves the bead 
along the appropriate path (PB10), but she misorients her 
bead's protrusion from the opening of the other as the 
beads touch one another (PB11). Cecilia realigns the 
opening of her bead, making prominent just where Cecilia 
should push in her bead. As the infant pushes in the 
protruding end of her bead, the mother pushes from the 
opposite direction with enough force to link the beads 
(PB12).  

In this case, the caregiver's gestures gradually provided 
increments in perceptual information that guided the 
infant to concatenate two objects. Eventually, the 
caregiver simplified the task by holding an appropriately 
oriented bead as a fixed target. This assistance allowed 
the child to bring her slightly misoriented bead (i) along a 
path toward her mother's (ii). Angela pushed her bead 
against the other (iii), as her mother subtly reoriented her 
bead (i) and provided a complimentary push (iii).  

Notwithstanding Angela's noteworthy improvement on 
this occasion, bringing together two hands, each grasping 
a properly oriented object, was not within her "reach". 
Nor could she by herself apply enough force to connect 
her beads. It is possible that embodying Angela, putting 
her through the motions, might have drawn maximal 
attention to the coordination of the affordances of the 
beads and the effectivities of the body required to 
consummate this activity. The point is that the young child 

cannot simply observe a complex activity and imitate it. 
Much tutoring is required to build a repertoire on which 
“true” imitation (if such exists!) can take place. 

6. Discussion 

Caregivers establish an understanding of what is 
happening. They gather and direct attention to perceptual 
structure that makes prominent the relations among 
animate beings, objects and their actions. These dynamic 
relations specify the organization and structure of the 
most mundane daily activities. Caregivers introduce their 
infants to new effectivities or bodily capabilities and 
affordances for action and interaction on a daily basis. 
They assist them to link sequences of actions that 
comprise more and more complex activities. As 
caregivers educate attention, infants gradually learn to 
perceive, act, and know in culturally relevant ways. 
Engaging in action sequences with the caregiver may 
cultivate a precursor to language: negotiating a common 
understanding of ongoing events.  

6.1. Perceiving that the self is "like the other".  

In the context of understanding how the methods of the 
caregiver correspond to the expanding capabilities of the 
child, note that often developmental researchers and 
scholars study affective, motor, perceptual and cognitive 
development separately. Caregivers do not. During the 
prelinguistic and one-word periods, caregivers prepare 
infants to imitate by assisting them "to see what to do" 
before they can "do what they see" others doing. Day-in 
and day-out, they cultivate imitation within mundane daily 
activities with gestures. They animate and direct their 
infants' attention to their own and others' bodily 
movements as well as making prominent what the 
environment offers for action. In the process of learning a 
new skill, especially when embodied or put through the 
motions by the caregiver, infants directly experience that 
the self is "like the other" (cf. [47]). Thus, embedded in 
grasping the transfer of skill problem are opportunities to 
see and feel solutions to the correspondence problem, 
detecting the match between self and other. Humans who 
eventually learn/understand that the self is "like the other" 
cultivate abilities in their young that contribute to 
imitating, tutoring, communicating, and re-presenting 
events. The mirror system offers a means to clarify in 
what manner human and nonhuman primates understand 
what they see other conspecifics and other primates doing, 
what abilities and perceptual information underlie 
learning to do what they see others do, and much more. 
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Abstract

This paper explores a philosophy and connectionist algo-
rithm for creating a long-term, self-motivated developmen-
tal robot control system. Self-motivation is viewed as an
emergent property arising from two competing pressures:
the need to accurately predict the environment while simul-
taneously wanting to seek out novelty in the environment.
These competing internal pressures are designed to drive
the system in a manner reminiscent of a co-evolutionary
arms race.

1 Introduction

The quest for creating robot control systems that undergo
an autonomous and extended developmental learning pro-
cess was initiated by Weng and his colleagues [14]. In their
report, they differentiate the field of developmental robotics
from traditional robotics by focusing ontask-independent
learning. Rather than building control systems to perform
specific, predefined tasks, developmental robotics seeks to
create open-ended learning systems that continually adapt
to new problems. A number of robot control architectures
have been created using this paradigm [2, 15, 11], many of
which involve some form of reinforcement learning. Re-
inforcement learning is an appealing approach because it
provides a method for giving feedback to a developing sys-
tem without having to specify how to succeed. Instead, the
system is simply rewarded or punished, and must determine
on its own how to behave so as to maximize its reward.

However, there is no consensus yet about the most ap-
propriate source for the reinforcement signal in a devel-
opmental robotics system. The reinforcement could come
from an external teacher, from an internal mechanism such
as emotion, or from a combination of external and internal
sources. For example, the SAIL robot, an early prototype
of a developmental learning system, depended on external
reinforcement. SAIL could learn to navigate the corridors

of a building by being manually pushed by a human teacher,
or by having the teacher press the robot’s “good” button or
“bad” button in response to its behavior [14]. A more re-
cent version of SAIL employs a reinforcement signal that
is the weighted sum of both external reinforcement and an
internal measure of novelty [9]. The system compares the
predicted next state to the actual next state, and if the pre-
diction is incorrect, novelty is considered to be high. The in-
tent of introducing novelty is to model habituation, as when
human babies get bored by constant stimulation and are at-
tracted to novel stimuli. In the SAIL system, the external
reinforcement is weighted much more strongly than the in-
ternal novelty detection. Therefore the external teacher can
easily override the internal drive to perceive new things.

Another fruitful area of inspiration for creating general-
purpose internal reinforcement signals is the use of artificial
emotions [7]. In Gadanho and Hallam’s work, a simulated
Khepera robot is endowed with a set of homeostatic vari-
ables related to energy, pain, and restlessness. The environ-
ment contains a set of obstacles and a set of food sources.
The robot’s energy decreases on every time step, and in-
creases when it visits a food source. The robot’s pain in-
creases when it bumps into obstacles and its restlessness in-
creases when it is not moving. These homeostatic variables
can serve to positively reinforce behavior that increases en-
ergy and negatively reinforce behavior that increases pain
or restlessness. Currently, these reinforcement signals are
only used to determine when to switch between a set of pre-
programmed behaviors. Thus the robot does not develop
new behaviors, but simply determines the best way to se-
quence its innate behaviors.

We believe that a key step in exploring developmental ar-
chitectures is to focus on internal sources of reinforcement.
The learning process should be driven byself-motivation,
that is, by the system’s own internally-generated represen-
tations and goals, instead of relying on those provided by a
teacher or designer outside the system according to some
specific task to be learned. We are interested in creat-
ing a general learning architecture with self-motivation at
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its core, along with the other key processes ofabstraction
andanticipation [3]. Abstraction and anticipation are ac-
tive research areas [10, 5], but self-motivation has not yet
received as much attention from the research community.
We envision a control system in which abstraction, antici-
pation, and self-motivation are closely intertwined and de-
velop together from the start within a single unified frame-
work, using both internal and external sources of reinforce-
ment. Such a system would build up abstractions of its ex-
periences over time, guided by its internal motives, while
learning to anticipate the effects of its sensorimotor inter-
actions with the environment. Furthermore, a robot capa-
ble of learning about its own sensors and effectors as well
as its surrounding environment would avoid the problem of
anthropomorphic bias, since the robot’s knowledge of its
inherent capabilities and limitations, having been acquired
through firsthand experience, would be directly grounded in
sensorimotor perceptions [3].

There is another, perhaps even more important advan-
tage of self-motivated systems. They can exhibit a degree of
open-endedness not possible for systems that are designed
to learn specific tasks. For example, the human capacity for
learning is not only general-purpose and task-independent,
but typically continues over a lifetime, becoming progres-
sively more complex and sophisticated in the types of ab-
stractions and behaviors that can be acquired. The learn-
ing tasks themselves may change over time, as different cir-
cumstances and goals arise, but the impetus to adapt is ever
present.

How does this self-driven pressure to learn arise? In
our view, it emerges from the interactions of other com-
peting pressures within the system, in a manner reminis-
cent of a co-evolutionary arms race, in which two co-
evolving species continually push each other toward ever
greater complexity. For example, such a self-driven sys-
tem might attempt to predict future states as accurately as
possible, while also attempting to seek out unanticipated,
novel states. In effect, these two pressures compete directly
against one another, since a system able to perfectly pre-
dict future states would never encounter any novelty, and
a system that regarded everything it saw as new and unex-
pected would be incapable of predicting anything. How-
ever, if these pressures are balanced appropriately, the sys-
tem might be able to “bootstrap” its way to increasingly so-
phisticated behaviors and organization. In other words, by
seeking out situations with enough novelty to be interest-
ing without being overwhelmingly unpredictable, the sys-
tem might achieve a kind of temporary “homeostasis” bal-
anced between surprise and predictability. Gradually, the
system would gain the upper hand as it learned to anticipate
unexpected things better, and its level of “boredom” would
increase, in turn pushing it to explore its environment in
search of richer, more interesting experiences. On the other

hand, too much surprise would cause it to seek out more
predictable regions of the environment. The result would be
a type of punctuated learning in which the system remains
at a given level long enough to master the tasks at hand, be-
fore moving on to the next level. Clearly, such a capability
would depend on having a robust, general-purpose learning
system that could deal with the multitude of different learn-
ing tasks that would arise as the system’s experiences and
behaviors increased in complexity.

This paper takes an incremental approach to the problem
of creating a self-motivated developmental system driven
by predictability and novelty. As a first step, we propose a
connectionist architecture and learning algorithm for imple-
menting self-motivated robot control. A set of experiments
is performed on a simulated robot to demonstrate the fea-
sibility of this approach. Next, a detailed examination of
the training process for one run on the robot is presented.
Finally, the implications of this approach are discussed. It
is important to note that the relatively simple environment
used in the experiments described here is not rich enough
to allow the full realization of higher levels of behavior that
such a system should ultimately be capable of developing
in principle. However, having shown the viability of this
approach under basic conditions, we envision extending it
to more realistic and complex environments in future work.

2 Architecture and Algorithm

In this section we propose a neural-network based learn-
ing architecture to address these issues, in which discrep-
ancies between the predicted outcomes and the actual out-
comes of the robot’s actions in its environment serve as the
fundamental source of self-motivation, thereby determining
what the robot will learn to do. Although this represents an
innate bias built into the architecture, it is not task-specific.
The hope is that given the right developmental learning al-
gorithm “hard wired” into the system (whether by evolution
or engineering), the robot will be able to learn appropriate
task-specific behaviors through its own experiences, guided
by internally-generated feedback.

Under control of the neural network, the robot gener-
ates motor actions to perform, along with predictions of
the effects of these actions on its current situation. In our
model, situations and predictions consist of simple two-
dimensional visual scenes, but other types of sensory rep-
resentations could be used. After performing an action and
observing the results, the robot’s prediction is compared
with the actual outcome, and a representation of the pre-
diction error is created. This representation forms the ba-
sis of a reinforcement training signal for the network, using
a version of Complementary Reinforcement Backpropaga-
tion (CRBP) [1].

In CRBP, continuous-valued output activations from a
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network are transformed into binary values stochastically,
typically by flipping a biased coin using the output activa-
tions as biases. Depending on the particular binary output
pattern generated, the network may receive reward or pun-
ishment as feedback. In the case of reward, the network’s
weights are changed using backpropagation with the binary
pattern itself as the training target. In the case of punish-
ment, however, thecomplementof the pattern is used. The
stochastic nature of CRBP allows the network to learn us-
ing only positive or negative feedback signals instead of a
fully-supervised training regimen, which is ideal from the
point of view of a robot exploring its environment in real
time.

In our version of CRBP, the amount of stochastic noise
involved in transforming continuous output values into bi-
nary can be varied dynamically, under control of the robot
itself. We introduce acomputational temperatureparameter
τ , ranging from 0 to 100, that controls the amount of noise
used in generating motor action vectors and their comple-
ments [12]. At low temperature levels, activation values are
translated to 0 or 1 nearly deterministically, while at high
temperature the translation is nearly random, with 0 or 1
chosen essentially independently of the activation value. At
intermediate temperatures, the translation function is a sig-
moid curve of the general form1/(1+e−α(x−0.5)), with the
steepness parameterα of the sigmoid depending onτ . Thus
temperature acts as a knob that determines the amount of
influence the activation values exert on the translation pro-
cess, ranging from no influence whenτ = 100 to complete
determinism whenτ = 0.

Given the inherently temporal nature of prediction, we
chose to use a Simple Recurrent Network (SRN) architec-
ture [6], shown in Figure 1. There are separate banks of
units for representing the robot’s motor actions (Min and
Mout), sensory state (S), sensory prediction (P), and tem-
poral context (C), with each bank fully connected to the hid-
den layer. The purpose of the network is twofold: to gen-
erate motor actions for controlling the robot, and to gen-
erate predictions that in turn guide the training of the net-
work itself. Prediction and control are interleaved during
the training process, with different banks of input and out-
put units active at different times. Since the choice of mo-
tor action depends on the robot’s current sensory state and
temporal context, banksMout, S, andC are active when
deciding what to do next, withMin andP disabled. Pre-
dicting the next state depends on which motor action is per-
formed given the current state and context, so banksMin,
S, C, andP are active during prediction, withMout dis-
abled. Some weights of the network (namely, those from
the state and context banks to the hidden layer) participate
in learning both the control and prediction tasks, reflecting
their closely intertwined relationship, while others are spe-
cific to one task or the other.

Figure 1. The network architecture

The training algorithm can be understood in terms of
three general phases. In the first phase, internal feedback
signals are generated from the robot’s prediction error. A
representation of the prediction error is created based on
the discrepancy between the robot’s actual observed state
and its prediction made on the previous time step, and from
this a reinforcement signal is computed, along with a tem-
perature value.

Learning occurs during the second phase. First, the
network weights responsible formotor control are up-
dated using CRBP, based on the reinforcement signal from
phase one. This corresponds tobehavioral learning, which
is driven by discrepancies in the robot’s own internally-
generated anticipations, rather than by feedback coming di-
rectly from the environment or an external teacher. Next,
the network weights responsible forpredictionare updated,
using ordinary backpropagation with the robot’s actual ob-
served state as the feedback signal. This corresponds toan-
ticipatory learning, which is driven by the robot’s direct ex-
perience in the environment.

In the final control phase, the network generates the next
action for the robot to take, as well as a prediction of the
outcome of taking that action, and then executes the action.

A more detailed description of the algorithm is given be-
low, outlining the steps performed at timet. At the begin-
ning of Step 1, the following information is known:Mt−1

is the motor action performed by the robot on the previous
time step;St−1 is the robot’s previous sensory state;Ct−1 is
its previous temporal context;Pt−1 is the prediction, gener-
ated at timet− 1, of the robot’s sensory state at timet; and
Et−1 is a representation of the prediction error at timet−1,
based on the discrepancy betweenSt−1 andPt−2.

• Generation of internal feedback

1. Observe the current sensory stateSt.

2. CompareSt to Pt−1 and create a representation
of the prediction errorEt.

3. CompareEt toEt−1 and compute a reinforcement
signal r of +1, −1, or 0, and a temperatureτ
between 0 and 100.
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• Learning phase

4. If r is positive, set the motor targetMtarget to
Mt−1. If r is negative, setMtarget to the com-
plement ofMt−1. If r is zero, skip to Step 7.

5. With banksMin andP disabled, perform one
backpropagation pass with inputsSt−1 andCt−1

on the state and context banks, andMtarget on
the motor output bank. In the case of positive re-
inforcement, this makes the network more likely
to produceMt−1 given the state and context
St−1 andCt−1. For negative reinforcement, how-
ever, the opposite action will be more likely.

6. With bankMout disabled, perform one back-
propagation pass with inputsMt−1, St−1, and
Ct−1, and targetSt on the prediction bank.
This makes the network more likely to correctly
predict stateSt when performing motor action
Mt−1 in stateSt−1 with contextCt−1. SetCt to
the hidden layer activation pattern resulting from
this step.

• Control phase

7. With banksMin andP disabled, compute the
activation of the output bankMout usingSt and
Ct as inputs to the network. Stochastically trans-
form the continuous-valued activations ofMout

into a binary motor representationMt, with the
amount of noise determined byτ . This step gen-
erates the next motor action for the robot to per-
form, given its current state and context.

8. With bankMout disabled, compute the predic-
tionPt usingMt, St, andCt as inputs to the net-
work. This step generates the robot’s prediction
of the next state given the motor action to per-
form and its current state and context.

9. Perform actionMt.

10. Sett equal tot + 1 and go to Step 1.

When training with CRBP, it is often helpful to use a
higher learning rate for positive reinforcement than that
used for negative reinforcement [1]. A positive reinforce-
ment signal provides evidence that the motor action just
performed was a good response to the current situation, so
a relatively large weight change helps to increase the likeli-
hood that the robot will take the same action the next time
it finds itself in a similar situation. Negative reinforcement,
however, suggests only that the motor action wasnota good
thing to do, and offers no guarantee that the opposite ac-
tion would actually have been better. In this case, using a
lower learning rate helps to steer the network away from
producing the same response in the future, while remaining

somewhat noncommittal about what response the network
should actually produce. Thus the learning rate to use in
Step 5 above can be set dynamically in Step 4 according
to the value ofr. In addition, a separate learning rate for
prediction may be used in Step 6 if desired.

2.1 State Representation

The above algorithm does not specify exactly how repre-
sentations of the prediction errorEt are created in Step 2, or
how reinforcement signals are computed from them in Step
3. In fact, the algorithm is fairly general, and does not de-
pend on the particular representation chosen for robot states
or motor actions. Furthermore, there is no requirement that
robot states must contain purelysensoryinformation from
the external environment. States could contain additional
proprioceptor information, as well as explicit representa-
tions of more abstract information generated internally by
the robot, such as the prediction error itself.

In our current model, a stateSt is represented as a 40
× 10 grayscale image of intensity values normalized to the
range 0–1, generated from a simulated blob vision camera.
Prediction errorEt is represented as a 40× 10 map of the er-
ror values obtained in Step 2 by subtracting the correspond-
ing image values ofSt andPt−1, and normalizing to 0–1.

2.2 Internal Reinforcement Signal

To compute the reinforcement signal in Step 3, we first
compute the “center of mass” coordinate, called theer-
ror centroid, for each two-dimensional error mapEt−1 and
Et. This coordinate is simply the weighted average of the
two-dimensional coordinates of all 40× 10 error values,
weighted by the size of the error. In our experiments, we
have used a binary weighting function in which the weight
of the error is 1 if the observed value is significantly greater
than the predicted value at that point in the map, or 0 other-
wise. Other mapping functions are of course possible, such
as weighting a value by the magnitude of the error. To com-
pute the reinforcement, the error centroids ofEt−1 andEt

are compared. If the centroid has movedcloserto the center
of the error map from time stept−1 to t, the reinforcement
is positive; if the centroid has movedawayfrom the center,
the reinforcement is negative; otherwise it is zero.

The temperature is also updated on the basis of the pre-
diction error. Recall that the temperature ranges from 0 (de-
terministic) to 100 (random). Currently there are only two
cases when the temperature is not set to 0. The first is when
there is no error centroid, which corresponds to perfect pre-
diction. In this case, the temperature is set to 100 to induce
exploration. The second is when the error centroid has re-
mained stable between two successive steps, but is still not
centered. In this case, the temperature is set to 50.
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This method of computing the reinforcement signal rep-
resents a built-in bias of the system. This can be thought of
as an innate tendency of the robot to want to attend to re-
gions of unanticipated activity in the visual field by moving
them to the center of view. It is important to note, however,
that the reinforcement signal is not based directly on visual
input from the environment; rather, it is based on the robot’s
own expectationsof what it will see as a result of respond-
ing to its current situation. The training of the network is
driven by this internally-generated error information rather
than by externally-generated visual information.

2.3 Motor Representation

A binary representation for motor actions is necessary in
order to allow CRBP to be used for the training of the net-
work’s motor responses. In Step 7 above, the continuous-
valued activations of theMout units are transformed into
a binary vectorMt. By injecting stochastic noise into this
process, the network gains the ability to nondeterministi-
cally explore its weight space. This is especially important
in the case of negative reinforcement, in which the optimal
training target is unknown.

In the experiments described below, we used a simulated
robot with only one degree of freedom of movement. The
position of the robot was fixed at the center of its environ-
ment, with only its angular orientation allowed to change.
We chose an 8-bit representation for the motor actions,
where the number of ones in a pattern specified the robot’s
rotation speed and direction, allowing 9 distinct actions to
be encoded. The order of the bits was irrelevant. For ex-
ample, all-zeros represented turning left quickly, all-ones
represented turning right quickly, and an equal number of
ones and zeros caused the robot to stop. Many different pat-
terns, therefore, were potentially available for the network
to use in representing a particular motor action, which gave
the robot more flexibility in learning to generate its motor
responses. Accordingly, theMout bank in Figure 1 con-
tained eight units. However, when a motor action is pre-
sented to the network as input, it is first translated back
into a continuous-valued scalar in the range 0–1, in order
to make learning easier for the network. TheMin bank
thus consisted of only a single unit.

3 Experiments

To test the architecture and the training algorithm, we
created a simple environment in which the developing robot
is fixed at the center of a circular arena and can rotate
in order to observe its world. Also in the environment is
a moving “target” robot controlled by an innate obstacle-
avoidance behavior (see Figure 2). In some experiments,

Figure 2. View of the training arena

an additional stationary “decoy” robot was also present, in
order to create a slightly more complicated environment.

The goal of these experiments is to induce the develop-
ing robot to attend to the target robot by tracking its motion.
Clearly it should be possible to learn tracking by providing
an external reinforcement signal that is based on whether
the target robot is centered in the developing robot’s visual
field. However, the more interesting issue is whether the de-
veloping robot can learn to track given only an internal rein-
forcement signal based on the error of its own predictions.
In this case the external reinforcement signal is directly re-
lated to the task of tracking, while the internal reinforce-
ment signal is more indirect. In the following experiments
we compare the performance of a developing robot when
using external and internal reinforcement signals. The per-
formance measure is based on the average offset of the mov-
ing target robot from the center of the developing robot’s
visual field.

The experiments were conducted using the Stage mo-
bile robot simulator [8], where the developing robot was
a simulated ActivMedia Pioneer 2 with a camera. The sim-
ulated camera had a 120-degree viewing angle centered on
the front of the robot (indicated by the straight lines in Fig-
ure 2). Although the Stage simulator does not have sim-
ulated pixel-based camera output, we transformed Stage’s
“blob” data into a 40× 10 grayscale image. When the tar-
get robot was in view, approximately 16 pixels (4% of the
total image) were affected. The robot could turn to the left
or right using one of 9 possible rotation speeds, as described
earlier in section 2.3.

Using the robotics programming environment Pyro [4],
we constructed the neural network shown in Figure 1, where
the input layer had 1 motor-in unit, 400 state units, and 30
context units, the hidden layer had 30 units, and the output
layer had 8 motor-out units and 400 prediction units. Using
Pyro, the network was trained with the three-phase proce-
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Figure 3. Performance of error centroid tracking: first 150 training trials (left); all trials (right)

dure described in section 2.

The target robot roamed around the inside circumference
of the circular wall. At the beginning of each training trial,
the target was positioned on the north side of the circle fac-
ing west. It then traveled to the left for several hundred
time steps, following the circular wall as it went. When
it reached the south side of the arena, it was repositioned
at the starting point, but this time facing east. The target
robot then traveled along the wall to the right, until again
it reached a point approximately due south of the starting
point. The purpose of this two-legged journey was to ensure
that leftward and rightward motion was represented equally
during training. The combined westward and eastward jour-
ney of the target robot constituted one training trial for the
developing robot. Furthermore, whenever the target robot
was repositioned at the north side of the arena, the activa-
tions of all of the network’s context unitsC were reinitial-
ized to 0.5. This occurred at the beginning and the middle
of each training trial.

In our first experiment, which served as a basic bench-
mark, the external reinforcement signal was based on the
visual centroid of the camera image. The robot received
positive reinforcement if the visual centroid moved toward
the center of the visual field, and negative feedback if it
moved away. If the target robot was not in view, no learning
was performed. We ran this experiment with computational
temperature turned off (i.e., set to 0) in order to see how
well the robot could learn in the absence of noise. All of the
runs attained a high level of performance within 10 train-
ing trials. The network architecture and training procedure
enabled the robot to learn to track the target easily.

Of course, our real interest was in seeing if the robot
could learn this task indirectly, by using its internally-
generated prediction error in place of the actual visual input
(as described earlier in section 2.2). As it turned out, us-
ing the internal reinforcement signal required that compu-
tational temperature be turned on in order for learning to be

successful. Although the learning process was slower, the
robot was still able to learn to track the moving target robot,
even with a stationary decoy robot present in the environ-
ment. The next section examines in detail one successful
run of this second experiment.

4 Analysis of a Training Run

This run is representative of those that learned to track
the moving target robot using only the internally-generated
reinforcement signal based on movement of the error cen-
troid. As can be seen in Figure 3 (left), initial performance
was about 0.50, but quickly rose to above 0.80 within the
first 40 trials. On trial 44 the performance of the network
reached its peak, around 0.87. For comparison, we hand-
coded a robot to perform the visual tracking task as well
as possible, and it scored 0.92. A perfect score of 1.0 is
unattainable due to the system’s inability to maintain the
centroid in the exact center of view at all times.

Recall that our system is designed to perform two con-
flicting tasks: to accurately predict the next statePt+1, but
also to track the areas of its visual field where it cannot
predict. Not surprisingly, the better the system is able to
predict, the less it is able to track, resulting in a lower per-
formance measure. From these competing goals, three rec-
ognizable phases emerge: an early phase (around trials 0
to 35) where the performance on tracking the moving tar-
get robot increases; a middle phase where the peak perfor-
mance is attained (around trials 35 to 60); and a late phase in
which tracking performance slowly declines (trials 60 and
greater).

Figure 4 shows representative camera images and pre-
diction error data from the middle and late phases of this
run. Each column labeledCamerashows a sequence of four
camera images, with time running from top to bottom. The
target robot can be seen as a square of gray pixels near the
center of the visual field. The prediction error associated
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Figure 4. Sample camera images and prediction error data from the middle phase of learning (left)
and the late phase of learning (right)

with each camera image is shown to its right. The black
pixels indicate where the errors occurred on the prediction
bankP at that step during training. Notice that some of the
prediction error regions are smaller than the associated re-
gions from the camera image. This indicates that the system
has begun to make some accurate predictions. The system
received negative feedback between the first and the second
rows and again between the third and fourth rows (since the
error centroids have moved slightly farther away from the
center). Between the second and third rows, the network
was rewarded, since the centroid moved toward the center
of the field.

For the camera images and prediction error in the late
phase of training, the most noticeable feature is that in the
first and fourth rows, there is no error in prediction. This
resulted in reward between the first and second rows, and
also between the second and third rows (as the centroid gets
closer to the center). However, the system was again pun-
ished between the third and fourth rows as it “lost” the error
centroid.

Further examination of the tracking performance during
the late phase shows that it continues to fall until the end
of the run at trial 2000. Figure 3 (right) shows the steady
decline in performance and an increasing range of perfor-
mance variability. To understand this behavior better, let us
look more closely at how the prediction error evolves over
time.

Figure 5 shows that prediction accuracy climbs over the
span of 2000 trials, albeit very slowly and also with in-
creasing variability. Indeed, as performance continues to
increase in the late stage, the robot encounters fewer views
containing any error at all, for which it is then punished. It
is in this stage that the competing pressures discussed ear-
lier are most apparent. If the experimental environment had
been richer and more varied, after the developing robot had
learned tracking, it would likely have been driven by its pre-
diction error to focus on a new aspect of its world.
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Figure 5. Prediction accuracy over all trials

5 Discussion and Conclusion

The defining characteristic of a developmental robotics
architecture is task-independence. A developmental system
must be open-ended and capable of finding interesting phe-
nomena to focus on and learn about. The previous experi-
ment suggests that a very general internal mechanism, such
as an error centroid created from the robot’s own predic-
tions, can serve as a successful reinforcement signal for a
developmental connectionist architecture. This initial ex-
periment provides a benchmark for what a self-motivated
learner can achieve with limited sensory capabilities in a
simple environment. However, the idea of using prediction
error as a reinforcer is so general that this same mechanism
should be capable of providing a useful reinforcement sig-
nal for other sensory modalities and more complex environ-
ments.

This paper has outlined a philosophy for designing sys-
tems with self-motivation. We believe that self-motivation
is an emergent property generated by the competing pres-
sures that arise in attempting to balance predictability and
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novelty. In the current work, we have proposed a simple
recurrent network architecture and algorithm in which sys-
tems for learning prediction and control are closely inter-
twined. The prediction and control pathways within the net-
work share connection weights from the state and context
units to the hidden units, and are trained in an interleaved
fashion. One system attempts to make predictions of future
sensory experiences while the other uses a reinforcement
signal based on error provided by the first to drive control.
Previous research has shown that prediction learning is fa-
cilitated within a system when control and prediction share
pathways and when the control signals are internally gener-
ated, but not when the control signals come from an outside
teacher [13].

In our model, as the predictive system becomes better
at anticipating the consequences of the control system’s ac-
tions, novelty decreases, and the behavior of the predictive
system becomes more tightly coupled to the behavior of the
control system. As novelty decreases, the error map gener-
ated by the predictive system becomes smaller and more
fragmented, which may cause the error centroid to jump
around at random or disappear entirely. The control sys-
tem thus has a harder time attending to novel parts of the
sensory input. As the control system’s performance de-
clines, the robot appears to “lose interest” in those aspects
of the sensory input that had previously captured its atten-
tion. The coupling between the predictive and control sys-
tems therefore begins to weaken, since the control system is
no longer reliably paying attention to what it had before. As
the predictive system loses its ability to reliably predict the
responses of the control system, novelty once again begins
to increase. At this point, the novelty of some other stim-
ulus may begin to attract the system’s attention (although
in our experiment the developing robot never found another
focus of attention). We believe that this scenario could po-
tentially serve as a model of habituation. More generally,
the interplay between predictability and novelty in our view
provides a rich framework for exploring open-ended learn-
ing and skill acquisition in developmental robotics.
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Abstract

Humans and other animals often engage in activities for
their own sakes rather than as steps toward solving prac-
tical problems. Psychologists call these intrinsically moti-
vated behaviors. What we learn during intrinsically mo-
tivated behavior is essential for our development as com-
petent autonomous entities able to efficiently solve a wide
range of practical problems as they arise. In this paper
we present initial results from a computational study of in-
trinsically motivated learning aimed at allowing artificial
agents to construct and extend hierarchies of reusable skills
that are needed for competent autonomy. At the core of
the model are recent theoretical and algorithmic advances
in computational reinforcement learning, specifically, new
concepts related to skills and new learning algorithms for
learning with skill hierarchies.

1. Introduction

Despite impressive power and utility, today’s machine
learning algorithms fall far short of the possibilities for ma-
chine learning. They are typically applied to single, isolated
problems for each of which they have to be hand-tuned and
for which training data sets have to be carefully prepared.
They do not have the generative capacity required to signif-
icantly extend their abilities beyond initially built-in repre-
sentations. They do not address many of the reasons that
learning is so useful in allowing animals to cope flexibly
with new problems as they arise over extended periods of
time. Numerous researchers have persuasively argued that a

developmental approach is necessary to address these short-
comings (e.g., [31]), drawing from cognitive science, neu-
roscience, artificial intelligence, and philosophy. According
to this approach, an agent undergoes an extended develop-
mental period during which collections of reusable skills are
autonomously learned that will be useful for a wide range
of later challenges.

Although these arguments are compelling, developmen-
tal approaches to artificial agent design have been slow to
penetrate the mainstream of the machine learning commu-
nity. Implementations remain largely exploratory, and they
have not yet led to the kind of mathematical formulation
required to engage the largest part of the machine learning
community. This paper presents preliminary work from a
long-term project that seeks to address these shortcomings
by elaborating the well-developed computational reinforce-
ment learning (RL) framework [28] to encompass the au-
tonomous development of skill hierarchies throughintrinsi-
cally motivated learning. An agent’s activity is said to be
intrinsically motivated if the agent engages in it for its own
sake rather than as a step toward solving a specific problem.

Our approach builds on existing research in machine
learning, with input from recent advances in the neuro-
science of brain reward systems as well as classical and
contemporary psychological theories of motivation. Not all
of our ideas are new, having antecedents in many different
areas, including some in machine learning and RL as we
outline below. However, we argue thatrecent theoretical
and computational advances in RL provide important com-
ponents for making these ideas work efficiently in artificial
agents.
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2. Background

Psychologists distinguish betweenextrinsic motivation,
which means being moved to do something because of some
specific rewarding outcome, andintrinsic motivation, which
refers to being moved to do something because it is inher-
ently enjoyable. Intrinsic motivation leads organisms to en-
gage in exploration, play, and other behavior driven by cu-
riosity in the absence of explicit reward. In a classic paper,
White [32] argued that intrinsically motivated behavior is
essential for an organism to gain the competence necessary
for autonomy. A system that is competent in this sense hasa
broad set of reusable skillsfor controlling its environment.
The activity through which these broad skills are learned is
motivated by an intrinsic reward system that favors the de-
velopment of broad competence rather than being directed
to more specific externally-directed goals. But these skills
act as the “building blocks” out of which an agent can form
solutions to specific problems that arise over its lifetime.
Instead of facing each new challenge by trying to create a
solution out of low-level primitives, it can focus on combin-
ing and adjusting higher-level skills, greatly increasing the
efficiency of learning to solve new problems.
Psychology—A large collection of psychological literature
inspires our approach. In 1959 White [32] influentially re-
viewed the evidence that the (even then) classical Hullian
view of motivation in terms of reducing drives related to the
biologically primary needs for food, water, sex, and escape
was not sufficient to account for an animal’s exploratory be-
havior. Ample evidence existed—and has been greatly aug-
mented since then—that the opportunity to explore a novel
environment can itself act as reward. Moreover, not only ex-
ploration incited by novelty, but also manipulation, or just
activity itself, can be rewarding. This is supported by ex-
perimental evidence showing that these activities are not al-
ways secondary reinforcers: their motivational significance
is built-in rather than being acquired through association
with a standard primary reinforcer. The modern expression
of these views is most clearly seen in developmental and ed-
ucational psychology, where a distinction is drawn between
intrinsic and extrinsic motivation [5].

The psychology literature is less helpful in specifying
the concrete properties of experience that incite intrinsically
motivated behavior, although there have been many hy-
potheses. Berlyne [2] probably had the most to say on these
issues, suggesting that the factors underlying intrinsic mo-
tivational effects involve novelty, surprise, incongruity, and
complexity. He also hypothesized that moderate levels of
novelty have the highest hedonic value because the reward-
ing effect of novelty is overtaken by an aversive effect as
novelty increases. This is consistent with many other views
holding that situations intermediate between complete fa-
miliarity (boredom) and complete unfamiliarity (confusion)

have the most hedonic value. Another hypothesis about
what we find satisfying in exploration and manipulation is
that we enjoy “being a cause” [9], which is a major com-
ponent of Piaget’s theory of child development [20]. In this
paper, we use only the degree of surprise of salient stimuli
as intrinsic reward, but this is merely a starting point.

Neuroscience—The neuromodulator dopamine has long
been associated with reward learning and rewarded behav-
ior, partly because of clear evidence of its key role in drugs
of addiction [6]. The original observation [12, 8, 18, 26]
that the activity of dopamine cells in the monkey midbrain
in reward-learning tasks closely follows the form of a key
training signal in RL (the temporal difference prediction er-
ror) is an important backdrop for our approach.

Recent studies [15, 3] have focused on the idea that
dopamine not only plays a critical role in the extrinsic mo-
tivational control of behaviors aimed at harvesting explicit
rewards, but also in the intrinsic motivational control of be-
haviors associated with novelty and exploration. For in-
stance, salient, novel sensory stimuli inspire the same sort
of phasic activity of dopamine cells as unpredicted rewards
[25, 11]. However, this activation extinguishes more or
less quickly as the stimuli become familiar. This may un-
derlie the fact that novelty itself has rewarding character-
istics [21]. Theoretical treatments [14, 15] have directly
related dopamine activity with mechanisms for controlling
exploration in RL such as exploration and shaping bonuses
[27, 4, 19]. Although space here does not permit develop-
ment of these connections, they form key components of
our approach to intrinsically motivated RL.

Computational Models of Intrinsic Motivation —
Although there have been previous computational studies
related to intrinsic motivation, most relevant is recent work
from the epigenetic robotics community, some of which
discusses the important role of novelty and curiosity in
intelligent behavior (e.g., [13, 16]). However, this work
does not build upon the mathematical framework of RL and
does not use the recently-developed RL methods that we
employ. Closely related RL research is that of Schmidhuber
(e.g., [23, 24]) on curiosity and exploration. While some
promising initial results were demonstrated, this work was
left in a very preliminary state, and it also predates the new
RL methods that we use.

Interestingly, the most closely related recent computa-
tional work comes from the field of architecture and design.
In a study of artificial creativity, Saunder’s recent thesis [22]
presents a system that includes intrinsic motivation based
on novelty and surprise following Berlyne’s [2] theories.
We find this work inspiring, though it focuses on search-
ing design spaces rather than the development of reusable
sequential skills.
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3. Intrinsic Motivation in Reinforcement
Learning

RL is a very active area of machine learning, with con-
siderable attention also being received from decision the-
ory, operations research, and control engineering. RL al-
gorithms address the problem of how a behaving agent can
learn to approximate an optimal behavioral strategy, usually
called apolicy, while interacting directly with its environ-
ment. In the terms of control engineering, RL consists of
methods for the on-line approximation of closed-loop solu-
tions to stochastic optimal control problems, usually under
conditions of incomplete knowledge of the system being
controlled. One can think of a problem’s optimality cri-
terion as defining a primary reward function, and one can
think of an approximate solution as the skill of expertly con-
trolling the given system according to this optimality crite-
rion.

In what follows, we describe the elements of the stan-
dard RL framework that our approach builds upon, and then
we describe a preliminary simulation we have produced that
shows how these elements can be exploited for intrinsically
motivated learning.
Internal and External Environments—According to the
“standard” view of RL (e.g., [28]) the agent-environment
interaction is envisioned as the classical interaction between
a controller (the agent) and the controlled system (the envi-
ronment), with a specialized reward signal coming from the
environment to the agent that provides at each moment of
time an evaluation (usually with a scalar reward value) of
the agent’s ongoing behavior. The component of the envi-
ronment that provides this evaluation is usually called the
“critic” (Fig. 1A). The agent learns to improve its skill in
controlling the environment in the sense of learning how to
increase the total amount of reward it receives over time
from the critic. With appropriate mathematical assump-
tions, the problem faced by the learning agent is that of ap-
proximating an optimal policy for a Markov Decision Pro-
cess (MDP).

Sutton and Barto [28] carefully point out that the scheme
in Fig. 1A is quite abstract and that one should not iden-
tify this RL agent with an entire animal or robot. An ani-
mal’s reward signals are determined by processes within its
brain that monitor not only external events through extero-
ceptive systems but also the animal’s internal state, which
includes information pertaining to critical system variables
(e.g., blood-sugar level) as well as memories and accumu-
lated knowledge. The critic is in an animal’s head. Fig. 1B
makes this more explicit by “factoring” the environment of
Fig. 1A into anexternal environmentand aninternal envi-
ronment, the later of which contains the critic which deter-
mines primary reward. Notice that this scheme still includes
cases in which reward can be thought of as an external stim-

ulus (e.g., a pat on the head or a word of praise). These are
simply stimuli transduced by the internal environment so as
to generate the appropriate level of primary reward.

Because Fig. 1B is a refinement of Fig. 1A (that is, it
is the result of adding structure rather than changing it),
the standard RL framework already encompasses intrinsic
reward. In fact, according to this model,all reward is in-
trinsic, and what psychologists would call extrinsic reward
is just intrinsic reward that is directly triggered by external
events. But the point of departure for our approach is to note
that the internal environment contains, among other things,
the organism’s motivational system,which needs to be a so-
phisticated system that should not have to be redesigned for
different problems. In contrast, the usual practice in apply-
ing RL algorithms is to formulate the problem one wants the
agent to learn how to solve (e.g., win at backgammon) and
define a reward function specially tailored for this problem
(e.g., reward = 1 on a win, reward = 0 on a loss). Some-
times considerable ingenuity is required to craft an appro-
priate reward function. In effect, a different special-purpose
motivational system is hand-crafted for each new problem.
This should be largely unnecessary.

Skills—Autonomous mental development should result in
a collection of reusable skills. But what do we mean by
a skill? Recent RL research provides a concrete answer
to this question, together with a set of algorithms capa-
ble of improving skills with experience. To combat the
complexity of learning in difficult domains, RL researchers
have turned to principled ways of exploiting “temporal ab-
straction,” where decisions are not required at each step,
but rather where each decision invokes the execution of a
temporally-extended activity which follows its own closed-
loop policy until termination. Substantial theory exists on
how to plan and learn when temporally-extended skills are
added to the set of actions available to an agent. Since a skill
can invoke other skills as components, hierarchical control
architectures and learning algorithms naturally emerge from
this conception of a skill. Specifically, our approach builds
on the theory ofoptions[29].

Briefly, an option is something like a subroutine. It con-
sists of 1) anoption policythat directs the agent’s behavior
for a subset of the environment states, 2) aninitiation set
consisting of all the states in which the option can be ini-
tiated, and 3) atermination condition, which specifies the
conditions under which the option terminates. It is impor-
tant to note that an option is not a sequence of actions; it
is a closed-loop control rule, meaning that it is responsive
to on-going state changes. Theoretically, when options are
added to the set of admissible agent actions, the usual MDP
formulation of RL extends to semi-Markov decision pro-
cesses (SMDPs), with the one-step actions now becoming
the “primitive actions.” All of the theory and algorithms ap-
plicable to SMDPs can be appropriated for decision making
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and learning with options [1, 29].
Two components of the the options framework are espe-

cially important for our approach:

1. Option Models: An option model is a probabilistic de-
scription of the effects of executing an option. As a
function of an environment state where the option is
initiated, it gives the probability with which the op-
tion will terminate at any other state, and it gives the
total amount of reward expected over the option’s exe-
cution. Option models can be learned from experience
(usually only approximately) using standard methods.
Option models allow stochastic planning methods to
be extended to handle planning at higher levels of ab-
straction.

2. Intra-option Learning Methods: These methods allow
the policies of many options to be updated simultane-
ously during an agent’s interaction with the environ-
ment. If an optioncould haveproduced a primitive
action in a given state, its policy can be updated on the
basis of the observed consequences even though it was
not directing the agent’s behavior at the time. Intra-
option methods essentially “multiplex” experience to
greatly increase the efficiency of learning [29].

In most of the work with options, the set of options must
be provided by the system designer.While an option’s pol-
icy can be improved through learning, each option has to be
predefined by providing its initiation set, termination condi-
tion, and the reward function that evaluates its performance.
Many researchers have recognized the desirability of auto-
matically creating options, and several approaches have re-
cently been proposed (e.g., [7, 10, 17]). For the most part,
these methods extract options from the learning system’s at-
tempts to solve a particular problem, whereas our approach

creates options outside of the context of solving any partic-
ular problem.
Developing Hierarchical Collections of Skills—It is clear
that children accumulate skills while they engage in intrin-
sically motivated behavior, e.g., while at play. When they
notice that something they can do reliably results in an inter-
esting consequence, they remember this in a form that will
allow them to bring this consequence about if they wish to
do so at a future time when they think it might contribute
to a specific goal. Moreover, they improve the efficiency
with which they bring about this interesting consequence
with repetition, before they become bored and move on to
something else.We claim that the concepts of an option
and an option model are exactly appropriate for developing
analogs of this type of behavior in artificial agents. An op-
tion model is not a passive model of environment dynamics;
it is conditioned on the agent’s activity. An option model
basically says that “If I begin this behavior in this situa-
tion, then this is what is likely to happen.” When stored ap-
propriately, the agent will effectively know that it has the
means to efficiently bring about these consequences, which
is what the agent needs to know to both learn higher-level
skills (that use lower-level skills as building blocks) and to
learn how to solve specific tasks as they arise.

All skills acquired in this way do not have to be useful.
Later learning in the context of specific tasks will assign
values to skills depending on how useful they turn out to be.
We already know how to do this using recently-developed
hierarchical RL algorithms. The major computational chal-
lenge is to develop and cache a set of skills that is rich in
skills that are likely to be widely useful. Intrinsic reward
does not have to infallibly identify useful activities, but it
has to do a reasonable job of identifying good candidates—
and it shouldn’t miss too much. If we speculate about the
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evolution of intrinsic motivational systems in animals, it is
plausible that they have been tuned through evolution to do
exactly this, resulting in the kind of “drive for mastery” that
has been discussed by psychologists for at least half a cen-
tury.

What kind of intrinsic reward function do we propose to
implement? While there are several sources of inspiration
for this as discussed above, in this work we focus on the
striking connection between computational RL algorithms
and the activity of dopamine neurons. In particular, we will
illustrate how we use a kind of “surprise” analogous to the
so-called novelty responses of dopamine neurons to imple-
ment one form of intrinsic reward.

Whatever the details of how intrinsic reward is defined,
it should diminish with continued repetition of the activity
that generates it. For example, continued exercise of causal
influence on the environment should effectively lose its re-
warding quality after becoming sufficiently “routine” (i.e.,
the agent gets bored). As a result, the agent moves on to
learn another skill based on its discovery of another mode
of controlling its environment, and so on. Similarly, explo-
ration of regions about which the agent is not yet ready to
learn should be aversive to the agent. Skills formed through
earlier experience are available as action choices in this RL
process. Policies for new skills have the potential of in-
voking existing skills. This will allow the construction of
hierarchically organized collections of skills that become
more sophisticated as the agent continues to accumulate ex-
perience. This process will naturally produce what Utgoff
and Stracuzzi [30] called “many-layered” learning in which
the agent learns what is easy to learn first, then uses this
knowledge to learn harder things. This results in a gener-
ative power that is absent from current machine learning
systems.

4. An Example

To make our discussion above more concrete, we briefly
describe an example implementation of some of these ideas
in a simple artificial “playroom” domain shown in Fig. 2A.
In the playroom are a number of objects: a light switch, a
ball, a bell, two movable blocks that are also buttons for
turning music on and off, as well as a toy monkey that can
make sounds. The agent has an eye, a hand, and a visual
marker (seen as a cross hair in the figure). At any time step,
the agent has the following actions available to it: 1) move
eye to hand, 2) move eye to marker, 3) move eye one step
north, south, east or west, 4) move eye to random object, 5)
move hand to eye, 6) move hand to marker, 7) move marker
to eye, and 8) move marker to hand. In addition, if both the
eye and and hand are on some object, then natural opera-
tions suggested by the object become available, e.g., if both
the hand and the eye are on the light switch then the action

of flicking the light switch becomes available, and if both
the hand and eye are on the ball, then the action of pushing
the ball become available (the ball when pushed moves in
a straight line to the marker), etc. Finally, there is a visual-
search action that moves the eye to a random object in the
room.

The objects in the playroom all have potentially interest-
ing characteristics. The bell rings once and moves to a ran-
dom adjacent square if the ball is kicked into it. The light
switch controls the lighting in the room. The color of any of
the blocks in the room is only visible if the light is on, oth-
erwise they appear similarly gray. The blue block if pressed
turns music on, while the red block if pressed turns music
off. Either block can be pushed and as a result it moves to a
random adjacent square. The toy monkey makes frightened
sounds if simultaneously the room is dark and the music is
on and the bell is rung. These objects were designed to have
varying degrees of difficulty to engage. For example, to get
the monkey to cry out requires the agent to do the follow-
ing sequence of actions: 1) get its eye to the light switch, 2)
move hand to eye, 3) push the light switch to turn the light
on, 4) find the blue block with its eye, 5) move the hand to
the eye, 6) press the blue block to turn music on, 7) find the
light switch with its eye, 8) move hand to eye, 9) press light
switch to turn light off, 10) find the bell with its eye, 11)
move the marker to the eye, 12) find the ball with its eye,
13) move its hand to the ball, and 14) kick the ball to make
the bell ring. Notice that if the agent has already learned
how to turn the light on and off, how to turn music on, and
how to make the bell ring, then those learned skills would
be of obvious use in simplifying this process of engaging
the toy monkey.

For this simple example, the agent has built-in notions of
salience of stimuli. In particular, changes in light and sound
intensity are considered salient by the playroom agent. The
agent behaves by choosing actions according to anε-greedy
policy with respect to its value function [28]. Because the
initial value function is uninformative, the agent starts by
exploring its environment randomly. Each first encounter
with a salient event initiates the learning of an option and
an option-model for that salient event. For example, the
first time the agent happens to turn the light on, it initiates
the data-structures necessary for learning and storing the
light-on option, including the initiation set, the policy, the
termination probabilities, as well as for storing the light-on
option-model including the terminal-state probabilities and
the expected reward until termination. As the agent moves
around the world, all the options and their models are simul-
taneously updated using intra-option learning algorithms.
Initially, of course, the light-on option and its model will
be nearly empty.

The agent’s intrinsic reward is generated in a way sug-
gested by the novelty response of dopamine neurons. The
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Figure 2. A. Playroom domain. See text for details.B. Speed of learning of various skills. See text for details

Figure 3. Occurrence and magnitude of rewards for the salient events. See text for details.

intrinsic reward for each salient event is proportional to the
error in its prediction of that salient event according to the
learned option model for that event. The intrinsic reward is
used to update the value function the agent is using to de-
termine its behavior in the playroom. As a result, when the
agent encounters an unpredicted salient event a few times,
its updated value function drives it to repeatedly attempt to
achieve that salient event. There are two interesting side ef-
fects of this: 1) as the agent tries to repeatedly achieve the
salient event, learning improves both its policy for doing so
and its option-model that predicts the salient event, and 2)
as its option policy and option model improve, the intrinsic
reward diminishes and the agent gets “bored” with the as-
sociated salient event and moves on. Of course, the option
policy and model become accurate in states the agent en-
counters frequently. Occasionally, the agent encounters the
salient event in a state (set of sensor readings) that it has not
encountered before, and it generates intrinsic reward again
(it is “surprised”).

A summary of results is presented in Fig. 3. Each panel
of the figure is for a distinct salient event. The graph in
each panel shows both the time steps at which the event
occurs and the intrinsic reward associated by the agent to
each occurrence. Each occurrence is denoted by a vertical
bar whose height denotes the amount of associated intrinsic
reward. Note that as one goes from top to bottom in this fig-
ure, the salient events become harder to achieve and, in fact,
become more hierarchical. Indeed, the lowest one for turn-
ing on the monkey noise (Non) needs light on, music on,
light off, sound on in sequence. A number of interesting re-
sults can be observed in this figure. First note that the salient
events that are simpler to achieve occur earlier in time. For
example, Lon (light turning on) and Loff (light turning off)
are the simplest salient events, and the agent makes these
happen quite early. The agent tries them a number of times
(determined by the learning rate parameter and details of
the agent’s current value function) before getting bored and
moving on to other salient events. The reward obtained for
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Figure 4. The effect of intrinsically motivated learning when extrinsic reward is present. See text for details.

each of these events diminishes after repeated exposure to
the event. Thus, automatically, the skill of achieving the
simpler events are learned before those for the more com-
plex events.

Of course, the events keep happening despite their di-
minished capacity to reward because they are needed to
achieve the more complex events. Consequently, the agent
continues to turn the light on and off even after it has learned
this skill because this is a step along the way toward turning
on the music, as well along the way toward turning on the
monkey noise. Finally note that the more complex skills are
learned relatively quickly once the required sub-skills are in
place, as one can see by the few rewards the agent receives
for them. The agent is able to bootstrap and build upon the
options it has already learned for the simpler events. The
fact that all the options are learned is also seen in Fig. 2B,
which shows how the time it takes the agent to bring about
each option’s target event changes with the agent’s expe-
rience (there is an upper cutoff of 120 steps). This figure
also shows that the simpler skills are learned earlier than
the more complex ones.

An agent having a collection of skills learned through
intrinsic reward can learn a wide variety of extrinsically re-
warded tasks more easily than an agent lacking these skills.
To illustrate, we looked at a playroom task in which ex-
trinsic reward was available only if the agent succeeded in
making the monkey cry out. This requires the 14 steps de-
scribed above. This is difficult for an agent to learn if only
the extrinsic reward is available, but much easier if the agent
can use intrinsic reward to learn a collection of skills, some
of which are relevant to the overall task. Fig. 4 compares
the performance of two agents in this task. Each starts out
with no knowledge of task, but one employs the intrinsic
reward mechanism we have discussed above. The extrinsic
reward is always available, but only when the monkey cries
out. The figure, which shows the average of 100 repetitions
of the experiment, clearly shows the advantage of learning
with intrinsic reward.

5. Discussion

While the experiment and results described above serve
as a concrete illustration of our basic ideas, they are merely
a starting point in our study of intrinsically motivated learn-
ing. One of the key aspects of the Playroom example
is that intrinsic reward is generated only by unexpected
salient events. But this is only one of the simplest pos-
sibilities and has many limitations. It cannot account for
what makes many forms of exploration and manipulation
“interesting.” In the future, we intend to implement com-
putational analogs of other forms of intrinsic motivation as
suggested by the psychological and neuroscience literatures
and guided by the statistical

Despite the “toy” nature of this domain, these results
are among the most sophisticated we have seen involv-
ing intrinsically motivated learning. Moreover, they were
achieved quite directly by combining a collection of exist-
ing RL algorithms for learning options and option-models
with a simple notion of intrinsic reward. The idea of in-
trinsic motivation for artificial agents is certainly not new,
but we hope to have shown that the elaboration of the for-
mal RL framework in the direction we have suggested, to-
gether with the use of recently-developed hierarchical RL
algorithms, provides a fruitful basis for developing compe-
tently autonomous agents.
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Abstract

To adapt to a dynamic environment, appropriate behav-
ioral switching is necessary. In most real-world problems
there are numerous possible actions, and it is often impos-
sible to select the optimal action by evaluating all of them.
Even in such a situation, humans can select an action ef-
ficiently by searching only a subspace of the whole action
space. In this study, we design a Multi Feature Sorting Task
in which the behavioral rules have a hierarchical structure,
and conduct an fMRI experiment using the task. This task
consists of two kinds of rule switches: a higher-order switch
to search for a rule across different subspaces, and a lower-
order switch to change a rule within the same subspace.
The results of our imaging study show that the left inferior
frontal gyrus is involved in the higher-order switch, and the
right fronto-polar and right dorsolateral prefrontal cortex
are significantly activated with the lower-order switch. We
also suggest a functional model for the prefrontal cortex
which explains the hierarchical rule-switching mechanism.

1 Introduction

In the real environment around us, there are numerous
possible behaviors in each situation, and it may be impossi-
ble to immediately make an appropriate decision by evaluat-
ing all of them. To adapt to a dynamic environment, humans
must seek action candidates efficiently and select the best

one within a limited time. Recent studies in the engineering
field suggest that a hierarchical structure of action candi-
dates is useful for effective action selection [2][18], and an
analogous method may be performed in human behavioral
decisions. For instance, when we search for a lost article in
the house, we will first check the most likely places rather
than search the house uniformly. Such a searching scheme
uses a hierarchical structure of available information; the
whole search space is divided into subspaces, and a local
optimization problem in one subspace is first solved. This
hierarchical approach is effective as a computational algo-
rithm and reasonable for a human behavioral model. How-
ever, it has been unclear how such a hierarchical mechanism
operates in the real brain.

Assuming a human selects an action according to behav-
ioral rules, he/she should switch between rules in response
to environmental changes. The Wisconsin Card Sorting
Task (WCST) [7] is one of the best-known tasks for study-
ing such a rule-switching process. In WCST, the subject is
required to discover a hidden correct rule from multiple pos-
sible rules using true/false feedback given correspondingly
to the selected rule. Since the correct rule often changes
without notice, the subject should try a new rule if he/she
receives a false feedback. Many imaging and lesion stud-
ies have shown that prefrontal cortex is closely involved in
solving WCST [1][6][9][12][19]. One study using a mod-
ified WCST with a variable number of rules revealed that
the bilateral rostral inferior frontal sulcus (BA45/44) was
activated when a subject switched rules due to environmen-
tal changes (correct rule changing) [9]. In contrast, an-
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other imaging study using a categorization task suggested
that the bilateral fronto-polar prefrontal cortex (BA10) and
left superior frontal sulcus (BA9/10) were related to rule
switches [17]. Although both of these tasks needed rule-
switch processes, different regions of the prefrontal cortex
were reported as being engaged in rule-switch functions;
however, functional segregation of these regions has yet to
be clarified.

Existing studies based on rule-switching tasks assumed
that possible rules were independent of each other and that
a feedback for the used rule had no clue about the new
correct rule; thus, a subject should examine all rule can-
didates uniformly. Since we aim in this study at specifying
the brain regions involved in a hierarchical rule searching
mechanism, we have designed a Multi Feature Sorting Task
in which the behavioral rules have a hierarchical structure.
All rules in our task are categorized into two meta-rules,
and hence there are two kinds of rule switches: a meta-rule
switch (higher order switch) to search for a rule belonging
to the other meta-rule class (subspace), and a rule switch
(lower order switch) to change rules within the same meta-
rule class subspace. Using this newly devised task, we con-
ducted an fMRI experiment which showed that the differ-
ent regions were activated during higher and lower order
rule switching. This result suggests that different regions in
the prefrontal cortex may cooperate to solve action selection
problems in complicated situations.

2 Methods

2.1 Subjects

Eight normal subjects (7 males and 1 female) who were
graduate students participated in this experiment. Before
scanning, all subjects were instructed about the aims and
procedures of the experiment, and gave their written in-
formed consent which was reviewed and approved by the
ethical committee of Advanced Telecommunications Re-
search Institute International (ATR). Each subject was paid
a fixed monetary reward regardless of task performance. To
acquire proficiency in the task, all subjects practiced a train-
ing task equivalent to the scanning one on the day before
scanning.

2.2 Multi Feature Sorting Task

In this study, we designed a Multi Feature Sorting Task
in which the subject was required to sort three figures with
multiple features using a rule (Fig.1). The purpose of the
subject was to find out a hidden correct rule using feedback
information of past behaviors. Three figures were displayed
on a screen in the MRI device, and the subject sorted them
by pushing the corresponding three buttons one by one.

Table 1. Six rules and two meta-rules
'

&

$

%

“Feature rule” (FR)
1. The first sorting is “number of vertices” and the second sorting is
“size”, or vice versa
2. The first sorting is “number of vertices” and the second sorting is
“brightness”, or vice versa
3. The first sorting is “size ” and the second sorting is “brightness”,
or vice versa

“Order rule” (OR)
1. The first sorting is “ascending order” and the second sorting is
“descending order”
2. The first sorting is “descending order” and the second sorting is
“ascending order”
3.The first and second sorting orders are the same as each other

When the subject pushed a button, a red marker above the
corresponding figure was turned on. There were three fea-
tures: “number of vertices”, “size” and “brightness”, and
each figure was categorized as “large”, “middle” or “small”
for each of these features. For example, a large dark square
would be represented as “number of vertices: middle; size:
large; brightness: small”. Since the features of each figure
did not overlap with other figures displayed simultaneously,
it is possible to sort the figures according to a single fea-
ture in ascending or descending order. For example, “de-
scending order for the number of vertices” corresponds to
the sorting order pentagon, square, and triangle. Subjects
performed such sorting twice using the same or different
way within a single trial (Fig.1). Namely, after the subject
sorted three figures (stimulus 1) by pushing three buttons,
the next three figures (stimulus 2) were displayed to sort
once again. This defined the subject’s behavior within one
trial. At the center of the screen, a fixation cross was dis-
played which was red for 2 sec after appearance of a stim-
ulus, to encourage a response, and was yellow thereafter.
Subjects were instructed to sort three figures by pushing
buttons three times as quickly as possible during the red
fixation period; if the subject could not complete a sorting
task within the red fixation period for the first and/or sec-
ond stimuli in a trial, it was regarded as a mis-trial and fed
a caution message but no point feedback. Since a set of
three figures can be sorted in two ways, “ascending order”
and “descending order”, to every three features, there are
six sorting options in one sorting. So, 36 sorting options
existed within a single trial which consisted of two sorting
behaviors. To make a hierarchical structure for the sorting
rules, a favorable set of two sorting behaviors was integrated
into six rules without overlap, and these six rules were cat-
egorized into two meta-rules (Table 1). One meta-rule was
a “feature rule” which focuses only on the combination of
features (“number of vertices”, “size” or “brightness”) in a
set of two sorting behaviors and not on sorting order (“as-
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Figure 1. Stimulus and time design of a single trial in Multi Feature Sorting Task.

cending” or “descending”). A “feature rule” included 8 out
of 36 sorting options, since the combination of two features
had two patterns, and each combination pairing “ascending”
and “descending” had four patterns. The other meta-rule
was an “order rule” which focused only on permutations in
the two sorting behaviors regardless of the features used in
sorting. Since an “order rule” allowed three features used in
the combination, the first and second “order rule” in Table 1
each with one possible order pattern consisted of 3 sorting
options, while the third one with two possible order patterns
consisted of 6 sorting options. It is noted that the number of
sorting options of a “feature rule” was more than that of an
“order rule”. However, since the subjects were likely to use
few favorites among allowable sorting options in each rule,
this difference in the numbers of sorting options could be
ignored; actually, the entropy of sorting options selected by
subjects was small enough within a single meta-rule (data
not shown).

For each trial, there was a hidden correct rule selected
from the six rules in Table 1. After the subject finished a
set of two sorting behaviors, feedback was displayed in the
center of the screen according to the used sorting rule and
the correct rule. For this task, we designed a probabilistic
feedback. When the used rule agreed with the correct rule,
the subject was given 50 points with 90% probability but 0
points with 10% probability. When the used rule was differ-
ent from the correct rule, the subject was given 0 points with
90% probability but 50 points with 10% probability. All
subjects were informed that the feedback was to be given
in a probabilistic manner, but the rate of probability was
not revealed. In case of deterministic feedback, if the neg-
ative feedback was given for the used rule, the subject just
excludes it from rule candidates. In case of probabilistic
feedback, however, since the feedback information is am-
biguous, the subject may determine the priority for every
rule to search for the correct rule. Accordingly, the subject
was required to perform “exploration”, i.e., searching for a
new rule, or “exploitation”, i.e., continuing with the same
rule as the previous one, based on the outcome of previous
tasks and these decisions are an introspective one.

When the rule used agreed with the correct rule in any
three among four successive trials, the correct rule was
changed to another one without notification to the subject.
Otherwise, the correct rule was the same as that in the pre-
vious trial. When the correct rule was changed, the new rule
was selected with a higher probability (about 70%) from the
same meta-rule class than from the other meta-rule class.
Moreover the correct rule change from one meta-rule class
to another one did not occur continuously. Subjects were
told that this would be the case but the changing frequency
was not revealed.

A control task was conducted to determine the baseline
of imaging analysis. In the control task, the basic experi-
mental procedure, consisting of stimuli and the requirement
for subject’s behaviors, was the same as the main sorting
task, while the fixed correct rule for all trials was given as
a visual message at the beginning of the control task. Thus,
subjects did not need to select a rule themselves. One ses-
sion consisted of the first main task (45 trials), a control
task (5 trials) and the second main task (45 trials), and each
subject performed 3 sessions in the experiment.

2.3 Scanning Procedures and Imaging Analysis

Using a whole-brain 1.5-tesla scanner (Magnetic
Eclipse; Shimadzu-Marconi, Kyoto, Japan), functional im-
ages were obtained with T2*-weighted echo planner imag-
ing (EPI), with blood oxygen-level depletion (BOLD) con-
trast. The volumes were acquired continuously every 2.0
sec (TR) with 20 slices of 5 mm thickness (TE: 48 msec,
FA: 80◦, FOV: 192 mm, matrix size: 64×64). The
first six (12 sec) EPI images in each session were ex-
cluded from the analysis to avoid the effect of T1 equilib-
rium. During one session, 560 EPI images were acquired.
To investigate anatomical localization, T1-weighted three-
dimensional images were acquired (TR: 12 msec, TE: 4.5
sec, FA:20◦, FOV: 256 mm, matrix size: 256×256, thick-
ness: 1 mm, 191 slices).

Imaging data were analyzed using Statistical Paramet-
ric Mapping 99 (SPM99; Wellcome Department of Cogni-
tive Neurology, London, UK). All functional images from
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each subject were realigned with the first image, using rigid
transformation, and then the slice timing was corrected. Af-
ter that, EPIs were registered to the individual anatomical
image. The EPI images were normalized using parame-
ters such that anatomical T1 images were normalized to
the MNI (Montreal Neurological Institute) template. The
normalized EPIs were spatially smoothed with a Gaussian
kernel of 10 mm (FWHM).

We excluded imaging data for mis-trials. We then de-
fined an event-block as 10 sec, such that the onset was the
feedback of the previous trial and the end was the finish
time of the second sorting in the current trial. For the anal-
ysis, three kinds of events-blocks were extracted from all
event-blocks according to the subject’s behaviors in the cor-
responding trial. The first was “meta-rule switch (MSW)”,
in which a subject tried a new sorting rule whose meta-
rule class was different from the previous one. The second
was “rule switch (RSW)”, in which a subject used a dif-
ferent rule within the same meta-rule class as the previous
one. Note that the difference between rule and meta-rule
switches could be distinguished based only on the subject’s
behaviors. The third was “exploitation (EXP)”, in which
a subject used the same rule as in the previous trial, and
the rule was the correct one. Event-blocks not categorized
in any of these three kinds were excluded from the anal-
ysis. The MSW and RSW were the same in terms of se-
lecting one rule out of the six possible rules, but differed in
that the MSW required a switch process between two meta-
rules. The EXP differed from MSW and RSW because no
rule switches were necessary. All event-blocks were con-
volved with a homodynamic response function (HRF), and
the control task was designed as an epoch which defined
base activation. Six realignment parameters were also de-
signed as regressors to eliminate moving artifacts. The data
were high-pass-filtered using a low-frequency cosine func-
tion with a cut-off time of 60 sec. To account for inter-
subject variability and to allow statistical inference at the
population level, one samplet-test for statistical signifi-
cance of group random effects was used. For compari-
son between MSW and RSW, the threshold at the voxel
level was set top<0.01 (uncorrected), and for that between
RSW and EXP, and between MSW and EXP, it was set to
p<0.001 (uncorrected). After that, cluster level analysis
was applied withp<0.05 (corrected). We also conducted a
time-course analysis of regions found to be significantly ac-
tivated in the group analysis. The activation level for each
region was represented as the average of signal intensities
of all voxels within the region. These time course data were
smoothed using a high-pass filter with a cut-off time of 100
sec and a low-pass filter with a cut-off time of 8 sec.

Figure 2. Behavioral results. (a) An example
of a subject’s profile. (b) The correct rate after
meta-rule and rule change for subjects. (c)
The same plot as (b) for two computer agents.

3 Results

3.1 Behavioral Results

To show the efficiency of hierarchical searching in our
task, we conducted a computer simulation using two kinds
of computer agents. One was a hierarchical-search agent
(HS) which explores within the current meta-rule class with
a higher priority than within the other meta-rule class, and
the other was a random-search agent (RS) which searches
over five possible rules except for the current one randomly.
In the simulation, these two agents performed 100,000 ses-
sions of the identical task to the fMRI task. When a pos-
itive feedback (50 point) was given, both agents chose the
previously used rule at the next trial. The average point ac-
quired by the HS was significantly higher than the RS, and it
was shown that the searching scheme using the hierarchical
structure of rules is effective to solve our task.

In the Multi Feature Sorting Task, the correct sorting
rule was changed depending on the subject’s behavior, and
there were two types of rule changes: a “meta-rule change
(MCH)” in which a new correct rule is selected from the
other meta-rule class, and a “rule change (RCH)” in which a
new correct rule is selected from the current meta-rule class.
The number of correct rule changes varied among subjects;
the average number was 40±5, consisting of 13±2 meta-
rule changes and 27±3 rule changes. The Fig.2(a) shows an
example of behavioral profile in a certain sorting task block,
where the abscissa denotes the number of trials. The line
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and crosses in this figure denote correct rule transition and
subject’s used rule in each trial, respectively. Triangles indi-
cate the trials in which the subject received feedback stimuli
contradictory to the used rule (10%) due to the probabilis-
tic nature of feedback stimuli. The gray and white back-
grounds show the periods of “order rule” and “feature rule”,
respectively. When the MCH occurred at the 10th trial, the
subject first explored all rules within “order rule” to which
the previously correct rule belonged, and then switched to
“feature rule”. The opposite-directional behaviors were also
observed after the 33th trial. These behaviors show that the
subject was likely to explore one meta-rule exhaustively be-
fore switching to the other meta-rule.

Fig.2(b) shows the time course of choosing correct rule
after MCH and RCH for subjects. The abscissa denotes the
number of trials in which the zero value is the timing of
correct rule changing. The solid and dot lines correspond
to the rate of correct trials after MCH and RCH, respec-
tively. The lower correct rate immediately after MCH than
RCH (p<0.001) supported that the subjects first explored
within the current meta-rule, and then explored the other
meta-rule. Similar properties were also examined for the
two agents, RS and HS, described above (Fig.2(c)). Since
the RS searched for correct rules randomly, the correct rates
after MCH and RCH behaved similarly. In the HS, the cor-
rect rate after MCH was lower than that after RCH, support-
ing that the subject utilized the hierarchical rule structure to
search for correct rules quickly and efficiently.

Subject behaviors in the main task (other than excluded
ones) can be classified into three kinds of conditions, MSW,
RSW and EXP. Each subject was required to make prompt
and accurate responses in the experiment, and their reaction
time (RT, the time interval between presentation of feed-
back stimulus in the previous trial and initiation of a re-
sponse to the stimulus in the current trial) was examined.
Since subjects decided the current rule based on previous
trial feedback, this RT may reflect the cognitive process of
interest events. The RT was significantly longer in MSW
than in RSW (p<0.05), implying that MSW needs heavier
cognitive processing than RSW. Since RTs between RSW
and EXP showed no significant difference, it is considered
that cognitive processing inherent to RSW had been com-
pleted within the 6 sec period between the previous feed-
back presentation and the current stimulus presentation.

3.2 Imaging results

Brain areas significantly activated in the MSW condi-
tion and the RSW condition were compared. Group analy-
sis showed significant activation of the left prefrontal lobe,
especially in the inferior frontal gyrus (BA11, 45, 47) and
insula (BA13), and these statistics are summarized in Table
2. Furthermore, we divided all voxels of the left inferior

Figure 3. Imaging results for MSW vs RSW.
Major activated regions and time courses of
these BOLD responses.

frontal gyrus into three areas, BA47, BA11 and BA45, and
applied a time-course analysis to each of these three areas
(Fig.3, lower panels). In each lower panel of Fig.3, the or-
dinate and abscissa denote the BOLD signal changing rate
and the time elapsed since the feedback presentation in the
previous trial, respectively. 0 sec and the line at 6 sec denote
the timing of the feedback and the stimulus 1 presentation,
respectively. In the MSW condition, BA47 had a clear ac-
tivation peak after feedback presentation, while BA11 and
BA45 showed significant activation related to switch events
but no distinct peaks.

We next compared brain images between the RSW con-
dition and the EXP condition, and the statistics of activated
regions are also summarized in Table 2. Figure 4 shows the
right cortical hemisphere and the areas activated in the RSW
condition: the right superior frontal gyrus (BA10), right
middle frontal gyrus (BA9/46,6) and superior parietal lob-
ule (BA7,40). The time courses of signal intensities in these
areas (Fig.4, lower panels) reveal that the superior frontal
gyrus (BA10) showed a marked activation peak compared
with the other conditions. Although BA9/46 also showed
an activation peak in the RSW condition compared with the
EXP condition, this peak also occurred in the MSW con-
dition. In BA6 of the middle frontal gyrus, although the
overall activation level was higher in the MSW and RSW
conditions than in the EXP condition, the time courses re-
sembled each other in all three conditions.

In addition, the MSW condition and the EXP condition
were compared, and the statistics of activated regions in the
frontal cortex are summarized in Table 2. This comparison
shows that regions in left BA47 and right BA46 were sig-
nificantly activated in the MSW condition.

124



Table 2. Statistics of significantly activated regions
Condition Region Left/ Right 　　 Brodmann　　 　　 Talairach[x,y,z] 　　 Z-value　　

MSW > RSW Inferior PFC L 11/45/47 -28 38 -14 3.52
Extra-Nuclear L 13 -38 5 -7 3.99
Insula L 13 -36 17 -1 3.03
Superior Temporal L 22/38 -45 5 -8 2.78

RSW > EXP Fronto-Polar PFC R 10 32 58 3 3.86
Dorsolateral PFC R 9/46 50 20 24 4.39
Middle Frontal Gyrus R 6 32 2 50 3.95
Precuneus R 7 6 -64 46 5.54
Precuneus L 7 -6 -61 56 4.44
Superior Parietal R 7 30 -58 49 4.38
Inferior Parietal R 40 42 -54 45 3.77
Supramarginal Gyrus L 40 -40 -43 37 4.97

MSW > EXP Inferior PFC L 47 -39 21 -3 4.48
Lateral PFC R 46 51 24 23 4.49

Figure 4. Imaging results for RSW vs EXP.
Mainly activated regions and time courses of
these BOLD responses.

4 Discussion

4.1 Meta rule switch: higher order

Because there is a hierarchical structure of rules in
our task, an appropriate search consists of a higher-order
switch, i.e., a switch to a rule of the other meta-rule class,
and a lower switch, i.e., a switch to a rule within the cur-
rent meta-rule class. We consider this hierarchical structure
introduces a ‘context’ to the exploration strategy for correct
rules.

In the MSW condition, the left inferior frontal gyrus,
consisting of BA11, 45 and 47, was significantly activated.
Analysis of the three Brodmann areas revealed that each
area has a different time course. BA47 showed a temporal

increase of the signal intensity in MSW which was not ob-
served in either RSW or EXP. In both the MSW and RSW
conditions, subjects switched their rule because they were
given 0 points as feedback in the previous trial. Since the
activation of BA47 was observed only in MSW, however,
this region was not involved in the detection of erroneous
feedback. We also found that the activation in both BA11
and BA45 exhibited similar time courses in all three condi-
tions; thus, BA47 is closely related to the meta-rule switch
process in the left inferior frontal gyrus.

According to recent imaging studies, the left inferior
frontal gyrus plays an important role in the retrieval pro-
cess for episodic memory [5][10][16]. It was suggested that
one of the cognitive processes in episodic memory retrieval
is the systematic analysis of possible semantic relations be-
tween a stimulus and the known characteristics of potential
information sources, which would be helpful for recollect-
ing contextual details of the encountered stimulus [3][13].
To isolate this cognitive process, Dobbins et al. [5] used a
task in which the subject recalled a word-class after having
performed a semantic classification of many words. This
study revealed that the left inferior frontal gyrus (BA47)
was concerned with the information retrieving process for
word stimuli. Other studies have also shown that almost the
identical region was involved in recollections related to the
recognized stimulus [8][15]. We consider that meta-rules
(higher-order components) are intensive information repre-
sentations of lower-order rules in our task. Thus, restricting
the search space based on meta-rules may exploit a cog-
nitive process that performs efficient information retrieval
for episodic memory, i.e., contextual information. Although
Dobbins et al.’s task was a linguistic one while ours is a di-
agrammatic one, and they have different modalities, these
results suggest that the left inferior prefrontal gyrus plays
an important role in manipulating aggregated information.
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4.2 Rule switch: lower order

In the RSW condition, we found that the right supe-
rior frontal gyrus (BA10) and right middle frontal gyrus
(BA9/46,6) were significantly activated.

A previous study using a categorization task, in which
the subject was required to search for a hidden correct rule
by trial and error, suggested that the right superior frontal
gyrus (BA10) was involved in seeking rules which was in-
duced by changing the correct rule [17]. However, this re-
gion was not active when subjects sought a correct rule in
WCST [9][12]. In both tasks, subjects had to switch rules
based only on feedback; hence, they knew it was neces-
sary to switch rules if they received a ‘false’ feedback. In
the categorization task, each stimulus could be compatible
with multiple rules. If a false feedback was given, therefore,
the subject could eliminate not only the used rule but also
several other rules, whereas a true feedback did not nec-
essarily indicate that the used rule was correct. Thus, the
subject would maintain more than one possible rule candi-
date. In the WCST, however, feedback was given according
only to the rule used by the subject. If a false feedback was
given, therefore, the subject simply removed the used rule
from the candidates. In contrast, probabilistic feedback was
given in our task. If an unfavorable feedback was given, the
subject would be expected to reduce the probability (like-
lihood) that the used rule was correct, and to increase the
probability of the other rule candidates being correct; if
a favorable feedback was given, the subject would be ex-
pected to perform the contrary. The common feature of the
categorization task and our task, in both of which activa-
tion of BA10 was found, is that two or more rule candidates
should be handled in response to a given feedback because
feedback in both cases was not explicit. BA10 may be ac-
tivated when the subject estimates the hidden correct rule
from given feedbacks and updates the likelihoods of rule
candidates so as to redefine the rules’ priorities. Moreover,
according to our time-course analysis of this region, a more
prominent activation was found in RSW than in MSW (al-
though the activation was larger in MSW than in EXP). This
result can be interpreted as follows. In RSW, likelihoods
can be updated because removal of a used rule reduces the
number of possible rule candidates. In MSW, in contrast,
removal of a used rule does not reduce the number of possi-
ble rule candidates because it does not yield any knowledge
on rule candidates belonging to the other meta-rule class;
thus, there is no need to update the prioritized weights.

In the lower-order RSW, the right dorsolateral prefrontal
cortex (BA9/46) was significantly activated. This region
was previously found to be activated in WCST regardless
of whether a true or false feedback was given [12]. Al-
though subjects with lesions in this region could discover
the first correct rule, they could not adapt to changes in the

Figure 5. The BOLD responses in each event
condition. (a) Meta-rule switching; (b) rule
switching; (c) exploitation.

correct rule because they clung to this rule [4][11][14]. It
is therefore thought that BA9/46 is involved in monitoring
and/or updating the information stored in working memory.
In our experiment, the activation intensity of this region in
the EXP condition was lower than that in the MSW and
RSW conditions; this is consistent with current understand-
ing as outlined above.

4.3 Information processing hypothesis

Time-course analysis of significantly activated regions
indicated that the timing of activation was different in each
of the three activated regions in the prefrontal cortex. Based
on these results, we suggest a brain information processing
model which explains the behaviors of rule switching.

The time courses of signal intensities in the three regions,
discriminated by the three behavioral conditions, are shown
in Fig.5. These different time courses can be interpreted
as meaning that the subject first limits the searching space
in BA47, then loads rule candidates in working memory in
BA9/46, and finally determines the priorities of these can-
didates in BA10. In the MSW condition (Fig.5(a)), the acti-
vation increase in the left inferior frontal gyrus (BA47) was
followed by activation in the right dorsolateral prefrontal
cortex (BA9/46), whereas the fronto-polar prefrontal cortex
(BA10) did not show any distinct activation. Since the sub-
ject arbitrarily selects one rule from the loaded candidates,
activation of BA10 is not required because of the absence
of any priorities among the loaded candidate rules. In the
RSW condition (Fig.5(b)), activation of BA47 does not oc-
cur because the searching subspace is already determined.
The subject first refers to the candidates held in BA9/46,
and the priority of each candidate is then assigned in BA10.
In the EXP condition (Fig.5(c)), none of the regions are
markedly activated because the sub-processes above are not
necessary.
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5 Concluding remarks

We designed a Multi Feature Sorting Task in which
the behavioral rules have a hierarchical structure, and con-
ducted an fMRI experiment using this task. In our task,
subjects were required to apply two kinds of rule switches
which correspond to the retrieval of different hierarchies.
The left inferior frontal gyrus (BA47) was specifically acti-
vated in higher-order meta-rule switches. It is considered
that this region restricts the searching space by handling
intensive information, in agreement with previous studies
suggesting that BA47 is involved in recollecting informa-
tion from episodic memory; this recollection function is
useful for limiting rule candidates, as required in our task.
The right fronto-polar prefrontal cortex (BA10) was specifi-
cally activated in lower-order rule switches; this region may
thus be involved in prioritizing rules, in agreement with
previous work suggesting that BA10 is involved in predic-
tive rule switching tasks. Our results suggest that humans
can effectively represent information as a hierarchical rule
structure which can be operated efficiently by incorporating
contextual information.
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Abstract

Adaptive and autonomic systems often must be able to
detect and respond to errant behavior or changing condi-
tions with little or no human intervention. Decision making
is a critical issue in such systems, which must learn how
and when to invoke corrective actions based on past experi-
ence. This paper describes the design, implementation and
evaluation of a perceptual memory system, called MESO,
that supports online decision-making in adaptive systems.
MESO uses clustering and pattern classification methods
while addressing the needs of online, incremental learning.

Keywords: adaptive software, decision making, imitative learning,
machine learning, pattern classification, perceptual memory.

1 Introduction

Increasingly, software needs to adapt to dynamic ex-
ternal conditions involving hardware components, network
connections, and changes in the surrounding physical envi-
ronment [5, 10, 23]. For example, to meet the needs of mo-
bile users, software integrated into hand-held, portable and
wearable computing devices must balance several conflict-
ing concerns, including quality-of-service, security, energy
consumption, and user preferences. Moreover, the promise
of autonomic computing systems [16], that enable software
to dynamically self-heal and self-manage, appeals to sys-
tem’s administrators and users alike.

In adaptive applications, future decisions should benefit
from past experience, helping to improve the fitness of the

� This work was supported in part by the U.S. Department of the Navy,
Office of Naval Research under Grant No. N00014-01-1-0744, and in part
by National Science Foundation grants EIA-0000433, EIA-0130724, and
ITR-0313142.

software with respect to its environment and/or function.
However, learning from experience requires that a system
remember appropriate responses to sensed environmental
context. Perceptual memory, a type of long-term memory
for remembering external stimulus patterns [7], plays an im-
portant role in supporting context-aware, adaptive software.

The main contribution of this paper is to present a per-
ceptual memory system, called MESO1, that applies pat-
tern classification and clustering techniques [6] to online,
dynamic learning systems. The benefits of MESO include:
rapid incremental training, rapid reorganization of an exist-
ing classifier tree, high recall accuracy, lack of dependence
on a priori knowledge of adaptive actions, and support for
data compression. Each of these benefits is important to
constructing a dynamic decision-maker. For instance, incre-
mental training enables a system to learn over time, address-
ing changing user requirements or environments. Limiting
the impact of a growing population of training patterns can
be addressed using data compression, reducing the mem-
ory and processor requirements needed for managing large
data sets. We show how MESO can be used to enable soft-
ware decision-making by presenting preliminary results of
experiments with an audio streaming application that can
imitatively learn [1, 13] how to adapt to changing network
conditions. Due to space limitations, many details of this
study are omitted here, but can be found in the accompany-
ing technical report [15].

2 Background and Related Work

An adaptive software system must include a decision-
making component to realize adaptive behavior. Learning-
based approaches [11, 22] show substantial promise for ad-
dressing the needs of decision makers. By observing its

1The term MESO refers to the tree algorithm used by the system (Multi-
Element Self-Organizing tree).
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environment, an application can determine if it is operating
within acceptable limits. For instance, if a network applica-
tion perceives a high packet loss rate, it might interpret this
condition as detrimental to quality of service and decide to
increase the level of error correction. Once invoked, this re-
sponse is evaluated and if acceptable, assimilated into the
decision maker’s experience for possible future use in sim-
ilar situations. That is, adaptive systems need to remember
and recall past experience.

We explore pattern classification and clustering methods
for associating adaptive responses with observed or sensed
data pertinent to application quality-of-service. The em-
bodiment of this method is a classifier [6] that uses super-
vised learning to produce a model of environmental stimuli.
Comprising the operation of a classifier are two basic func-
tions: training and testing. During training, patterns are
added to the classifier, enabling the construction of an in-
ternal model of the training data. Each training pattern is
an array of continuous, binary or nominal values labeled as
belonging to a specific, real-world category. Once the clas-
sifier has been trained, the system can be queried using an
unlabeled pattern. The classifier then tests this pattern and
returns a label, indicating the category to which the tested
pattern most likely belongs.

Clustering and pattern classification research is an ac-
tive field of study. Recently, a number of projects have
addressed clustering and classification of large data sets, a
characteristic of decision making for autonomic software.
Tantrum et al. [21] consider model-based refractionation for
clustering large data sets. Yu et al. [24] use an hierarchi-
cal approach to clustering using support vector machines
(SVMs). Kalton et al. [14] address the growing need for
clustering by constructing a framework that supports many
clustering algorithms. Methods for online clustering and
classification have also been explored [4, 17]. Such online
methods might be used as the basis for a perceptual memory
system similar to MESO.

Like our project, other works have explored the use of
statistical methods and pattern classification and clustering
techniques in learning systems. Some have used develop-
mental learning algorithms that enable a system to learn on-
line through interaction with the physical world. For exam-
ple, Hwang and Weng [9] developed hierarchical discrimi-
nant regression (HDR) and applied it successfully as part of
the developmental learning process in humanoid robots. In
addition, Ivanov and Blumberg [11] developed the layered
brain architecture [11], which was used for the construction
of synthetic creatures, such as a “digital dog.” That project
used clustering and classification methods to construct per-
ceptual models as part of the dog’s developmental learning
system. A notable aspect of that work is the use of compres-
sion schemes to limit the impact of large training sets on
memory consumption and processing power requirements.

Imitative learning, where a learner acquires skills by ob-
serving and remembering the behavior of a teacher, has
also been studied in the context of providing humanoid
robots with motor skills. Amit and Matarić [1] used hid-
den Markov models (HMMs) to learn aerobic-style move-
ments. The ability of the system to reconstruct motion
sequences is encouraging, demonstrating the potential im-
portance of imitative learning. Jebar and Pentland [13]
conducted imitative learning experiments using a wearable
computer system that included a camera and a microphone.
A human subject was observed by the system during inter-
actions with other people. The observed training data was
used to train an HMM. Later the system was allowed to re-
spond autonomously when presented with visual and audio
stimuli, demonstrating a limited ability to reproduce correct
responses. However, since learning by observing real hu-
man behavior is very complex, even limited recognizable
response is significant and promising.

The key hypothesis of our project is that clustering and
classification methods can be extended to support decision
making in adaptive software. We focus in this paper on
applications that operate over lossy wireless networks and
thereby must accommodate periods of high packet loss.
Since error correction or retransmission often consumes ad-
ditional bandwidth and increases packet delay, applications
must balance these concerns while correctly choosing a re-
sponse for current conditions. By measuring the loss rate,
bandwidth and other network and system behavior, a pat-
tern can be constructed that enables a decision maker to
“remember” an appropriate response.

3 MESO

As a first step in our study, we developed MESO, a per-
ceptual memory system for adaptive software. At a ba-
sic level, MESO functions as a pattern classifier and can
be used to incrementally classify environmental stimuli or
other data while accomodating very large data sets. Indeed,
in early experiments we used HDR [9] to classify environ-
mental stimuli related to application quality of service. The
insight gleaned from those experiments led to our design of
MESO.

Basic Approach. As depicted in Figure 1, a unique fea-
ture of MESO’s design is the use of small agglomerative
clusters, called sensitivity spheres, that aggregate similar
training patterns. In adaptive software, training patterns
comprise observations related to quality of service or en-
vironmental context, such as network bandwidth or phys-
ical location. The quantity of training patterns collected
while a system executes may be very large, requiring more
memory and processing resources as new patterns are added
to the classifier. However, many training patterns may be
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very similar, enabling their aggregation into a much smaller
number of sensitivity spheres while helping limit resource
consumption.
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Figure 1. Sensitivity spheres for three 2D-
Gaussian clusters. Circles represent the bound-
aries of the spheres as determined by the current
Æ. Each sphere contains one or more training pat-
terns.

The size of the sensitivity spheres is determined by a
Æ value that specifies the sphere radius in terms of dis-
tance (e.g. Euclidean distance) from the sphere’s center.
A sphere’s center is calculated as the mean of all patterns
that have been added to that sphere. The Æ is a ceiling value
for determining if a training pattern should be added to a
sphere, or if creation of a new sphere is required.

As with many other classifiers, MESO uses a hierarchi-
cal data structure, or tree, to organize training patterns for
efficient retrieval. Figure 2 shows the organization of a
MESO tree. The MESO tree is built starting with a root
node that comprises the set of all sensitivity spheres. The
root node is then split into subsets of similar spheres, pro-
ducing child nodes. Each child node is further split into
subsets until each child comprises only one sphere. Consol-
idating similar patterns into sensitivity spheres enables con-
struction of a tree using only spheres rather than agglom-
erating individual patterns at tree nodes. Moreover, many
clustering algorithms construct a tree by agglomerating in-
dividual patterns into large clusters near the root of the tree,
and then split these clusters at greater tree depths. In such
a structure, the tree must be reorganized using the training
patterns directly. Conversely, MESO can be reorganized us-
ing only existing sensitivity spheres. The use of sensitivity
spheres enables a MESO tree to be more rapidly reorga-
nized than approaches that require direct consideration of
training patterns.

Figure 2. MESO tree organization. The rectan-
gles are partitions and the shaded spheres are
partition pivots. The root partition is split suc-
cessively until a leaf is formed where a partition
contains only one sphere.

As shown in Figure 2, sensitivity spheres are partitioned
into sets during the construction of a tree. Each node of the
tree comprises a collection of sensitivity spheres called a
partition, defined as a subset of similar spheres. A partition
may have one or more children, each comprising a subset of
the parent’s sensitivity spheres. A pivot sphere is selected
for each partition and used to assign other spheres, nearest
to the pivot, as members of the partition. Smaller parti-
tions provide finer discrimination and better classification
of test patterns. Moreover, the partitioning of sensitivity
spheres produces a hierarchical model of the training data.
That is, each partition is an internal representation of a sub-
set of the training data that is produced by collecting those
spheres that are most similar to a pivot sphere. At greater
tree depths, parent partitions are split, producing smaller
partitions of greater similarity. For each partition, classifica-
tion proceeds by comparing a test pattern with each child’s
pivot and following the branch to the child containing the
pivot that is most similar. In this way, the search continues
at each tree depth. At a leaf node, a label is returned in-
dicating the category to which the test pattern most likely
belongs.

By leveraging this hierarchical structure, a relatively
simple distance metric, even Euclidean distance, can be
used to achieve high recall accuracy. As shown in Sec-
tion 4, another advantage of this approach is that it requires
a minimum amount of calculation, enabling rapid classifier
training and testing. In addition, MESO supports incremen-
tal training, which enables construction of a MESO tree by
adding one pattern at a time. As such, MESO can be trained
and tested during concurrent interaction with users or other
system components.

Sensitivity Sphere Size. An important consideration in
building an efficient MESO tree is the appropriate value of
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Æ for constructing sensitivity spheres. For each data set, a Æ

value needs to be calculated. If Æ is too small, training time
increases dramatically. If too large, testing time becomes
unacceptable. Moreover, data set compression requires a
proper Æ value to balance the tradeoff between compression
rate and recall accuracy.

Since online learning is an incremental process, it is pos-
sible to adjust Æ incrementally as MESO is trained. Key
to incrementally calculating a good Æ is determining a Æ

growth function that balances sphere creation with sphere
growth. That is, rapid Æ growth during early training pro-
duces few spheres, with very large Æ’s, that agglomerate
many patterns. The result is a coarse-grained, inefficient
tree where most testing time may be spent in a linear search
of a single sphere. Conversely, overly slow Æ growth pro-
duces a large number of very small spheres that contain only
a few patterns. Having many small spheres is expensive, in
terms of both space and time, to organize as a MESO tree.

MESO’s Æ growth function is defined as:

����Æ �
��� Æ� Æ

�
�

� � ����� Æ � ���
�

where � is the distance between the new pattern and the
nearest sensitivity sphere. The Æ

�
factor scales the result

relative to the difference between the current Æ and �. In-
tuitively, the denominator of ����Æ limits the growth rate
based on how far the current Æ is from �. That is, if � is
close to Æ then Æ will grow to be nearly �. However, if � is
much larger than Æ, the increase will be only a small fraction
of �� Æ.

The sigmoid-curve activation function, � , inhibits sensi-
tivity sphere growth when the number of spheres is small
compared to the number of patterns. This function is de-
fined as:

� �
�

�
�

�	�
� ��
�
� ��

�
�

where � � �������

������	�
and � is a configuration parameter in the

range �� ���. Increasing � moves the center of the sigmoid
curve to the right, suppressing sphere growth and encourag-
ing the production of new spheres. The �	�
�� function is
the hyperbolic tangent.

Our ����Æ function balances sphere production with
sphere growth, producing good spheres for a wide range
of values for �. Only for very large values of � is growth
inhibited sufficiently to significantly impact training time.
The ����Æ function promotes the production of trees that
are comparable with good choices for fixed Æ values.

Compression. Adaptive systems often must continue to
function for long periods while addressing changing user
preferences and the sensed environment. Such an enormous
amount of data requires substantial processor and storage

resources, potentially inhibiting timely response by deci-
sion makers or impacting application performance. Thus,
perceptual memory systems may need to “forget” less in-
formative training samples in favor of important or novel
observations. Compression techniques eliminate training
patterns while attempting to minimize information loss.

In MESO, compression takes place on a per sensitivity
sphere basis. That is, rather than trying to compress the en-
tire data set using a global criterion, the patterns in each sen-
sitivity sphere are compressed separately. Moreover, com-
pression is further limited so that all existing pattern labels
are not eliminated from a sphere. We implemented three
types of compression, the evaluation of which is discussed
in Section 4.

Means compression reduces the set of patterns in each
sensitivity sphere to the mean pattern vector for each la-
bel. This is the most aggressive and simple of the compres-
sion methods. Moreover, the computational requirements
are quite low.

Spherical compression is a type of boundary compres-
sion [11] that treats patterns on the boundaries between
sphere’s as most important to the classification of test pat-
terns. For each sphere, the feature values are converted to
spherical coordinates. Along a given vector from the sphere
center, only those patterns farthest from the sphere center
are kept.

Orthogonal compression removes all the patterns that are
not used for constructing an orthogonal representation of
a sphere’s patterns. The idea is to keep only those pat-
terns that are most important as determined by their or-
thogonality. Samples that represent parallel vectors in 	-
dimensional space are removed.

Complexity. Table 1 shows the space and time complex-
ities for training MESO and some well-known clustering
algorithms [12]. In this table, 
 is the number of patterns,
� is the number of clusters and � is the number of iterations
to convergence. Without compression, MESO has a worst
case space complexity of �
�, comparable to the shortest
spanning path algorithm. MESO’s memory consumption
can be significantly reduced with compression.

Intuitively, time complexity for training can be consid-
ered in terms of locating the sensitivity sphere nearest to
a new pattern and adding the pattern to that sphere. If a
sufficiently close sphere cannot be found, a new sphere is
created. Locating the nearest sphere is an ����
 �� op-
eration. This search must be completed once for each of

 patterns. Each pattern must also be added to a sensitiv-
ity sphere, and � sensitivity spheres must be created and
added to the MESO tree. This process yields a complexity
of �
 ���
 ����
�������� ���
 �� which reduces
to �
 ���
 ��. Assuming an appropriate Æ selection and a
data set of significant size, MESO has a time complexity
better than the leader algorithm.
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Table 1. Space and time complexities for several
clustering algorithms [12].

Algorithm Space Time
MESO ���� ��� ���

�
��

leader ���� �����
�-means ���� ������
ISODATA ���� ������
shortest spanning path ���� �����
single-line ����� ���� ��� ��
complete-line ����� ���� ��� ��

The search complexity for classifying a test pattern using
MESO is ����
 �� � ���� for a balanced tree, where � is
the maximum number of children per node, �� is the average
number patterns agglomerated by a sensitivity sphere, and �

represents the number of sensitivity spheres produced. The
�� component represents the number of operations required
to assign a category label once the most similar sensitiv-
ity sphere has been located. Thus, the worst case search
complexity occurs when only one cluster is formed and the
search algorithm degenerates into a linear search of �
�.
Conversely, a best case search complexity of ����
 �� oc-
curs when one sensitivity sphere is formed for each training
pattern.

4 MESO Assessment

We evaluated MESO as a pattern classifier using several
standard data sets in cross-validation experiments. The re-
sults illustrate the recall accuracy of MESO. We also com-
pare MESO with the IND classifier [3] to provide a bench-
mark for MESO performance.

The Data Sets. Table 2 lists the data sets used to assess
MESO. The number of patterns and features per pattern are
shown for each data set. All but one of the data sets were
retrieved from the UCI [2] and KDD [8] machine learn-
ing repositories. The ATT faces [20] data set was acquired
from AT&T Laboratories Cambridge. Most of these data
sets comprise continuous, integer or binary feature mea-
surements. For instance, the Cover Type data set contains
continuous features, measuring features such as elevation
or slope, and binary values indicating whether a pattern is a
particular soil type. However, the Mushroom data set con-
sists entirely of nominal values encoded as alpha charac-
ters converted to their ASCII equivalent for processing by
MESO. In contrast, the ATT Faces data set comprises image
pixel values of human faces.

The Japanese Vowel data set requires further description.
This data set comprises 640 time series blocks where each
block consists of a set of records. Each record comprises
12 continuous measurements of utterances from nine male
speakers. The 9,859 patterns are produced by treating each
record as an independent pattern and randomizing the data

Table 2. Data set sizes and feature counts.

Data Set Size Features Classes
Iris 150 4 3
ATT Faces 360 10,304 40
Mult. Feature 2,000 649 10
Mushroom 8,124 22 2
Japanese Vowel 9,859 12 9
Letter 20,000 16 26
Cover Type 581,012 54 7

set. As such, no understanding of utterance order is re-
tained. Thus, the classification task is to identify the speaker
of each utterance independent of its position in a time series.

Experimental Method. We tested MESO using cross-
validation experiments as described by Murthy et al. [19].
The experiment proceeds as follows:

1. Randomly divide the training data into � equal-sized
partitions.

2. For each partition, train the classifier using all the data
outside of the selected partition. Test the classifier us-
ing the data in the selected partition.

3. Calculate the classification accuracy by dividing the
sum of all correct classifications by the total number
of patterns tested.

4. Repeat the preceding steps � times, and calculate the
mean and standard deviation for the � iterations.

In our tests we divide each data set into 10 equal-sized
partitions and repeat the test 10 times. Thus, MESO is
trained and tested 100 times for each mean and standard
deviation calculated.

Experimental Results. Table 3 shows MESO’s cross-
validation accuracy and standard deviations for each of the
data sets. For comparison, accuracy using the IND classi-
fier is also presented. IND can be used to build a classi-
fier in several modes. Here we include results using CART,
ID3 and Bayesian IND modes. As shown, MESO is com-
petitive with IND, exhibiting better accuracy for most data
sets. Moreover, MESO has good accuracy for data sets of
different size and pattern feature count. The NC designa-
tion indicates that IND could not complete a particular test.
In the case of ATT Faces, lack of memory prevented IND
from completing a data set encoding process, which must
be completed before IND can be trained.

It is noteworthy that MESO shows high accuracy for
the Mushroom data set, since this data set consists entirely
of nominal values. Such pattern values have no compara-
tive numeric value but rather indicate characteristics, such
as cap shape, by name. IND addresses such nominal val-
ues explicitly by designation of some features as nominal.
MESO does not explicitly address nominal values, but still
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Table 3. MESO accuracy compared to IND.

MESO IND
Data set CART ID3 Bayesian
Iris 95.1%�0.0% 92.8%�0.3% 93.5%�0.7% 94.2%�1.1%
ATT Faces 94.1%�1.0% NC NC NC
Mult. Feature 94.0%�0.6% 93.1%�0.6% 94.2%�0.2% 94.4%�1.1%
Mushroom 100.0%�0.0% 99.9%�0.0% 100.0%�0.0% 100.0%�0.0%
Japanese Vowel 91.9%�0.2% 82.3%�0.3% 84.2%�0.3% 84.7%�0.3%
Letter 90.1%�0.2% 84.4%�0.3% 87.9%�0.1% 88.6%�0.2%
Cover Type 96.0%�0.0% 93.9%�0.9% 95.2%�0.2% 94.4%�0.3%

Table 4. Results when using compression.

Data set Uncompressed Means Spherical Orthogonal
Iris Accuracy% 95.1%�0.0% 95.7%�1.0% 96.0%�1.3% 96.2%�2.27%

Compression% 0.0% 0.02%�0.0% 0.0%�0.0% 1.9%�0.07%
ATT Faces Accuracy% 94.1%�1.0% 93.2%�1.1% 93.7%�1.5% 93.9%�1.7%

Compression% 0.0% 0.0%�0.0% 0.0%�0.0% 0.0%�0.0%
Mult. Feature Accuracy% 94.0%�0.6% 94.2%�0.6% 94.3%�0.5% 94.2%�0.5%

Compression% 0.0% 0.3%�0.0% 0.3%�0.0% 0.3%�0.0%
Mushroom Accuracy% 100.0%�0.0% 99.9%�0.0% 99.7%�0.0% 99.9%�0.0%

Compression% 0.0% 90.3%�0.0% 71.9%�0.5% 90.1%�0.0%
Japanese Vowel Accuracy% 91.9%�0.2% 81.0%�0.4% 90.1%�0.5% 80.6%�0.7%

Compression% 0.0% 93.9%�0.1% 26.5%�1.3% 93.9%�0.0%
Letter Accuracy% 90.1%�0.2% 87.8%�0.3% 90.2%�0.4% 87.5%�0.4%

Compression% 0.0% 88.9%�0.2% 22.0%�1.0% 89.0%�0.2%
Cover Type Accuracy% 96.0%�0.0% 82.5%�0.7% 95.1%�0.0% 82.1%�0.3%

Compression% 0.0% 98.2%�0.2% 48.0%�0.9% 98.3%�0.1%

accurately classifies these nominal patterns. The high re-
call accuracy may be due to MESO’s ability to capture 	-
dimensional structure. Determining how MESO addresses
nominal and mixtures of nominal and continous values war-
rants further exploration.

Compression. Table 4 shows MESO results using the
three data compression methods described earlier. All re-
sults were generated using cross-validation. Means com-
pression provides high compression and good accuracy.
This result can be attributed to applying compression on a
per sensitivty sphere basis. As such, the ability of MESO
to capture the 	-dimensional structure of the training data
can be leveraged to limit information loss during compres-
sion. For all compression methods, small data sets are com-
pressed very little. Limited compression is expected since Æ
growth is inhibited during early training, and spheres con-
tain only a few samples. However, since processor and stor-
age usage is low for small data sets, compression is of lim-
ited importance. Larger data sets are compressed signifi-
cantly while recall accuracy remains high.

5 The Network Application

We explored the use of MESO to support learning in
adaptive software by applying it to the implementation of
an audio streaming network application, called XNetApp,
that can adapt to changes in packet loss rate in a wireless
network. A stationary workstation transmits an audio data

stream to a mobile receiver over the wireless network. Our
goal is to enable the mobile device to adapt to the wire-
less packet loss encountered as a user roams about a wire-
less cell. One way to address the high loss rates of wire-
less channels is to insert redundant information into the data
stream, enabling a receiver to correct some losses without
contacting the sender for retransmission. This study focuses
on erasures of packets. An (
� �) block erasure code [18]
converts � source packets into 
 encoded packets, such that
any � of the 
 encoded packets can be used to reconstruct
the � source packets.

The XNetApp’s decision maker uses MESO for “re-
membering” user preferences for balancing packet loss
with bandwidth consumption. By autonomously modify-
ing (
,�) settings and packet size, the decision maker can
adapt the XNetApp based on current environmental condi-
tions. In our experiments, the decision maker learns about a
user’s preferences through imitative learning. Thus, a user
shows the XNetApp how to adapt to a rising loss rate by
selecting an (
,�) setting with greater redundancy. If the
new setting reduces the perceived loss rate to an accept-
able level, the user reinforces the new configuration (e.g.,
by pressing a particular key), and the XNetApp “remem-
bers” the sensed environment and current configuration by
storing it using MESO. When operating autonomously, the
decision maker senses current environmental conditions and
calculates time-sampled and Fourier features, constructing
a pattern. Using this pattern, the XNetApp queries MESO
for a system configuration that most likely addresses current
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conditions. Then, the decision maker emulates the user’s
actions and adapts the XNetApp, changing the configura-
tion to match that returned from MESO.

As shown in Table 5, 56 environmental features are
sensed or calculated and used as input to the decision mak-
ing process. The first 4 features are instantaneous measure-
ments. Perceived features are observed from the applica-
tion’s viewpoint. That is, perceived packet loss represents
the packet loss as witnessed by the application following er-
ror correction, while real packet loss is the number of pack-
ets actually dropped prior to error correction. For each of
the first four features, 7 time-sampled measurements and 6
Fourier spectrums are calculated.

Table 5. Features used for training and testing the
XNetApp.

# Feature Description
1–4 Instantaneous measurements: bandwidth, per-

ceived packet delay, perceived loss and real loss.
5–32 Time-sampled measurements: median, average,

average deviation, standard deviation, skewness,
kurtosis and derivative.

33-56 Fourier spectrum of the time-sampled measure-
ments: median, average, average deviation, stan-
dard deviation, skewness and kurtosis.

6 Results

For testing, we studied the ability of the XNetApp to
autonomously balance real packet loss and bandwidth con-
sumption. The IP multicast protocol was used for transmis-
sion of the data stream. Data was collected as a user roamed
about a wireless cell carrying a notebook computer running
an XNetApp receiver.

We experimented with the XNetApp using a 1.5GHz
AMD Athlon workstation for data transmission. A 500MHz
X20 IBM Thinkpad notebook was used as a mobile receiver.
All systems run the Linux operating system. We tested atop
an 11Mb 802.11b wireless network as a user roamed about a
wireless cell. The XNetApp was trained using an emulated
loss rate in the range �� ���.

Figure 3 shows a comparison of real versus perceived
loss observed as the user roamed about the cell. The XNet-
App was able to adapt to changing real loss rates, and min-
imize application loss. The center plot depicts the redun-
dancy ratio, defined as �	���

	
, showing the responsiveness

of the XNetApp on a real wireless network. Greater re-
dundancy is required during periods of high loss. How-
ever, this redundancy consumes greater network bandwidth.
The XNetApp did not simply choose a high (
� �) ratio, but
changed parameters to correspond with the changing real
loss rate.

Table 6 shows results from running cross-validation tests
using the data acquired during XNetApp training. This
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Figure 3. Comparison of real loss (top), redun-
dancy ratio (center) and perceived loss (bottom).

data was produced during training for autonomous XNet-
App operation on a real wireless network. The final train-
ing set contained 32,709 patterns in 10 classes. This table
shows recall accuracy, with and without compression, help-
ing quantify how well the XNetApp can be expected to imi-
tate a user. In all cases, the XNetApp was highly accurate at
“remembering” a user’s preferences for balancing loss rate
with bandwidth consumption.

Table 6. XNetApp results with and without com-
pression.

Uncompressed Accuracy% 94.1%�0.2%
Compression% 0.0%

Means Accuracy% 87.7%�0.2%
Compression% 91.8%�0.1%

Spherical Accuracy% 92.4%�0.7%
Compression% 5.8%�0.2%

Orthogonal Accuracy% 87.3%�0.4%
Compression% 91.8%�0.1%

7 Conclusions

We have presented a perceptual memory approach,
called MESO, that uses pattern classification and cluster-
ing techniques while addressing issues important to sup-
port online developmental learning. We showed that, when
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used as a pattern classifier, MESO can accurately classify
patterns from standard data sets. We also implemented an
application that imitatively learns how to make decisions
through interaction with a user. Preliminary results show
that the imitative learning approach, used by the XNetApp,
has promise. We postulate that such software, which can be
trained to make good decisions, may simplify the integra-
tion of software into new or pervasive computing environ-
ments.

Further information. This work is part of
the RAPIDware project, which addresses the de-
sign of high-assurance adaptive software. Re-
lated papers and software packages can be found at
http://www.cse.msu.edu/rapidware.
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Recent discoveries showing a convergence between pat-
terns of the activity in the midbrain dopamine neurons and
computational model of reinforcement learning have lead to
an important amount of speculations about learning activi-
ties in the brain [5]. In particular actor-critic reinforcement
learning architectures have been presented as relevant mod-
els to account for functional and anatomical subdivisions in
the midbrain dopamine system. Central to some of these
models is the idea that dopamine cells report the error in
predicting expected reward delivery and that this informa-
tion is used in two different ways. The value system learned
by the critic is associated with projections from the ventral
tegmental area to the amygdala and the orbitofrontal cortex.
The action selection scheme of the actor is thought to be re-
alized by dopamine pathways initiated in the substantia ni-
gra pars compacta and projecting to the striatium, thus con-
trolling the choice of actions during cortico-striato-thalamo-
cortical loops. This popular model has raised some amount
of controversies (e.g. [1]) but has definitively shown that
artificial learning paradigms could lead to interesting new
interpretations of neurophysiological data.

We want to emphasize the inspiring role that research in
developmental robotics can play in this context. One of the
important goal of this new research field is to understand
which dynamics can lead to open-ended developmenti.e.
how robots can be designed to continuously learn new skills
of increasing complexity. Paradigms based on conditioning
and external rewards have difficulties to account for the ac-
tive nature of development and exploratory behaviors. Chil-
dren in the first years of their life actively choose in which
learning task they take part, avoiding situations that are too
difficult for them or that have become too predictable. This
suggests the existence of intrinsic motivations structuring
learning activities. Proposing models for such motivations
has become a major challenge for developmental robotics.

We argue that in order to realize autonomous mental
open-ended development, reinforcement learning models
could be interestingly associated with an internal reward
system based on the maximization of learning progress.

Several preliminary computational and robotic experiments
show how intrinsic motivations enable the development of
novel behaviors of increasing complexity (e.g. [3, 4]).
These new models naturally lead to investigate how the
basic actor-critic paradigm could be extended to account
for an architecture capable of evaluating its own ”learn-
ing progress”. Studies suggesting that dopamine responses
could be interpreted as reporting ”prediction error” (and not
only ”reward prediction error”) [2] may be taken into con-
sideration for formulating new hypotheses about neural pro-
cesses that could account for a system of intrinsic motiva-
tions.
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Abstract

Researchers studying word learning have discovered
that the syntactic frame in which a word appears plays an
important role in the interpretation of the word, and this
importance diminishes gradually with the increase in age.
The interpretation of  the sentences based on the frame
and  the  verb  is  known  as  frame  and  verb  compliance
respectively.  Here,  a  connectionist  model  is  presented
that learns a miniature language by associating sentences
with the corresponding “scenes.” In doing so, when the
input to the network is changed to reflect the increasing
linguistic experience of children, it exhibits a shift from
frame  to  verb  compliance.  It  is  argued  that  these
phenomena  can  be  attributed  to  the  increasingly
combinatorial  linguistic  experience  and  representations
that  change  with  learning,  and  it  is  not  necessary  to
invoke specialized mechanisms or principles.

1. Introduction

Children  learn  new words rapidly.  A common-sense
explanation  for  vocabulary  acquisition  is  that  word
meanings  are  learnt  by  observing  real-world
contingencies of their use. The meaning of jump is learnt
from noticing that  it  occurs in  the presence of  jumping
events.  However,  this  simple  explanation  has  several
difficulties when attempting to account for acquisition of
meaning of all words. Many of these problems are listed
in [1]:  (a) This theory fails  to account for  the fact  that
children with radically different exposure conditions (e.g.,
the  blind  and  the  sighted)  acquire  much  the  same
meanings, (b) many verbs are used for the same events
and only provide a perspective on an event (e.g.,  chase
and  flee), and (c) many verbs only differ in the level of
specificity at which they describe single events (e.g., see,
look, orient).

In light of these problems, it has been suggested that
children use another rich source of information, namely
the  syntactic  context  in  which  the  words  occur.  This
proposal  is  known as  syntactic  bootstrapping [1,  2,  3].

According  to  this  hypothesis,  children  can  use  the
knowledge of syntax to predict meanings of words. The
learner  observes  the  real  world  situations  and  also
observes the language structures in which various words
appear. If there is a correlation between meanings and a
range  of  syntactic  structures,  the  meaning  (or  some
components of the meaning) of an unknown word can be
predicted when it appears in a familiar structure.

1.1. Verb Compliance and Frame Compliance

One  way  to  study  the  effect  of  syntax  on  the
acquisition of word meaning is to use familiar words in a
different or  incorrect  syntactic  context and examine the
effect on the interpretation of the word. For example, we
can insert  a transitive verb in an intransitive frame and
examine how children interpret the sentence. If children
are still learning about a verb, then they may more readily
accept its occurrence in an incorrect frame. They are more
likely to reject an incorrect frame when they have fully
acquired  the  verb.  If  children  interpret  the  sentence  in
accord  with  the  frame,  they  are  said  to  be  Frame
Compliant.  If  the interpretation fits more with the verb,
they are Verb Compliant.

Frame  and  Verb  Compliance  are  interesting  for
another  theoretical  reason.  While  children's  verb  use  is
overwhelmingly correct, a major exception to this appears
somewhere  around  the  age  of  3.  As  reported  by
Bowerman  [4,  5],  children  sometimes  use  verbs  in
incorrect sentence frames, as in *Don't fall that on me (to
protest the impending dropping of an object by someone).
Thus,  children  overgeneralize,  e.g.,  they  use  a  verb
transitively when only intransitive use is allowed, or vice
versa.  Children  must  learn  eventually  which  uses  are
“licensed” for which verbs. For example, they must learn
that  sink can be used either transitively or intransitively,
but fall and go allow only noncausal interpretation. How
children  overcome these  overgeneralizations  is  a  major
question  in  language  acquisition.  This  question  is
essentially the same as asking why children become Verb
Compliant  at  some  stage.  When  children  show  Verb
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Compliant  behavior,  they  have  sufficient  confidence  in
their  knowledge  of  verb  meaning  and  syntax  that  they
reject  contradictory  cues,  which  is  exactly  the
requirement for eliminating overgeneralizations.

Now  we  look  at  some  empirical  evidence  for
compliance effects.

1.2. The Data

Naigles and colleagues [6,  7] conducted experiments
involving the approach described above. They asked 120
children, from 2.5 to 12 years of age, as well as adults, to
enact  grammatical  and  ungrammatical  sentences  using
“Noah's  Ark”  and  wooden  toy  animals  as  props.
Ungrammatical  sentences  were  constructed  by  placing
transitive  verbs  (bring,  take,  push,  put)  in  intransitive
frames  (e.g.,  *The  lion  puts  in  the  ark,  *The  zebra
brings). Similarly, intransitive verbs (come, go, fall, stay)
were  inserted  in  transitive  frames  (e.g.,  *The  elephant
comes the giraffe). The children's enactment was deemed
to be Frame Compliant if they modified the meaning of
the  verb  to  conform  to  the  frame  in  which  it  was
encountered  (e.g.,  the  elephant  pushing  or  carrying  the
giraffe).  It  was  considered  Verb  Compliant  if  they
followed the  restrictions  of  the verb  (e.g.,  the  elephant
moving independently of giraffe).

Their  overall  results  indicated that  younger  children,
especially the 2-year-olds, were more Frame Compliant,
enacting  the  ungrammatical  sentences  according  to  the
demands  of  the  frame  and  altering  the  meaning  of  the
verb.  They  allowed  the  novel  frames  to  influence  the
interpretation of  the familiar  verbs.  Older  children,  and
especially  the  adults,  were  more  Verb  Compliant,
following  the  restrictions  of  the  verb  and  repairing  the
sentence. Children at the intermediate ages were en route
to the adult state, showing intermediate levels of Frame
and Verb Compliance.

Similar  experiments  have  been  conducted  with
children  with Down Syndrome (DS) [8].  The linguistic
skills of children with DS are split in an interesting way.
Relative to their syntactic knowledge (often measured by
measured MLU or auxiliary use) their vocabulary growth
is  advanced.  It  was  reported  [8]  that  children  with  DS
who had a “vocabulary age” of 6 years were syntactically
like  3-year-olds.  While  children  with  DS  were  more
Frame  Compliant  than  their  chronological-age  mates,
they  also  exhibit  the  move  from  Frame  to  Verb
Compliance.  Adolescents  with  DS  show  more  Verb
Compliance than gradeschoolers with DS. Thus, with the
advance in syntactic knowledge, DS children also move
toward Verb Compliance.

In  this  paper  I  present  a  connectionist  model  that
attempts to  explain the mechanisms by which this shift
occurs.  First,  a  network  is  presented  that  learns  a
miniature language by associating simple sentences to the
corresponding  “scenes.”  The  network's  behavior  with

respect to the compliance effects is then examined. Then,
various  theories  of  compliance  and  the  implications  of
network's  behavior  are  discussed.  We  end  with  a
discussion of  the nature of  representations and input  in
the network.

2. The Network

The architecture of the network is shown in Figure 1. It
contains recurrent connections in the hidden layer as in a
Simple  Recurrent  Network  [9]  to  handle  temporal
sequences of words. Recurrent connections on the output
layer  make it  easier  for  it  to  remember  what  has  been
already learned from the earlier portion of the sentence.

Then  input  to  the  network  consists  of  sentences  or
noun phrases (henceforth called “utterances”) describing
one or two objects and optionally an action, generated by
the grammar shown below:

S → NP | NP1 | NP is IV | NP1 are IV | NP is TV NP
NP → DET N | DET SIZE N 
NP1 → NP and NP 
N → boy | girl | dog | mouse 
IV → jumping | dancing | running | walking
SIZE → large | small 
TV → pushing | holding | hugging | kicking 
DET → a 

One  can  divide  the  utterances  generated  by  this
grammar into five basic types: (a) N, (b) NN, (c) NV, (d)
NNV, and (e) NVN. With optional adjectives describing
the  size,  utterances  such  as  a  girl  and  a  big  dog  are
jumping or  a small  dog and  a big mouse are obtained.
These  utterances  are  presented  to  the  network
sequentially,  one  word  at  each  time  step.  Words  are
represented in a localist manner by turning on a single bit
in the input layer. Also, ing is treated as a separate word,
with  the  assumption  that  it  can  be  discerned  from  the
word stem as a separate unit. An end-of-utterance marker,
STOP, is presented after the last word of each utterance,
at which point all context units are reset. 

On the output or the semantic end, the descriptions of
scenes corresponding to the input utterance are presented
as  a  30-bit  fixed-width  vector.  There  are  two slots  for
objects, and one for the action or the event taking place.
Each object slot is divided into two slots of 4 and 6 units
each, which represent the attribute large (1100) or small
(0011) and type of object respectively. In the 10-bit event
slot, the first 4 bits indicate whether the action is causal or
noncausal (with activations 1100 and 0011, respectively),
and the remaining  6  bits  describe  other  features  of  the
action.  A  distributed  representation  for  each  individual
object and event is generated by turning on 3 randomly
chosen bits in its slot. If each bit is viewed as representing
a  feature,  this  creates  representations  with  partially
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overlapping features. The slots for an attribute, object, or
action not described in the scene are set to 0.

Figure 1. The network architecture.

3. Comprehension

We first test if  the network is capable of performing
the  basic  task  of  producing  the  correct  scene
corresponding  to  an  input  utterance.  The  set  of  all
utterances generated by the grammar was probabilistically
divided into two parts, one for training and the other for
testing  generalization.  There  is  significant variability in
the total number of different types of utterances generated
by the above grammar: There are 12 utterances of type
(a), 144 utterances of type (b), 48 utterances of type (c),
and 576 utterances each of type (d) and (e). Hence, these
utterances were included in the training set with differing
probabilities: 1.0 for type (a), 0.4 for type (b), 0.7 for (c),
and 0.2 for (d) and (e).  To give more representation to
utterances that have a lower frequency, and to ensure that
they  are  not  overwhelmed  by  other  more  frequent
patterns,  type (a)  utterances were included thrice in  the
training set while type (c) utterances were included twice.
The entire scene is presented as the target for every word.
If  there  is  a  large  difference  in  the  type  or  token
frequency  between  different  types  of  utterances  (e.g.,
many more transitives than intransitives), this can lead to
local optima, since the network attempts prediction from
incomplete  information.  The  purpose  of  the  chosen
probabilities  is  only  to  maintain  a  significant
representation for each of the utterance and verb types in
the input; other than that the precise values are not critical
to the results.

The network was trained using backpropagation on the
utterances  in  the  training  set.  The  initial  weights  were
sampled from a uniformly random distribution between
-0.2 and 0.2. The complete target was held constant for
the duration of the entire utterance. This ensures that no
words  are  given  a  special  status  and  encourages  the
network to process the words as soon as they arrive. A

learning rate of 0.0005 and no momentum were used. The
weights were updated at the end of each epoch. Training
was continued till there was no significant improvement
in the error.

To  assess  the  performance  of  the  network,  if  the
activation  of  an  output  unit  was  less  than  0.5,  it  was
considered OFF, and it was taken as being ON otherwise.
An utterance was declared to be processed correctly if, at
the end of the utterance, all output units had the desired
ON or OFF activations. With this criterion, in a average
of 5 runs, 100% accuracy was achieved on a training set
of 322 (different) utterances and 96% of utterances were
processed correctly in the remaining 1034 utterances of
the  testing  set,  which  the  network  had  not  seen during
training. The network was, then, largely successful in this
task  of  producing  semantics  given  an  utterance,  or
comprehension.  Next,  we  look  at  the  experiments
regarding  frame  and  verb  compliant  behavior  in  the
network.

4. Frame and Verb Compliance in the
Network

To  qualitatively  simulate  the  increasing  vocabulary
and  linguistic  experience  of  children,  the  network  was
trained in stages with increasing numbers of nouns, rather
than  with  the  entire  vocabulary  as  in  the  basic
comprehension  task  described  in  the  previous  section.
Four transitive and four intransitive verbs were used in all
stages.  The  number  of  nouns  used  at  each  stage  was
increased gradually from 1 to 7. No adjectives were used.
The  set  of  utterances  at  each  stage  was  again  divided
probabilistically into training and testing sets. Utterances
in the testing set were not part of the training set at any
stage.  The  network  started  with  the  weights  from  the
previous stage and was trained to near-perfect accuracy
on the training set using a learning rate of 0.001.

Two types of ungrammatical utterances were generated
to  test  the  network.  The  first  was  an  NVN  transitive
sentence with a  known intransitive verb  (e.g., a dog is
dancing a boy) while the second was an NNV intransitive
sentence with a known transitive verb (e.g., a dog and a
boy  are  holding).  Two  transitive  and  two  intransitive
verbs  were  chosen  and  four  sentences  were  generated
with each verb using two nouns.  Transitive verbs were
inserted in intransitive sentences, and vice versa. We are
interested  in  examining  whether  the  network  interprets
these  verbs  in  incompatible  frames  as  depicting  causal
events or noncausal ones. Recall that there are four units
in  the  network's  output  indicating  causality,  where  the
pattern  1100  stands  for  a  causal  meaning  while  0011
stands  for  a  noncausal  interpretation.  To  assess  the
network’s response, a variable  δ is defined as the mean
activation of the first two units minus the mean activation
of the last two units.  A positive  δ indicates a transitive
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response,  while  a  negative  δ suggests  an  intransitive
interpretation of the verb. The mean value of δ, calculated
from the eight transitive and intransitive sentences at the
end of each stage, is shown in Figure 2. 

Figure  2.  The  value  of  the  parameter  δ across
different  stages.  A  positive  δ implies  a  causal
interpretation  of  the  verb  while  a  negative  δ
indicates noncausal interpretation.

The  conflict  arising  from the  mismatch between  the
frame and the verb is indicated by the values of  δ.  All
four units receive some activation in most cases. In the
initial  stages,  however,  the  frame  tends  to  “win,”  as
indicated  by  the  higher  activation  of  the  units  for
causality (positive  δ) in the case of transitive frame and
units  for  noncausality  (negative  δ)  in  the  case  of
intransitive  frame.  In  other  words,  we  get  a  Frame
Compliant response in earlier stages with a small number
of  nouns.  This  behavior  changes  gradually  with  the
increase in the number of nouns. With 7 nouns, there is
still a conflict due to the mismatch, but now the response
is more in accordance with the type of the verb. For the
transitive verb,  the output  is closer to 1100 and for the
intransitive verb it  is closer to 0011,  suggesting a Verb
Compliant response.

5. Discussion

Frame and verb compliant behavior is closely related
to  the  well-known  overgeneralization  errors  made  by
children,  and  their  recovery  from those  errors.  We can
consider  some  of  the  theories  related  to
overgeneralization and frame and verb compliance,  and
ask what the implications of the model are.

5.1. Maturation

A maturation-based account  is  offered  in  [10].  Very
briefly, verbs become organized into semantic subclasses
known  as  narrow  range  subclasses as  their
representations  are  refined.  The  semantics  of  the  verb

class  determines  whether  the  verbs  allow  alternations
(e.g.,  causative  and  noncausative  use  in  transitive  and
intransitive frames) or not. When the representation of a
verb matches that  of  another  verb in the same subclass
that is known to alternate between causal and noncausal,
the former is allowed to alternate as well. For example,
motion verbs that encode path (e.g.,  bring,  take,  go) can
be used either  causally  or  noncausally,  but  not in both
ways.  On  the  other  hand,  motion  verbs  that  encode
manner, like roll and bounce can be used both transitively
and  intransitively.  Overgeneralization  occurs  because  a
verb  is  used in  the  same manner  as  other  semantically
similar verbs in a subclass.

The shift to Verb Compliance may occur because the
verb representations are elaborated to the extent that they
have  formed  grammatically  relevant  narrow  range
subclasses.  Some  verbs  no  longer  allow  causal
interpretation  because  they  do  not  fit  the  semantic
specification of the subclasses that are causal. At the time
of puberty, those subclasses of verbs for which there has
been no evidence of alternation become fixed or “closed.”
After that, no new information about the verb is accepted,
resulting in Verb Compliant behavior. For example, since
come and  go do not encode manner of motion, they do
not match the specification of the alternating subclass of
motion  verbs  (that  includes  roll and  bounce).  This
subclass is closed at maturation, so come and go no longer
allow causative interpretation.

As pointed out in [6, 8],  there are factors other than
age that appear to affect compliance behavior and present
a  serious  problem  for  this  account.  If  the  maturation-
based account was correct, one would expect to observe
an  across-the-board  shift  from  Frame  to  Verb
Compliance, for all verbs and frames. But this is not the
case.  Some  verbs  elicit  more  Frame  Compliance  than
others.  For  example,  in  the  Naigles,  Fowler,  and  Helm
(1992)  study,  in  the NVN frame,  come and  go elicited
significantly  more  Verb Compliance  than  stay and  fall.
Stay and  fall also differed from each other significantly.
In  the  NV  frame,  bring,  take,  and  put showed
significantly  more  Frame  Compliance  than  push.
Secondly,  some frames  induce  Frame Compliance  to  a
later  stage  than  others.  For  example,  the  shift  to  Verb
Compliance for the NV frame is effectively complete at
age 5.  On the other hand, even 12-year-olds and adults
continue to exhibit Frame Compliance for their NVNPN
frame.  Intransitive  frames shifted  earlier  than  transitive
frames. Furthermore, the move towards Verb Compliance
can  occur  at  different  ages,  anywhere  between  2  to  7
years of age. 

In the study of children with DS [8], it was found that
although these children were more Frame Compliant than
their chronological age mates, they exhibit this shift also.
Since  their  maturational  progress  is  dissociated,  one
would expect that prepubescent children with DS will be
no less Verb Compliant than their adolescent counterparts
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if the maturational account is correct. This appears not to
be the case and children with DS also move to become
more Verb Compliant.

5.2. Mutual Exclusivity

Another  proposal  about  recovery  from
overgeneralizations  is  termed  The  Mutual  Exclusivity
Principle  (also  called  Contrast,  Uniqueness,  or  Pre-
emption)  [5,  11,  12,  13].  In  brief,  this  principle is  that
children  will  allow only  one  lexical  entry  to  occupy  a
semantic niche. When two words are determined to have
similar meanings, one of them is pre-empted and removed
from  the  lexicon.  For  example,  causative  come is
basically  equivalent  to  bring.  Using  Bowerman's  [5]
example,  during  the  period  in  which  overgeneralized
(causative)  come is  frequent  in  production,  bring is
practically  nonexistent.  When  bring becomes  more
frequent eventually, the causative come declines. This can
explain  why  some  verbs  elicit  Verb  Compliance.  For
example,  transitive  bring and  take pre-empt  causative
uses of  come and  go respectively. We do not discuss all
the details  of  Mutual Exclusivity  here (see [5,  6]  for  a
more  detailed  discussion),  but  note  that  while  Mutual
Exclusivity  may  have  some  role  to  play  in  recovering
from overgeneralizations, it does not account for all the
effects found in the data. For example, it does not explain
why  intransitive  push causes  Verb  Compliance  earlier
than intransitive  bring or  take.  This principle also does
not  work  for  all  the  verbs,  since  for  some  verbs,  it  is
difficult to find a similar meaning verb that can pre-empt
its use in the right way.

5.3. Lexical Knowledge

A  different  account  based  on  lexical  knowledge  is
offered  in  [7].  This  account  relies  on  children's
knowledge  of  individual  verbs.  Children's  conjectures
about  verb  meanings  are  refined  by  ongoing  events  as
well  as  the  structures  in  which  they  appear.  At  early
stages  of  vocabulary  acquisition,  open-minded  children
assume that not all structures have as yet been heard and
therefore certain properties of verbs (such as whether they
encode causality) may be unknown to them. In this case
they make use of the structural information provided by
the frames. At some point, however, older children and
adults  feel  warranted  to  believe  that  all  the  relevant
information about the meaning has been obtained. Then
they  would  perceive  a  novel  structure  as  simply  ill-
formed, causing verb compliant behavior.

This theory can explain various effects in the data well.
For  example,  the  shift  towards  Verb  Compliance  is  a
function  of  individual  verbs  and  individual  frames
because  different  amount  of  knowledge  is  accrued  for
them due to their differing frequencies in the input. While
this account is supported by data, some important details

remain unclear. One might ask where the so-called “open-
mindedness” in the initial stages and the confidence about
the meaning at later stages come from. After  hearing a
verb in a certain number of contexts, exactly what makes
a  child  more  or  less  open-minded  to  accept  new
meanings?  An  answer  is  not  offered  in  [7],  but  one
possibility is to invoke some type of innate parameter or
threshold  that  allows  children  to  determine  whether  a
certain  amount  of  experience  with  a  verb  is  enough  to
warrant confidence in the meaning of that verb.

5.4. Lexical Knowledge and Innate Principles

More  recently,  Lidz,  Gleitman,  and  Gleitman  [14]
offer an explanation that involves both lexical knowledge
and  innate  principles.  It  is  best  summarized  by  the
following quote:

“The deduction of verb meaning based on an analysis
of  the  surface  structure  is  a  learning  heuristic.  The
learning  device  is  asking  itself,  in  effect:  Assuming
Principles  [the  Theta  Criterion and  the  Projection
Principle], what could be the meaning of the verb now
heard,  such  that  these  principles  projected  this
observed  (surface)  structure  for  it?  Such a deductive
procedure will be invoked only when the learner does
not have secure knowledge of the verb in question.” (p.
37) 

Thus,  when  children  know  that  they  have  secure
knowledge of a verb, they assume that anyone who uses it
otherwise has misspoken, resulting in Verb Compliance.
Otherwise  they  invoke  innate  principles  that  state  that
participants in an event will line up one-to-one with noun-
phrases in the clause [15], and make a decision based on
that.

This  account  has  a  problem  similar  to  that  of  the
Lexical  Knowledge  account:  Exactly  how  do  children
determine whether they have “secure knowledge” of the
verb? An all-or-nothing decision about knowing a verb
also seems to be involved in this account. A child either
doesn't  know the  verb  (and  invokes  the  principles),  or
does (and rejects the frame). However, the knowledge of
a verb is likely to be graded. Subjects even show different
compliance effects for the same verb in different frames.
The spontaneous remarks of subjects in [6] indicate that
both  children  and  adults  are  ambivalent  about  the
sentences they are asked to act out. They have conflicting
information  and  varying  degrees  of  confidence  in  their
knowledge, and hence it seems unlikely that are cleanly
choosing one path over the other.

5.5. Emergence

The network simulation suggests an alternative to the
previous theories that does not rely on innate principles or
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overt determination of the knowledge of a verb. It can be
viewed as an extension of the Lexical Knowledge theory.
The explanation of  various  effects,  such as some verbs
inducing  more  verb  compliance  than  others  and  some
frames continuing to elicit frame compliance till  a later
stage,  is  identical  to  the  one  offered  by  the  Lexical
Knowledge theory: They are input driven. The verbs that
are experienced frequently and in multiple contexts, tend
to elicit Verb Compliance early.

This  account  differs  from  the  Lexical  Knowledge
theory  the  in  use of  the  input.  The  network's  Frame
Compliance  in  the  initial  stages  is  a  result  of
representations being more context-bound at those stages.
The context-sensitivity of the representation is in turn a
consequence  of  the  memory,  or  the  number  of
connections  in  the network  and the number  of  patterns
stored. With a certain amount of memory available, it is
possible, and easier, to simply memorize entire syntactic-
semantic patterns as wholes as long as there are relatively
few  patterns.  This  gives  rise  to  context-bound
representations in the hidden layer (see [16] for a more
detailed  discussion  of  context  bound  representations).
Since  frames  and  context  have  more  weight  in  the
representation,  the  network  gravitates  towards  an
interpretation  based  on  the  frame  since  the
incompatibility of one word has a relatively small effect.
The “open-mindedness” of the network, so to speak, in
early stages is a result of the fact that the context plays an
important role in early representations.

As more words are encountered in varied contexts, it is
no  longer  feasible  to  store  entire  patterns  individually
because it  entails  excessive demands  on memory.  As a
result, various components in an utterance are separated,
and the words are gradually de-contextualized. As verbs
(along  with  other  words)  attain  their  own  separate
representation, the effect of context is diminished and the
relevant  form/meaning  mappings  are  strengthened.  The
words in various frames are encountered with many other
words  describing  causal  and  noncausal  events,  and
therefore do not exert significant influence with respect to
the  causality  of  an  event.  The  network  learns  the
remaining consistent correlations between groups of verbs
and  causal  or  noncausal  events.  This  results  in  Verb
Compliant  behavior.  Stated  another  way,  the  network
exhibits open-mindedness in early stages and confidence
about the meaning in later stages, but it is not a result of
reasoning about the number of contexts in which words
were encountered, or the confidence in the knowledge of
verb  meaning.  Rather,  Frame  and  Verb  Compliant
behavior  is  an  “epiphenomenon,”  or  an  emergent
consequence of the task, the input, the learning procedure,
as well as the size and architecture of the network.

5.6. The Nature of Representations

The claim here is that the shift in compliance behavior
is due to the diminishing role of context with increasing
linguistic experience.  This may raise two questions: (1)
What  independent  evidence  is  there  that  the  network's
early representations are context-bound and more become
context-free later? (2) What is the evidence that context
plays a large role in  children's early representations, and
this role diminishes with age?

Representations in the network

One way to gain some insight into the representations
used by the network is to test its generalization ability at
various  stages.  If  the  network  has  memorized  or  rote
learned entire training patterns, it should perform poorly
when  the  same  words  are  encountered  in  a  different
context. On the other hand, it it has learned context-free
word-level form/meaning mappings then they should be
recognized  regardless  of  the  sentential  context.  The
generalization  performance  for  five  networks  on  the
respective  testing  sets  at  the  end  of  different  stages  is
shown in Figure 3. 

Figure 3. Performance on the testing set across stages.

The results  suggest  that  in  early  stages,  the network
has not developed individuated representations of various
components  of  the  input  utterances,  and  they  develop
after increasingly combinatorial input. St. John [17] found
a  similar  pattern  of  results  in  his  story-processing
network.  The network  performed well  at  generalization
only when it was exposed to highly combinatorial input,
with  many  participants  in  the  various  slots  in  the
representation of events.

Another method of examining the nature of network's
representations  involves  probing  the  hidden  unit
activations directly as the utterances are processed. One
way  to  examine  the  activation  space  is  Principal
Components  Analysis  (PCA),  which  can  measure  the
underlying  dimensions  of  variation  in  the  hidden  unit
activations.  If  two complex  patterns  are classified by  a
network with a simple strategy such as, for example, the
presence  or  absence  of  one  or  two  features,  then  one
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would expect few significant principal components in the
hidden  layer  space  because  there  would  be  few
underlying dimensions of variation. For a more complex
decision-making  process  involving  combinations  of
multiple  features  at  different  time-points,  one  would
expect a high-dimensional principal component space as
more  components  would  be  needed  to  account  for  the
variance.

Here,  the  set  of  utterances  used  in  the  first  stage  is
passed through the network after each stage, and the 30
unit activations of the first hidden layer are recorded after
each word. PCA is performed on this 30-dimensional set
of vectors after each stage.The results of this analysis, as
mean eigenvalues of five networks, are shown in Figure
4.

Figure 4. The mean eigenvalues of the hidden layer
activation  space  at  different  stages,  when
processing the same set of utterances.

After the first stage, only 3 of the 30 eigenvalues are
0.01 or more on average. This number increases to 7 after
stage 2,  and to 13 after the last stage.  The same set  of
utterances  is  processed  differently,  resulting  in  more
eigenvectors of higher magnitude. During the processing
of an utterance, in the early stages, once the network finds
cues sufficient to distinguish one item or utterance from
another, it does not need to analyze it further since it can
predict  the  rest.  The  hidden  layer  activations  remain
relatively constant after that, resulting in few dimensions
of  variation  overall.  With  context-free  representations,
activations change with each input word, as the network
accomodates the newly available information, resulting in
more dimensions of variation [16].

Representations in children

From  studies  of  productions  of  children,  there  is
evidence that children's early representations are context-
bound too, and they gradually become de-contextualized.
A compelling collection of evidence that children’s early
language  is  highly  item-based,  or  based  on  specific
linguistic  items  and  expressions  they  comprehend  and
produce,  is  provided  in  [18,  19,  20].  There  is  also

evidence  that  early  productions  are  bound  not  only  to
linguistic context, but also to non-linguistic context such
as  actions,  social  routines,  or  salient  events  that  occur
frequently in the experiences of the young child [21].

5.7. The Nature of the Input

An important feature of the network is the changing
input through different stages. The size of the training set,
as well the vocabulary, is increased gradually.1 However,
one can view the training sets at different stages as being
of  the  same  size,  since  training  involves  cycling
repeatedly over the same set. The stages are differentiated
by  increasing  type  frequency  and  decreasing  token
frequency, not by the number of utterances.

With  respect  to  the  increase  in  vocabulary,  older
children  are  more  likely  to  have  experienced  higher
number of words and word combinations simply by virtue
of having more linguistic experience over a longer period
of  time,  even  if  they  experience  the  same  linguistic
environment.  Although  the  vocabulary  is  explicitly
changed  here,  it  can  be  viewed  as  gradually  sampling
more utterances from a fixed set. The approach in [22] is
noteworthy, where selective attention is used on a fixed
input  to  model  children's  increasing  experience  with
words to achieve the same effect as explicit addition of
words to the vocabulary in a model of past-tense learning.

Secondly,  there  is  evidence  that  the  linguistic
environment of children is not constant but changes with
age. Child-directed speech (CDS) to younger children is
syntactically and semantically simplified, is less diverse,
and contains more high-frequency words [16, 20, 23, 24,
25]. Caretakers restrict their vocabularies when talking to
young  children  [23,  24],  and  the  type-to-token  ratio
increases with age in CDS [23].

The simulation used in this work is admittedly small,
and the utterances are simple. It should be noted that the
sentences used in the experiments with 2- and 3-year-old
children are also simple, and an attempt was made to use
identical or very similar utterances in the simulations. It
would  also  be  desirable  to  use  natural  CDS  from  a
database,  rather  than  an  artificial  grammar.  The  use  of
raw CDS, however, is more suitable in paradigms where
no form/meaning associations are involved, and the task
of the network is (typically) to predict the next word in
the input. One can choose utterances from the CDS that
are suitable for the task and relevant to the phenomenon
under consideration, but that defeats the purpose of using
natural CDS to some extent.

6. Conclusions

1
 Note that this is unlike early models of inflectional mor-

phology, which were criticized for sudden changes in the
input.
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A connectionist network was presented that learns to
comprehend  utterances  of  a  miniature  language  by
associating  them with  the  corresponding  scenes.  When
the  training  set  of  the  network  is  varied  to  reflect  the
increasing linguistic experience of children, the network
exhibits frame and verb compliance effects. The account
of the shift from frame to verb compliance resulting from
the network's behavior is similar to the lexical knowledge
theory  in  that  these  effects  are  attributed  to  increasing
experience with words in varied contexts. However, this
account  does  not  entail  explicit  rules  or  reasoning
mechanisms.  There  is  nothing  in  the  network  designed
specifically  to  produce  these  effects;  they  emerge  as  a
result of the network attempting to efficiently accomplish
the  task  of  associating  utterances  with  scenes.  The
network's behavior is a consequence of various low-level
parameters such as the number of weights, the number of
units in each layer, the number of input patterns, and so
forth.  Children's  compliance  behavior,  similarly,  may
change  automatically  when  they  have  developed
relatively  context-free  representations  and  sufficiently
strong  individual  form-meaning  mappings  so  that
conflicting  information  is  ignored,  without  making  any
explicit decision to do so. This work supports the view
that specific mechanisms or behaviors can arise as a result
of the nature of the task and the general characteristics of
the  tools  employed  to  perform  the  task,  without  the
presence of dedicated mechanisms.
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Abstract

We present a system for on-line, cumulative learning of hier-
archical collections of frequent patterns from unsegmented data
streams. Such learning is critical for long-lived intelligent agents
in complex worlds. Learned patterns enable prediction of unseen
data and serve as building blocks for higher-level knowledge rep-
resentation. We introduce a novel sparse � -gram model that, un-
like pruned � -grams, learns on-line by stochastic search for fre-
quent � -tuple patterns. Adding patterns as data arrives compli-
cates probability calculations. We discuss an EM approach to this
problem and introduce hierarchical sparse � -grams, a model that
uses a better solution based on a new method for combining infor-
mation across levels. A second new method for combining infor-
mation from multiple granularities ( � -gram widths) enables these
models to more effectively search for frequent patterns (an on-line,
stochastic analog of pruning in association rule mining). The re-
sult is an example of a rare combination—unsupervised, on-line,
cumulative, structure learning. Unlike prediction suffix tree (PST)
mixtures, the model learns with no size bound but using less space
than the data. It does not repeatedly iterate over data (unlike Max-
Ent feature construction). It discovers repeated structure on-line
and (unlike PSTs) uses this to learn larger patterns. The type of re-
peated structure is limited (e.g., compared to hierarchical HMMs)
but still useful, and these are important first steps towards learning
repeated structure in more expressive representations, which has
seen little progress especially in unsupervised, on-line contexts.

1 Introduction

For purposes here, on-line learning means the learner
sees data a little at a time and cannot remember all data
nor repeatedly iterate over it. This paper takes as a given
the importance of on-line learning and will not dwell on
motivating it. It suffices to note that (a) on-line learning is

�
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critical for long-lived autonomous agents in complex envi-
ronments, (b) in many specific applications data sizes over-
whelm storage capacities [1], and (c) a vast array of litera-
ture has argued for on-line learning (e.g., [1, 2, 3, 4]). To
quote [2], “in a broad sense, online learning is essential if
we want to obtain learning systems as opposed to merely
learned ones.” This paper further assumes the importance
of Cumulative learning (also called layered or hierarchical
learning), which involves using the results of prior learning
to facilitate further learning (e.g., building new knowledge
structures from experience by combining previously learned
structures).

We present a model, hierarchical sparse � -grams, for
on-line cumulative learning of frequently occurring pat-
terns from unstructured unsegmented data, along with a
related subcomponent model, sparse � -grams. Language,
music, spatial configurations, event chronologies, action se-
quences, and many other types of data exhibit repeated sub-
structure. For intelligent autonomous agents, identifying re-
peated substructure or frequent patterns in data has many
benefits, including prediction of unseen information, im-
proving short-term memory capacity and thus information
processing capability generally, and facilitating communi-
cation and further learning. In addition, frequent patterns
serve as building blocks for higher-level knowledge rep-
resentation. General methods for identifying frequent pat-
terns would greatly aid automated selection of higher-level
representational units that are tuned to the environment.
Frequent patterns in unbounded, unsegmented data streams
can be identified on-line by simply noticing and remember-
ing patterns that occur often, and using these to search for
larger patterns that would otherwise have been more dif-
ficult to notice. Putting this into practice involves several
challenges, as we will explain. We must emphasize that
though our models are based on � -grams, our main goal is
not model-class specific, but is the (under-investigated) on-
line learning of frequent patterns in data and the cumulative
use of existing patterns to help identify larger ones. Our pur-
pose is not to tweak a slight performance improvement on
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standard NLP, compression, or speech community � -gram
benchmarks (most of which are batch and all of which are
non-cumulative).

This paper is organized as follows. Section 2 presents
sparse � -grams, the component model. This section demon-
strates the benefits of the sparse representation, explains
the method for on-line structure learning in the presence of
sparseness, and introduces the mathematical form of novel
probability estimates that form the basis for inference in
both the basic and hierarchical models. Section 3 intro-
duces hierarchical sparse � -grams and explains how the
hierarchical nature of these models dramatically improves
both the probability estimates (inference) and pattern selec-
tion (structure learning). Experimental results demonstrate
that the models do an impressive job of finding frequent
patterns demonstrated by their environments despite very
sparse sampling of huge pattern spaces. Section 4 discusses
related work from a diverse set of research communities.
In general, the related models share certain properties but
address different fundamental goals. The paper concludes
with Section 5.

2 Sparse � -grams

� -grams are considered state-of-the-art for problems in-
volving discrete sequences [5, 6]. Exhaustive � -grams store
an occurrence count for every pattern of width � . We in-
troduce sparse � -grams (or SNGs), which keep only some
counts. They trade prediction quality for space, but wider
SNGs can out-predict narrower exhaustive � -grams with the
same number of patterns, making the sparse models useful
when data is plentiful relative to storage. Similar � -grams
trained exhaustively and then pruned [7] require increased
storage during training and are not easily adaptable to on-
line learning. Our goal is not merely to save space during
training, however, or to improve � -gram models, but to in-
vestigate on-line, hierarchical learning of frequent patterns
from unsegmented data. SNGs are a necessary subcompo-
nent of the hierarchical models introduced below, but they
are also interesting themselves and many issues are more
easily introduced with them.

2.1 Sparse joint distributions and inference

For our purposes here, the learning and inference tasks
are the unbounded, sequential analogs of those for standard
fixed-feature IID unsupervised learning. A query is a se-
quence of any width with symbols for some positions spec-
ified, some targets to be predicted, and the rest missing.
Each position is a symbol from alphabet

�
. � -grams keep

a count � for each of the � ��� � patterns and estimate proba-
bilities as �	��
 (or a smoothed version, e.g., ����� �� ��� � ), where�

sums all counts. An SNG with counts for � patterns,

called tracked patterns, for fixed � , is a � - � -gram. It esti-
mates tracked patterns as above and distributes the remain-
ing probability mass evenly among the untracked patterns to
complete the joint distribution1, which can be conditioned
to make arbitrary predictions.

To demonstrate that sparseness can improve prediction,
we trained sparse and exhaustive � -grams on book1 (a
Thomas Hardy novel) of the Calgary corpus [6] (stripped of
non-letters).2 Batch training was used here just to demon-
strate the potential of SNGs. We examined several infer-
ence patterns (forward, backward, and middle prediction
and variants with missing values). Accuracy (0/1 loss) and
cross-entropy were measured on a held-out test set of the
last 10,000 characters. We expected sparseness to impair
prediction, expected it to hurt cross-entropy more than ac-
curacy (for which fine distinctions between unlikely events
is less important), and expected increased width to mitigate
the degradation.

Cross-entropy results were mixed, with � -grams outper-
forming SNGs in a few cases but not in others. Under ac-
curacy, � -grams were always outperformed by a one-wider
SNG with the same number of patterns (Figure 1(a)). This
shows that the advantage of an extra predictor variable can
outweigh the degradation caused by sparseness. Figure 1(b)
shows that there is little degradation until the sparseness be-
comes severe. Also, any increase in storage can increase
SNG performance by increasing � , whether or not it is
enough to use a wider exhaustive model (increasingly im-
portant as � or � � � rise). Since sparseness does not create
inefficiencies3, SNGs can be useful in some circumstances.

Sparseness degrades accuracy less than cross-entropy
since accuracy depends only on correctness of the mode
of the model’s conditional distribution of the targets, not
fine distinctions. The following is a more detailed explana-
tion. When predicting with a full set of ����� given symbols,
the conditional distribution derives from renormalizing � � �
entries of the joint distribution. If a well-trained SNG in-
cludes at least one of these, it will get the correct mode.
Only when all are absent will accuracy suffer, and this is
the least likely case if the model includes frequent patterns.

1 � -grams are often stored in a conditional form, but can be undirected.
They are interchangeable for exhaustive but not sparse versions. We use
the undirected here for simplicity, more flexible sparseness (see Section 4),
predicting equally well backwards, and generalizability to 2D data (a long-
term goal). ADtrees [8] allow efficient prediction even from the undirected
representation.

2Our experiments have concentrated on letters as symbols (standard in
the compression community [6]) instead of words. We believe the structure
of letters, phonemes, musical notes, etc., is more appropriate for studying
identification of frequent patterns (and might play a role in discovering
words in the first place). Words have longer-range interactions. Despite
their word-level success, � -grams seem more suited to letters (also claimed
by [9]). Nonetheless, our models are not limited to the letter level and
should work well for word � -grams as well.

3Representation of SNGs uses a tree. Each leaf stores the count of a
corresponding � -tuple ( � � �"! lookup as for � -grams).
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Figure 1. (a) � - � -gram accuracy vs. � for ���! #"%$ ( & =1–3) for backward and middle prediction. Forward behaves similar to
backward and is omitted for clarity. Random guessing on this 26-class problem gets only 0.038 accuracy, and majority (a 1-gram)
0.118. The leftmost points of the equi- � lines are exhaustive � -grams, all outperformed by wider SNGs to the right. When � is
limited to the number of non-zero counts in the exhaustive ( �('*) )-gram, performance (circle and square) still exceeds the exhaustive
model. (b) � - � -gram accuracy (and total tracked probability mass) vs. � for � =3, for forward (ggt) and marginalized forward
(gmt) prediction (Given, Missing, Target). Degradation is severe only for small � . (c) The counts kept. Time moves to the right.
The counts +-, and .�, are only counted over the time from the addition of the 2nd pattern.

Cross-entropy will degrade if any of these entries are re-
placed by the untracked average. When there are missing
values, the conditional distribution derives from renormal-
izing sums of entries. Being larger, the tracked entries will
usually dominate these sums so that if the model contains
any of this much larger set of entries, accuracy will often not
suffer. Indeed, Figure 1(b) shows that marginalized predic-
tion degrades relatively less with sparseness. Under a more
general loss function that penalizes incorrect answers but al-
lows “skipping questions” for a smaller penalty, sparseness
hurts even less since it is obvious to the model when it does
not have the relevant counts to make a good guess. These
concerns are important because accuracy (or more general
loss functions allowing abstention) is more appropriate than
entropy-based measures in some situations.

2.2 On-line learning of frequent patterns

The model cannot know the frequent patterns a priori,
so on-line learning requires structural selection of which
counts to include. Structure learning is harder on-line.
Batch structure learning often works by optimizing a global
metric such as a Bayesian posterior or MDL score over all
data. This cannot be done on-line4. We identify frequent
patterns on-line using a stochastic subset search that incre-
mentally adds and removes patterns. Patterns are added ran-
domly, but only when appearing in training (the add prob-
ability for a new instance is a small fixed value). Tracked

4. . . unless the model encodes sufficient statistics to summarize past
data, which is not possible with structure changes that grow new param-
eters. Sufficient statistics can be encoded where changes only shrink the
models, as in [10] where segmented data allows direct data incorporation
steps. Our techniques do not depend on segmented data. Note that adding
growth steps (reversing bad merges) breaks the on-line nature of [10].

patterns with low observed frequencies are discarded. Thus,
infrequent patterns shuffle in and out of the model. The key
that makes learning feasible is that frequent patterns, once
added, are identifiable as such. A period of uncharacteristic
rarity might cause a truly frequent pattern to be discarded,
but if it is truly frequent, it will be added again. As a pat-
tern is tracked longer, the chance of large enough anoma-
lous drought to trigger removal becomes vanishingly small.

Addition and removal can operate independently or one
can trigger the other to keep � fixed. If only the least fre-
quent pattern is ever removed, the model will converge. Un-
fortunately, we do not know the true pattern frequencies but
only slowly converging estimates. We created a new ver-
sion of Hoeffding races [11, 1] to decide when to remove a
pattern and which to remove. Maron and Moore [11] intro-
duced Hoeffding races to the machine learning community
for model selection in supervised learning, and Domingos
and Hulten [1] used these races for on-line decision tree
construction. We adapt the technique for sparse � -gram pat-
tern removal and introduce a slight improvement specific to
the low probabilities of this application.

Hoeffding races are useful when there are several com-
peting entities about which statistical evidence is accumu-
lating and the goal is to find an extreme (high or low) valued
example. In the present context, this allows one to smoothly
trade off how much less frequent the least-frequent pattern
is with how converged the estimates are so that a bigger
gap between the frequencies can be acted upon while the
error bars are still high, while a close race will require more
convergence. Traditional Hoeffding races use the Hoeffd-
ing bounds, a member of the broader class of Chernoff
bounds. We use a tighter version of the Chernoff bounds,
appropriate when the probabilities are close to zero, as they
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are for � -grams. The other difference from traditional Ho-
effding races is that in this case the race is perpetual, with
new competitors continually introduced after the race has
started. The exact rule that sparse � -grams employ can be
abstractly stated as follows: The model removes a pattern
as soon as it can identify one that it is “reasonably sure” is
“close” to being the least frequent (probably approximately
the least frequent). Specifically, the model finds the pattern
whose upper bound (highest possible probability in the con-
fidence interval) is lowest. Then it finds a different pattern
whose lower bound is lowest. If the difference between the
upper bound of the former and the lower bound of the lat-
ter is less than a tolerance parameter � , the model drops the
former pattern. The continual addition and removal process
thereby converges to a stochastic equilibrium in which more
frequent patterns are more likely to be included.

For each pattern pat � , the model maintains a count ���
of occurrences since inclusion. Since patterns are added at
different times, empirical frequencies have different relia-
bilities and the model cannot simply use � $ ��� as the esti-
mate for every pattern, so it keeps the total number

� � of
instances seen since adding pat � . See Figure 1(c). � $ ��� $is less reliable for new patterns, so probability estimates
must be weighted based on age to insure that after adding
a new pattern, its probability under the model only slowly
diverges from the untracked average � untracked, asymptoti-
cally approaching � $ ��� $ . To do this, the model keeps pat-
terns sorted by

� � ( � $ � � $ �� ). For pat � , 	 ��
 � � ��� � , but�� has an additional term estimating missed occurrences
from when only pat � was tracked, called episode � : 	 , 
������ � ,�� ��� ��� � , ! ��� � 	 � ! �� � � ��� ��� , where ��� ��� � , ! � � � 	 � ! es-
timates the number of non-pat � occurrences in episode � .
Appealingly, this is a linear interpolation of �!�#" �� ��� ����� (i.e.,� untracked before adding pat � ) and ��$� $ , weighted by

� � . The
general formula adds terms for each episode:	 $ 
 �� � %

� $ � $ � �& ')(
�
��� ' � � ' �� !+*�, ' * �

� � � � �.-0/ (1)

where , '�1
� � �32 ' 4 (

� 	 4
! . These approach � $ ��� $ and can be

computed in a linear sweep.
We have also investigated Bayesian and EM-based ap-

proaches to this problem. Bayesian predictions can be de-
rived for a slight problem variant that assumes knowledge
of the counts for each individual episode (a complex likeli-
hood function involving nested interacting sums makes the
original problem too difficult). It can be operationalized by
approximating the count breakdowns by episode. An EM
approach attempts to improve the uniform distribution on
Equation 1’s right side by instead using the resubstituted
solution distribution. The resulting equations can be solved
algebraically rather than requiring iteration to a fixed point.
Under the modified problem, the solution is equivalent to
the Bayesian solution. We implemented this and the above
approach and in practice they behave almost identically.
The next section improves on them. See [12, Sec.7.3] for
more on these approaches and their relationships, and for
the tighter “race” bounds.

3 Hierarchical Sparse � -grams

Hierarchical sparse � -grams (HSNGs) consist of multi-
ple sparse � -grams of consecutive widths (possibly an ex-
haustive � -gram as the smallest) and dramatically improve
two aspects of the fixed-width models: the probability cal-
culations and pattern selection. A single tree accommodates
all patterns by storing counts in non-leaves for smaller-
width patterns (still 576 ��8 lookup). This provides the same
variance advantages as traditional multiwidth exhaustive � -
grams but uses a new method for combining the models that
is more elegant than linear interpolation or backoff mod-
els. Slowly growing versions of HSNGs can incrementally
add greater widths during on-line training. These models
smoothly “surf” the bias/variance curve by fitting param-
eters for ever-widening joint probability distributions, con-
tinually decreasing bias error (by widening the joint) as well
as variance error (by converging better parameters).

3.1 Improved Probability Estimation

To estimate untracked occurrences, the EM approach
above used the resubstituted width- � distribution, which is
unreliable precisely when needed, when too little data has
been seen for the � distribution to have converged. Smaller
widths converge exponentially faster, so each level � in
HSNGs uses the �	� � distribution to estimate the missing
data. Equation 1 becomes:	:9 � � pat �:; $ ! 
 �� max < � �=; $ �

$ � �& ')(+>
��� �=; ' � � �:; ' �� !)*?, �:; ' * 	:9�� pat �:; $ �A@ pat �:; �CBEDED�DEB @ pat �=; ' !GF (2)	#9 � � pat H ; $ ! is the probability of pat IKJ � (the L -th oldest

width- M pattern) under the � distribution. , 4 ; ' 1
��� �2 ' " ( � 	:9�N�� pat �=; " ! ! , is as before the rest of the probability

mass without the O oldest patterns (at level P ). For HSNGs,Q 
 Q
� � � instead of RTS (the EM approach) or uniform R7U

(Equation 1). The conditioning is just renormalization:	:9 �EV � � pat �:; $ �E@ pat �=; �CBED�DEDWB @ pat �:; ' ! 
 	#9 �!V � � pat �=; $ !, � � � ; ' (3)

This all reduces to Equation 1 in the base case.
Of course, the � ��� distribution does not specify � -tuple

probabilities directly. The trick is to use estimates based on
the order-( � � � ) Markov assumption:X ��Y � B Y , BWDWDEDEB Y � !
 X �ZY � B Y , BEDWDEDWB Y � ��� !+* X ��Y � �[Y � B Y , BEDWDWDEB Y � ��� !\ X �ZY � B Y , BEDWDEDWB Y � ��� !+* X ��Y � �[Y , BWDEDED�B Y � ��� !\ X �ZY � B Y , BEDEDWDWB Y � ��� !+* X ��Y , BED�DEDEB Y � � � B Y � !X ��Y , B Y=] BEDWDWDEB Y � � � !

(4)

The approximation from the first to second lines above,X ��Y � ��Y � B Y , BEDWDWDWB Y � ��� ! \ X �ZY � �WY , BWDWDEDWB Y � � � ! , is in a sense
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the best estimate given only order-( ��� � ) knowledge. This
gives us a way to effectively “widen” an � -gram, using two
lookups at width � � � and one lookup at width � ��� to
determine a width- � probability.

For untracked patterns ( L�� �#S , where �#S is the number of
width- � patterns), width � falls back on width � � � directly
(and renormalizes):	:9 � � pat �:; $ ! 
 	#9 �!V � � pat �=; $ ! , �:; � �, � � � ; � � (5)

Using Equation 1, the probabilities for all patterns can be
computed in a linear sweep. This works despite that each
pattern’s probability involves the sum of a linear number of
terms since the terms are the same from one pattern to the
next. That is not true of Equation 2 due to the rightmost
term. Thus, straightforward computation of all probabili-
ties for a level would require computation quadratic in the
number of patterns. However, using the expansion of Equa-
tion 3 the portion of the rightmost term that changes from
pattern to pattern can be factored out, preserving the ability
to compute probabilities for all patterns in the model in a
linear sweep.

With cached probabilities for the tracked patterns, look-
ing up the probability for an untracked pattern requires three
lookups to narrower submodels using Equations 4 and 5.
Any of these may in turn be absent, requiring three more
lookups. Nonetheless, querying the widest model for a spe-
cific probability takes 576 � � 8 rather than time exponential
in � since some of the submodel lookups can be handled by
the same traversals down the tree. (Lookup requires up to �
tree traversals, each of at most � steps.) � is typically very
small relative to the overall size of the model. Furthermore,
many inference patterns that require lookup of several pat-
terns can be handled more efficiently since many patterns
will be accessible from one traversal. (E.g., looking up all
possible single-symbol extensions of a pattern requires only
one traversal from the root.) This is a worst case. Normally,
each narrower level contains more of the necessary patterns,
making typical lookups linear in � . Other optimizations are
also possible (see [12, Sec.8.2.2] for further optimizations
or more detailed derivations of the equations here.)

Predictions are made using the largest width. Lower-
order information filters up through the submodel calls.
Smaller widths have larger

�
s and more fully converged

estimates. Dynamically adding a new level will not jar
the distribution as a model having mostly small

�
val-

ues will smoothly fall back on the robust narrow informa-
tion except where it identifies strong wide patterns in the
data. Estimates both within and across widths are naturally
weighted by their reliabilities. Authority smoothly transi-
tions to greater widths as more data is seen.

3.2 Improved Pattern Selection

Fixed-width models must search a large space blindly.
HSNGs use smaller known-frequent patterns to bias new
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Figure 2. Learning curves for a sparse 2-gram using a pre-
trained 1-gram submodel for probability estimation, pattern
selection, both, or neither on book1. Each submodel use
yields benefit.

selections. Specifically, the probability for adding any new
� -tuple, rather than a small constant, is proportional to its
estimate based on R S�� � . This can be viewed as a refine-
ment of a simple strategy of combining existing frequent
patterns to yield larger likely-frequent patterns. This refine-
ment automatically takes into account all of the possibly
many ways to parse the new pattern into existing patterns
and the frequency estimates for all of these existing pat-
terns. Since each level seeks frequent patterns, a bias based
on their probabilities functions as a bias for compositional
chunking of known patterns. This is the key to the cumu-
lative aspect of HSNG learning—the learning at narrower
levels is not only combined with the results of learning at
the next wider level for better prediction (as in traditional
multiwidth � -gram combinations) but also directly enables
the structure learning at this wider level, which is critical as
we will see in the results below.

HSNGs can use fixed � S s (the number of patterns at each
level) or the �#S s and number of levels can grow slowly as
more data is seen by applying the add and remove rules
independently and always considering addition of a new
widest pattern (which creates a new level). Since wider pat-
terns generally have lower absolute probabilities and vastly
more patterns, higher levels converge more slowly.

3.3 Results

Figure 2 shows that each use of submodels above pro-
vides significant benefit (which can be greater when com-
bined). Similar results are seen for larger � but with the
improvement from probability estimation being more dom-
inant when used with fully-converged submodels (because
the widening approximation becomes more accurate for
larger � ). To test frequent pattern identification, hierar-
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chical models were trained on several large datasets using
slowly growing ��S s (and numbers of levels). The following
tables shows �#S and the top 5 patterns by model probabil-
ity for each � after training on 30 million letters of Reuters
newswire text (1994 section of North American News cor-
pus with non-letters removed.)S 2 3 4 5 6�

� 367 1540 1131 433 142
th the tion ation nation
he ing said ofthe saidth
in and nthe inthe ingthe
er ion ther tions ations
an ent dthe ingth aidtheS 7 8 9�

� 38 11 7
saidthe official president
esident resident ternation
residen presiden residento
nationa thenatio theminist
preside tsaidthe andforthe

The learned chunks are reasonable substrings for this
text. With spaces removed, frequent word, sub-word, and
super-word patterns were all mixed together. The following
table shows how many of the most frequent 100 and 1000
patterns (by true corpus frequency) were learned by the
model for the smaller widths (larger widths were still far
from converging).

ReutersS 2 3 4 5�
� 367 1540 1131 433

top100 100 100 99 75
top1000 n/a 910 560 238

unique 670 12556 121799 626465

Similar results were achieved with speech data (the
TIMIT corpus) and DNA data (chromosome 22 of the
human genome, about 34 million base pairs). The DNA
results are shown below. Note that our purpose in testing on
different data types was not to show particular performance
on problems of traditional importance in each of these
domains but to demonstrate that our technique for learning
compositional patterns and estimating their prevalence is
general enough to handle several different kinds of data.

chromosome 22S 5 6 7 8 9 10 11�
� 886 2094 1629 737 279 114 55

top100 100 100 99 68 44 28 19
top1000 886 991 669 258 128 57 32

unique 1024 4096 16384 65536 261726 1.0mil 3.5mil

The models do an excellent job of identifying the fre-
quent patterns. For Reuters ��� � , for example, the model
had added 434 patterns and removed 1 (it was still early in
convergence at this level), but included 75 of the top 100 out
of 626,465 unique 5-tuples that occurred (out of 11.8 mil-
lion possible)—a dramatic improvement over chance guess-
ing. Further, over half of the patterns added at the 5 level are
in the top 1000 (top 0.16%). This is even more impressive
considering the ����� level contained fewer than 1% of the
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Figure 3. Comparison of the Reuters-trained hierarchical
model’s estimate vs. the true probability for the 900-1000th
oldest 3-grams. The model tracks true probabilities well.

data’s unique 4-tuples. This demonstrates that the narrower
submodels do an impressive job enabling successful pattern
selection at the wider levels (just as those levels will in turn
do for even wider levels).

We examined how well the model’s probabilities
matched true corpus frequencies. Standard summarizations
such as relative entropy of the distributions are inappropri-
ate for the sparse representation. Also this metric is domi-
nated by errors in low probabilities, which are specifically
sacrificed by these sparse models. Thus, we just inspected
all the values directly, and all but the very newest patterns
matched quite well. Figure 3 shows a small sample section
of patterns. The majority of patterns were older than the
sample shown and matched even better than those shown.

4 Related Work

Pruning already-batch-trained � -grams has been investi-
gated [7]. Our sparseness is similar to count cutoffs (widely
used in practice). Our models, however, grow rather than
scale back their storage and never need excessive space dur-
ing training. That literature also discusses tradeoffs between
space and predictive performance, but this research is the
first we are aware of to explicitly address the tradeoff be-
tween memory reduction and increased predictive accuracy
from increased � and the first to explain that accuracy (0/1
loss) suffers less from missing counts than cross-entropy.

Prediction suffix trees (PSTs) [9, 13, 14] are multiwidth
sparse models based on unbalanced trees. Each node rep-
resents a string and stores a conditional distribution for
the next symbol given the string as preceding symbols.
PSTs are grown by adding nodes that (a) represent fre-
quent strings and (b) have distributions sufficiently different
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from their parent’s or have a descendant with this property.
Our models differ in several ways. PST learning contains
forward-directed inductive bias since it chooses patterns in
terms of forward distributions. Thus, PSTs do not make
equally good use of information on both sides of a predic-
tion target. Second, our undirected representation allows for
greater, more flexible sparseness. PSTs store a full condi-
tional distribution at each node. HSNGs store one probabil-
ity. A PST with a depth- � node must store counts for all � � �6���� � 8 -tuple extensions, while an HSNG can represent any
subset of these. The counts saved can be used elsewhere,
improving other predictions. Most importantly, PST learn-
ing does not utilize repeated substructure. It is not more
likely to extend a model by existing sequences with high
counts from elsewhere in the tree. PST mixtures [14] use in-
cremental updates, but not on-line structure learning in our
sense. Either they are given a depth bound and add all suf-
ficiently small strings that occur, or they have no bound and
add all strings that occur. The latter simply reorganizes and
remembers all data (often impractical). In the former case,
the model cannot grow to recognize patterns wider than the
bound and may require memory exponential in the bound.
We desire a middle ground where the model grows slowly,
but without bound. A model should be able to include any
pattern demonstrated strongly enough by the data.

ADtrees [8], structures for efficient access to discrete
multivariate data, are both similar to SNGs and complemen-
tary in that they can speed up SNG inference. ADtrees trade
space for speed while SNGs trade prediction performance
for space. The combination can balance all three. In addi-
tion, ADtrees use a sparse representation synergistic with
that of SNGs. Applying ADtrees to SNGs allows much
greater ADtree pruning (more speed for less space) when
compared with application to exhaustive � -grams since all
untracked patterns can be pruned.

Models equivalent to SNGs were used as hierarchical
Bayesian priors [15]. We have moved the sparseness from
the prior to the model itself.

Using the submodel to bias pattern selection is analogous
to pruning in association rule mining [16, Section 20.6.2]
[17] and in sequence mining (e.g., [18]). The main differ-
ence is that our heuristic is on-line and stochastic rather than
absolute. Since it does not apply the same threshold to each
level, it is more flexible. It seeks the most frequent pat-
terns at each level regardless of their absolute frequencies.
Neither the basic pruning ideas nor the related incremen-
tal association rule work (based on a very different problem
with different assumptions from our work) make clear how
to do the job done by HSNGs. For HSNGs, no pattern at
the next level is prunable. They must rely on a probabilistic
interlevel bias.5

5The width- � distribution provides no useful absolute bounds on � � �
probabilities. If there were a low-frequency � -tuple, the model could avoid

Our pattern selection bias (that amounts to a bias for
combinations of existing frequent patterns) is similar to
the compositional chunking of Sequitur [19] and similar
systems, but with finer statistical sensitivity than Sequitur,
which is very greedy. Also note that Sequitur remembers
all of its input in order to chunk. Therefore, it is not a true
on-line algorithm in the sense used here.

Maximum entropy (ME) [5, 20] (and related NLP) tech-
niques use “features” more general than our patterns. Uni-
form completion of the distribution in SNGs is consistent
with ME. In ME, features are added incrementally in a pro-
cess seemingly similar to ours but actually very different.
Each addition requires iterating over all training data. ME,
transformation-based techniques [5], and related schemes
all require batch training and it is not clear how to adapt
them for on-line learning, though our models may suggest
some necessary ingredients. ME uses its features as con-
straints, but it fundamentally assumes all constraints are
equally statistically reliable (fine in a batch context but not
when new features are introduced after different amounts of
data). ME would overweight recently introduced frequency
estimates. Some sort of regularization, as introduced here,
is required.

Hierarchical HMMs can represent sparse collections of
patterns in a more expressive representation, but only re-
cently has structure learning been addressed [21] and only
for batch training. Even with complete random access to
the data, identification of repeated substructure is problem-
atic. There are other learning models that representationally
subsume our models, but in each case the learning problem
they address is dramatically different due to use of a do-
main theory, supervision, batch training, or structured or
segmented data (usually many of these, see [12, Sec.8.3,
Sec.10.4, Ch.9]). In no case can they accomplish the learn-
ing described here.

5 Conclusion

Hierarchical sparse � -grams can be viewed as combin-
ing multiwidth � -grams from the NLP and text compres-
sion communities, frequent itemset pruning from the KDD
community, and on-line learning in the ML and connection-
ist traditions. (This suggests much cross-fertilization. E.g.,
interlevel flow of information to help direct search is a key
thing lacking from PST work.) The difficulties in combin-
ing sparseness with on-line learning are fundamental and
require more than subtle changes to exhaustive batch tech-
niques.

Sparse � -grams are useful alternatives to exhaustive � -
grams when data overwhelms memory. For autonomous
agents in complex environments, this is always the case in

its extensions, but the sparse models by their nature do not retain confi-
dently estimated low-frequency patterns.
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the long run. Hierarchical sparse � -grams learn frequent
patterns using fewer parameters than the number of poten-
tial patterns and without remembering all data or repeat-
edly iterating over it. They use use novel techniques for
falling back on narrower distributions. A stochastic bias for
compositions of smaller known-frequent patterns facilitates
on-line learning of increasingly complex sparse representa-
tions. The result is a model capable of finding frequent pat-
terns in huge search spaces and cumulatively constructing
ever-larger representations of the frequent patterns demon-
strated by the environment.

We have necessarily concentrated on prediction as the
primary way to utilize knowledge of frequent patterns (or
chunks), but frequent chunks can be very valuable in many
other ways within a larger computational system. Learned
chunks can act as aids to increase working memory capac-
ity, based on substitution recoding, which improves infor-
mation processing capacity quite broadly.[22] Frequent pat-
terns are important for developing communication or shared
language. Frequent chunks can serve as important features
for other types of learning and can enable the automatic for-
mation of associations that would otherwise be impossible
to induce. The point is that a single general learning mech-
anism can build representations that both enable useful pre-
dictions and also serve as foundations for improving several
aspects of an agent’s cognitive behavior.

Sparseness is fundamental in complex knowledge rep-
resentation. Whether in semantic networks, frames, de-
scription logics, ontologies, etc., knowledge is always non-
exhaustive for real-world domains. We must continue
to investigate domain-independent techniques for choosing
which patterns exhibited by the environment to include in
sparse representations. For more extensive treatment of all
material, including motivations, derivations, a formal de-
scription of the learning problem, experimental results, re-
lated work comparisons, and explanations of the usefulness
of frequent patterns in the future research landscape more
detailed than those of the preceding paragraph, see [12].
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Abstract

Previous work on early language acquisition has shown
that word meanings can be acquired by an associative pro-
cedure that maps perceptual experience onto linguistic la-
bels based on cross-situational observation. A new trend
termed social-pragmatic theory [27] focuses on the effect
of the child’s social-cognitive capacities, such as joint at-
tention and intention reading. This paper argues that sta-
tistical and social cues can be seamlessly integrated to fa-
cilitate early word learning. To support this idea, we first
introduce a statistical learning mechanism that provides a
formal account of cross-situational observation. The main
part of this paper then presents a unified model that is able
to make use of different kinds of social cues, such as joint
attention and prosody in maternal speech, in the statistical
learning framework. In a computational analysis of infant
data, the quantitative results of our unified model outper-
forms the purely statistical learning method in computing
word-meaning associations.

1 Introduction

What kinds of learning mechanisms underlie language
acquisition? One of the central debates concerns whether
the innate or environmental contribution plays a vital role
in language development. Learning-oriented theories be-
lieve that language is learned and the child’s environment
plays a crucial role [14, 11, 24]. There is growing evidence
that babies do possess powerful statistical learning mecha-
nisms [23]. On the other hand, a nativist view sees linguistic
universals as a product of the child’s linguistic endowment
and suggests that they do not need to be learned, which pro-
vide an elegant explanation for cross-linguistic similarities
between different human languages [10].

In this paper, we first review two theories of language
learning: statistical learning theory and social-pragmatic
theory. Then Section 3 proposes our unified model that in-

tegrates statistical and social cues in a general system. Sec-
tion 4 describes the implementation of the statistical learn-
ing model of word meaning, which provides a probabilistic
framework for further study. Section 5 presents the methods
to extract prosodic cues from raw speech and joint attention
cues from infant-caregiver interactions. Section 6 provides
a comparative study of different methods considering dif-
ferent sets of statistical and social cues.

2 Two Theories of Language Learning
This section reviews two well-known learning-oriented

theories of language acquisition. The theory of statistical
learning suggests that language acquisition is a statistically
driven process in which young language learners utilize the
lexical content and syntactic structure of speech as well
as non-linguistic contextual information as input to com-
pute distributional statistics. The social-pragmatic theory
focuses on mind reading (social cognition) as fundamental
to the word learning process. Both theories have been sup-
ported by various empirical and computational studies.

2.1 The Theory of Statistical Learning

Human language learners possess powerful statistical
learning capacities. That is, the cognitive system in both
children and adults is sensitive to features of the input
(e.g., occurrence statistics). Saffran, Aslin and Newport
[23] showed that 8-month-old infants are able to find word
boundaries in an artificial language only based on statisti-
cal regularities. Later studies [22] demonstrated that in-
fants are also sensitive to transitional probabilities over tone
sequences, suggesting that this statistical learning mecha-
nism is more general than the one dedicated solely to pro-
cessing linguistic data. Furthermore, statistical language
learning includes not only statistical computations to iden-
tity words in speech but also algebraic-like computations to
learn grammatical structures [18].

In the study of word learning, associationism claims
that word acquisition is based on statistical learning of
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co-occurring data from the linguistic modality and non-
linguistic context (see a review by [19]). Richards and
Goldfarb [21] proposed that children come to know the
meaning of a word through repeatedly associating the ver-
bal label with their experience at the time that the label is
used. Smith [25] argued that word learning is initially a pro-
cess in which children’s attention is captured by objects or
actions that are the most salient in their environment, and
then used to associate those objects or actions with acous-
tic patterns voiced by an adult. Plunkett [19] developed
a connectionist model of vocabulary development to asso-
ciate preprocessed images and linguistic labels. The lin-
guistic behaviors of the network can mimic the well-known
vocabulary spurt based on small continuous changes in the
connection strengths with and across different processing
modalities in the network. In general, the statistical and
associative mechanism of word learning divides the word
learning task into three subtasks: word discovery, meaning
discovery and word-meaning association. The vital part is
to use multiple word-meaning pairs collected from differ-
ent situations to compute co-occurrences and then establish
word-to-world mappings [14].

2.2 The Social-Pragmatic Theory

The social-pragmatic theory of language acquisition ar-
gued that the major sources of constraints in language ac-
quisition are social cognitive skills, such as children’s abil-
ity to infer the intentions of adults as adults act and speak to
them [1, 27, 7]. These kinds of social cognition are called
“mind reading” by Baron-Cohen [4]. Kuhl et al. [16] stud-
ied whether phonetic learning of 9-10 month children is
simply triggered by hearing language. If so, children should
be able to learn by being exposed to language materials via
digital video without human interaction. However, the re-
sults showed that infants cannot learn phonetics through this
way, suggesting that the presence of a live person provides
not only social cues but also referential information. But-
terworth [9] showed that even by 6 months of age, infants
demonstrate sensitivities to social cues, such as monitoring
and following another person’s gaze. In Baldwin’s work
[1], the 18-month old infant heard the novel word while
his/her attention was focused on one toy and the experi-
menter looked at another toy. When children heard the same
word in a testing phase, they chose the object at which the
experimenter had been looking. This suggested that the in-
fants were able to follow the speaker’s attention and infer
the mental state of the speaker to determine the referent of
the novel word. Furthermore, Baldwin et al.[2] proposed
that infants give a special weight to the cues of indexing the
speaker’s referential intent when determining the reference
of a novel label. Their experiments showed that infants es-
tablished a stable link between the novel label and the target
toy only when that label was uttered by a speaker who con-

currently showed his attention toward the target, and such a
stable mapping was not established when the label was ut-
tered by a speaker who showed no signs of attention to the
target toy, even if the object appeared at the same moment
when that label was uttered and the speaker was touching
the object. In addition, their results suggested that children
not only attend to referential intentions of a speaker but also
actively look for the intention of the speaker when determin-
ing whether to associate a novel word with an object.

3 A Unified Model

Bloom [6] argued that children’s conceptual biases, in-
tentional understanding and syntactic knowledge are not
only necessary for word learning but that they are also suffi-
cient. This claim contrasts with the theory that word learn-
ing is based on an associative learning mechanism that is
sensitive to statistical properties of the input [19]. The sta-
tistical and associative theory suggested that the child’s sen-
sitivity to spatio-temporal contiguity is sufficient for word
learning, as postulated by associationist models of language
acquisition with support by computational implementation
[11, 20]. The debate on these two theories has been going
on for several years.

Associative learning mechanisms make sense because
words are typically spoken at the moment when the child
looks at the things that those words refer to. In western cul-
tures, parents provide linguistic labels of objects for their
kids when the objects are in the kids’ visual fields. Thus, no
one doubts that humans can learn co-occurrence relation-
ships and that the easiest way to teach language is to pro-
vide linguistic labels at the same time that children focus on
them. However, parents do not carefully name objects for
their kids in many cultures. Even in western cultures, words
are not always used at the moment that their referents are
perceived. For instance, Gleitman [13] showed that most of
the time, the child does not observe something being opened
when the verb “open” is used. Nevertheless, children have
no difficulty in learning those words. Associative learning,
without some further constraints or additional information,
cannot explain this observation.

The theory of mind reading is able to explain many phe-
nomena from the perspective of the inference of a speaker’s
referential intentions, especially for the cases that words
and the corresponding meanings are not co-occurring, or
words are temporally correlated with irrelevant meanings.
However, the environment in which infants develop does
contain the information that is useful for statistical learning
mechanisms. Meanwhile, empirical studies (e.g. [23] and
[18]) showed that infants can utilize the statistical proper-
ties of the input in language acquisition. Taken together,
it is very plausible that infants perform statistical computa-
tions in language learning.

Fortunately, the theory of statistical learning and social-
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pragmatic theory are not mutually exclusive. Recently,
Hirsh-Pasek, Golinkoff and Hollich [15] proposed a coali-
tion model in which multiple sources, such as perceptual
salience, prosodic cue, social eye gaze, social context, syn-
tactic cues and temporal contiguity, are used by children to
learn new words. They argued that during the development,
the weighting of the cues changes over time while younger
children can just detect and make use of only a subset of the
cues in the coalition and the older can use a wider subset of
cues.

The purpose of this study is to show quantitatively the
effects of statistical cross-situational observation and so-
cial cues through computational modeling. In early word
learning, children need to start by pairing spoken words
with the co-occurring possible referents, collecting multi-
ple such pairs, and then figuring out the common elements.
Although no one doubts this process, few research has ad-
dressed the details of cross-situational observation. This
work first introduces a formal model of statistical word
learning which provides a probabilistic framework for en-
coding multiple sources of information. Given multiple
scenes paired with spoken words collected from natural in-
teractions between caregivers and their kids, the model is
able to compute the association probabilities of all the pos-
sible word-meaning pairs. Moreover, we argue that social
cues can be naturally integrated in the model as additional
constraints in computation. The claim here is that language
learners can use social cues, such as gaze direction, head di-
rection, body movement, gesture, intonation of speech and
facial expression, to infer speakers’ referential intentions.
We show how these social cues can be seamlessly integrated
in the framework of statistical learning and facilitate word
learning. Specifically, we focus on two kinds of social cues:
body movement cues indicating the speaker’s attention and
prosodic cues in speech. This study proposes that those so-
cial cues can play a spotlight role (shown in Figure 1) in the
statistical learning by causing language learners to focus on
certain aspects of a scene. Since every scene is ambigu-
ous and contains multiple possible referents, this spotlight
function is crucial in solving the word-to-world mapping
problem. The following subsections discuss how those cues
might help in detail.

3.1 The Role of Body Movement in Language Ac-
quisition

Ballard et al. [3] argued that at time scales of approx-
imately one-third of a second, orienting movements of the
body play a crucial role in cognition and form a useful com-
putational level, termed the embodiment level. At this level,
the constraints of the body determine the nature of cognitive
operations. This computation provides a language that links
external sensory data with internal cognitive programs and
motor actions through a system of implicit reference termed

deictic, whereby pointing movements of the body are used
to bind objects in the world to cognitive programs. Ex-
amples of sensorimotor primitives at the embodiment level
include an eye movement, a hand movement, or a spoken
word.

We apply the theory of embodied cognition in the context
of language learning. To do so, one needs to consider the
role of embodiment from both the perspective of a speaker
(language teacher) and that of a language learner. In the
study of speech production, Meyer et al. [17] found that
speakers’ eye movements were tightly linked to their speech
output. When speakers were asked to describe a set of ob-
jects from a picture, they usually looked at each new ob-
ject before mentioning it, and their gazes remained on the
object until they were about to say the last word about it.
From the perspective of a language learner, Baldwin [1]
showed that infants actively gathered social information to
guide their inferences about word meanings and they sys-
tematically checked the speaker’s gaze to clarify his/her ref-
erence. In the follow-up studies, Baldwin and Baird [2]
proposed that humans gradually develop the skill of mind
reading so that ultimately they care little about the surface
behaviors of others’ dynamic action but focus on discern-
ing underlying intentions based on a generative knowledge
system. Summarizing all these ideas on embodied cogni-

statistical
learning

gaze prosody

social cuescross-situational
observation

lexical
items

Figure 1. Cross-situational observation and social cues can be
seamlessly integrated in a statistical learning model.

tion, speech production and social development, the speak-
ers’ body movements, such as eye movements, head move-
ments and hand movements, can reveal their referential in-
tentions in verbal utterances, which, in turn almost certainly
could possibly play a significant role in early language de-
velopment [29]. A plausible starting point of learning the
meanings of words is the deployment of speakers’ inten-
tional body movements to infer their referential intentions.
To support this idea, we provide a formal account of how the
intentions derived from body movements, which we term
embodied intention, facilitate the early stage of vocabulary
acquisition. We argue that infants learn words through their
sensitivity to others’ intentional body movements in a very
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specific way: They use temporal synchrony between speech
and referential body movements to find the referents of lan-
guage.

3.2 The Role of Prosodic Cue
When talking to human infants, parents use vocal pat-

terns that are different from normal conversation. They
speak slowly and with higher pitch and exaggerated into-
nation contours. Fernald [12] proposed a model consisting
of four developmental functions of intonation in speech to
infants. The first function is that infants are attentive to in-
trinsic perceptual and affective salience in the melodic into-
nation of mothers’ speech. At the second level, the exagger-
ated intonation patterns of mothers’ speech would influence
both attentional preference and affective responsiveness of
infants. The third function is about the inference of the com-
municative intents of speakers from maternal intonation of
speech. Infants are able to interpret the emotional states of
others and make predictions about the future actions of oth-
ers using information available in vocal and facial expres-
sions, which provide reliable cues to the affective state and
intentions of speakers. The fourth level focuses on the role
of prosodic cues in early language development. Fernald
argued that the prosody of speech helps to identify linguis-
tic units within the continuous speech signal. Thus it serves
as an attention-focusing device so that mothers use a dis-
tinctive prosodic strategy to highlight focused words. Most
often, exaggerated pitch peaks are correlated with lexical
stress. In light of this, we investigate the role of prosodic
cue in early word learning in this paper. Specifically, we
focus on the spotlight function of prosody and provide a
formal account of how prosodic cues might be used in word
learning.

4 A Statistical Model of Cross-Situational
Observation

Our study uses the video clips of mother-infant in-
teractions from the CHILDES standard database. These
clips contain simultaneous audio and video data wherein a
mother introduces her child to a succession of toys stored in
a nearby box.

In this kind of natural interaction, the vocabulary is rich
and varied and the central items (toy names) are far from
the most frequent words. This complex but perfectly natu-
ral situation can be easily quantified by plotting a histogram
of word frequency which shows that none of the key words
– toy names make it into the top 15 items of the list. An
elementary idea for improving the ranking of key words as-
sumes that the infants are able to weight the toy utterances
more by taking advantage of the approximately coincident
body cues. For instance, the utterances that were generated
when the infant’s gaze was fixated on the toys by follow-
ing the mother’s gaze have more weights than the ones the
young child just looked around while not paying attention

to what the mother said. We examined the transcript and
weighted the words according to how much they were em-
phasized by such cues, but this strategy does little to help
spot the toy names.

Next, we manually labeled visual objects in the context
when a spoken utterance was produced, and found what is
helpful is to partition the toy sequences (contextual infor-
mation when the speech was produced) into intervals where
within each interval a single toy or small number of co-
occurring toys is the central subject or meaning, and then
categorize spoken utterances using the contextual bins la-
beled by different toys. The hypothesis is that mothers use
temporal synchrony to highlight novel word-referent rela-
tions for young infants. That is, presenting information
across multiple modalities simultaneously serves to high-
light the relations between the two patterns of stimulation.
Thus, temporal synchrony can facilitate infants’ detection
of word-referent relations. Formally, associating meanings
(toys, etc.) with words (toy names, etc.) can be viewed as
the problem of identifying word correspondences between
English and a “meaning language”, given the data of these
two languages in parallel. With this perspective, a technique
from machine translation can address the correspondence
problem [8]. The probability of each word is expressed as
a mixture model that consists of the conditional probabili-
ties of each word given its possible meanings. In this way,
an Expectation-Maximization (EM) algorithm can find the
reliable associations of object names and their meanings
which will maximize the likelihood function of observing
the data set.

The general setting is as follows: suppose we have a
word set X = {w1, w2, ..., wN} and a meaning set Y =
{m1,m2, ...,mM}, where N is the number of words and
M is the number of meanings (toys, etc.). Let S be the
number of spoken utterances. All word data are in a set
χ = {(S

(s)
w , S

(s)
m ), 1 ≤ s ≤ S}, where each spoken ut-

terance S
(s)
w consists of r words wu(1), wu(2), ..., wu(r), and

u(i) can be selected from 1 to N . Similarly, the correspond-
ing contextual information S

(s)
m include l possible meanings

mv(1),mv(2), ...,mv(l) and the value of v(j) is from 1 to M .
Assume that every word wn can be associated with a mean-
ing mm. Given a data set χ, We use the machine transla-
tion method proposed by Brown et al. [8] to maximize the
likelihood of generating the meaning strings given English
descriptions:

P (S(1)
m , S(2)

m , ..., S(S)
m |S(1)

w , S(2)
w , ..., S(S)

w )

=
S∏

s=1

∑

a

p(S(s)
m , a|S(s)

w )

=

S∏

s=1

ε

(r + 1)l

l∏

j=1

r∑

i=0

p(mv(j)|wu(i)) (1)
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where the alignment a indicates which word is aligned with
which meaning. p(mv(j)|wu(i)) is the association probabil-
ity for a word-meaning pair and ε is a small constant. The
expected number of times that any particular word wn in a
language string S

(s)
w generates any specific meaning mm in

the co-occurring meaning string S
(s)
m is given by

c(mm|wn, S(s)
m , S(s)

w ) =
p(mm|wn)

p(mm|wu(1)) + ... + p(mm|wu(r))

×

l∑

j=1

δ(mm, v(j))

r∑

i=1

δ(wn, u(i))

(2)
where δ is equal to one when both of its arguments are the
same and equal to zero otherwise. Accordingly, the associ-
ation probabilities are given by

p(mm|wn) =

∑S
s=1 c(mm|wn, S

(s)
m , S

(s)
w )

∑M
m=1

∑S
s=1 c(mm|wn, S

(s)
m , S

(s)
w )

(3)

The method sets an initial p(mm|wn) to be flat distribu-
tion, and then successively compute the counts of all word-
meaning pairs c(mm|wn, S

(s)
m , S

(s)
w ) using Equation (2) and

the association probabilities using Equation (3). The tech-
nical details of our method can be found in [28]. The results
of this statistical learning model are reported in Section 6.

5 The Integration of Social Cues in Statistical
Learning

The communication of infants and their caregivers is
multisensory. It involves visual information, tactile infor-
mation as well as auditory information. Besides linguistic
information, we believe that social cues encoded in mul-
timodal interaction highlight target word-referent relations
for young language learners. In a bidirectional relationship
between maternal multimodal communication styles and in-
fants’ perception of word-referent relations, mothers syn-
chronize their verbal references and nonverbal body move-
ments (eye gaze, gesture, etc.) for infants. At the same time,
infants are able to rely on observing mother’s eye gaze and
other pointing motions to detect their’s referential intentions
in speech. Thus, both mothers and infants actively involve
into multimodal communication to solve the mapping prob-
lem in lexical acquisition. This study provides a quantitative
account of how those multimodal social cues can facilitate
word learning. Specifically, we focus on two cues: joint
attention cues as deictic reference and prosodic cues in ma-
ternal speech.

5.1 Visual Spotlight

Children as young as 12-18 months spontaneously check
where a speaker is looking when he/she utters a word, and

then link the word with the object the speaker is looking
at. This observation indicates that joint visual attention (de-
ictic gaze) is a critical factor that should be considered in
word learning. When presenting information, that visual
spotlight gives maximal processing to that part of the visual
field. During natural infant-caregiver interactions, joint vi-
sual attention involves detecting a spotlight of a mother’s
attention to the object in the scene, and then moving the
body, head and eyes to acquire the target object with high-
resolution focal vision, which is one of the crucial steps to
deal with the mapping problem.

transcriptions attended other
objects objects

– the kitty-cat go kitty-cat baby, big-bird,
meow meow rattle, book
– ah and a baby baby kitty-cat, big-bird,

rattle, book
– there’s a baby just baby kitty-cat, big-bird,
like my David rattle, book
– a baby baby kitty-cat, big-bird,

rattle, book
that’s a nice book book kitty-cat, big-bird

Table 1. Examples of transcriptions and contextual labels.

In our experiment, we coded visual contexts to study the
role of joint attention. As shown in Table 1, we provided
two labels to describe visual contextual information for each
spoken utterance. One label indicated the objects of joint
attention which were attending by both the mother and the
kid. The second label represented all the other objects in the
visual field of the kid. Figure 3 illustrates two examples of
speech-scene pairs in which the shaded meanings are atten-
tional objects and non-shaded meanings are other objects
in the scene. In Section 5.3, we describe our method that
makes use of this attentional information in word learning.

5.2 Prosodic Spotlight

Snedeker and Trueswell [26] showed that speakers pro-
duce and listeners use prosodic cues to disambiguate alter-
native meanings of a syntactic phrase in a referential com-
munication task. Moreover, previous research suggests that
mothers adapt their verbal communication to infants in or-
der to facilitate their language learning. In this work, we an-
alyze maternal speech by extracting low-level acoustic fea-
tures and using those features to spot the words emphasized
by adults. We proposed that perceptually salient prosodic
patterns may serve as “spotlights” on linguistic information
conveyed by speech. Thus, we focus on the role of prosodic
features in word learning, which might help language learn-
ers to identify key words from the speech stream.
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Fernald [12] suggested that the exaggerated acoustic pat-
terns have evolved to elicit and sustain infants’ attention to
speech as well as highlight the important parts of the speech
stream. In the context of word learning, we observe that
prosodically salient words in maternal speech can be cate-
gorized into two classes. One group of words serve as com-
munication of intention and emotion. One important role
of those words is to attract the kid’s attention so that the
child would follow what the mother talks about and what
she looks at. In this way, both the mother and the language
learner share the visual attention, which is a cornerstone in
social and language development. The right column in Fig-
ure 2 illustrates an example in the video clips in which the
mother used high pitch to say you to attract the kid’s at-
tention. Some other common words and phrases frequently
used by the mother are yeah, oh, look and that’s. The other
group of words contain the most important linguistic infor-
mation that the mother wants to convey. In the context of
word learning, most of those words refer to the concepts that
are related to visual objects in the physical environment,
such as object names, their colors, sizes and functions. An
example of words in the second group is the object name
baby shown in the left column of Figure 2.

In implementation, CMU sphinx speech recognition sys-
tem was used to align maternal speech and transcriptions.
As a result, the timestamps of the beginning and end of
each spoken word was extracted. Next, we made three kinds
of low-level acoustic measurements on each utterance and
word. The prosodic features were extracted based on pitch
(f0) information. For each feature, we extracted the values
over both an utterance and each word within this utterance.

• 75 percentile pitch p75: the 75 percentile pitch value
of all voiced part of the speech unit.

• Delta pitch range pr: the change in pitch between
frames (20ms) was calculated as delta pitch. This mea-
sure represents the difference between the highest and
the lowest delta pitch values within the unit (utterance
or word).

• Mean delta pitch pm: the mean delta pitch of the
voiced part of the spoken unit.

We want to obtain prosodically highlighted words in
each spoken utterance. To do so, we compare the ex-
tracted features from each word with those from each ut-
terance, which indicates whether a word sounds like “high-
lighted” in the acoustic context. Specifically, for the word
wi in the spoken utterance uj , we form a feature vector:
[pwi

75 −p
uj

75 pwi
r −p

uj
r pwi

m −p
uj
m ]T , where p

uj
m is the mean

delta pitch of the utterance and pwi
m is that of the word and

so on. In this way, the prosodic envelope of a word is repre-
sented by 3-dimensional feature vector. We use the support
vector clustering (SVC) method [5] to group data point into

so     we can see      you  the bear   has a     baby        bottle
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Figure 2. Speech and intonation. The prosodic cues highlight
several words. The first column represents speech signals and the
second column shows the profiles of fundamental frequency (f0).
The word baby is highlighted in the left utterance and the word you
is prosodically distinctive from others in the right utterance.

two categories. One consists of prosodically salient words
and the other one includes non-emphasized words. In SVC
algorithm, data points are mapped from the data space to
a high dimensional feature space using a Gaussian kernel.
In this feature space, the algorithm looks for the smallest
sphere that encloses the data, and then maps the data points
back to the data space and forms a set of contours to enclose
them. These contours can be interpreted as cluster bound-
aries.

transcripts

visual context

 yeah I see those hands should big-bird sing his abc

big bird handhand big bird

Figure 3. Cross-situational word-meaning association with
social cues. The prosodic cues highlight some words in speech
and the cues of joint attention highlight attentional objects in visual
contexts.

5.3 Modeling the Role of Social Cues in Statistical
Learning

We encode social cues in the framework of the statisti-
cal learning model as shown in Figure 3. Each word u(i)
is assigned with a weight wp(i) based on its prosodic cat-
egory. Similarly, each visual object vj is set with a weight
wv(j) based on whether it is attended by the speaker and
the learner. In this way, the same method described in pre-
vious section is applied and the only difference is that the
estimate of c(mm|wn, S

(s)
m , S

(s)
w ) now is given by:

c(mm|wn, S(s)
m , S(s)

w ) =
p(mm|wn)

p(mm|wu(1)) + ... + p(mm|wu(r))
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×

l∑

j=1

δ(mm, v(j) ∗ wv(j))

r∑

i=1

δ(wn, u(i) ∗ wp(i))

(4)
In practice, we set the values of wv(j) and wp(i) to be 3 for
highlighted objects and words. The weights of all the other
words and objects are set to be 1.
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Figure 4. The comparative results of the methods considering
different sets of cues. Each plot shows the association probabili-
ties of several words to one specific meaning labeled on the top.
The first one or two items are correct words that are relevant to the
meanings and the following words are irrelevant.

6 Experimental Results
Our model was evaluated by using two video clips from

CHILDES database. We labeled visual contexts in terms of
12 objects that occurred in the video clips. For each object,
we selected the correctly associated words based on gen-
eral knowledge. For instance, both the word kitty-cat and
meow are positive instances because both of them are rel-
evant to the object “cat”. Overall, there were 26 positive
words for all of the 12 objects. The computational model
estimated the association probabilities of all the possible
word-meaning associations and then selected lexical items
based on a threshold. Two measures were used to evaluate
the performance: (1) word-meaning association accuracy
(precision) measures the percentage of the words spotted

by the model which actually are correct. (2) lexical spotting
accuracy (recall) measures the percentage of correct words
that the model learned among all the 26 words.

Four methods were applied on the same data and the re-
sults are as follows (precision and recall): (1) purely statis-
tical learning ( 75% and 58%). (2) statisical learning with
prosodic cues ( 78% and 58%). (3) statistical learning with
the cues from visual attention ( 80% and 73%). (4) statisti-
cal learning with both attentional and prosodic cues ( 83%
and 77%). Figure 4 shows the comparative results of these
four approaches for specific instances. Ideally, we want the
association probabilities of the first or second words to be
high and others to be low. For instance, the first plot rep-
resents the meaning of the object “cat”. Both the spoken
word kitty-cat and the spoken word meow are closely rele-
vant to this meaning. Therefore, the association probabil-
ities are high for these two words and are low for all the
others words, such as my, watch and baby, which are not
correlated with this context. Note that in the meaning of
the object “bird”, we count the word eye as a positive one
because the mother uttered it several times during the in-
teraction when she presented the object “bird” to her kid.
Similarly, when she introduced the object “mirror”, she also
mentioned the name of the kid David whose face appeared
in the mirror.

The results of the statistical learning approach (the first
bars) are reasonably good. For instance, it obtains big-
bird and eye for the meaning bird, kitty-cat for the mean-
ing “cat”, mirror for the meaning “mirror” and hand for
the meaning “hand”. But it also makes wrong estimates,
such as my for the meaning “cat” and got for the meaning
“hand”. We expect that attentional and prosodic constraints
will make the association probabilities of correct words
higher and decrease the association probabilities of irrel-
evant words. The method encoding prosodic cues moves
toward this goal although occasionally it changes the prob-
abilities on the reverse way, such as increasing the proba-
bility of my in the meaning “cat”. What is really helpful
is to encode the cues of joint attention. The attention-cued
method significantly improves the accuracy of estimate for
almost every word-meaning pairs. Of course, the method
including both joint-attention and prosodic cues achieves
the best performance. Compared with purely statistical
learning, this method highlights the correct associations
(e.g., kitty-cat with the meaning “cat”), and decreases the ir-
relevant associations, such as got with the meaning “hand”.
In this method, we can simply select a threshold and pick
the word-meaning pairs which are overlapped with the ma-
jority of words in the target set. We need to point out that
the results here are obtained from very limited data. With-
out any prior knowledge of the language (the worst case
in word learning), the model is able to learn a significant
amount of correct word-meaning associations.
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7 Conclusion
We believe that in a natural infant-caregiver interac-

tion, the mother provides non-linguistic signals to the in-
fant through her body movements, the direction of her gaze,
and the timing of her affective cues via prosody. Previous
experiments have shown that some of these non-linguistic
signals can play a critical role in infant word learning, but a
detailed estimate of their relative weights has not been pro-
vided. Based on statistical learning and social-pragmatic
theories, this work proposed a unified model of early word
learning, which integrates statistical and social cues to en-
able the word-learning process to function effectively and
efficiently. In our model, we explored the computational
role of non-linguistic information, such as joint attention
and prosody in speech, and provided the quantitative results
to compare the effects of different statistical and social cues.
We need to point out that the current unified model does not
encode any syntactic properties of the language, which def-
initely play a significant role in word learning, especially
in the later stage. Therefore, one natural extension of the
current work is to add the syntactic constraints in the cur-
rent probabilistic framework to study how this knowledge
can help the lexical acquisition process and how multiple
sources can be integrated in a general system.
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Abstract

Age of acquistion (AoA) effects have been found to
have strong effects in the syntactic domain.  The current
paper reviews this literature and newer work which sug-
gests that syntactic effects may be present in certain syn-
tactic functions.  In addition, work which suggests that
AoA also shows effects during semantic processing is
presented.  It is concluded that AoA effects are pervasive
across a wide range of tasks and domains.  Theoretical
accounts of these effects are discussed.

1. Introduction

A distinguished colleague tells the story of her father,
who immigrated to the U.S. from Holland at age 32 and
functioned well in English for three decades at home and
in his business as an insurance broker.  Despite these
years of fluency in two languages, he lost the ability to
communicate in English (but not Dutch) during hospitali-
zation for a stroke at the age of 63.  Reports like the one
above are quite dramatic and have led some to propose
that each language is represented in different parts of the
brain [1].  However, others see this as evidence that each
language is differentially sensitive to damage [2, 3].  The
variables that modulate neural activity, age of acquisition
(AoA) and proficiency (PR), have been discussed for over
100 years [2, 3].   These two variables are also reflected in
recent work using functional Magnetic Resonance Imag-
ing (fMRI), a technique which allows researchers to look
at the oxygenation level of blood and thereby measure
which neural areas are firing more extensively during a
particular task.   Recent studies using fMRI have found
mixed effects with some suggesting that AoA is the pri-
mary determinant of neural activity whereas others sug-
gest that proficiency is the primary determinant.  AoA has
been found to modulate neural activity during sentence
comprehension [4] but only when proficiency is NOT
taken into account.  When early and late bilinguals were
equated on proficiency, the differences between these
groups disappeared [5]. The importance of proficiency
has been supported by studies which find considerable
individual differences in the level of proficiency in second

language learners, in both early and late learners [6].
Proficiency has also been found to play a role in semantic
tasks [7].  Evidence for the importance of proficiency can
be found in recent work with populations that are im-
mersed and educated in a second language relatively early
in life.  Work with Koreans adopted by French families
reveal no neural or behavioral trace of the first language
even when it was learned as late as age 8 [8].  Second,
behavioral work by Hernandez and colleagues suggests
that proficiency and not AoA determine naming latencies
when L2 acquisition occurs early in life [9-12].  In short,
to date there is mixed evidence that AoA is the primary
determinant of behavioral and neural asymmetries while
performing language tasks.

The fact that AoA seems to play a reduced role in some
bilingual research is counterintuitive.  AoA is known to
be an important factor in a number of domains, especially
in phonological processing and production of a second
language [13-15]. More importantly, research which has
investigated the effects of AoA on language processing
has found that tasks involving syntax show larger AoA
effects than semantic tasks [16, 17].  In a seminal study,
Weber-Fox and Neville [16] asked a group of Chinese-
English participants to look at sentences which contained
three different types of syntactic violations (phrase struc-
ture, specificity constraint, and subjacency constraint) as
well as semantic violations.  This experiment used event-
related potentials (ERP’s) a method which provides the
means for measuring the brain’s electrical activity to a
number of linguistic and non-linguistic factors.  In the
language domain, ERP’s have been found to be sensitive
to semantic violations [18, 19] and syntactic violations
[20].  Results revealed differences in the timing and dis-
tribution of the ERP’s to syntactic violations in partici-
pants who learned English as early as 2.  However, differ-
ences in the ERP’s to semantic violatioins only appeared
in participants who learned English after 11.  These re-
sults are consistent with the view that AoA plays a role in
the neural activity associated with grammatical violations.

More recently, Wartenburger et al. [7] asked Italian-
German bilinguals to monitor for syntactic violations
(number, gender or case) or semantic violations.while
being scanned with fMRI.  Three groups were tested,
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early bilinguals with high proficiency in L2 (EAHP in a
second language), and late bilinguals with either high
(LAHP) or low proficiency (LALP) in L2.  Increased
brain activity in L2 relative to L1 was seen in all three
groups for both semantic and syntactic violations.  Fur-
thermore, direct comparisons between groups in L2
yielded an interesting pattern of results.  For grammati-
cality judgements, LAHP subjects showed increased ac-
tivity in BA 44/6 and BA 44 relative to the EAHP group.
BA 44 has been found to be associated with morphosyn-
tactic processing [21] whereas superior BA 44 (near BA
6) is associated with phonological retrieval [22].  Taken
together these results suggest that processing of gram-
matical violations in late learners results in increased
motor planning and articulatory effort even when these
subjects are matched in proficiency with early learners.
Whereas there were also differences between the LAHP
and LALP subjects, these were restricted to areas in the
temporal-parietal juncture, the inferior parietal lobule and
the lingual gyrus.  However, there was no increased ac-
tivity for the LALP subjects relative to the LAHP sub-
jects.

A different pattern emerged for between-group com-
parisons during semantic processing.  In these paradigms,
there was increased activity in BA 46 and the fusiform
gyrus for the LAHP group.  For the LALP group, there
was increased acitivity in BA 46/9 and BA 44/6.  These
results are consistent with the view that the late low profi-
ciency group is engaged in more effortful phonological
retrieval (BA 44/6).  Furthermore, this increase in
phonological retrieval leads to increased activity in BA
46/9, an area that is known to be involved in executive
function for both verbal and nonverbal tasks [23].  How-
ever, there were no differences between both high profi-
ciency groups.  Taken together these results are consistent
with the view that syntactic processing is sensitive to
differences in AoA whereas semantic processing is sensi-
tive to differences in proficiency.  Finally, it suggests that
both semantic and syntactic group differences are associ-
ated with increased phonological retrieval (BA 44/6)
whereas activity associated with brain areas involved in
morphosyntactic processing, i.e. using the ends of words
to determine their grammatical functions, (BA 44) distin-
guished between groups that show differences on syntac-
tic tasks.  In short, there is some aspect of syntactic proc-
essing that leads to activity of areas that are more tightly
associated with syntactic processing.

Recent results from the literature open up a number of
questions with regard to the finding that syntax is more
sensitive to AoA than semantics. First, it is not clear what
factors may play a role in the AoA effect.  One possibility
is that syntactic functions share less across languages than
semantic functions (at least the ones tested to date).  In
addition, it is possible that there is some processing com-
ponent of syntax which is more sensitive to AoA (a clas-

sic third variable problem).  Second, it remains to be seen
if AoA effects are present for semantic domains.
1.1 Which syntactic functions show AoA effects?

  In a first study, a set of Spanish native speakers who
had spent less than 2 years in the United States at the time
of testing were asked to indicate via button press the
grammatical gender of a set of words in Spanish [24].
The opacity of the mapping was varied such that half the
items were transparent (a for feminine and o for mascu-
line) and half the items were opaque (ending in
d,e.n,l,r,s,t,z).  The results revealed increased activity for
the opaque items in the anterior insula, BA 44/45, and BA
44/6.  BA 44/45 has been found to be active for studies
which have looked at syntactic processing [21 , 25, 26 ,
27] as well as in studies which have compared gender
monitoring to semantic monitoring [28].  The anterior
insula is known to be involved in articulation [29, 30] and
BA 44/6 is known to be involved in phonological proc-
essing [22].  Furthermore, Heim et al. [31] found in-
creased activity in BA 44/6 when German monolinguals
were asked to generate the determiner (der, die or das
gender marked the in German) for a picture compared to
simply naming the picture.  These results are consistent
with the view that monolinguals generate the determiner
in order to determine the gender of opaque items.  BA
44/6 indicates the need for increased phonological re-
trieval demands, the anterior insula indicates the need for
increased articulatory demands, and BA 44/45 shows
increased activity because of the syntactic computation
that occurs when checking determiner-noun agreement.
In short, the neural data are consistent with the view that
monolinguals covertly form a small syntactic phrase when
retrieving the gender of opaque items.  This strategy was
confirmed in post-experimental interviews.

A subsequent unpublished study compared early Span-
ish-English bilinguals with late English-Spanish bilin-
guals using the gender decision described above.  Early
Spanish-English bilinguals are of interest because they are
dominant in English but learn Spanish first [for further
work with this population see 9, 11, 12, 32].  Participants
were matched on proficiency in Spanish using tests of
vocabulary, reading and syntax.  Furthermore, participants
were matched on performance in the gender decision task.
Although both groups showed increased activity for the
opaque items, each group showed a different pattern of
activity.  The late English-Spanish bilinguals showed a
large area of increased activity which extended from the
anterior insula into BA 47.  The early Spanish-English
bilinguals showed increased activity just superior to this
in BA 44/45.  Direct comparisons between the groups
revealed increased activity in BA 47 for the late bilin-
guals.  The results confirm that AoA modulates activity
on grammatical tasks.  Furthermore, it reveals that these
differences are graded in nature.  That is, for transparent
items the group differences are very small.  However, for
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opaque items the results reveal much larger differences.
In short, not all grammatical functions show large AoA
effects.
1.2 AoA effects during semantic processing

Work conducted both in my laboratory and in collabo-
ration with others has begun to shed light on the central
questions that will be addressed in the current proposal.
First of all, work in my laboratory has confirmed the
presence of AoA for non-grammatical processing. In a
first study, I asked monolinguals to name a set of pictures
in which AoA and word frequency were orthogonally
manipulated [33].  A main effect of AoA remained even
when controlling for word frequency and even when
naming was delayed.  More recent work in collaboration
with colleagues at the Max Planck Institute of Cognitive
Neuroscience has sought to uncover the neural correlates
of word AoA in monolinguals performing an auditory and
visual lexical decision task (Press right button if it is a
word, press the left button if it is a pseudoword such as
“mave”) while being scanned with fMRI.  Results re-
vealed that the precuneus which is known to play a role in
automatic retrieval from memory was activated for early
learned words across auditory and visual presentation
modalities.  Additional activity in the auditory cortex was
observed specifically for the reading of early acquired
words.  Late learned words revealed increased activity in
BA 45/47 indicating more complex semantic retrieval.
These results confirm that reaction time AoA effects are
robust.  Second, it appears that early lexical memories
may be more automatic or auditory in nature whereas late
learned lexical memory most likely involves complex
retrieval.  This latter result is consistent with findings
from monolingual simulations of AoA [34].  This finding
confirms that AoA effects appear in monolinguals for
lexical tasks which do NOT involve grammatical proc-
essing.  Furthermore, a number of studies have found that
AoA effects appear in monolingual semantic tasks [35].
Hence, AoA effects are quite pervasive.
1.3 Overlap across languages

As noted earlier, work in the bilingual imaging litera-
ture has found that semantic effects were more sensitive
to proficiency.  A number of studies have confirmed this
basic finding [7, 36].  Recent work in our laboratory Us-
ing fMRI late high proficient German-English second
language learners were tested in L1 (German) and L2
(English) with concrete and abstract words that showed
maximal overlap (cognates) in orthography or not (non-
cognates).  All words were translation equivalents.  Par-
ticipants decided whether a visually presented word was
abstract or concrete. Results revealed a graded language
difference in neural activity with abstract non-cognates
showing the most activation differences across languages
and concrete cognates showing the fewest differences.
Specifically, non-cognates showed more activity than
cognates in superior BA 44 (near BA 6), BA 44/45 and in

the insula extending into BA 47 in L2.  There were no
significant differences observed in L2 or for comparisons
which looked for increased activity for cognates relative
to noncognates.  A second study using lexical decision
yielded results which are consistent with those found in
the first study. Taken together our results show that the
amount of differential neural activity across languages
depends on orthographic and semantic overlap.  In short, a
less proficient second language reveals a difference in
items which overlap the least across languages (noncog-
nates).

Recent work by Tokowicz and MacWhinney [37]
sheds light on the nature of transfer in late second lan-
guage learners.  In that study, participants were asked to
make grammaticality judgments to sentences which var-
ied in the extent to which syntactic functions overlapped
across languages.  Participants brain activity was meas-
ured using ERP’s.  The first type of functions involved
tense marking which is similar across languages.  The
second type of function involved determiner-noun agree-
ment (las casas vs. la casas).  Like Spanish number in
English is marked on the noun (houses).  However, unlike
Spanish there is no need for the noun to agree with the
determiner (the houses).  Participants were also asked to
make decisions about sentences which manipulated gen-
der agreement, a function which is unique to Spanish (la
casa vs. el casa). The results revealed increased activity
for noun-verb agreement, a function which is similar
across languages.  However, participants did not show
ERP differences for gender or number agreement in
Spanish.  Finally, results for determiner-noun gender
agreement revealed ERP differences for this function.
However, the distribution of the signal was diffuse.
Taken together these results suggest that the nature of L1
influences brain responses to L2 during early learning.
Furthermore, it confirms that functions which overlap
across languages are easier to track in L2 than those
which are not.  These results suggest that in both semantic
and syntactic tasks there is an effect of overlap.  However,
they leave open the question of whether AoA effects may
interact with overlap.  If syntactic function tend to rely on
overlapping information, then AoA effects may be more
dramatic in this domain.  This would predict that AoA
effects should be larger for semantic tasks for items with
less conceptual overlap across languages.
1.4 FMRI studies of grammatical processing

Taken together the results reviewed are consistent with
the view that both semantic and grammatical processing
are graded in nature and that this continuity modulates
differences at the neural level in early and late bilinguals.
However, these results leave some questions unanswered.
Unpublished work conducted by Hernandez et al. has
looked at semantic processing in late German-English
bilinguals.  Cross-language differences could be due both
to English being learned late and being the less dominant
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language.  Follow up studies comparing early bilinguals
and late bilinguals would help to elucidate whether there
is indeed an effect of cognate status and concreteness in
both groups and whether the pattern of activity differs
across groups.  This would also help to clarify whether
AoA effects appear in a task which is more effortful and
whether less overlap (i.e. noncognates) yields larger
cross-group differences.  The notion of overlap is also be
important when considering AoA differences in the neural
activity associated with syntactic processing.  Previous
studies have found that overlap between languages affects
the speed with which a syntactic function is learned in late
L2 learners.  Significant differences in the pattern of neu-
ral activity between early and late learners of Spanish
have been found during gender decision for opaque items.
That is, when grammatical functions have little overlap
across languages, groups which differ on AoA show dif-
ferences in neural activity.  However, when these func-
tions are easier then there are much smaller differences.
Finally, future studies will test whether the effects of
difficulty and overlap extend to other syntactic functions
and conditions of syntactic violation  Of particular inter-
est, will be the comparison of violation conditions across
groups.  Violations are known to lead to increased activity
in L2 relative to L1 [38].
1.5 Theoretical Accounts of AoA

Despite consistently finding maturational effects
on syntactic processing, very few accounts have stipulated
the underlying mechanism (aside from emphasizing a
general maturational constraint) for this effect.  More
recently, Ullman and colleagues [39-41] have proposed
that second language acquisition can be viewed as being
constrained by declarative and procedural memory.  In
this model, lexical learning is reliant on memorized facts
whereas grammatical processing is dependent on rules
and routines.  Work in the literature has firmly established
a frontal-basal ganglia circuit which is involved in proce-
dural learning and a medial temporal lobe system which is
involved in declarative memory, i.e. learning new facts.
Ullman and colleagues provide considerable evidence to
bolster their claim that grammatical and lexical processing
rely on different neural systems.  This includes evidence
from grammatical processing in aphasia as well as Alz-
heimer’s and Parkinson’s disease [39]. They also present
evidence that procedural learning ability decreases with
age whereas declarative learning ability may actually
improve with age .  This framework sheds light on AoA
syntactic effects that the neural correlates of syntactic
processing are more sensitive to AoA [42, 43] because of
their reliance on procedural memory which is affected to a
greater extent by maturational constraints.  Within this
model L2 learners must rely on declarative memory for
grammatical processing.  This, in turn, predicts that late
L2 learners will show increased activity of areas involved

in declarative memory during grammatical processing
relative to L1 learners.

The procedural/declarative account for AoA ef-
fects, however, cannot account for results in the monolin-
gual literature.  For a long time, theorists have suggested
that AoA was due to differences in phonological com-
pleteness [44].  In this view, early learned words are rep-
resented in a phonologically complete manner whereas
late learned words have to be assembled around these
phonological primitives.  Whereas this hypothesis is con-
sistent with some aspects of the data such as slower pic-
ture naming times [45-47] they are less compatible with
other effects [48].  More recent work using connectionist
simulations suggest that early learned items are favored
because the network is biased to “recognize” these items.
Recognizing late learned words, however, requires more
effortful retrieval because a network is using connection
weights that are optimized for early learned words.  The
most interesting aspect of this model is that it suggests
that AoA effects are very general effects.  As such second
language acquisition, bilingualism and language process-
ing in general serve as methods to investigate the general
mechanisms that are involved in learning.

References

1. Gomez-Tortosa, E., et al., Selective deficit of one
language in a bilingual patient following surgery in
the left perisylvian area. Brain and Language, 1995.
48: p. 320-325.

2. Paradis, M., Bilingualism and aphasia, in Studies in
Neurolinguistics, H. Whitaker and H.A. Whitaker,
Editors. 1977, Academic Press: New York. p. 65-121.

3. Paradis, M., ed. Bilingual aphasia 100 years later:
Consensus and controversies. 1995, Pergamon:
Oxford.

4. Perani, D., et al., Brain processing of native and
foreign languages. Neuroreport, 1996. 7: p. 2439-
2444.

5. Perani, D., et al., The bilingual brain: Proficiency and
age of acquisition of the second language. Brain,
1998. 121(10): p. 1841-1852.

6. Kohnert, K., Elderly bilingual performance on the
Boston Naming Test: Preliminary norms. 1998.

7. Chee, M.W., et al., Relative language proficiency
modulates BOLD signal change when bilinguals
perform semantic judgments. Blood oxygen level
dependent. Neuroimage, 2001. 13(6 Pt 1): p. 1155-63.

8. Pallier, C., et al., Brain imaging of language plasticity
in adopted adults: can a second language replace the
first? Cereb Cortex, 2003. 13(2): p. 155-61.

9. Hernandez, A.E., E. Bates, and L.X. Avila, Processing
across the language boundary: A cross modal priming
study of Spanish-English bilinguals. Journal of
Experimental Psychology: Learning, Memory,
&Cognition, 1996. 22: p. 846-864.

164



10. Hernandez, A.E. and K. Kohnert, Aging and language
switching in bilinguals. Aging, Neuropsychology and
Cognition, 1999. 6: p. 69-83.

11. Hernandez, A.E. and I. Reyes, Within- and between-
language priming differ: evidence from repetition of
pictures in Spanish-English bilinguals. J Exp Psychol
Learn Mem Cogn, 2002. 28(4): p. 726-34.

12. Kohnert, K.J., A.E. Hernandez, and E. Bates,
Bilingual performance on the Boston Naming Test:
Preliminary norms in Spanish & English. Brain &
Language, 1998. 65(3): p. 422-440.

13. Iverson, P., et al., A perceptual interference account of
acquisition difficulties for non-native phonemes.
Cognition, 2003. 87(1): p. B47-57.

14. Flege, J.E., M.J. Munro, and I.R.A. MacKay, Effects
of age of second-language learning on the production
of English consonants. Speech Communication, 1995.
16(1): p. 1-26.

15. Munro, M.J., J.E. Flege, and I.R.A. MacKay, The
effects of age of second language learning on the
production of English vowels. Applied
Psycholinguistics, 1996. 17(3): p. 313-334.

16. Weber-Fox, C. and H.J. Neville, Maturational
constraints on functional specializations for language
processing: ERP and behavioral evidence in bilingual
speakers. Journal of Cognitive Neuroscience, 1996. 8:
p. 231-256.

17. Wartenburger, I., et al., Early setting of grammatical
processing in the bilingual brain. Neuron, 2003.
37(1): p. 159-70.

18. Kutas, M. and S.A. Hillyard, Event-related brain
potentials to semantically inappropriate and
surprisingly large words. Biological Psychology,
1980. 11: p. 99-116.

19. Kutas, M. and C. Van Petten, Event-related brain
potential studies of language, in Advances in
Psychophysiology, P.K. Ackles, J.R. Jennings, and
M.G.H. Coles, Editors. 1988, JAI Press: Greenwich,
Connecticut.

20. Friederici, A.D., A. Hahne, and A. Mecklinger,
Temporal structure of syntactic parsing: early and
late event-related brain potential effects. J Exp
Psychol Learn Mem Cogn, 1996. 22(5): p. 1219-48.

21. Dapretto, M., S. Bookheimer, and J. Mazziotta, Form
and Content: Dissociating syntax and semantics in
sentence comprehension. Neuron, 1999. 24(2): p. 427-
32.

22. Poldrack, R.A., et al., Functional specialization for
semantic and phonological processing in the left
inferior prefrontal cortex. Neuroimage, 1999. 10(1): p.
15-35.

23. D'Esposito, M., et al., The neural basis of the central
executive system of working memory. 1995, 1995.
378(6554): p. 279-281.

24. Hernandez, A.E., et al., The neural correlates of
grammatical gender decisions in Spanish.
Neuroreport, 2004. 15(5): p. 863-6.

25. Moro, A., et al., Syntax and the brain: disentangling
grammar by selective anomalies. Neuroimage, 2001.
13(1): p. 110-8.

26. Kang, A.M., et al., An event-related fMRI study of
implicit phrase-level syntactic and semantic
processing. Neuroimage, 1999. 10(5): p. 555-61.

27. Friederici, A.D., B. Opitz, and D.Y.v. Cramon,
Segregating semantic and syntactic aspects of
processing in the human brain: An fMRI investigation
of different word types. Cerebral Cortex, 2000. 10(7):
p. 698-705.

28. Miceli, G., et al., The neural correlates of
grammatical gender: an fMRI investigation. J Cogn
Neurosci, 2002. 14(4): p. 618-28.

29. Bates, E., et al., Voxel-based lesion-symptom mapping.
Nat Neurosci, 2003. 6(5): p. 448-50.

30. Dronkers, N.F., A new brain region for coordinating
speech articulation. Nature, 1996. 384(6605): p. 159-
61.

31. Heim, S., B. Opitz, and A.D. Friederici, Broca's area
in the human brain is involved in the selection of
grammatical gender for language production:
evidence from event-related functional magnetic
resonance imaging. Neurosci Lett, 2002. 328(2): p.
101-4.

32. Kohnert, K., E. Bates, and A.E. Hernandez, Balancing
bilinguals: Lexical-semantic production and cognititve
processing in children learning Spanish and English.
Journal of Speech, Language and Hearing Research,
1999. 42: p. 1400-1413.

33. Meschyan, G. and A. Hernandez, Age of acquisition
and word frequency: determinants of object-naming
speed and accuracy. Mem Cognit, 2002. 30(2): p.
262-9.

34. Ellis, A.W. and M.A. Lambon Ralph, Age of
acquisition effects in adult lexical processing reflect
loss of plasticity in maturing systems: Insights from
connectionist networks. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 2000.
26(5): p. 1103-1123.

35. Brysbaert, M., I. Van Wijnendaele, and S. De Deyne,
Age-of-acquisition effects in semantic processing
tasks. Acta Psychol (Amst), 2000. 104(2): p. 215-26.

36. Chee, M.W., et al., Processing of visually presented
sentences in Mandarin and English studied with fMRI.
Neuron, 1999. 23(1): p. 127-37.

37. Tokowicz, N. and B. MacWhinney, Implicit vs.
Explicit Measures of Sensitivity to Violations in L2
Grammar: An Event-Related Potential Investigation.
Studies in Second Language Acquisition, in press.

38. Rueschemeyer, S.A., et al., Cerebral representation of
spoken language processing in bilinguals.

39. Ullman, M., Corkin, S., Coppola, M., Hickok, G.,
Growden, J.,  & Koroshetz, W., A neural

dissociation within language: Evidence that the mental
dictionary is part of declarative memory and that
grammatical rules are processed by the procedural
system. Journal of Cognitive Neuroscience, 1997. 9: p.
289-299.

40. Ullman, M.T., A neurocognitive perspective on
language: the declarative/procedural model. Nat Rev
Neurosci, 2001. 2(10): p. 717-26.

165



41. Ullman, M.T., Contributions of memory circuits to
language: the declarative/procedural model.
Cognition, 2004. 92(1-2): p. 231-70.

42. Squire, L.R. and B.J. Knowlton, The medial temporal
lobe, the hippocampus, and the memory systems of the
brain, in The new cognitive neurosciences, M.S.
Gazzaniga, Editor. 2000, MIT

Press: Cambridge, MA.
43. Eichenbaum, H. and N.J. Cohen, From conditioning to

conscious recollection: memory systems of the brain.
2001, New York: Oxford University Press.

44. Brown, G.D. and F.L. Watson, First in, first out: Word
learning age and spoken word frequency as predictors
of word familiarity and word naming latency. Memory
& Cognition, 1987. 15(3): p. 208-216.

45. Ellis, A.W. and C.M. Morrison, Real age-of-
acquisition effects in lexical retrieval. Journal of
Experimental Psychology: Learning, Memory, &
Cognition, 1998. 24(2): p. 515-523.

46. Barry, C., C.M. Morrison, and A.W. Ellis, Naming the
Snodgrass and Vanderwart pictures: Effects of age of
acquisition, frequency and name agreement. Quarterly
Journal of Experimental Psychology: Human
Experimental Psychology, 1997. 50A(3): p. 560-585.

47. Morrison, C.M., A.W. Ellis, and P.T. Quinlan, Age of
acquisition, not word frequency, affects object
naming, not object recognition. Memory & Cognition,
1992. 20(6): p. 705-714.

48. Lewis, M.B., A.J. Chadwick, and H.D. Ellis,
Exploring a neural-network account of age-of-
acquisition effects using repetition priming of faces.
Mem Cognit, 2002. 30(8): p. 1228-37.

166



Developmental Stages of Perception and Language Acquisition in a Physically
Grounded Robot

Peter Ford Dominey, Jean-David Boucher
Institut des Sciences Cognitives, CNRS 67 Blvd. Pinel,  69675 Bron Cedex, France,

dominey@isc.cnrs.fr
http://www.isc.cnrs.fr/dom/dommenu-en.htm

Abstract

The objective of this research is to develop a system for
language learning based on a minimum of pre-wired
language-specific functionality, that is compatible with
observations of perceptual and language capabilities in
the human developmental trajectory.  In the proposed
system, meaning (in terms of descriptions of events and
spatial relations) is extracted from video images based on
detection of position, motion, physical contact and their
parameters.  Mapping of sentence form to meaning is
performed by learning grammatical constructions that are
retrieved from a construction inventory based on the
constellation of closed class items uniquely identifying the
target sentence structure.  The resulting system displays
robust acquisition behavior that reproduces certain ob-
servations from developmental studies, with very modest
“innate” language specificity.  Most importantly, the
demonstrates a certain degree of autonomy in adapting to
the structural regularities of the environment.

1. Introduction

A challenge of developmental robotics is to demon-
strate the successive emergence of behaviors in a devel-
opmental progression of increasing processing power and
complexity.  A particularly interesting avenue for this
methodology is in language processing and the binding of
language to developing perceptual relations. Generative
linguists have posed the significant challenge  to such
approaches via the claim that the learning problem is too
underconstrained and must thus be addressed by a highly
pre-specified Universal Grammar (Chomsky 1995).  The
current research proposes an alternative, identifying a
restricted set of functional requirements for language
acquisition, and then demonstrating a possible framework
for the successive emergence of these behaviors in devel-
opmentally plausible systems, culminating in a grounded
robotic system that can learn a small language about vis-
ual scenes that it observes.

1.1. Functional Requirements:

We adopt a construction based approach to language
in which acquisition is based on learning mappings be-
tween grammatical structure and meaning structure
(Goldberg 1995).  In this context, the system should be
capable of: (1) extracting meaning from the environment,
(2) learning mappings between grammatical structure and
meaning, and (3) identifying-discriminating between
different grammatical structures of input sentences.  In the
following sections we outline how these requirements can
be satisfied in a biologically  and developmentally plausi-
ble manner.

In this developmental context, Mandler (1999) sug-
gested that the infant begins to construct meaning from
the scene based on the extraction  of perceptual primi-
tives.  From simple representations such as contact, sup-
port, attachment (Talmy 1988) the infant could construct
progressively more elaborate representations of visuospa-
tial meaning.  Thus, the physical event "collision" is a
form of the perceptual primitive “contact”. Kotovsky &
Baillargeon (1998) observed that at 6 months, infants
demonstrate sensitivity to the parameters of objects in-
volved in a collision, and the resulting effect on the colli-
sion, suggesting indeed that infants can represent contact
as an event predicate with agent and patient arguments.
Similarly, Quinn et al. (2002) have demonstrated that at 6-
7 months, infants are sensitive to binary spatial relations
such as above and below.

Bringing this type of perception into the robotic do-
main, Siskind (2001) has demonstrated that force dynamic
primitives of  contact, support, attachment can be ex-
tracted from video event sequences and used to recognize
events including pick-up, put-down, and stack based on
their characterization in an event logic.  Related results
have been achieved by Steels and Baillie (2003).  The use
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of these intermediate representations renders the system
robust to variability in motion and view parameters.  Most
importantly, this research demonstrated that the lexical
semantics for a number of verbs could be established by
automatic image processing.

Once meaning is extracted from the scene, the signifi-
cant problem of mapping sentences to meanings remains.
The functionalist perspective holds that learning plays a
central role in language acquisition. The infant develops
an inventory of grammatical constructions as mappings
from form to meaning (Goldberg 1995).  These construc-
tions are initially rather fixed and specific, and later be-
come generalized into a more abstract compositional form
employed by the adult (Tomasello 1999).  In this context,
construction of the relation between perceptual and cog-
nitive representations and grammatical form plays a cen-
tral role in learning language (e.g. Feldman et al. 1990,
1996; Langacker 1991; Mandler 1999; Talmy 1998).

These issues of learnability and innateness have pro-
vided a rich motivation for simulation studies that have
taken a number of different forms.  Elman (1990) demon-
strated that recurrent networks are sensitive to predictable
structure in grammatical sequences.  Subsequent studies
of grammar induction demonstrate how syntactic structure
can be recovered from sentences (e.g. Stolcke & Omo-
hundro 1994).  From the “grounding of language in
meaning” perspective (e.g. Feldman et al. 1990, 1996;
Langacker 1991; Goldberg 1995),  Chang & Maia (2001)
exploited the relations between action representation and
simple verb frames in a construction grammar approach,
and Cottrell et al. (1990) associated sequences of words
with simple image sequences.  In effort to consider more
complex grammatical forms, Miikkulainen (1996) dem-
onstrated a system that learned the mapping between
relative phrase constructions and multiple event repre-
sentations, based on the use of a stack for maintaining
state information during the processing of the next em-
bedded clause in a recursive manner.

In a more generalized approach, Dominey (2000) ex-
ploited the regularity that sentence to meaning mapping is
encoded in all languages by word order and grammatical
marking (bound or free) (Bates et al. 1982).  That model
was based on the functional neurophysiology of cognitive
sequence and language processing and an associated neu-
ral network model that has been demonstrated to simulate
interesting aspects of infant (Dominey & Ramus 2000)
and adult language processing (Dominey et al. 2003).

1.2. Objectives

The goals of the current study are fourfold: First to test
the hypothesis that meaning can be extracted from visual

scenes based on the detection of contact and its parame-
ters in an approach similar to but significantly simplified
from Siskind (2001); Second to determine whether the
model of Dominey (2000) can be extended to handle
embedded relative clauses; Third to demonstrate that
these two systems can be combined to perform miniature
language acquisition; and finally to demonstrate that the
combined system can provide insight into the develop-
mental progression in human language acquisition with-
out the necessity of a pre-wired parameterized grammar
system (Chomsky 1995).

Figure 1.  Structure-Mapping Architecture

2. The Behavioral Context

As illustrated in Figure 1, the human experimenter en-
acts and simultaneously narrates visual scenes made up of
events that occur between a red cylinder, a green block
and a blue semicircle or “moon” on a black matte table
surface. A video camera above the surface provides a
video image that is processed by a color-based recogni-
tion and tracking system (Smart – Panlab, Barcelona
Spain) that generates a time ordered sequence of the con-
tacts that occur between objects that is subsequently proc-
essed for event analysis (below). The simultaneous narra-
tion of the ongoing events is processed by a commercial
speech-to-text system (IBM ViaVoiceTM). Speech and
vision data were acquired and then processed off-line
yielding a data set of matched sentence – scene pairs that
were provided as input to the structure mapping model.  A
total of  ~300 <sentence, scene> pairs were tested in the
following experiments.
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3. Requirement 1:  Extracting Meaning

For a given video sequence (see snapshot in Figure 2)
the visual scene analysis generates the corresponding
event description in the format event(agent, object, recipi-
ent).

Single Event Labeling
Events are defined in terms of contacts between ele-

ments.  A contact is defined in terms of the time at which
it occurred, the agent, object, and duration of the contact.
The agent is determined as the element that had a larger
relative velocity towards the other element involved in the
contact. Based on these parameters of contact, scene
events are recognized as follows:

Touch(agent, object): A single contact, in which (a)
the duration of the contact is inferior to touch_duration
(1.5 seconds), and (b) the object is not displaced during
the duration of the contact.

Push(agent, object): Similar to touch, with a greater
contact duration, superior or equal to touch_duration and
inferior to take_duration (5 sec), and object displacement.

Take(agent, object): A single contact in which (a) the
duration of contact is superior or equal to take_duration,
(b) the object is displaced during the contact, and (c) the
agent and object remain in contact.

Take(agent, object, source): Multiple contacts, as the
agent takes the object from the source. Same as Take(a,o),
and for the  optional second contact between agent and
source (a) the duration of the contact is inferior to
take_duration, and (b) the agent and source do not remain
in contact.  Finally, contact between the object and source
is broken during the event.

Give(agent, object, recipient):  Multiple contacts as
agent takes object, then initiates contact between object
and recipient.

These event labeling templates form the basis for a
template matching algorithm that labels events based on
the contact list, similar to the spanning interval and event
logic of Siskind (2001).

Complex “Hierarchical” Events: The events de-
scribed above are simple in the sense that there have no
hierarchical structure.  This imposes serious limitations on
the syntactic complexity of the corresponding sentences

(Feldman et al. 1996, Miikkulainen 1996).  The sentence
“The block that pushed the moon was touched by the
triangle” illustrates a complex event that exemplifies this
issue.  The corresponding compound event will be recog-
nized and represented as a pair of temporally successive

simple event descriptions, in this case: push(block, moon),
and touch(triangle, block).   The “block” serves as the
link that connects these two simple events in order to
form a complex hierarchical event.

Figure 2.  Snapshot of scene event processing.

4. Requirement 2:  Mapping Sentences
to Meaning

Our approach is based on the cross-linguistic observa-
tion that open class words (e.g. nouns, verbs, adjectives
and adverbs) are assigned to their thematic roles based on
word order and/or grammatical function words or mor-
phemes (Bates et al. 1982).  The mapping of sentence
form onto meaning (Goldberg 1995) takes place at two
distinct levels:  Words are associated with individual
components of event descriptions, and grammatical
structure is associated with functional roles within scene
events (Fig 3).  The first level has been addressed  by
Siskind (1996), Roy & Pentland (2000) and Steels (2001)
and we treat it here in a relatively simple but effective
manner.  Our principle interest lies more in the second
level of mapping between scene and sentence structure.
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Figure 3.  Model Overview: Processing of active and passive sentence
types in A, B, respectively.  On input, Open class words populate the
Open Class Array (OCA), and closed class words populate the Con-
struction index. Visual Scene Analysis populates the Scene Event Array
(SEA) with the extracted meaning as scene elements.  Words in OCA
are translated to Predicted Referents via the WordToReferent   mapping
to populate the Predicted Referents Array (PRA). PRA elements are
mapped onto their roles in the Scene Event Array (SEA) by the Sen-
tenceToScene mapping, specific to each sentence type.  This mapping is
retrieved from Construction Inventory, via the ConstructionIndex that
encodes the closed class words that characterize each sentence type.
Words in sentences, and elements in the scene are coded as single ON
bits in respective 25-element vectors.

Word Meaning
In the initial learning phases there is no influence of

syntactic knowledge and the word-referent associations
are stored in the WordToReferent matrix (Eqn 1) by asso-
ciating every word with every referent in the current scene
(α =1), exploiting the cross-situational regularity (Siskind
1996) that a given word will have a higher coincidence
with referent to which it refers than with other referents.
This initial word learning contributes to learning the map-
ping between sentence and scene structure (Eqn. 4, 5 & 6
below).  Then, knowledge of the syntactic structure, en-
coded in SentenceToScene can be used to identify the
appropriate referent (in the SEA) for a given word (in the
OCA), corresponding to a zero value of α in Eqn. 1.  In
this “syntactic bootstrapping” for the new word “gugle,”
for example, syntactic knowledge of Agent-Event-Object
structure of the sentence “John pushed the gugle” can be
used to assign “gugle” to the object of push.

WordToReferent(i,j) = WordToReferent(i,j) +
OCA(k,i) * SEA(m,j) *
Max(α, SentenceToScene(m,k)) (1)

Indices: k(1:6) - words; m(1:6) – scene elements; i(1:25),
j(1:25) – elements in word and scene item vectors, re-
spectively.

Mapping Sentence to Meaning
In terms of the architecture in Figure 3, this mapping

can be characterized in the following successive steps.
First, words in the Open Class Array are decoded into
their corresponding scene referents (via the Word-
ToReferent mapping) to yield the Predicted Referents
Array that contains the translated words while preserving
their original order from the OCA (Eqn 2).

n

i 1

PRA(m,j) = OCA(m,i) * WordToReferent(i,j)
=
�      (2)

Next, each sentence type will correspond to a specific
form to meaning mapping between the PRA and the SEA.
encoded in the SentenceToScene array. The problem will
be to retrieve for each sentence type, the appropriate cor-
responding SentenceToScene mapping.

5. Requirement 3:  Discriminating Be-
tween Grammatical Forms

The first step in discriminating between grammatical
structures is to discriminate between open class (e.g.
nouns, verbs) and closed class (e.g. determiners, preposi-
tions) words.  Newborn infants are sensitive to the per-
ceptual properties that distinguish these two categories
(Shi et al. 1999), and in adults, these categories are proc-
essed by dissociable neurophysiological systems (Brown
et al. 1999).  Similarly, artificial neural networks can also
learn to make this function/content distinction (Morgan et
al. 1996, Blanc et al. 2003).  Thus, for the speech input
that is provided to the learning model, open and closed
class words are directed to separate processing streams
that preserve their order and identity, as indicated in Fig-
ure 3.

Given this capability to discriminate between open and
closed class words, we are still faced with the problem of
using this information to discriminate between different
sentence types.  To solve this problem, we recall that each
sentence type will have a unique constellation of closed
class words and/or bound morphemes (Bates et al. 1982)
that can be coded in a ConstructionIndex (Eqn.3) that
forms a unique identifier for each sentence type, shifting
the current contents by the index of the ON bit in Func-
tionWord, then ANDing the FunctionWord vector.  The
appropriate SentenceToScene mapping for each sentence
type can be indexed in ConstructionInventory by its cor-
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responding ConstructionIndex.

ConstructionIndex = fcircularShift(ConstructionIndex,
 FunctionWord) (3)

The link between the ConstructionIndex and the corre-
sponding SentenceToScene mapping is established as
follows. As each new sentence is processed, we first re-
construct the specific SentenceToScene mapping for that
sentence (Eqn 4), by mapping words to referents (in PRA)
and referents to scene elements (in SEA). The resulting,
SentenceToSceneCurrent encodes the correspondence
between word order (that is preserved in the PRA Eqn 2)
and thematic roles in the SEA.  Note that the quality of
SentenceToSceneCurrent will depend on the quality of
acquired word meanings in WordToReferent.   Thus,
syntactic learning requires a minimum baseline of seman-
tic knowledge. Given the SentenceToSceneCurrent map-
ping for the current sentence, we can now associate it in
the ConstructionInventory with the corresponding func-
tion word configuration or ConstructionIndex for that
sentence, expressed in (Eqn 5).  In Eqns 5, 6 Sentence-
ToScene is linearized for simplification.

n

i=1

SentenceToSceneCurrent(m,k) =

     PRA(k,i)*SEA(m,i)�
(4)

ConstructionInventory(i,j) = ConstructionInventory(i,j)
+ ConstructionIndex(i)
* SentenceToSceneCurrent(j) (5)

Finally, once this learning has occurred, for new sen-
tences we can now extract the SentenceToScene mapping
from the learned ConstructionInventory by using the
ConstructionIndex as an index into this associative mem-
ory, illustrated in Eqn. 6.

n

i=1

SentenceToScene(i) = 

  ConstructionInventory(i,j) * ConstructionIndex(j)�

(6)

To accommodate the dual scenes for complex events
Eqns. 4-7 are instantiated twice each, to represent the two
components of the dual scene.  In the case of simple
scenes, the second component of the dual scene represen-
tation is null.

We evaluate performance by using the WordToRefer-
ent and SentenceToScene knowledge to construct for a
given input sentence the “predicted scene”.  That is, the
model will construct an internal representation of the

scene that should correspond to the input sentence.  This
is achieved by first converting the Open-Class-Array into
its corresponding scene items in the Predicted-Referents-
Array as specified in Eqn.  2.  The referents are then re-
ordered into the proper scene representation via applica-
tion of the SentenceToScene transformation as described
in Eqn.  7.

PSA(m,i) = PRA(k,i) * SentenceToScene(m,k) (7)

When learning has proceeded correctly, the predicted
scene array (PSA) contents should match those of the
scene event array (SEA) that is directly derived from
input to the model.   We then quantify performance error
in terms of the number of mismatches between PSA and
SEA.

6. Experimental results

Hirsh-Pasek & Golinkoff (1996) indicate that children
use knowledge of word meaning to acquire a fixed SVO
template around 18 months, then expand this to non-
canonical sentence forms around 24+ months.  Tomasello
(1999) indicates that fixed grammatical constructions will
be used initially, and that these will then provide the basis
for the development of more generalized constructions
(Goldberg 1995).  The following experiments attempt to
follow this type of developmental progression.  Training
results in changes in the associative WordToReferent
mappings encoding the lexicon, and changes in the Con-
structionInventory encoding the form to meaning map-
pings, indexed by the ConstructionIndex.

A. Learning of Active Forms for Simple Events

1. Active:  The block pushed the triangle.
2. Dative:  The block gave the triangle to the moon.

For this experiment, 17 scene/sentence pairs were gen-
erated that employed the 5 different events, and narrations
in the active voice, corresponding to the grammatical
forms 1 and 2.  The model was trained for 32 passes
through the 17 scene/sentence pairs for a total of 544
scene/sentence pairs.  During the first 200 scene/sentence
pair trials, α in Eqn. 1 was 1 (i.e. no syntactic bootstrap-
ping before syntax is acquired), and thereafter it was 0.
This was necessary in order to avoid the random effect of
syntactic knowledge on semantic learning in the initial
learning stages. The trained system displayed error free
performance for all 17 sentences, and generalization to
new sentences that had not previously been tested.
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B. Passive forms
This experiment examined learning active and passive

grammatical forms, employing grammatical forms 1-4.
Word meanings were used from Experiment A, so only
the structural SentenceToScene mappings were learned.

3. Passive:  The triangle was pushed by the block.
4. Dative Passive:  The moon was given to the triangle

by the block.

Seventeen new scene/sentence pairs were generated
with active and passive grammatical forms for the narra-
tion. Within 3 training passes through the 17 sentences
(51 scene/sentence pairs), error free performance was
achieved, with confirmation of error free generalization to
new untrained sentences of these types.  The rapid learn-
ing indicates the importance of lexicon in establishing the
form to meaning mapping for the grammatical construc-
tions.

C. Relative forms for Complex Events
Here we consider complex scenes narrated by relative

clause sentences.  Eleven complex scene/sentence pairs
were generated with narration corresponding to the
grammatical forms indicated in 5 – 10:

5. The block that pushed the triangle touched the moon.
6. The block pushed the triangle that touched the moon.
7. The block that pushed the triangle was touched by the moon.
8. The block pushed the triangle that was touched the moon.
9. The block that was pushed by the triangle touched the moon.

10. The block was pushed by the triangle that touched the moon.

After presentation of 88 scene/sentence pairs, the model
performed without error for these 6 grammatical forms,
and displayed error-free generalization to new sentences
that had not been used during the training for all six
grammatical forms

D. Generalization to Extended Construction Set
As illustrated above the model can accommodate

10 distinct form-meaning mappings or grammatical con-
structions, including constructions involving "dual"
events in the meaning representation that correspond to
relative clauses.  Still, this is a relatively limited size for
the construction inventory. We have subsequently demon-
strated that the model can accommodate 38 different
grammatical constructions that combine verbs with two or
three arguments, active and passive forms and relativiza-
tion, along with additional sentence types including: con-
joined (John took the key and opened the door), reflexive
(The boy said that the dog was chased by the cat), and
reflexive pronoun (The block said that it pushed the cyl-

inder) sentence types. The consideration of these sentence
types requires us to address how their meanings are repre-
sented. Conjoined sentences are represented by the two
corresponding events, e.g. took(John, key), open(John,
door) for the conjoined example above. Reflexives are
represented, for example, as said(boy), chased(cat, dog).
This assumes indeed, for reflexive verbs (e.g. said, saw),
that the meaning representation includes the second event
as an argument to the first. Finally, for the reflexive pro-
noun types, in the meaning representation the pronoun's
referent is explicit, as in said(block), push(block, cylinder)
for "The block said that it pushed the cylinder."

For this testing, the ConstructionInventory is im-
plemented as a lookup table in which the ConstructionIn-
dex is paired with the corresponding SentenceToScene
mapping during a single learning trial.  Based on the ten-
ets of the construction grammar framework (Goldberg
1995), if a sentence is encountered that has a form (i.e.
ConstructionIndex) that does not have a corresponding
entry in the ConstructionInventory, then a new construc-
tion is defined. Thus, one exposure to a sentence of a new
construction type allows the model to generalize to any
new sentence of that type.  In this sense, developing the
capacity to handle a simple initial set of constructions
leads to a highly extensible system.  Using the training
procedures as described above, with a pre-learned lexicon
(WordToReferent), the model successfully learned all of a
total of 38 distinct grammatical constructions, and dem-
onstrated generalization to new sentences that it was not
trained on.

That the model can accommodate these 38 differ-
ent grammatical constructions with no modifications
indicates its capability to generalize.  This translates to a
(partial) validation of the hypothesis that across lan-
guages, thematic role assignment is encoded by a limited
set of parameters including word order and grammatical
marking, and that distinct grammatical constructions will
have distinct and identifying ensembles of these parame-
ters.

E. Extension of the Construction Framework to
Spatial Relations

Part of the developmental framework holds that exist-
ing processes can provide the basis for the emergence of
new behavioral functionality.  We have seen how the
construction framework provides a basis for encoding the
structural mappings between sentences and meaning in an
organized and generalized manner.  In theory this con-
struction framework should extend to analogous cognitive
domains.  Here, we will investigate how this framework
can be extended to the domain of spatial relations.  Quinn
et al (2002) have demonstrated that by the age of 6-7
months, infants can  learn binary spatial relations such as
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left, right, above, below in a generalized manner, as re-
vealed by their ability to discriminate in familiarization-
test experiments.  That is, they can apply this relational
knowledge to scenes with new objects in these spatial
relations.

In theory, the predicate-argument representation for
event structure that we have described above can provide
the basis for representing spatial relations in the form
Left(X,Y), Above(X,Y) etc. where X is the object that
holds the spatial relation with the referent Y.  That is,
Left(X,Y) corresponds to “X is left of Y”.

In order to extract spatial relations from vision we re-
turn to the visual processing system described above.
Based on the observations of Quinn et al. (2002) we can
consider that by 6-7 months, the perceptual primitives of
Relation(X,Y) are available, where Relation corresponds
to Left, Right, Above and Below.  The mapping of sen-
tence structure onto the predicate argument then can pro-
ceed as described above for event meaning.  One inter-
esting problem presents itself however.

Figure 4.  Spatial Attention for Relation Selection. The human user
shows the robot a spatial relation and describes it.  How does the robot
know which of the multiple relations is the relevant one?  A.  The cylin-
der (lower left) has been moved into its current position, and now holds
spatial relations with the three other objects.  B.  Based on parameters of
(1) minimal distance from the target object and (2) minimal angular
distance from the four principal directions (above, below, left, right)..  In
this case, the most relevant relation (indicated by the height of the two
highest peaks) is Below(Cylinder, Triangle).

Figure 4 illustrates the spatial configuration after a hu-
man user has placed the cylinder in its current position
and said “The cylinder is below the triangle”.  A simple
attention mechanism based on motion is used to select the
cylinder as the target object, but the intended referent for
the “below” relation could be any one of the multiple
other objets, and so the problem of referential ambiguity
must be resolved.  We hypothesize that this redundancy is
resolved based on two perceptual parameters.  First, spa-
tial proximity will be used.  That is, the observer will give
more attentional preference to relations involving the
target object and other objects that are closest to it.  The
second parameter is the angular  “relevance” of the rela-
tions, quantified in terms of the angular distance from the
cardinal positions above, below, left and right.  Figure 4B
represents the application of this perceptual attention
mechanism that selects the relation Below(Cylinder, Tri-
angle) as the most relevant, revealed by the height of the
peak for the triangle in 4B.

We collected data training data in which a human ob-
server demonstrated and narrated spatial relations with the
four objects.  The spatial attention mechanism extracted
for each case the most relevant spatial relation, and the
resulting <sentence, relation-meaning> pairs were used
for training in the same procedure as in  condition A for
active sentences and simple events.  The model demon-
strated successful learning of the four object names and
the four spatial relation terms, and could generalize this
knowledge to a new <sentence, relation-meaning> gener-
alization data set.

7. Discussion and Conclusion

The current study demonstrates (1) that the perceptual
primitive of contact (available to infants at 5 months), can
be used to perform event description in a manner that is
similar to but significantly simpler than Siskind (2001),
and can be extended to accommodate spatial relation
encoding (2) that a novel implementation of principles
from construction grammar can be used to map sentence
form to these meanings together in an integrated system,
(3) that relative clauses can be processed in a manner that
is similar to, but requires less specific machinery (e.g. no
stack) than that in Miikkulainen (1996), and finally (4)
that the resulting system displays robust acquisition be-
havior that reproduces certain observations from devel-
opmental studies with very modest “innate” language
specificity.

The goal was to identify minimal event recognition
and form-to-meaning mapping capabilities that could be
integrated into a coherent system that performs at the

B

A
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level of a human infant in the first years of  development
when the construction inventory is being built up.  Rather
than prewiring the language grammar, we demonstrate
that the system can autonomously adapt to the regularities
in the sentence form to meaning mappings in a systematic
generalized manner.
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Abstract

Texture boundary detection (or segmentation) is an im-
portant capability in human vision. Usually, texture seg-
mentation is viewed as a 2D problem, as the definition of
the problem itself assumes a 2D substrate. However, an
interesting hypothesis emerges when we ask a question re-
garding thenatureof textures:What are textures, and why
did the ability to discriminate texture evolve or develop?A
possible answer to this question is that textures naturally
define physically distinct surfaces, thus, we can hypothesize
that 2D texture segmentation may be an outgrowth of the
ability to discriminate surfaces in 3D. In this paper, we in-
vestigated the relative difficulty of learning to segment tex-
tures in 2D vs. 3D configurations. It turns out that learn-
ing is faster and more accurate in 3D, very much in line
with our expectation. Furthermore, we have shown that the
learned ability to segment texture in 3D transfers well into
2D texture segmentation, bolstering our initial hypothesis,
and providing a possible explanation for the developmental
origin of 2D texture segmentation function in human vision.

1. Introduction

Detection of a tiger in the shrub is a perceptual task that
carries a life or death consequence for preys trying to sur-
vive in the jungle [1]. Here, figure-ground separation be-
comes an important perceptual capability. Figure-ground
separation is based on many different cues such as lumi-
nance, color, texture, etc. In case of the tiger in the jungle,
texture plays a critical role. What are the visual processes
that enable perceptual agents to separate figure from ground
using texture cues? This intriguing question led many re-
searchers in vision to investigate the mechanisms of texture
perception.

Beck [2][3] and Julesz [4] conducted psychological ex-
periments investigating the features that enable humans to

discriminate one texture from another. These studies sug-
gested that texture segmentation occurs based on the distri-
bution of simple properties of “texture elements”, such as
brightness, color, size, and the orientation of contours, or
other elemental descriptors [5]. Julesz also proposed the
texton theory, in which textures are discriminated if they
differ in the density of simple, local textural features, called
textons [6]. Most models based on these observations lead
to a feature-based theory, in which segmentation occurs
when feature differences (such as difference in orientation)
exist. Furthermore, psychophysical and physiological stud-
ies have shown that human texture processing may be based
on the detection of texture boundaries between heteroge-
neous textures using contextual influences via intra-cortical
interactions in the primary visual cortex [7][8].

In the current studies of texture segmentation and bound-
ary detection, texture is usually defined in 2D. However,
an interesting hypothesis arises when we ask an important
question regarding the nature of textures:What are textures,
and why did the ability to discriminate textures evolve or de-
velop? One possible answer to the question is that texture
is that which defines physically distinct surfaces, belonging
to different objects, and that texture segmentation function
may have evolved out of the necessity to distinguish dif-
ferent surfaces. Human visual experience with textures can
be, therefore, in most cases to use them as cues for sur-
face perception, depth perception, and 3D structure percep-
tion. In fact, psychological experiments by Nakayama and
He [9][10] showed that the visual system cannot ignore in-
formation regarding surface layout in texture discrimination
and proposed that surface representation must actually pre-
cede perceptual functions such as texture perception (see
the discussion section for more on this point).

From the discussion above, we can reasonably infer that
texture processing may be closely related to surface dis-
crimination. Surface discrimination is fundamentally a 3D
task, and 3D cues such as stereopsis and motion parallax
may provide unambiguous information about the surface.
Thus, we can hypothesize that 3D surface perception could
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have contributed in the formation of early texture segmenta-
tion processing capabilities in human vision. In this paper,
through computational experiments using artificial neural
networks, we investigate the relative difficulty of learning to
discriminate texture boundaries in 2D vs. 3D arrangements
of texture. We will also study whether the learned ability
to segment texture in 3D can transfer into 2D. In the fol-
lowing, we will first describe in detail the methods we used
to prepare the 2D and 3D texture inputs (Section 2.1), and
the procedure we followed to train multilayer perceptrons to
discriminate texture boundaries (Section 2.2). Next, we will
present our main results and interpretations (Section 3), fol-
lowed by discussion (Section 4) and conclusion (Section 5).

2. Methods

To test our hypothesis proposed in the introduction, we
need to conduct texture discrimination experiments with 2D
and 3D arrangements of texture. In this section, we will de-
scribe in detail how we prepared the two different arrange-
ments (Section 2.1), and explain how we trained two stan-
dard multi-layer perceptrons to discriminate these texture
arrangements (Section 2.2). We trained two separate net-
works that are identical in architecture, one with input pre-
pared in a 2D arrangement (we will refer to this network as
the2D-net), and the other in a 3D arrangement (the3D-net).

2.1. Input preparation

We prepared three sets of texture stimuli S1, S2, and
S3. Textures in S1 were simple artificial texture images
(oriented bars of orientation0, π

4 , π
2 , or 3π

4 at two different
spatial frequencies); those in S2 were more complex tex-
ture images such as crosses and circles, adapted from Krose
[11] and Julesz [12]; and those in S3 were real texture im-
ages from the widely used Brodatz texture collection [13]
(Figure 1). For the training of the 2D-net and the 3D-net,
the eight simple texture stimuli in S1 were used. For testing
the performance of the 2D-net and the 3D-net, all sets of
texture stimuli (S1, S2 and S3) were used.

To extract the primitive features in a given texture, we
used Gabor filters. Previous results have shown that Gabor
filters closely resemble experimentally measured receptive
fields in the visual cortex [14] and they have been widely
used to model the response of visual cortical neurons. A
number of texture analysis studies also used oriented Ga-
bor filters or difference of Gaussian (DOG) filters to extract
local image features [15][16][17].

We used a bank of oriented Gabor filters to approximate
the responses of simple cells in the primary visual cortex.
The Gabor filter is defined as follows [18]:

Gθ,φ,σ,ω(x, y) = exp−
x′2+y′2

2σ2 cos(2πωx′ + φ), (1)

S1

S2

S3

Figure 1. Texture stimuli. Three texture sets S1, S2,
and S3 are shown from the top to the bottom row.

whereθ is the orientation,φ is the phase,σ is the standard
deviation (width) of the envelope,ω is the spatial frequency,
(x, y) represents the pixel location, andx′ andy′ are defined
as:

x′ = x cos(θ) + y sin(θ) (2)

y′ = −x sin(θ) + y cos(θ). (3)

For simplicity, only four different orientations (0, π
4 , π

2 , 3π
4 )

were used forθ. (Below, we will refer toGθ,φ,σ,ω as simply
G.) To adequately sample the spatial-frequency features of
input stimuli, three frequency ranges (1 to 3 cycles/degree)
were used forω. The size of filter was 16× 16,σ = 16/3,
andφ = π/2. This resulted in 12 filtersGi (for i = 1..12)
for the computation of simple cell responses as shown in
Figure 2. To get the Gabor response matrixCi, a gray-level
intensity matrixI was obtained from the images randomly
selected from S1 and convolved with the filter bankGi:

Ci = I ∗Gi, (4)

wherei = 1..12 denotes the index of a filter in the filter
bank, and∗ represents the convolution operator. The Ga-
bor filtering stage is linear, but models purely based on lin-
ear mechanisms are not able to reproduce experimental data
[19]. Thus, half-wave rectification is commonly used to
provide a nonlinear response characteristic following linear
filtering. However, in our experiments, full-wave rectifica-
tion was used as in [20], which is similar to half-wave rec-
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Gabor Energy Orientation Spatial Frequency

G

i=1..12

Figure 2. Gabor filter bank. The process used to gen-
erate two orientation response matrices is shown. The
texture I is first convolved with the Gabor filters
Gi (for i = 1..12), and the resulting responses are
passed through a full-wave rectifier resulting inRi.
Finally, we get the Gabor energy matrixE(x, y), Ori-
entation response matrixO(x, y), and Frequency re-
sponse matrixF (x, y).

tification, but is simpler to implement. Full-wave rectifica-
tion is equivalent to summing the outputs of the two corre-
sponding half-wave rectification channels (see, e.g. Bergen
and Adelson [21] [19]). The final full-wave rectified Gabor
feature response matrix is calculated as

Ri = |Ci|, (5)

for i = 1..12. For each sample texture pair, we acquired
three Gabor response matrices (or maps), which were the
Gabor energy response matrixE, the orientation response
matrix O, and the frequency response matrixF . First, to
get the Gabor energy response matrixE, only one maxi-
mally responding values at location(x, y) from the twelve
response matricesRi were selected. In addition to the
Gabor energy matrix, orientation response matrix and fre-
quency response matrix were computed to avoid the loss of
orientation and frequency properties at the given location.
The orientation response matrixO had orientation index
(1 ≤ O(x, y) ≤ 4) of the filter that had maximum response
at location(x, y) out of 12 filters. The frequency response
matrix F had frequency index (1 ≤ F (x, y) ≤ 3) of the
filter that had maximum response at location(x, y) out of
12 filters. The same filtering procedure was used for both
the 2D and the 3D arrangement of textures, which will be
described below. Figure 2 shows the Gabor filter bank and
the three response matricesE, O, andF of the given texture

pair.

(a) Texture with boundary (b) Response to (a)
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(c) Response profile of (b) (d) Response profile (no-boundary)

Figure 3. Generating the 2D input set (2D pre-
processing). The procedure used to generate the
2D training data is shown. (a) Input with a texture
boundary. (b) Orientation response calculated from
(a). Only theE matrix is shown. (c) The response
profile from the 32-pixel wide area marked with a
white rectangle in (b). The three curves represent the
profiles in theE, O, andF matrices. (d) A similarly
calculated response profile in a different input texture,
for an area without a texture boundary (note the peri-
odic peaks).

To get the 2D training samples for the 2D-net, two ran-
domly selected textures from S1 were paired and convolved
with the Gabor filter bank (figure 2). Gabor energy response
matrix was acquired first, and orientation response matrix
and frequency response matrix were computed from the 12
different response matrices that were used to get the Ga-
bor energy response matrix. Each training input in the 2D
training set consisted of three 32-element vectors (say,ξ2D

k ,
wherek is the training sample index) taken from a short hor-
izontal strip (response profile) of the Gabor response ma-
trix, the orientation response matrix, and the frequency re-
sponse matrix, which resulted in a 96-element vector. A
single scalar value (say,ζ2D

k ) indicating the existence (= 1)
or nonexistence (= 0) of a texture boundary within that
strip was paired withξ2D

k . The vectorξ2D
k was taken from

a horizontal strip centered at(xc, yc) within the Gabor en-
ergy matrix, the orientation response matrix, and the fre-
quency response matrix respectively (e.g., the white rectan-
gle in figure 3b), wherexc is the horizontal center where
the two textures meet, andyc is randomly chosen within
the full height of the matrix. The Gabor energy matrix was
normalized so that each value in the matrix has the range
0 ≤ E(x, y) ≤ 5. When the two selected textures were the
same, a texture boundary will not occur at the center; and
if they were different, a texture boundary will occur. The
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number of input-target pair (ξ2D
k ,ζ2D

k ) in each class, either
boundary or no boundary, was balanced so that each class
is equally represented. Figure 3c shows an example vector
ξ2D
k when there was a texture boundary, and figure 3d a case

without a boundary.
For the training samples for the 3D-net, motion cue was

applied to simulate self-motion of an observer as shown in
figure 4. One texture from a pair of textures was overlayed
on top of the other and the texture above was allowed to
slide over the one below, which resulted in successive fur-
ther occlusion of the texture below. The texture above was
moved by one pixel 32 times and each time the resulting 2D
image (I ′j , for j = t1...t32; figure 5a) was convolved with
the oriented Gabor filter bank followed by full-wave rec-
tification as in the 2D preprocessing case (figure 5b). To
generate a single training input-target pair (ξ3D

k , ζ3D
k ) for

the 3D-net, at each time step the Gabor energy response
valueE(xc, yc), orientation response valueO(xc, yc) and
frequency response valueF (xc, yc) were collected into a
92-element vector, wherexc was 16 pixels away to the right
from the initial texture boundary in the middle, andyc was
selected randomly for each new input-target pair but re-
mained the same within the same pair (the white square in
figure 5b shows an example). Figure 5c shows an example
of such a vectorξ3D

k (note that the x-axis represents time,
unlike in the 2D case where it is space) for a case contain-
ing a texture boundary, and figure 5d for a case without a
boundary. The target valueζ3D

k of the input-target pair (
ξ3D
k , ζ3D

k ) was set in a similar manner as in the 2D case,
either to 0 (no boundary) or to 1 (boundary). When collect-
ing the training samples for the 3D-net, the above procedure
was performed with two different 3D configurations. In the
first 3D configuration, the texture on the left side was on top
of the texture on the right side with self-motion of observer
from right to left. In the second configuration, the texture
on the right was on top of the texture on the left side with
self-motion of observer from left to right. For an unbiased
training set, the same number of samples were collected for
each 3D configuration.

For a fair comparison between the 2D and the 3D ar-
rangements, 400 training samples were collected for each
combination of two different textures to make 2,400 sam-
ples with target value of 1, and the same number of samples
with target value of 0. This resulted in 4,800 input-target
samples for each case (1≤ k≤ 4,800). These 4,800 input-
target samples from each training set were then randomly
ordered during training.

2.2. Training the texture segmentation networks

We used standard multilayered perceptrons (MLPs) to
perform texture boundary detection. The networks (2D-net
and 3D-net), which consisted of two layers including 96 in-

32             1t t

... ...

t32

t1

t2

(a) Texture in 3D (b) Resulting 2D view

Figure 4. Generating the 3D input set (3D prepro-
cessing). (a) A 3D configuration of textures and
(b) the resulting 2D views before, during, and after
the movement are shown. As the viewpoint is moved
from the right to the left (t1 to t32) in 32 steps, the 2D
texture boundaries in (b) (marked by black arrows)
show a subtle variation.

put units, 16 hidden units and 1 output unit, were trained for
2,000 epochs each using standard backpropagation1. The
goal of this study was to compare the relative learnability of
the 2D vs. the 3D texture arrangements, thus a backpropaga-
tion network was good enough for our purpose. The hyper-
bolic tangent function was used for the activation function
of the hidden layer, which is defined asf(v) = a tanh(bv),
wherea = 1.7159 andb = 2

3 respectively (following [22]).
For the activation function of the output layer that consisted
of one unit, radial basis function (RBF) was used. The use
of the radial basis function in standard MLP is not common:
It is usually used as an activation function of the hidden
layer in radial basis networks, which has additional data-
independent input to the output layer. In the experiment, as
shown in the previous section, an input vector to MLP is
symmetric about the center when there is no boundary. On
the other hand, an input vector to MLP is quite asymmetric
when there is a boundary, but the mirror image of that vec-
tor should result in the same class. This observation led us
to use the radial basis function, which has a Gaussian pro-
file. Several preliminary training trials showed that the use
of the RBF as the activation function enabled both the 2D-
net and the 3D-net to converge faster (data not shown here).
For the training, the input vectors were drawn from the tex-
ture set S1. Backpropagation with momentum and adaptive
learning rate was applied to train the weights.

To determine the best learning parameters, several pre-
liminary training runs were done with combinations of
learning rate parameterη ∈ {0.01, 0.1, 0.5} and momentum
constantα ∈ {0.0, 0.5, 0.9}. MLP with each combination
was trained with the same set of inputs so that the results of

1Matlab neural networks toolbox was used for the simulations.
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Figure 5. Generating 3D input set through motion
(3D preprocessing). (a) Texture pair images result-
ing from simulated motion:I ′j for eachj = t1..t32.
(b) The response matrix of the texture pair:R3D

ij . (c)
Response profile obtained over time near the bound-
ary of two different texture images (marked by the
small squares inc). (d) A similarly measured re-
sponse profile collected over time, using a different
input texture, near a location without a texture bound-
ary (note the periodic peaks).

the experiment can be directly compared. Each training set
consisted of 280 examples, drawn fromS1 and processed by
the preprocessing procedure. The training process contin-
ued for 1,000 epochs. The MLPs with other combination of
parameters failed to converge. Based on these preliminary
training tests, we chose the learning parameters as follows:
learning rateη = 0.01, and momentum constantα = 0.5.

We also applied standard heuristics to speed up and sta-
bilize the convergence of the networks. First, each input
variable was preprocessed so that its mean value, averaged
over the entire training set, is close to zero. Secondly, adap-
tive learning rate was applied. For each epoch, if the mean
squared error (MSE) decreased toward the goal (10−4), then
the learning rate (η) was increased by the factor ofηinc:

ηn = ηn−1ηinc, (6)

wheren is the epoch. If MSE increased by more than 1.04,
the learning rate was adjusted by the factor ofηdec:

ηn = ηn−1ηdec. (7)

The constants selected above (η = 0.01, α = 0.5) were
used for the second test training to choose the optimal
adaptive learning rate factors (ηinc and ηdec). Combina-
tions of the factorsηinc ∈ {1.01, 1.05, 1.09} andηdec ∈
{0.5, 0.7, 0.9} were used during the test training to observe
their effects on convergence. The combination of factors
ηinc = 1.01 andηdec = 0.5 were chosen based on these
results.

The 2D-net and the 3D-net were trained 10 times each
with parameters chosen from the preliminary training above
(η = 0.01, α = 0.5, ηinc = 1.01, andηdec = 0.5). After
the training of the two networks, the speed of convergence
and the classification accuracy were compared. To test gen-
eralization and transfer potentials, test stimuli drawn from
the texture sets S1, S2, and S3 were preprocessed using both
2D- and 3D-preprocessing to obtain six sample input sets.
These input samples were then presented to the 2D-net and
the 3D-net to compare the performances of the two net-
works on these six sample input sets. The results from these
experiments will be presented in the following section.

3. Experiments and Results

We compared the performance of the two trained net-
works (2D-net and 3D-net), and also compared the perfor-
mance of the two networks over novel texture images that
were not used in training the networks.

3.1. Speed of convergence and accuracy on the
training set

Figure 6 shows the 3 best learning curves of each net-
work out of 10 trials during the training. The learning pro-
cesses continued for 2,000 epochs. After 2,000 epochs,
the average mean squared error (MSE) of the 2D-net was
0.0742 and that of the 3D-net was 0.0073. For the 10 trials,
the results were comparable each time (data not presented
here). The fact that the final MSEs of the three curves for
each network did not vary significantly as shown in figure 6
suggests that the number of epochs was adequate. A notice-
able difference in the two learning curves is that there are
significant fluctuations in the learning curves of the 2D-net,
which often prevented convergence of the network. These
results indicate that the 3D-net is easier to train than the 2D-
net. In other words, texture arrangements represented in 3D
may be easier to segment than those in 2D. The misclassi-
fication rate, which was computed by using a threshold of
0.5 on the output response, in the 2D-net for the 2D training
set was 11.2% and that of the 3D-net for the 3D training set
was 0.2%, thus, accuracy was also higher in the 3D-net for
the training data.
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Figure 6. Learning curves of the networks. The
learning curves of the 2D-net and the 3D-net up to
2,000 epochs of training on texture set S1 are shown.
The 3D-net is more accurate and converges faster than
the 2D-net (near 100 epochs), suggesting that the 3D
preprocessed training set may be easier to learn than
the 2D set.

3.2. Generalization and transfer

The 2D-net and the 3D-net trained with the texture set
S1 were tested on texture pairs from S1, S2 and S3. (Note
that for the texture set S1, input vectors different from those
in the training set were used.) For this testing, 500-sample
sets of 2D and 500-sample of 3D per each texture set, which
were prepared in the same manner as the training samples
sets, were used. All six sample sets were presented to the
2D-net and the 3D-net. Two methods to compare the per-
formance of the networks were used. First, we compared
the misclassification rate, which is the percentage of mis-
classification. Misclassification rates were calculated for all
12 cases (= 6 sample sets× 2 networks): Figure 7 shows
the result. The 3D-net outperformed the 2D-net in all cases,
except for the sample set from S1 with 2D preprocessing,
which was similar to those used for training the 2D-net. It is
also notable that the 3D-net outperformed the 2D-net on the
sample sets fromS2 andS3 prepared with 2D preprocessing
(third and the fifth pair in figure 7; these are basically a 2D
texture segmentation problem), where one would normally
expect the 2D-net to perform better because of the manner
in which the input was prepared.

As another measure of performance, we compared the
absolute error (= |target − output|) for each test case for
the two networks. The results are shown in figure 8. The
plot shows the mean absolute errors and their 99% confi-
dence intervals. The results are comparable to the misclassi-
fication rate results reported above. The 3D-net consistently
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Figure 7. Comparison of misclassification rates.
The misclassification rates of the different test condi-
tions are shown (white bars represent the 2D-net, and
the black bars the 3D-net). The x-axis label SnD

i mD
indicates that input seti preprocessed inn-D was used
as the test input, and them-D network was used to
measure the performance. In all cases, the 3D-net
shows a lower misclassification rate compared to that
of the 2D-net, except for S2D1 2D.

outperformed the 2D-net for the sample sets fromS2 and
S3, and the differences were found to be statistically signif-
icant (t-test: n = 500, p << 0.001). However, the 2D-net
outperformed the 3D-net for sample set fromS1 (figure 8
first pair from the left). Again, sinceS1 preprocessed in 2D
was used for training the 2D-net, this was expected from the
beginning.

4. Discussion

Since the early works of Julesz [4] and Beck [2] on tex-
ture perception, many studies have been conducted to un-
derstand the mechanisms of the human visual system un-
derlying texture segmentation and boundary detection in
both psychophysical research and in pattern recognition re-
search. In most cases their main concerns have been about
the texture perception ability of human in 2D. The work
presented in this paper suggests an alternative approach to
the problem of texture perception, with a focus on boundary
detection. First, we demonstrated that texture boundary de-
tection in 3D is easier than in 2D. We also showed that the
learned ability to find texture boundary in 3D can easily be
transferred to texture boundary detection in 2D. Based on
these results, our careful observation is that the outstanding
ability of 2D texture boundary detection of the human visual
system may have been derived from an analogous ability in
3D.

Our preliminary results allow us to challenge one com-
mon belief that many other texture boundary detection stud-
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Figure 8. Comparison of output errors. The mean
error in the output vs. the target value in each trial and
its 99% confidence interval (error bars) are shown for
all test cases (white bars represent the 2D-net, and
the black bars the 3D-net). In all cases, the differ-
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ies share. In this view, intermediate visual processing such
as texture perception, visual search and motion process do
not require object (in our context, “3D”) knowledge, and
thus perform rapidly; and texture perception is understood
in terms of features and filtering, so the performance is de-
termined by differences in the response profiles of receptive
fields in low-level visual processing. A similar point as ours
was advanced by Nakayama and his colleagues [9][10]. In
Nakayama’s alternative view on intermediate visual pro-
cessing, visual surface representation is necessary before
other visual tasks such as texture perception, visual search,
and motion perception can be accomplished (figure 9). Such
an observation is in line with our results indicating that 3D
performance can easily transfer into a 2D task. (Note that
there is yet another possibility, where all of these visual
tasks are processed concurrently at the same stage, but we
do not have enough evidence to either accept or reject such
a proposal.)

The main goal of our work was to understand the na-
ture of textures, and from that emerged the importance of
3D cues in understanding the texture detection mechanism
in human visual processing. To emulate 3D depth, we em-
ployed motion cues to provide depth. This imposes poten-
tial limitations on our work, which is that additional infor-
mation in 3D input may have become available to the 3D-
net–some form of temporal information that that 2D inputs
do not have. This can be seen as an unfair advantage for
the 3D-net, but on the other hand, the 2D-net had additional
spatial information which the 3D-net did not have, so even-
tually these two relative advantages may have canceled out.

Features
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Visual 
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Motion
Perception

(a) Traditional view

Perception
Texture

Visual 
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Surface
RepresentationFeatures

Image

(b) An alternative view

Figure 9. Two views of intermediate visual process-
ing. (a) In the traditional view, texture perception,
visual search, motion perception depend on feature
processing in early cortical areas. (b) In an alternative
view, surface representation must precede intermedi-
ate visual tasks [10]. (Adapted from [10].)

One way of addressing this issue may be to normalize (or
equalize) the information content in the 2D vs. the 3D in-
put preparation, which may allow us to more fairly assess
the differences between the two modes of texture process-
ing. Finally, another potential criticism may be that we only
used S1 for training. Would a contradictory result emerge
if S2 or S3 was used to train the networks? We are cur-
rently investigating this issue as well, but we believe our
main conclusion in this paper will hold even in different
training scenarios.

5. Conclusion

We began with the simple question regarding the nature
of textures. The tentative answer was that textures natu-
rally define distinct physical surfaces, and thus the ability
to segment texture in 2D may have grown out of the ability
to distinguish surfaces in 3D. To test our insight, we com-
pared texture boundary detection performance of two neu-
ral networks trained on textures arranged in 2D and in 3D.
Our results revealed that texture boundary detection in 3D
is easier to learn than in 2D, and that the network trained in
3D easily solved the 2D problem as well, but not the other
way around. Based on these results, we carefully conclude
that the human ability to segment texture in 2D may have
originated from a module evolved to handle 3D tasks. One
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immediate future direction is to extend our current approach
to utilize stereo cues as well as monocular cues used in this
paper.
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Development of emotional facial processing: Event-related 
brain potentials to happy and angry facial expressions in 7-
month-old infants and adults 
 
Tobias Grossmann, Tricia Striano 

 
Facial expressions are an important way to communicate emotions. Over the last 

decades, a variety of behavioral studies have shown that human infants are adept at 
discriminating a range of facial expressions. By 3 months of age, infants discriminate 
happy from angry expressions. Furthermore, there is evidence showing that infants are 
sensitive to the affective tone these expressions convey. By 4 to 6 months of age, infants 
display more positive expressions in response to happy faces and more negative 
expressions in response to angry faces. While behavioral evidence points to an early 
ability to discriminate and recognize happy and angry facial expressions, little is known 
about neural processing of facial expressions as revealed by event-related brain potentials 
and how this processing might develop over the course of ontogeny.  

Event-related brain potentials were measured in 20 adults and 20 7-month-old 
infants to assess neural processing of angry and happy facial expressions. ERPs were 
recorded while participants viewed photographs of a woman wearing either a happy or an 
angry facial expression.  

Adults’ ERPs when shown angry faces were more negative than ERPs elicited by 
happy faces as early as 250 ms after stimulus onset. This difference between the emotions 
reached its peak amplitude around 350 ms, and was statistically significant in the 300-400 
ms latency interval (F(1,19) = 20.92, p < 0.0002). In contrast to the findings with adults, 
infants’ ERPs for happy faces were more negative than ERPs elicited by angry faces as 
early as 350 ms after stimulus onset. This difference between the emotions reached its 
peak amplitude around 450 ms, and was statistically significant in the 400-500 ms latency 
interval (F(1,19) = 5.59, p < 0.03).  

In adults, angry faces elicited a more negative amplitude than happy faces. This 
replicates previous findings in adults and in children. Interestingly we found a negativity 
in infants’ ERPs distinguishing happy from angry faces. This indicates that, even by 7 
months of age, there are measurable differences in the electric brain responses 
corroborating with the ability to discriminate happy and angry emotions behaviorally. 
The negative component invoked by both expressions is similar to a negative component 
observed in previous infant studies, thought to reflect allocation of attention. In contrast 
to adults, the amplitude of the negative component was larger for happy than for the 
angry face. This suggests that 7-month-olds allocated more attentional resources to the 
happy than to the angry face. This interpretation is consistent with previous findings 
showing that infants 4 and 6 months of age look longer at happy than angry expressions. 
The finding that, in contrast to adults, infants at 7 months of age do not allocate more 
attentional resources to the angry face, suggests that experience with facial expressions 
may play a key role in the development of specialised cortical mechanisms responsible 
for processing emotional information conveyed by the face. However, it remains to be 
specified when during development the human brain begins to allocate more attention to 
angry as compared to happy facial expressions.  
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Complex cells in the primary visual cortex exhibit ap-
proximate invariance to position within a limited range.
Hubel and Wiesel (1962) assume that complex cells re-
ceive their major inputs from simple cells or simple-cell-
like subunits selective for the same orientation in different
positions[1]. Nagano & Kurata (1981) and Földiák (1991)
explain the shift invariance property of complex cells by us-
ing a modified Hebbian learning in which the modification
of the synaptic strength is proportional not to the pre- and
post-synaptic activity, but to the presynaptic activity and a
temporal average of the postsynaptic activity [2, 3].
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Figure 1. Architecture of our model. Units
in the layer E have position selective. Our
model is considered to be one in which layer
E is added to the model of F öldi ák[3].

Although postsynaptic activity seems to be sustained for
a period of time, there might be another mechanism by
which the shift invariance property is obtained. Here, we
propose a new computational model of complex cell devel-
opment based on another possible mechanism. The model
network(Fig.1) consists of three, E, S, and C, layers by
which we model excitatory cells in LGN and/or V1, and
simple cells, and complex cells in V1 respectively. Units in
the layer E are assumed to be position-selective, and units in

the layer S are line detectors for each specific location. Dur-
ing the learning phase, the network is exposed to randomly
located short oriented bars, and units in the layer C develop
its selectivity. The units in the layer C receive and learn
inputs from the layer S through Hebbian or SOM (Self-
organizing Map[4]) type connections, while anti-Hebbian
connections from the layer E to C are assumed to force the
layer C to represent aspect of the inputs uncorrelated to that
represented on the layer E. We demonstrate that units in the
layer C learns invariance to shift in input position.

Complex cell development might be explained in terms
of information separation. The input signal to complex
units carries essentially three-dimensional information, that
is the location(two-dimensional) and the orientation(one-
dimensional) of the bar. In our model, the “E” units are
position-selective, and the “S” units are both position- and
orientation-selective. When an “E” unit and a “C” unit
are activated simultaneously, anti-Hebbian connections be-
tween them becomes more inhibitory to discourage the si-
multaneous activation of these two units in the future, and
their correlation is decreased.

This works was partly supported by Grant-in-Aid (14750329,
16700232) from the Japanese Ministry of Education, Culture,
Sports, Science and Technology (MEXT).
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Information maximization in face processing
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Abstract

This presentation explores principles of unsupervised learning and how they relate to face recognition. Dependency
coding and information maximization appear to be central principles in neural coding early in the visual system. We argue
that these principles may be relevant to how we think about higher visual processes such as face recognition as well. We
first review examples of dependency learning in biological vision, along with principle s of optimal information transfer and
information maximization. Next, we examine algorithms for face recognition by computer from a perspective of information
maximization. The eigenface approach learns first and second-order dependencies among face image pixels, and maximizes
information transfer only in the case where the input distributions are Gaussian. Independent component analysis (ICA)
learns high-order dependencies in addition to first and second-order relations, and maximizes information transfer for a more
general set of input distributions. Face representations based on ICA gave better recognition performance than eigenfaces,
supporting the theory that dependency learning is a good strategy for high level visual functions such as face recognition.
Finally, we review perceptual studies suggesting that dependency learning is relevant to human face perception as well,
and present an information maximization account of perceptual effects such as the atypicality bias, and face adaptation
aftereffects.
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Finding People by Contingency: An Infomax Controller 
Approach  

Javier R. Movellan   

Abstract  

We frame social interaction as a problem in real-time system's identification and 
control. System's identification refers to the task of identifying the properties of a 
system we are trying to control. Control refers to the problem of sending an input 
sequence to a system in order to maximize expected returns with respect to 
desired goals. The brain faces a control problem when sending motor commands 
to the limbs, where it has to account for the inertial properties of the arm and the 
delays and levels of uncertainty in the efferent and afferent transmission lines. 
Riding a bicycle, shooting baskets, and playing a musical instrument are also 
control problems.  

Social interaction can be approached from the point of view of stochastic control 
theory under conditions of random delays and uncertainty much larger than those 
found when controlling non-social instruments. We illustrate this framework on 
the problem of finding people via contingency. There is strong evidence that 
infants use contingency analysis to identify other humans (Watson 1972, 1979) 
and that in fact contingency information may be more powerful than 
morphological properties of human faces (like the presence of eyes). Indeed we 
found that by ten moths of age infants used contingency information in a very 
active manner, ascertaining in a matter of seconds, whether a robot was or was not 
responsive to them (Movellan and Watson, 1987, 2002).  

We formalize the control problem in terms of a generative model in which 
observed behaviors can be produced by three different causes: (1) Self feedback 
(e.g., when we hear our own vocalization). (2) Responses from other humans that 
are related to our activity. (3) Background reponses unrelated to our activities. 
There are two possible control conditions: (1) A human is responding to us; and 
(2) Human are not responding to us.  

Given the random delays and noise typical of social interaction, the goal of the 
controller is to generate a sequence of behaviors that gather as much information 
as possible in a minimum amount of time about which of the two conditions we 
are operating under. We call this an infomax controller.  

Interestingly the controller exhibits patterns of behavior very similar to those found in 10 
month infants when interacting with a robot system for the first time.  

The controller is currently being implemented on RUBI, a social robot under 
development at our laboratory, and will be ready for demonstration at ICDL2004.  
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DEVELOPMENT OF FACE PROCESSING IN AUTISM: A LOOK INTO SPATIAL 
FREQUENCIES AND THE INVERSION EFFECT.  
C. Deruelle & C. Rondan Institute of Physiologic and Cognitive Neurosciences, CNRS, 
Marseille, France  & Laboratory of Psychology and Neurocognition, UMR 5105, CNRS, 
Grenoble, France 
This research was aimed at exploring the development of abnormal face processing strategies 
in children and adults with autism (ASD). Subjects were asked to match faces (upright or 
upside down) or chairs filtered in high (HSF, local processing) and low spatial frequencies 
(LSF, holistic processing) to non-filtered images. Results show an evolution of face 
processing strategies with age. Indeed, adults with autism rather use LSF than HSF 
information in faces, just as controls, whereas children with autism exhibit the opposite 
pattern of preference, using rather HSF. Our findings demonstrate that the processing of social 
objects such as faces possibly meet the typical pattern of performance in adults and this may 
have implications on the development of social deficits observed in this pathology. 
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A Toy-like Robot in the Playroom for Children with Developmental Disorder

Hideki Kozima1, Cocoro Nakagawa1, Yuriko Yasuda2, Daisuke Kosugi3

Fifteen children, with PDD, autism, or other develop-
mental disorder, interacted with a toy-like robot, Keepon.
This report describes our preliminary findings of how the
children changed their ways of interaction over 5-month
longitudinal observations.

1. Keepon, the Robot
Keepon is a small (12cm tall), soft (made of silicone rub-

ber), simple (yellow snowman-like) robot (Figure 1) [1].
It has two video cameras and a microphone at the nose.
Keepon can perform two types of motion: (1) expressing
its attention by orienting its face to a certain target in the
environment, and (2) expressing its emotional states, such
as pleasure and excitement, by rocking its body from left to
right and by bobbing up and down. Keepon is connected by
wireless links to a remote PC, from which a human operator
or a computer program controls the motion.

Beforehand we observed 23 normal infants interact with
Keepon. Each infant together with his/her mother interacted
with Keepon (Figure 2, left). We found from the observa-
tions that (1) one-year-olds recognized Keepon as an au-
tonomous agent, responding to its attention and emotion by
following its gaze and mimicking its gesture, and (2) two-
year-olds, as a social being to play with by showing toys,
asking questions, and stroking its head.

2. Interactions in the Playroom
We placed Keepon in the playroom, with a lot of toys

to play with, at a day-care center for preschoolers (2 to 4
years old) with developmental disorders (Figure 2, right).
Fifteen children, often with their parents and nursing staffs,
could interact with Keepon spontaneously anytime during
the group remedial session (about 3 hours). Through a se-
ries of longitudinal observations for about five months (12
to 15 sessions for each child), we observed various types of
change in the children’s ways to interact with Keepon. Here
we exemplify two cases:

• A four-year-old boy with PDD: He showed strong in-
terest from Session 1 (hereafter, S1). His touch to
Keepon got stronger through S1 to S3. After S4, the
interaction became gentle, as if Keepon was his ex-
clusive pet, and became social gradually over the sub-

1National Institute of Information and Communications Technology
(NICT), Kyoto, Japan, {xkozima, cocoron}@nict.go.jp

2Omihachiman City Day-Care Center for Children with Special Needs
(Hikari-no Ko), Shiga, Japan, 010810@city.omihachiman.lg.jp

3Kyoto University and JSPS Fellow, Kyoto, Japan, dkosugi@bun.
kyoto-u.ac.jp

sequent sessions — putting a cap on Keepon’s head
(caregiving), giving a toy cookie (pretense), mimick-
ing Keepon’s gesture, talking jargons, etc.

• A four-year-old girl with autism: She also showed
interest from S1, but did not get close to Keepon.
Through S1 to S7, she avoided being looked straight
at by Keepon (gaze aversion); however she often
looked into Keepon’s profile; the distance to Keepon
gradually got shorter. Her first touch was in S11,
since then she started social interaction including
eye-contact, putting a cap, talking jargons, etc.

3. Summary
We longitudinally observed the children’s behavior from

the view point of Keepon as their playmate. Their style
of interaction suggests how they recognize Keepon — as a
moving toy, a living creature, or a social partner. Although it
is difficult to dissociate qualitative change in their social ca-
pability from quantitative increase in their familiarity with
Keepon, this longitudinal observation gives us a lot of in-
formation beneficial to the remedial service (e.g. facilitating
interpersonal communication) as well as the psychological
research (e.g. modeling cognitive development).

References
[1] Hideki Kozima, Cocoro Nakagawa, and Hiroyuki

Yano (2004). “Can a robot empathize with people?”, Ar-
ificial Life and Robotics, Vol. 8 (to appear).

Figure 1. Keepon gazing at a human face and then at a toy.

Figure 2. Keepon interacting with a 27 m.o. girl (left),
waiting for children in the playroom (right).
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Comparing emotional expressions using eyes or mouths: a perceptual advantage in autism? 
 
A W Hendriks1, P J Benson2, M Jonkers1, S Rietberg1 (1 Department of Special Education, 
University of Nijmegen, Spinoza Building, PB 9104, NL 6500 HE Nijmegen, The 
Netherlands; 2 School of Psychology, College of Life Sciences and Medicine, King's 
College, University of Aberdeen, Aberdeen AB24 2UB, Scotland, UK) 
 
While autistic individuals are able to process many types of visual information at a level 
commensurate with their age, studies have shown that they have difficulty interpreting 
facial expressions. One reason could be that autistics suffer from weak central coherence, 
i.e. a failure to integrate parts of information into globally coherent wholes [Frith, 1989 
Autism: Explaining the Enigma (Oxford: Blackwell); Frith and Happé, 1994 Cognition 50 
115 - 132]. To test this hypothesis we presented autistic and age-, sex- and IQ-matched 
normal children with pairs of facial images of the same sex but different identities. Their 
task was to decide whether the faces showed a similar expression (experiment 1), or 
whether either solely the eyes (experiment 2) or the mouths (experiment 3) displayed the 
same emotion while ignoring the rest of the face. The second stimulus in each pair was 
digitally altered in half of the trials so that the expression of the target feature was 
incongruent with the expression of the rest of the face, e.g. happy eyes within the context of 
an angry face. Although autistics were expected to show relatively greater difficulty 
comparing whole facial expressions, we proposed that they should be better than normal 
children when judging the similarity of single expressive features and that they should be 
less adversely affected by incongruent face contexts. 
 
Overall accuracy did not differ between the autistic and control children, either when full 
facial displays were compared (exp 1) or the eyes (exp 2) or mouths (exp 3) alone were 
judged. However, reaction times in experiments 2 and 3 differed significantly: autistics 
were significantly faster than controls in judging the similarity of the emotional expression 
of eyes as well as mouths. This result indicates that autistics were better able to concentrate 
on a single feature within the faces; the finding also suggests that our autistic group was not 
perturbed by having to compare facial expressions (albeit an emotional expression of just 
single feature). Contrary to expectations, incongruent facial contexts were equally 
problematic for both the autistics and controls, causing increased error rates and response 
times.  
 
Our results suggest we may have to reconsider the remit of weak central-coherence theory 
as an explanation of impoverished facial expression perception. We discuss this new 
finding in terms of theories of emotion-deficit disorders and current evidence on atypical 
visual-information processing in autism. 
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Cognitive Development in Context: Learning to Pay Attention
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Abstract

A developing system must be able to learn new things
without forgetting what it has learned before. It should be
capable of reacting in different ways to the same stimuli in
different contexts. Context sensitive reinforcement learning,
which parallels some of the functions of the basal ganglia,
is a learning algorithm that fulfills this requirement when
the context is explicitly given. Here, we extend the algo-
rithm with the ability to identify the relevant features of the
environment that defines the context. It is suggested that this
is a critical component of an architecture for cognitive de-
velopment and we present simulation results that illustrate
the operation of the system.

1. Introduction

A developing system must be able to learn new things
without forgetting what it has learned before. It should also
be capable of reacting in new ways in new contexts. Ide-
ally, what has already been learned should be generalized
to new situations, while new learning should not interfere
in a negative way with previously learned behavior that is
still appropriate.

For this to be possible, it is essential that new and old
contexts can be distinguished in an efficient way. Other-
wise, it would not be possible for the system to know when
behaviors should be modified to fit the new situation or sim-
ply forgotten and relearned.

However, in most cases, there is no individual stimulus
in the environment that signals that the situation is new or
different. This can usually only be determined by examin-
ing several cues in combination.

and even when a single stimulus indicates a new context,
this stimulus has to be attended to influence learning.

Here, we want to develop a computational system that
can automatically learn to attend to relevant aspects of the
environment and use these to determine when they should
be used as indications of a changed context. The system

takes its starting point in behavioral data on the role of con-
text in learning and relearning.

It is yet not possible to build a large scale model of the
brain at a detailed physiological level. Too many details are
simply unknown. Instead, we strive for a model that par-
allels the brain at a systems level where the different com-
ponents of the model functionally correspond to different
brain regions, but we do not attempt to model how these re-
gions work at a neuronal level. Below, we focus on the basal
ganglia and its role in the production of context dependent
action and in the selection of contextual cues.

A task such as reaching for an object will involve several
serially connected chains of specialized motor structures.
At the same time, information will be processed in a par-
allel organization of multiple cortical, basal ganglia, thala-
mic and cerebellar structures (Salinas et al., 2000). Thus,a
model of the functional role of the basal ganglia in a motor
task must be consistent with a model of the functional role
of other specialized cortical areas which the basal ganglia
interact. This is not to say that at every stage of modeling
we need to have a complete model of the brain, but it is nec-
essary to be aware of the fact that no brain structure works
in isolation from other structures. A model of any single
structure must aim at integration with models of the other
structures.

In the case of modeling the functions of the basal gan-
glia, besides accounting for their involvement in motor
tasks, such a model should strive to be consistent with their
involvement in non-motor tasks, such as sensory decision
making, motivation, attentional and volitional modulation
of other neural structures.

Further, a model of the basal ganglia would need to be
consistent with data on impairments caused by degenera-
tive illnesses afflicting the basal ganglia, such as Parkin-
son’s disease and Huntington’s chorea. A model of this kind
would be able to provide valuable information on the inter-
action of cognitive and motor impairments of these patients.

There is always the possibility that we will find a mis-
match between a neurocognitive model and experimental
data, human or animal. This, however, need not signal a
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drawback. Instead, a mismatch can guide further empiri-
cal research and help improve the model (Hyland, 2000).
A system model of neurocognitive functioning, if based
on neurophysiological and behavioral data, will provide a
powerful instrument for analyzing experimental data and
develop hypotheses for further research. Both the results
from simulations and new experimental data will, in turn,
improve the model.

In the following subsections we describe data and mod-
els that have something to say about how learning and at-
tention interacts with context. A more detailed review can
be found in Balkenius (2000).

1.1. Learning in context

In most models of learning, context does not play a part
at all. In those models where context have a role, it is often
in the form of a dedicated input. Although such a solution is
a step forward, it neglects that in the real world stimuli and
contexts are not labeled to indicate their role in the learning
experiment.

Another problem with many learning models where con-
text appears is that it acts in the same was as any additional
stimuli. While this acknowledges that a distinction between
stimulus and context is not always easy to make, it ignores
that in many learning experiments, the roles of stimulus and
context are very different. While initial learning appears
to be mainly context insensitive, relearning makes behavior
context dependent. This has been shown in an important
experiment by Bouton (1991) where learning in one con-
text generalizes to other contexts, but extinguished behavior
reappears outside the extinction context (see also Balkenius
and Morén, 2000). This learning strategy is very power-
ful as it maximizes the generalization of learned behavior
between contexts, while still being able to differentiate be-
havior in different contexts when needed. These results im-
ply that there is a need to distinguish between stimulus and
context.

1.2. Context and attention

We have earlier proposed that a context code can be con-
structed from a sequence of attentional fixations (Balkenius,
2000). Balkenius and Morén (2000) describe a computa-
tional model that can automatically generate context codes
from sequences of attentional fixations of features in the en-
vironment. The model binds each environmental feature to
its location before all features are combined into a context
code. The selection of features was controlled by a fixed
mechanism that would scan the features of the environment
in a sequential manner.

In many cases, it would be useful if the selection of the
features that make up the context could be put under rein-

forcement control. This would potentially allow the system
to select the critical features that define the context or task
to be accomplished. The initial steps towards such a mech-
anism were described by Balkenius (2000), where it was
suggested that attentional shifts should be considered as any
other action and learned in the same way. This principle was
calledattention-as-action.

An important consequence of this principle is that
learned attention shifts will become context dependent in
the same way as other actions. Since attention controls
which stimuli are treated as parts of the context, this will
make the contexts codes themselves context dependent.

1.3. The basal ganglia

Traditionally, the basal ganglia have been considered
to be important for voluntary control and planning of
body movements (Middleton and Strick 1994; Hikosaka,
Takikawa and Kawagoe, 2000). However, through studies
of persons with impairments of the basal ganglia, such as
Parkinson’s disease and Huntington’s chorea, increasing in-
sight into the cognitive functions of the basal ganglia has
emerged. Along with the above mentioned neurodegenera-
tive disorders, research into neurodevelopmental disorders,
such as ADHD, autism and obsessive compulsive disorders
(Bradshaw 2001) has further highlighted the importance of
the basal ganglia in higher cognitive functions.

The basal ganglia operate by exerting tonic inhibi-
tion with phasic disinhibition (Kimura 1995; Hikosaka,
Takikawa and Kawagoe, 2000), i.e., they select appro-
priate behaviors rather than controlling their detailed ex-
ecution. This is probably true for both motor and non-
motor functions controlled by the basal ganglia. An ex-
ample would be the orienting response, which requires in-
tegration of information from several sensory modalities.
From this integrated information an appropriate signal is
selected, probably by processes in the basal ganglia (Red-
grave, Prescott and Gurney 1999; Hikosaka, Takikawa and
Kawagoe, 2000). The actual motor response is controlled
by the superior colliculus (SC), which receives input from
the frontal eye fields (FEF) and areas of the parietal cortex
constituting the neural correlates for selection of saccades
or attention. The role of the basal ganglia is to inhibit the
SC (Hikosaka, Takikawa and Kawagoe, 2000). This is done
though the substantia nigra (SN), which projects to the in-
termediate layer of the SC. The SN, in turn, is inhibited
by the caudate nucleus. Occasionally the SN releases the
inhibition of the SC, which results in a saccade to the con-
tralateral side. Here, the basal ganglia select to produce the
response, but the specific target of the orientation is con-
trolled by the cortical input to the superior colliculus and
not by the basal ganglia.

The output neurons of the SN or GPi show very high
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spontaneous activities. In contrast, the projection neurons
of the striatum become active only when the animal per-
forms an appropriate task, and whereas the neurons of the
putamen can be activated by simple motor tasks, complex
behavioral tasks are needed to activate the caudate. This
suggests that the neurons in this region are sensitive to the
behavioral context in which an action should or should not
be selected.

The responses of the neurons in the caudate resemble
the responses of those in the SN but with opposite signs,
changing their activity when the location of the stimuli must
be remembered or attended, or when the saccade uses the
working memory.

The function of the basal ganglia has been linked to be-
havioral learning that is sensitive to reward. The responses
of the dopamine cells appear to code for the temporal differ-
ence error between the expected and actual reward received.
Recently, the responses of dopaminergic cells in the basal
ganglia have been shown to react in a context dependent
way (Nakahara, et al., 2004).

1.4. Working memory

The basal ganglia are also involved in the manipulation
of working memory. In patients with Parkinson’s disease,
the degeneration of dopaminergic neurons projecting to the
basal ganglia leads to a difficulty in manipulating informa-
tion that is stored in working memory (Lewis, Cools et al.
2003; Lewis, Dove et al. 2004). These patients seem to
be able to maintain information over a short time span in
a verbal memory task and then retrieve it in an unmodi-
fied version. However, they seem to have difficulties in ma-
nipulating the same information. According to the authors,
this would correspond to the visuospatial tasks of execu-
tive functioning that are also considered to be particularly
difficult for the PD patients, namely tasks that involve ma-
nipulation of spatial information. One way to investigate
working memory is through continuous performance tests.

Continuous performance tests are frequently used in as-
sessments of sustained attention (Lin 1999; Oades 2000).
The CPT-AX is a continuous performance test that puts
high demands on working memory. Frank et al. (2001)
have developed an even more demanding version of the task
(Fig. 1). In the original version, the subject is presented with
a sequence of letters and is expected to respond to the letter
X if the previous stimulus was an A. In the extended ver-
sion, the subject has to respond to the X preceded by an A
within a context defined by the number 1. If the number 2
instead defines the context, the subject has to respond to the
letter Y if preceded by a B.

This calls for rapid updating of working memory, i.e., an
incoming stimulus has to be encoded. Furthermore, the con-
text 1 or 2 has to be maintained stably while interference oc-

Figure 1. The 1-2-AX task.

curs from processing of targets and distracters. Finally, the
task calls for selective updating of working memory, where
the context 1 or 2 remains stable, while the sequence of let-
ters is continuously updated.

The thalamus is tonically inhibited by the GPi/SNr and
phasically disinhibited by the firing of striatal neurons. This
functions as a gating mechanism, enabling but not causing
other functions to occur, though as mentioned earlier, the
context of the action is not defined by the disinhibition by
the striatum. Frontal neurons react momentarily to irrele-
vant stimuli, returning to the task-relevant stimuli and main-
taining these after the irrelevant stimuli have disappeared.
This intrinsic maintenance is important for working mem-
ory and robust maintenance of task-relevant stimuli.

Disinhibition by striatal firing will modulate the intra-
cellular switch of the frontal neurons, leading to an update
of current and maintained information. Thus, according
to Frank et al. (2001) stimuli will activate corresponding
frontal representations and they will be maintained if they
trigger the intrinsic maintenance switch. Those stimuli that
do not have this intracellular switch activated will decay
quickly, but will be maintained by recurrent excitation until
other stimuli are presented. This latter function is important
for learning what will be relevant to maintain.

Striatal neurons fire for a specific conjunction of environ-
mental stimuli and internal context representations through
descending projections from the cortex. Thus, striatal neu-
rons would fire in response to the encoding of a frontal rep-
resentation of the task 1-2-AX together with the incoming
of some stimulus (1 or 2) and the encoding of the sequence
of letters, enabling the response to the letters X and Y when
appropriate.

2. Toward a Model

Taken together, the data presented above suggest that the
basal ganglia is a central structure in the learning of con-
text sensitive behavior dependent on reward contingencies
whether the actions be external, such as orienting move-

192



ments, or internal, such as manipulations of working mem-
ory. We now turn to a computational model that attempts to
cover the central ideas described above. These include the
need for a context code that can be adapted to the task and
the ability to put attention under reinforcement control. The
model is based on a context sensitive reinforcement learning
algorithm and rests on the assumption that the basal ganglia
perform a form of reinforcement learning (Schultz, Dayan
and Montague, 1997, Doya,1999, 2000).

2.1. Context sensitive reinforcement learning

Like most on-line learning algorithms, the standard rein-
forcement learning algorithms are sensitive to catastrophic
forgetting (cf. French, 1999). If it first learns one task and
then another, the second learning experience is likely to in-
terfere with the first. This is especially the case when a
look-up table is used to store the value of each stimulus-
response association.

For a developing system, it is essential that new tasks
can be learned without erasing older ones. Balkenius and
Winberg (2004) developed a novel context sensitive rein-
forcement learning algorithm, ContextQ, that overcomes
this problem by using an additional input that codes for the
context in addition to the input that codes for the current
stimulus or state. The algorithm is an extension of the pop-
ular Q-learning algorithm (Watkins and Dayan, 1992) and
uses a function approximator to estimate the function,

Q(c, s, a),

which assigns a value to each actiona in states and context
c. The algorithm starts out with a zero value for all actions
and as long as the received reinforcement is larger than pre-
dicted by the Q-function, learning increases the weight of
a linear mapping between the stimulus and response. This
learning is not influenced by the context and will allow the
system to automatically generalize all learning to new con-
texts. This part of the algorithm is identical to what Sut-
ton and Barto (1998) called LAQ. The difference compared
the LAQ algorithm occurs during extinction, i. e. when
the received reinforcement is lower than expected. In this
case, the linear associator is unaffacted. Instead, a shunting
inhibition from the context to the active stimulus-response
association increases. This will make behavior learned dur-
ing extinction context sensitive. Optionally, the two modes
of learning can be mixed such that both acquisition and ex-
tinction involve both the stimulus and the context but to a
different extent.

A detailed description of ContextQ can be found in
Balkenius and Winberg (2004), where it was shown how the
algorithm could learn a number of cognitive experiments
including task-switching, a version of the Wisconsin Card

Sorting Test, and context sensitive categorization. In Balke-
nius and Björne (2004), it was applied to an attention switch
task to model impairments of attention in autism.

ContextQ, like ordinary Q-learning, is an off-policy al-
gorithm, which means that it does not need to follow its
own policy during learning (Sutton and Barto, 1998). This
is a very important property when the reinforcement learn-
ing system is used as a component in a larger architecture.
Since many different subsystems can suggest actions, it is
not always the output of the reinforcement learning system
that is used, but it should still learn the consequences of
such actions. For example, reflex actions can be triggered
directly by external stimuli and the reinforcement learning
system could listen-in to these associations and learn to pro-
duce them voluntarily.

Fig. 2 illustrates three ways to add context information
in ContextQ module. The context can either come from a
context buffer that stores a sequence of attended stimuli or
it can come from a working memory where stimuli decays
over time. Finally, it is possible that the ContextQ module
controls the context itself through an action that explicitly
makes a stimulus part of the context.

2.2. Context buffer

The simplest way to construct a context is to select ev-
ery stimulus and store them in a context buffer in such a
way that the last few stimuli are always stored. Assume that
the system encounters a stimulus sequence A, B, B. The
task is to learn that a B preceded by an A is to be ignored,
while when preceded by another B, the B should evoke a re-
sponse. Using only A and B as inputs, a reinforcement sys-
tem would behave as if responses to B were rewarded half
of the time. With ContextQ, the correct behavior would be
learned if the foregoing stimulus is used as context. In this
case the reaction to B would be extinguished in the context
of A. This would correspond to a context buffer of length 1.

This type of context processing results when the output
of the context system is used directly as context input to the
ContextQ module as shown in figure Fig. 2. The context
buffer can be implemented as a tapped delay-line (Balke-
nius and Morén, 1999), i. e. a sequence of storage units that
remembers the stimulus at the previous time steps.

2.3. Working memory decay

It is also possible to use a strategy where all stimuli grad-
ually decay in a working memory. In this case, all stimuli
are stored to some extent depending on how long ago they
were encountered. To allow the ContextQ module to con-
trol working memory, it could influence the decay rate to
make stimuli that contribute to the selection of the correct
response last longer in working memory.
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Figure 2. Three possible ways to put attention under reinfor cement control. An action "Attend!" can
be added that makes the system attend to its current input. Al ternatively, storage in working memory
can be controlled by temporal difference error to store stim uli that correlates with an error.

Let the input stimuli or context be coded inI =
〈I0, I1, . . . , Ii〉. The working memory is coded byi mem-
ory nodesm = 〈m0, m1, . . . , mi〉. To each memory node
is assigned a biasbi which codes how much each stimulus
or context input should be attended. The memory nodes are
updated according to the following equation,

mi(t + 1) = (α + bi)mi(t) + Ii

and the bias is updated according to the temporal difference
error in the ContextQ algorithm as,

bi(t + 1) = bi(t) − β∆Q(t)mi(t),

wherebi is constrained to stay within the range [0 . . . 1], and

∆Qt =
[
rt+1 + γ max

a
Q(ct+1, st+1, at+1) − Q(ct, st, at)

]
,

i. e., the temporal difference error. This corresponds to the
signal ”Store!” in Fig. 2.

The biasbi is a measure of how useful stimulusIi is and
will control how long it is stored in working memory. The
result of these equations is that the bias of any stimulus that
is positively correlated with a negative reward prediction
error will increase, thus allowing such stimuli to be stored
in working memory. In the example above where A predicts
that a response to B will not be rewarded, this would lead to
the storage of A in working memory.

The main difference between this method and the use of
a fixed context buffer is that the time interval that can be
bridged is not set by the buffer length. Fig. 2 shows two
possible inputs to a working memory module of this kind.
The input to working memory either comes directly from
the stimulus selection system or from the context module.
In the first case, it is individual stimuli that are stored in
working memory. In the second case, whole contexts are
stored.

2.4. Attention as action

Another possibility is to allow the ContextQ module to
select stimuli as part of the context by explicitly attending
to them. In this case, an additional action is included in the
system called ”Attend!” that makes a stimulus a part of the
context. This action could be learned in the same way as
other actions (Balkenius, 2000).

3. Simulations

To test the ability of the model to learn to pay attention
to stimuli that would change the reward contingencies of
actions, we ran three simulations with different conditions.
In the first simulation, the system was required to learn to
respond to an B except when directly preceded by an A. As
described above, the previous stimulus was used as context.
As expected, the model quickly learned this task and began
to distinguish between the two contexts. This simulation
was a version of one described in Winberg (2004).

In the second simulation, different distractor stimuli
where placed between the A and B. In this case, it is nec-
essary to keep the A in memory even when the distractor
appeared in the input. We first tested this task with a tapped
delay-line as context. Although the model could easily learn
this task, it is sensitive to the exact timing of the stimulus
A and B. If the inter-stimulus interval changes, it has to re-
learn the task again. Another drawback of using a tapped
delay-line is that in a more realistic situation, the amountof
stimulus data to store becomes intractable.

Fig. 3 shows the result of the final simulation, which in-
cluded the working memory mechanism. The task was as
above to respond to B except when proceeded by A. In this
simulation, however, there were two presentation of the dis-
tractor stimulus X in between each A or B. As can be seen
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in Fig. 3A, the bias for the three stimuli changes over time.
The bias for A increases while the biases for B and X de-
creases. As a result, A till be stored in working memory
while B and X will not. This is shown in Fig. 3C, where
the activation of the different stimuli in working memory
are shown during a few presentation after the system has
learned the task. The activation of A when the system
should respond to B is lower than the activation when the
response should be inhibited. This makes it possible for the
ContextQ module to learn to discriminate between the two
presentations of B. The graph also illustrates that stimulus
B and X immediately drops out of working memory and are
essentially not stored at all.

4. Discussion

We have extended an earlier model of context sensitive
reinforcement learning with the ability to control attention
and working memory. Preliminary simulations shows that
the extended architecture is able to used its control of at-
tention to explicitly store the appropriate stimuli in working
memory and use them as contextual cues.

The main component of the system was inspired by
the function of the basal ganglia in working memory and
one future goal is to bring the model closer to the actual
physiology of the basal ganglia. Another goal is to apply
the model to developmental disorders (cf. Balkenius and
Björne, 2001, 2004).
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Abstract
Any architecture for modeling cognitive development
must have several general characteristics. It must be
possible to learn complex combinations of interacting
cognitive capabilities using information derived from
the same experience stream. Learning must be
bootstrapped from experience with minimal a priori
guidance and limited external guidance during learning,
but in such a way that later learning does not interfere
with earlier learning. Learning must be possible from
single experiences. The architecture must provide an
account for the observed dissociations between the
various types of memory including semantic, episodic
and procedural memory. A connectionist architecture
with these characteristics is described.

1. Introduction
Much recent computational modeling of human

cognition concentrates on accurate modeling of the
phenomenology without regard to plausible matching
between the detailed information processes employed and
neural capabilities. An example is ACT [1], which
provides quantitative modeling of experimental
psychological data in terms of cognitive categories and
processes which are defined by psychological observation
but implemented by computer without regard to
physiology. Another approach which focuses on practical
applications is expert systems [e.g. 12] which capture the
skills of human experts in a computer. These approaches
make no effort to realistically model development of
cognitive skills. Connectionist modeling is the only
approach which makes claims to plausible modeling
both of cognitive learning and of information processes at
the neuron level [2]. However, the types of high level
learning which have been successfully modeled tend to
use restricted input and behavioural domains. For
example, Roy et al [17] model the learning of words
from visual and auditory inputs, but comment that
"…the model is limited in its ability to deal with
complex scenes…". Although Roy et al argue that their
model has the potential for modeling learning of real
cognitive processes, an issue often encountered with
connectionist learning of more complex domains is the
catastrophic forgetting problem [13] in which later
learning sometimes overwrites and obliterates prior
learning.

This paper argues that to be a plausible approach to
modeling cognitive development, a model must
demonstrate the potential to achieve a number of general
characteristics exhibited by human development. A
connectionist architecture which appears capable of these
characteristics is then described. This architecture
employs neural device algorithms with qualitative
differences from conventional connectionist algorithms.
The ability of the architecture to meet the required
general characteristics and the strong dependence of this
ability on the different device algorithms is described. In
particular, the general ability to bootstrap memory and
behaviour from experience and to use the same
information recorded during experience to support
episodic, semantic and procedural memory are described.

2. Criteria for Effective Modeling of
Cognitive Development

There are a number of sometimes overlooked
characteristics of human cognition which must be
effectively addressed by any cognitive architecture which
aims to model human development. Firstly, human
beings learn a complex combination of different types of
behaviour making use of the same experiences. For
example, experimental psychology distinguishes between
episodic, semantic, procedural and working memory and
priming [19]. However, perceptual processing on the
same stream of experience must generate information to
support all these memory types, and information initially
available to one memory type must over time become
available in suitable form to others, while still remaining
available to the original type. Thus episodic memories
can result in semantic and procedural memories while
still being accessible to episodic memory. Secondly,
humans can learn new behaviour types with minimal
interference with existing behaviours. This capability
poses problems for conventional connectionist models,
which tend to exhibit the catastrophic forgetting problem
[13]. Thirdly, humans can bootstrap their cognitive
capabilities from experience with minimal a priori
guidance. For example, genetic guidance would not be
able to specify categories of visual objects, but could
perhaps provide preliminary and general associations
between types of sensory input and types of behaviour
which would need to be corrected  and made much more
specific by experience. The feedback available following
behaviour can be reward or punishment, but not
supervision in the sense of explicit indication of targets
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in terms of internal brain information structures as is
required for connectionist supervised learning algorithms.
However, a genetically defined tendency to imitate can
make general reward and punishment feedback more
efficient. Fourthly, humans are capable of significant,
permanent learning from single experiences. For
example, given a few seconds to examine each
photograph in a set of 2500, subjects can later pick the
familiar photograph from pairs in which only one came
from the examined set at an accuracy level of 90% [20].

3. The Recommendation Architecture
Any system which must learn to perform a complex

combination of interacting features with limited
information handling resources in such a way that new
learning does not interfere with prior learning tends to be
constrained within a set of architectural bounds called the
recommendation architecture [8]. These bounds define
how the operations of the system are separated into
modules, the ways in which modules interact, and the
type of learning algorithms available to modules and
devices. For a detailed description of the design of an
electronic system implemented within these bounds, see
[9].

In the recommendation architecture there is a
primary architectural separation between a modular
hierarchy called clustering and a subsystem called
competition. Clustering defines a population of
conditions within the available sensory information space
and detects the occurrence of any defined condition. A
subset of the conditions detected at any point in time is
communicated to competition. Competition interprets
each such condition as a set of recommendations in
favour of a range of different behaviours, each with a
different weight. Competition adds the weights of each
recommended behaviour across all currently detected
conditions, and implements the most strongly
recommended behaviours. Consequence feedback
following a behaviour can change the recommendation
weights of recently active conditions into recent
behaviours, but cannot change the definition of the
conditions.

Devices in clustering learn and respond in radically
different ways from conventional connectionist device
algorithms. A clustering device permanently records a set
of similar conditions. To be recorded, a condition must
actually occur within the information available to the
device, be similar in an information sense to conditions
already recorded on the device, and at the time it occurs
the device must also be receiving signals encouraging it
to record conditions. These signals come from devices in
other modules within clustering. The device is activated
by the recording of a condition or by any subsequent
repetition of the condition. On activation a device
produces an output which is a series of activity spikes.
The average rate of spike production indicates the
number of its programmed conditions which are currently
present, and a frequency modulation of the spike rate (i.e.
bunching of spikes close to peaks in a regular

modulation frequency)  indicates the input population
within which the condition was detected. In general,
conditions will be detected by a device within a group of
inputs much more strongly if a frequency modulation is
present at the same phase on all the inputs, because
otherwise fewer activity spikes will arrive within the
time interval over which the device integrates its inputs.
As an example of this frequency modulation in practice,
if modulation is imposed on a subset of visual inputs
corresponding with an area within a closed boundary (i.e.
a visual object), only conditions within the object will
be detected and recommended behaviours will be in
response to this object. Frequency modulation also
makes it possible to detect separate populations of
conditions within two different objects in the same
physical set of devices, if different phases  of frequency
modulation are imposed on inputs from the two objects.
For a more detailed discussion of the frequency
modulation mechanism, see [10].

A device in clustering thus records a set of similar
conditions and indicates any repetition of a previously
recorded condition. This device algorithm is in strong
contrast with conventional connectionist device
algorithms, in which devices have inputs with different
weights which can be constantly adjusted, with no
guarantee of response to an exact repetition of a condition
that previously generated a response.

Devices in clustering are arranged in layers in which
the condition defining inputs to one layer come from just
one preceding layer. The first layer receives raw sensory
inputs. This arrangement ensures that all the conditions
detected within one layer are within the same range of
complexity, where the complexity of a condition is  the
number of raw sensory inputs (including duplicates) that
contribute to the condition either directly or via
intermediate conditions. The layering also means that all
the conditions detected at one time within a layer tend to
be present within a system input state at one time (such
as one visual object). Conditions within one range of
complexity may be more appropriate for a particular
behavioural function than conditions in other ranges.

The clustering device algorithm means that tight
management is required over when and where additional
conditions will be recorded. This management of change
is a major role of the modular hierarchy in clustering.
The first level of module above the device is a small area
on one device layer. The next level is a column made up
of a sequence of such areas across several layers. The next
level is an array of such columns and the next level is a
sequential block of such arrays. Each module detects a
set of conditions made up of the sum of the sets detected
by each device in the module. However, most of these
conditions are only communicated within the module
and used for change management within the module,
only a small subset are communicated to other modules.
A column module manages when conditions will be
recorded within the column and within other columns in
the same array. An array module ensures that some
conditions are detected in every input state from a
specific input domain. A block module ensures that the
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conditions detected within its constituent arrays are
consistent with each other as indicated by a tendency for
conditions in different arrays to have been active and
recorded at the same time in the past. A block module
then generates outputs in behaviourally useful ranges of
complexity to competition.

Only some arrays target outputs on to competition,
but any column within such an array can target
competition. However, only devices within a column
which detect conditions within a specific range of
complexity (i.e. are located within a specific deviec layer)
can target competition. These devices have sets of
conditions which they detect, and the sum of these sets
for a column is called the portfolio of the column.
Portfolios are important in understanding the processes
which lead to cognition.

4. Definition of Conditions and Portfolios
A vast range of raw inputs containing information

about the external environment and the internal state of
both the brain and the body are available to the brain
from the senses. A somewhat oversimplified way of
understanding the definition of information conditions is
that one condition corresponds with a specific set of these
inputs each being present to an individually specified
degree. Because conditions cannot be specified a priori,
there is a random element to the definition of conditions,
and because conditions are not changed after being
recorded, any one condition or portfolio is perceptually,
cognitively and behaviourally ambiguous. Unambiguous
meanings are only achieved in competition across
populations of conditions. However, conditions with
complexities of the same order of magnitude as visual
object perceptions will tend to be less ambiguous with
respect to categorization of visual objects than conditions
on other levels of complexity, athough no conditions on
any level correlate unambiguously with such categories.

This simple view of conditions is made
considerably more complex because a column portfolio
can be activated not only by the presence of its
conditions within sensory inputs, but also indirectly by
two other types of mechanism. One mechanism is that it
can be activated if a number of other columns are already
active which have often been active in the past at the
same time as the column. The other mechanism is that
columns can be activated if a number of other columns
are already active which have recorded conditions at the
same time in the past as the column. These indirect
activations are behaviours which must be recommended
by the already active columns into competition and
accepted. When there is simultaneous activity or
condition recording in two columns, there is a strong
recommendation weight created in competition in favour
of the activity of one column activating the other, but
this recommendation weight declines fairly rapidly with
time. However, if an indirect activation actually occurs in
the course of generating a behaviour which is followed by
positive consequences, the decline is reduced, and
frequent such occurences stabilize or increase the weight.

These indirect activation mechanisms can be viewed
as supplementing the conditions present in current
sensory inputs with other conditions which have a
significant probability of being relevant to determining
the most appropriate current behaviour. For example,
conditions which have been active in the past at the same
time as currently present conditions may contain
information about the current environment which cannot
currently be observed [7, 11].

A newly recorded condition is made up of a set of
currently active component conditions. Some of these
component conditions may be combinations of currently
present sensory inputs, and some could have been
activated by one of the two indirect mechanisms. Both
the definition of conditions in terms of sensory inputs
and the relationship between sensory inputs and the
resultant pattern of condition activation can therefore
become very complex.

Learning occurs by permanent addition of conditions
to modules on many levels including device, column,
array and block. Conditions are defined heuristically, and
there is no a priori knowledge of which higher level
modules such as arrays will require many column
portfolios, or which column portfolios will need many
device level portfolios and which devices will require
inputs from which other devices etc. Hence assignment of
column and device resources must be performed
heuristically on the basis of need. A resource
management function must therefore assign provisional
conditions to devices, devices to columns and columns
to arrays on the basis of current need.

Resource management requires two components.
One is a map of resources identifying which are
unassigned, the other is a process for identifying
appropriate connectivity [6]. Resource management is
then a periodic process during which requirements for
new resources are identified, resources are assigned, and
appropriate provisional connectivity provided.
Connectivity to support indirect portfolio activation on
the basis of simultaneous condition recording could be
efficiently provided via the resource map, at least
initially. Connectivity to support indirect portfolio
activation on the basis of prior or subsequent condition
recording would for efficiency reasons tend to continue to
be dependent on the map.

5. Behavioural Interpretation of Portfolios
Competition is made up of devices which total the

excitatory and inhibitory weights of currently active
inputs from a range of sources, and produce an output if
the total exceeds a threshold. The devices adjust their
input weights in response to consequence feedback.
Unlike the device algorithms used in clustering, these
algorithms are generally similar to the perceptron type
algorithms used in conventional connectionist networks.

The competition system is made up of components
corresponding on a one-for-one basis with all possible
system behaviours. Each component is a device or group
of devices. Some components correspond with
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behaviours which are “atomic” in the sense that the
system can implement the behaviour or not implement
it, can vary the speed and perhaps the degree with which
the behaviour is performed, but cannot change the nature
of the behaviour. An atomic behaviour could be the
contraction of an individual muscle, or genetically
programmed groups and sequences of such contractions.
Other components correspond with higher level
behaviours such as groups and sequences of atomic
behaviours, and yet higher behaviours which are groups
and sequences of such groups. At the highest cognitive
levels, behaviour is achieved by outputs from clustering
driving a sequence of competition components which in
turn activate more specific competition components. Any
very frequently occurring sequence or set of behaviours
will tend to result in a new component in competition
which receives most of the inputs from clustering and
drives behaviour more directly into atomic behaviours.

The outputs of a component are the outputs of
specific devices within the component. Because of the
use of consequence feedback within competition, such
outputs cannot have operationally complex meanings.
Only two types of operational meaning are possible. One
is a recommendation to perform the behaviour
corresponding with the component. If such an output
exits competition, it becomes a command to perform the
corresponding behaviour. Otherwise it is directed at a
range of components corresponding with more detailed or
specific behaviours within the recommended type, and
increases the probability of such behaviours being
accepted. These more detailed components could also
receive inputs directly from clustering.

The other type of operational meaning is a
recommendation against performing any behaviour other
than the component behaviour. Such outputs are directed
at competition components corresponding with different
behaviours. A high proportion of these outputs are
directed at peer components, in other words components
corresponding with different behaviours on roughly the
same level of detail.

When a condition is recorded in clustering, it can
immediately acquire a range of different behavioural
meanings either directly through recommendation
weights in competition or indirectly by incorporation in
other conditions with such recommendation weights.
Any subsequent change to the condition would therefore
result in a wide range of uncontrolled behavioral side
effects. The restrictions that conditions cannot change,
and devices can only add similar conditions, limits these
side effect much more effectively than perceptron type
algorithms [9].  

6. An electronic system with the
recommendation architecture

An electronic system with the recommendation
architecture has been implemented, and demonstrated the
capability to define portfolios from experience with no a
priori guidance, and to associate different combinations of
portfolios with different behaviours using only reward

and punishment feedback. The ability to learn with
minimal interference  with prior learning has also been
demonstrated [8, 9]. Processes within the electronic
implementation which strongly resemble cognitive
processes including category learning, learning to
activate appropriate visual information in response to
words, and activation of mental images have been
observed [9].

7. The Recommendation Architecture
cognitive model

In the recommendation architecture, information can
be accessed by four qualitatively different mechanisms.
Firstly, the actual presence of a condition within current
sensory inputs activates the substrate on which the
portfolio containing the condition is recorded. Secondly,
an activated portfolio can recommend activation of other
portfolios which have often been active at the same time
in the past, and the recommended portfolio will activate
if adequate recommendation strength is present. A variant
of this mechanism is activation of portfolios which were
often active somewhat before or somewhat after activity
in the active portfolio.

 

Block 1a    ~ visual elements Block 1b  ~ phonemes

Block 2a    ~ visual features
Block 2b  ~ phoneme 

sequences 
or letters

 Block 3a    ~ visual objects
                   (≡ word meanings)

Block 4     ~ groups of visual objects (≡ phrase meanings)

 Block 5     ~ groups of groups of visual objects 
(≡ sentence meanings)

Block 3b    ~ word sounds

Figure 1. Architecture to support cognitive processes.
Block modules detect conditions on five different levels of
complexity, with condition defining information passing
sequentially from top to bottom. The outputs of a block
indicate the detection of conditions within the same range of
complexity as the indicated cognitive category (features,
objects, groups of objects etc.) but conditions do not
correlate unambiguously with such categories. The
subdivision of levels 1 through 3 reflects different input
domains within which conditions are detected.

Thirdly, an activated portfolio can recommend
activation of other portfolios which recorded conditions
at the same time in the past. A variant of this mechanism
is activation of portfolios which recorded conditions
somewhat before or somewhat after an episode of
condition recording in the active portfolio. Indirectly
activated portfolios can in turn recommend activation of
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yet other portfolios. The fourth mechanism is
comparison of recommendation weights. The weights of
all active behaviours into each recommended behaviour
are totaled, and the behaviours with the strongest
weights are implemented.

The simplest arrangement of clustering blocks able
to support complex cognitive behaviour is illustrated in
figure 1, and examples of competition subsystems
associated with one block are illustrated in figure 2. In
figure 1, outputs from block 2a to competition indicate
the detection of portfolios with a complexity comparable
with visual features. Outputs from block 3a indicate
portfolios comparable with visual objects, outputs from
block 4 indicate portfolios comparable with groups of
objects, and outputs from block 5 indicate portfolios
comparable with groups of groups of objects. Block 4
will therefore detect portfolios in a sequence of perceptual
objects, and block 5 will detects portfolios incorporating
information derived from several area 4 outputs, in other
words portfolios containing information derived from all
members of the sequence.

Clustering 
Block

Competitive subsystems 
recommending portfolio 
activations or 
behavioural types

information 
gates

Competitive 
subsystems 
recommending 
specific 
behaviours

 Figure 2  Competitive components receiving outputs from
one sequence module. Different behavioural interpretations
are placed upon the same clustering outputs by different
components. There is competitive inhibition between and
within competitive components to limit selected behaviours
to a small, consistent set. In some cases the behaviour
accepted by a competitive subsystem is release of the
outputs from clustering which correspond with the
behaviour to either the next clustering level or to a more
detailed competition subsystem. This release behaviour is
indicated by the information gates. In other cases
competition outputs drive their corresponding individual
behaviours, either external (e.g. eye movements) or internal
(e.g. prolonging the activity of clustering neurons in
specific modules).

Ten types of competition component corresponding
with ten types of behaviour which could be
recommended by a clustering area are as follows: prolong
the activity of some currently active portfolios (for
example of a group recommending a sequence of
behaviours until the sequence is complete); activate
portfolios active at the same time in the past as the
currently active portfolio; activate portfolios containing
conditions recorded at the same time in the past as some
conditions in the currently active portfolio; activate
portfolios containing conditions recorded just before or
just after some conditions in the currently active

portfolio; synchronize the activity (i.e. phase of
modulation frequency) of several different groups of
currently active portfolios; perform a general sequence of
attention behaviours; perform a specific sequences of
attention behaviours; perform an individual attention
behaviour; speak a word; and say a phrase.

Competition receives outputs from portfolios
currently being detected by clustering. If a portfolio has
been present in the past at the same time as the
performance of a number of different behaviours, it will
have acquired recommendation weights in favour of or
against those behaviours in the component corresponding
with the behavior, depending on the consequence
feedback from those behaviours. Competition adds the
weights of all currently recommended behaviours and
selects the behaviour with the largest weight. New
portfolios are given an initial weight similar to the
weights of the most similar previously existing
portfolios, or genetically defined initial weights. If
portfolios are new and no significant recommendation
strength has been assigned in these ways, a behaviour
can be selected randomly. Such random selection can be
limited to behaviours within a behaviour type which has
already been selected. Alternatively, a behaviour can be
selected by imitation of an externally observed
behaviour.

8. Bootstrapping of memory and behaviour
Behaviours can be defined heuristically with limited

a priori guidance. Such definition will be illustrated by
describing a possible process for acquisition of simple
speech, with careful attention to the nature of the a priori
(genetic) guidance needed. Learning goes through a series
of steps generally consistent with observation of how
humans learn to speak and understand words, but the
purpose of this section is not to offer a formal model for
speech acquisition but rather to demonstrate that speech
can be acquired in the recommendation architecture
model with only limited and plausible genetic guidance.

Genetic information specifies creation of a set of
detailed competition components which drive muscle
movements contributing to sound generation. Every
possible such movement has a corresponding genetically
specified competition component, and activation of the
component results in the movement. Genetic information
also specifies the existence of intermediate competition
components which activate randomly selected sequences
of detailed components and therefore generate sounds.
Learning proceeds in a series of partially overlapping
steps.

The first step is creation of an array of portfolios in
clustering blocks 1b and 2b of figure 1 in response to
hearing sounds, at different levels of condition
complexity. Because speech is somewhat different from
other sounds, there will be a tendency for speech related
portfolios to be somewhat separate from the portfolios
created in response to other sounds. This tendency could
be reinforced by genetically determined connectivity
biases within clustering.
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The next step is generation of sounds using
intermediate competition components. Initially a
component is randomly selected after any activation of a
portfolio population in the array of sound related
portfolios in levels 1 and 2. A positive consequence
feedback is genetically programmed to be generated if the
portfolios activated in response to hearing an external
sound (i.e. not self generated) are similar to the portfolios
activated shortly afterwards in response to hearing a self
generated sound. One effect of this consequence feedback
is that the sequence of detailed components activated by
the intermediate component is fixed long term. In other
words, the presence of a sound in the environment results
in production of that sound becoming instantiated in an
intermediate component. If there is no feedback within
some period of time, the intermediate component is
reconfigured with a different randomly selected sequence
of sound generating muscle movements, or deleted. The
second effect of the consequence feedback is that the
activated portfolios acquire recommendation strength in
favour of activating the intermediate component. In other
words, the behaviour of imitating sounds which are heard
is acquired.

The next step in learning is that portfolios are
created in area 3b of figure 1 in response to sequences of
sequences of sounds which are heard. These portfolios
will correlate partially (or ambiguously) with frequently
heard sequences, and therefore with words which are
heard. Higher level competition components are defined
which activate randomly selected sequences of
intermediate components. If a self generated sound
sequence activates a portfolio population in area 3b
similar to an immediately prior population activated by
an external sound sequence, a genetically defined
consequence feedback results in the higher level
component being fixed and the active portfolios acquiring
recommendation strength in favour of activating it. Thus
the behaviour of imitating words which are heard is
acquired.

The next step utilizes a genetically programmed
tendency for the portfolios created in level 3b in response
to sequences of sounds to have recommendation strength
in favour of activation of portfolios created in level 3a in
response to visual experiences, if the visual experience
portfolios are often active at the same time as the sound
sequence portfolios. The effect is that hearing the word
will tend to activate a partial visual image of the type of
object often seen when the word was present in the past.
The portfolios making up a visual image will also
recommend any other behaviours which have become
associated with the object. In addition, the visual
experience portfolios acquire recommendation strength in
favour of activating the higher level component which
tends to be activated by the sound sequence portfolios.
The effect is that seeing the object will tend to result in
speaking the corresponding word. Consequence feedback
associated with the perceived behavior of adults in
response to activating a higher level component (i.e.
speaking a word) will affect the recommendation

strengths of active portfolios in favour of the word just
spoken.

Thus a set of genetically defined tendencies result in
relatively efficient acquisition of simple speech
behaviours. Learning does not require a priori internal
definition of cognitive categories. Genetic information
provided three types of information. Firstly, it indicates
the available range of detailed muscle movements.
Secondly, it biases initial connectivity in favour of the
types of sensory inputs and portfolio condition
complexity ranges which will most effectively drive
those behaviours. Thirdly, it defines in general terms the
circumstances in which consequence feedback will be
generated and the effects of such feedback.

9. Different Types of Memory
It has been argued that there are a number of different

memory systems in the brain, based on the observed
dissociations between different memory phenomena [19].
These sytems include semantic, episodic, procedural and
working memory. The following discussion will focus
on semantic, episodic, and procedural memory, working
memory is discussed in detail in [10].

There are two mechanisms by which information can
be recorded in the recommendation architecture. One is
permanent recording of conditions in clustering, the other
is adjustment to recommendation weights in
competition. The permanent recording of conditions
means that the system has the capability to learn  from
single experiences. In the model there will be a level of
condition recording in response to every experience, with
higher levels for experiences with higher levels of novelty
[6]. This higher level of recording in response to novelty
accounts for the high human capability to detect the
novelty or otherwise of an experience. For example,
subjects exposed briefly to a set of several thousand
photographs could a few days later distinguish between
photographs in or not in the set with 90% accuracy[20].

As discussed earlier, there are four mechanisms by
which information can be accessed in the
recommendation architecture. The use of different
combinations of these mechanisms can account for the
phenomena and dissociations between semantic, episodic
and procedural memory.

10. Episodic Memory
Episodic memory is memory of the past with a

context of what else happened at the time, in contrast
with semantic memory in which memories of facts are
detached from memories of where those facts were learned
[21]. Various types of recall experiments measure
episodic memory.

In targeted recall subjects are asked to recall
particular past events [14]. In cued recall, subjects are
given a cue which may be a word [16] or a type such as
"vivid memories" [18]. In involuntary recall, some
specific environmental stimulus such as a smell or a taste
brings a memory to mind unsought [3].
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The starting point for targeted recall in the
recommendation architecture model is hearing words
which describe an event. Portfolios are activated which
contain conditions within the sounds of the words.
Secondary populations of portfolios containing
conditions which occurred within visual and other
sensory inputs are activated on the basis that the
secondary portfolios have often been active in the past at
the same time as the primary "auditory" portfolios. A
significant proportion of the portfolios in these secondary
populations were also active during the event, and a
somewhat smaller proportion recorded conditions during
that event. Because of the words used, the proportions
are larger for the target event than for any other event.

All active portfolios have recommendation strengths
in favour of activating other portfolios which recorded
conditions at similar times in the past. Active
populations at higher levels derived from the presence of
words like "recall" have recommendation strength in
favour of accepting these types of recommendations.
Because the target event has the highest proportion of
activated portfolios in the secondary population,
acceptance of such recommendations will tend to result
in an active tertiary population with an even higher
proportion of portfolios which recorded conditions during
the target event. This process is self reinforcing,
especially if a large number of conditions were recorded
during the target event. The resultant population will be
experienced as a general re-perception of the original
event, although in general the portfolios closest to input
from the senses are not reactivated. The activated
portfolios in this population have recommendation
strength in favour of, for example, generating verbal
descriptions of the event. Use of recommendation
strength in favour of activating portfolios which recorded
conditions somewhat before or somewhat after condition
recording in currently active portfolios allows the re-
perception to be set at the beginning of the event and to
be moved through the event.

Recommendation strengths will always also be
present in favour of activating portfolios on the basis of
simultaneous past activity and simultaneous past
recording during other events. The activated population
is therefore unlikely to be an exact match for the original,
although in general the higher the level of condition
recording during the event, the greater the probability of
a close match.

Cued recall operates in a very similar fashion.
However, the initial secondary population may contain
portfolios which recorded conditions during a number of
past events. In the absence of specific indication of one
event in the verbal cue, the tertiary population will
evolve towards the event which happened to be
represented by the highest degree of condition recording
in the initial population. Events which resulted in a high
degree of condition recording across many portfolios will
tend to be the end points of this process.

Involuntary recall is the result of strong condition
recording in portfolios activated in response to a sensory
stimulus (for example, a novel smell or taste) at the same

time as strong condition recording in other portfolios in
response to some event. A later repetition of the sensory
stimulus activates the portfolios which originally
responded to that stimulus. These portfolios in turn
activate portfolios which recorded conditions at the same
time in the past, resulting in a re-perception of the event.

11. Semantic Memory
A typical way of measuring semantic memory in the

laboratory is sentence and category verification. Sentence
verification experiments measure the time for subjects to
respond with the correctness of sentences like “Is a robin
a bird” or “Is a penguin a bird”. Category verification
experiments are essentially equivalent and measure such
times for simple category-exemplar pairs like bird-robin
or bird-tree. It is found that for different members of the
same category paired with the correct category, responses
are faster for more typical category exemplars. For
example, the response to bird-robin is faster than to bird-
chicken. However, responses to clearly incorrect
category-exemplar pairs like “Is canary an animal” is
also fast [15].

The recommendation architecture model for category
verification experiments can be understood by
considering the portfolio populations activated in
response to the words indicating category and exemplar.
The portfolios activated in response to hearing the name
of the category are portfolios which have often been active
in the past when the category name was also present.
Hence they will be portfolios also present when
exemplars of the category were present, since this is the
way the category is learned. Hence the active population
is the set of portfolios which have most often been
present when different category exemplars have been
present. There will therefore be an overlap between the
population activated in response to the name of the
category and that activated in response to the name of the
exemplar. This overlap will be greater for more typical
exemplars, and very small if the exemplar is not a
member of the category. The degree of overlap is itself a
condition which can be detected and recommends for or
against identifying the exemplar as a category member. If
the exemplar is typical, overlap is substantial and its
detection is rapid. Atypical exemplars have more
moderate overlap, and more time may be required to
expand the portfolio populations to include portfolios
active at the same time in the past but slightly less often
to achieve an overlap adequate to generate the appropriate
verbal response. However, objects which are not in any
way members of the category will have negligible
overlap which again is detected rapidly. The model is
therefore in agreement with the observations of [15].

In contrast with the spreading activation model of
Collins & Loftus [4], there are no units which
correspond with concepts like categories or the features of
categories. Portfolios are groups of conditions in which
there has been a degree of randomness in the definition of
individual conditions, but conditions within one
portfolio have some similarity with each other and have
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tended to occur at similar times in the past. A portfolio
may therefore have a probabilistic correlation with many
different features and categories, with the probabilities
expressed, for example, as recommendation weights into
naming the features or categories.

12. Procedural Memory
Procedural memory is defined as the ability to

acquire skills. Observations of amnesics indicate that
such memory is at least partially dissociated from
semantic memory, since amnesics can acquire such skills
at apparently normal rates. Thus amnesics can acquire
motor skills such as mirror tracing tasks [5].

In the recommendation architecture model for
learning a skill, portfolios activated within clustering in
environments where the skill is relevant must acquire
weights in competition associated with skilled
behaviours. These portfolios will generally include both
new information elements resulting from novelty in the
environments and information elements recorded in prior
experiences. Although the new elements may be
particularly useful for recommending the new behaviours,
some skill learning would be possible using only
previously recorded elements which happen to occur in
the new environments. Thus skill acquisition could
proceed in the absence of condition recording.

13. Conclusions
The recommendation architecture cognitive model

demonstrates the general capabilities to learn complex
combinations of capabilities utilizing information drawn
from a common experience stream, to bootstrap learning
from experience with minimal and genetically plausible a
priori guidance and limited and plausible external
guidance during experience. The catastrophic interference
between new and prior learning found in other
connectionist architectures can be avoided. Significant,
permanent learning is possible in response to single
experiences. The information recording and access
mechanisms of the recommendation architecture can
provide an account for the phenomena of and disociations
between semantic, episodic and procedural memory. The
recommendation architecture thus has considerable
advantages as a starting point for modeling cognitive
development.
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Abstract

Neural networks have greatly improved how well we model
human behavior and solve complex problems.  Their success
lies in their schematic representation of model neuronal
function and organization within the brain.  Neural networks
do not  fully mimic the brain’s capacity to combine behaviors
in novel ways to solve complex problems so they cannot solve
complex problems that humans solve easily.  Hierarchically
stacked neural networks model how humans acquire complex
behavioral sequences. We present a blueprint for designing
neural networks that incorporate Commons’ Model of
Hierarchical Complexity (1998) and thus, more closely
parallel the behavioral learning process in humans with its
capacities to flexibly solve and respond to complex problems.
Commons’ Model is based on research showing that cognitive
development in humans proceeds through a series of ordered
stages.  Actions and tasks performed at increasingly higher
stages are built on each proceeding stage.  Hierarchical
stacked neural networks in our design parallel this process by
being ordered in the same way as the developmental learning
sequence outlined in Commons’ model.  The mathematical
models used within each network in a stack are based on its
developmental stage and not the logic of a task.

Using our model, we have designed a system that directs
incoming customers’ calls to correct departments in a large
organization based on customers’ oral statements and
responses to questions asked by the system.

In this system, hierarchical stacked computer neural
networks are based on Commons’ (1998) Model of
Hierarchical Complexity which models human development
and learning.  The system allows computers to mimic higher
level human cognitive processes and make sophisticated
distinctions between stimuli; and allow computers to solve
more complex problems.

Traditional neural networks are limited because they only
model neuronal function and relatively simple physiological
structures in the brain.  By failing to model the manner in
which human cognition develops, these networks are unable
to reproduce the more complex behaviors of humans and have
limited problem-solving ability.  As a consequence, they
cannot solve many problems that humans solve easily.

Theoretical Underpinnings of Commons’ Model

Humans pass through a series of ordered stages of
development.  Behaviors performed at each higher stage of
development are always more complex than those performed
at the immediately preceding stage.  Movement to a higher

stage of development occurs by the brain combining, ordering
and transforming the behavior which was at the preceding
stage.  This combining and ordering of behaviors must be
non-arbitrary.

Commons’ Model of Hierarchical Complexity

The model identifies 14 stages of hierarchical complexity
in development.  According to this model, individual tasks are
classified by their highest stage of hierarchical complexity.
The model is used to deconstruct tasks into the behaviors that
must be learned at each stage in order to build the behavior
needed to  successfully complete a task

Hierarchical Stacked Computer Neural Networks
Based on Commons’ Model

Hierarchical stacked computer neural networks based on
Commons’ (1998) Model recapitulate the human
developmental process.  Thus, they learn the behaviors needed
to perform increasingly complex tasks in the same sequence
and manner as humans. This allows them to perform
high-level human functions such as monitoring complex
human activity and responding to simple language. 

They can consist of up to 14 architecturally distinct neural
networks ordered by stage of hierarchical complexity.  The
number of networks in a stack depends on the hierarchical
complexity of the task to be performed.  The type of
processing that occurs in a network corresponds to its stage of
hierarchical complexity in the developmental sequence.  In
solving a task, information moves through each network in
ascending order by stage
    
Design of Neural Networks Based on Commons’
Model

The task to be performed is first analyzed to determine the
sequence of behaviors needed to perform the task and the
stages of development of the various behaviors.  The number
of networks in the stack is determined by the highest stage
behavior that must be performed to complete the task.
Behaviors are assigned to networks based on their stage of
hierarchical development.

Example: System to Answer Customer Calls and
Transfer Them to a Department

Features
Answers calls and based on callers’ oral statements and
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directs them to a department
Queries callers for more information 
Achieves the language proficiency of a three year-old
Asks simple questions

Design of Network
Uses 4 neural networks, N2, N3, N4 and N5. 
N2: Circular Sensory Motor Stage Network: Forms
open-ended classes
N3: Sensory Motor Stage Network: Recognizes classes
N4: Nominal Stage Network: Identifies relationships
between simple concepts and labels them
N5: Sentential Stage Network: Forms simple sentences,
constructs complex relationships and orders relationships

Processes Performed at Each Stage
Input: Front-end speech recognition system
N2: Uses inter-word intervals to group words
N3: Maps words to pretaught words central to
organizational environment
N4: Identifies relationships between words and links to
concepts
N5: Maps relationships between concepts and makes
simple queries to caller 

Output: Chooses department and checks with caller to see
if it is the correct place to send call.  Figure 1 illustrates a
stacked neural network 10 in accordance with one
embodiment of the present invention. Stacked neural
network 10 comprises a plurality of up to 14 architecturally
distinct, ordered neural networks 20, 22, 24, 26, ..., of
which only four are shown. The number of neural networks
in stacked neural network 10 is based on the number of
consecutive stages needed to complete the task assigned.
A sensory input 60 to stacked neural network 10 enters
lowest stage neural network 20. The output of each of
neural networks 20, 22, 24, 26, ..., is the input for the next
neural network in the stack.

The highest-stage neural network 26 in the stack produces
an output 62.  Each of neural networks 20, 22, 24, 26, ...,
except for the first in the stack, neural network 20, can
provide feedback 30, 32, 34, 36, 38, 40 to a lower-stage
neural network 20, 22, 24, .....   Feedback adjusts weights in
lower stage neural networks.  Neural networks in the stack 20,
22, 24, 26 ... can send a request 50 for sensory input 60 to
feed more information to neural network 20.  A neural
network can send this request when its input does not provide
enough information for it to determine an output.
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Figure 7 is a high level flow chart 200 that illustrates a
series of four major processing steps 210, 212, 214, and 216
for the second embodiment of the present invention: An
Intelligent Control System that Directs Customer Calls to the
Correct Department in a Large Organization. A front-end
speech recognition software system 220 translates customers’
utterances into words, measures the time intervals between
each word and removes articles, prepositions and
conjunctions from the utterances. Words and time intervals
between words are processed at a step 210 which performs
tasks at the Circular Sensory Motor stage/order.  At this
stage/order, open ended classes are formed.  In this step, time
intervals between the words are used to break the word
stream into contiguous word groups that reflect natural
speech segments. 

A next processing step 212, maps words in each group
produced at processing step 210 into clusters called concept
domains which represent concepts that are central to the
company’s functions. Processing step 212 uses tasks at the
Sensory-Motor stage/order.  At this stage/order, words are
identified as belonging to meaningful classes. A
processing step 214, next identifies simple relationships
between pairs of concept domains produced by process 212.
Processing step 214 uses tasks at the Nominal stage/order. At
this stage/order, simple relationships are formed between
concepts. If

 processing step 214 is unable to identify any joint concept
domains from the concept domains input from step 212, the
customer is queried for more information. The customer’s
responses are sent to the front-end speech recognition system
220 and then processed at steps 210 and 212 before being
processed at step 214. 

Once step 214 identifies joint concept domains, then a
processing step 216 maps the joint concept domains to
clusters of neurons that represent relationships between
company products and functions. This step operates at the
Sentential stage/order. At this stage/order, simple sentences
are formed, relationships between more than two concepts are
understood and relationships are ordered. A department is
competitively selected at this step based on the patterns of
activation from the mapping of joint concept domains. The
customer is queried to determine whether they would like
their call sent to this department. If the customer answers
affirmatively, a connection 226 is made to the department
selected by the system.  If they do not want this department,
the customer is queried for more information.  A response set
of their utterances 224 is sent to the front-end speech
recognition system 220.  The words produced by the speech
recognition system are input to processing step 210 and are
processed in the same manner as the customer’s initial
utterances.
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Figure 8 illustrates a stacked neural network 230 for the
second embodiment of the present invention: An Intelligent
Control System that Directs Customer Calls to the Correct
Department in a Large Organization. Stacked neural network
230 comprises a stack of 4 architecturally distinct, ordered
neural networks 240, 242, 244, and 246.  Words and the time
intervals between words are input into a neural network 240
from a front-end speech recognition system 220 that
translates customer utterances into words, computes time
intervals between words, and removes articles, prepositions
and conjunctions.

Neural network 240 performs Circular Sensory Motor
stage/order tasks that group words into contiguous word
groups based on the time intervals between words that
naturally segment speech.  Output from neural network 240
is input into a neural network 242. Neural network 242
performs Sensory-Motor stage/order tasks that map words
into concept domains that represent company functions.
Output from neural network 242 is input into a neural
network 244 that performs Nominal stage/order tasks that
identify simple relationships between pairs of concept
domains, thereby creating joint concept domains.  If no joint
concept domains are identified by neural network 244, then
a query 252 is

 output to the customer for more information. This new
information from the customer is sent to the front-end speech
recognition system 220 and then processed by neural
networks 240 and 242 before neural network 244 continues
processing the customer’s speech. Once joint concept
domains are identified in neural network 244, they are input
into a neural network 246.  It performs Sentential stage/order
tasks that map the joint concept domains to clusters
representing product/department relationships.  Based on
levels of department activation, a department is selected to be
the department most likely to satisfy the customer’s needs.  A
query 254 is then sent  the customer to ask them if they would
like to be sent to this department.  If the customer responds
“yes,” then the call is sent to the department selected by
neural network 246.  If the customer responds “no,” then the
customer is further queried.  A set of the customer’s
responses 254 are sent to the front-end speech recognition
system 220 and then processed by neural networks 240, 242
and 244 before being processed by neural network 246.  A
group of feedback adjustments 256 are sent to neural
networks 246 and 244 to adjust their weights based on the
success or failure of the stacked neural network in selecting
a department for the customer.         
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Abstract

We present a quantitative investigation on the effects of
a discrete developmental progression on the acquisition of
a foveation behavior by a robotic hand-arm-eyes system.
Development is simulated by increasing the resolution of
the robot’s visual system, by freezing and freeing mechani-
cal degrees of freedom, and by adding neuronal units to its
neural control architecture. Our experimental results show
that a system starting with a low-resolution sensory system,
a low precision motor system, and a low complexity neural
structure, learns faster that a system which is more complex
at the beginning.

1. Introduction

Development is an incremental process, in the sense that
behaviors and skills acquired at a later point in time can be
bootstrapped from earlier ones, and it is historical, in the
sense that each individual acquires its own personal history
[15]. It is well known that newborns and young infants have
various morphological (bodily), neural, cognitive, and be-
havioral limitations, e.g., in neonates color perception and
visual acuity are poor (implying a poor tracking behavior)
[14]; working memory and attention are initially restricted
(giving rise to reduced predictive abilities); motor immatu-
rity is even more obvious, movements have a lack of con-
trol and coordination (producing inefficient and jerky move-
ments).
The state of immaturity of sensory, motor, and cognitive
systems, a salient characteristic of development, at first
sight appears to be an inadequacy. But rather than being
a problem, early morphological and cognitive limitations
effectively decrease the amount of information that infants

have to deal with, and may lead, according to a theoreti-
cal position pioneered by [16], to an increase of the adap-
tivity of the organism. A similar point of view was made
with respect to neural information processing by [4]. For
instance, it has been suggested that by initially limiting the
number of the mechanical degrees of freedom that need to
be controlled, the complexity of motor learning is reduced.
Indeed, an initial freezing (i.e., not using) of degrees of free-
dom followed by a subsequent freeing (i.e., release) might
be the strategy figured out by Nature to solve the degrees of
freedom problem first pointed out by [1], that is, despite the
highly complex nature of the human body, well-coordinated
and precisely controlled movements emerge over time. In
other words, it is possible to conceptualize initial sensory,
motor, and cognitive limitations as an adaptive mechanism
on its own right, which effectively helps speeding up the
learning of tasks, and acquisition of new skills by simplify-
ing the external world of the agent.
The aim of this paper is to provide support for the hypothe-
sis that ”starting small” makes and agent more adaptive, and
robust against environmental perturbations. Other attempts
have shared explicitly or implicitly a similar research hy-
pothesis. [11], for instance, applied a developmentally in-
spired approach to robotics in the context of joint attention.
The authors showed that by having the visual capabilities
of a robot mature over time, the robot could learn faster.
The effect of phases of freezing and freeing of mechanical
degrees of freedom for the acquisition of motor skills was
examined by [8] and [2]. For a detailed review of the field
of developmental robotics see [9]. Although based on the
same research hypothesis, the present study makes at least
two novel contributions: (a) it considers the concurrent ”de-
velopmental changes” in three different systems, i.e., sen-
sory, motor, and neural; and (b) it quantitatively compares a
”developing” system to a ”nondeveloping” system.
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Obviously, an understanding of development cannot be lim-
ited to investigate control architectures only, but must in-
clude considerations on physical growth, change of shape,
and body composition, which are salient characteristics of
maturation. Given the current state of technology, however,
it is not easy to construct physically growing robots. We
propose a method to ”simulate” development in an embod-
ied artifact at the levels of sensory, motor, and neural sys-
tem. We use a high-resolution sensory system and a high-
precision motor system with a large number of mechani-
cal degrees of freedom, but we start out by simulating, in
software, lower resolution sensors (i.e. by averaging over
neighboring pixels in the camera image, or by using only
a few pressure sensors) and an increased ”controllability”
(i.e., by freezing most degrees of freedom). Over time, we
gradually increase the resolution of the sensors and the pre-
cision of the motors by successively freeing these ”degrees
of freedom” (i.e. by starting to use the ”frozen” joints) and
added neuronal units to the neural control architecture.
In the following, we present quantitative results demonstrat-
ing how a concurrent increase of sensory resolution, motor
precision and neural capabilities can shape an agent’s ability
to learn a task in the real world, and speed up the learning
process.

In the following section we introduce our experimental
setup, we then proceed to specify the robot’s task in sec-
tion 3. The neural network and how it is embedded in the
robot are described in section 4. The developmental ap-
proach is described in sections 5 and 6. The experiments
performed are described in section 7, and the results are
discussed in section 8. Finally, we point to some future
research prospects in the last section.

(a) (b)

Figure 1. Experimental setup consisting of six degrees of free-
dom robot arm, four degrees of freedom color stereo active vision
system, and a set of tactile sensors placed in the robots gripper.

2 Experimental setup

We performed our experiments by using the experimen-
tal setup shown in Figure 1. It consisted of the following
components:

• Robot arm. An industrial robot manipulator (Mit-
subishi MELFA RV-2AJ) with six degrees of freedom
(DOF). As can be seen in the Figure 1b, jointJ0
(”shoulder”) was responsible for the rotation around
the vertical axis, jointJ2 (”elbow”), joint J1 (”shoul-
der”) and jointJ3 (”wrist”) were responsible for the
up and down movements; jointJ4 (”wrist”) rotated
the gripper around the horizontal axis. The additional
DOF came from the gripping manipulator.

• Color stereo active vision system. Two frame grabbers
were used to digitalize images with a resolution of
128x128 pixels, down sampled at a rate of 20Hz.

• Sensory-motor control board. The communication
between the computer and the motor control board
that drives the active vision system and gets the tactile
information was via a USB controller based on the
Hitachi H8 chip.

• System architecture. The system architecture was
composed of two computers Pentium III/600 MHz and
the robot arm controller connected together in a private
local area network based on the TCP/IP protocol, one
computer controlled the robot arm and the other ac-
quired the tactile input as well as the visual input from
the active vision system.

Figure 2. Robotic setup performing an experiment moving an
object from the bottom-left corner of its visual field to the center
of it. The observer’s perspective can be seen on the left side, while
the robot’s perspective is shown on the right side.

3 Task specification

The task of the robot was to learn how to bring a colored
object from the periphery of the visual field to the center of
it by means of its robotic arm. It is important to note that
although it would have been possible to program the robot
directly to perform this task, our aim here is to quantify
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the effects of developmental changes on the learning perfor-
mance. We are not seeking biological plausibility, but bio-
logically inspired mechanisms of adaptive and autonomous
behavior.
At the outset of each experiment the active vision system
was initialized looking at the center of the visual scene(xc,
yc) and the position of its motors were kept steady through-
out the operation. The robot arm was placed at a random
position at the periphery of the robot’s visual field and a
colored object was put on its gripper. Once the object was
detected by the pressure sensors the robot started to learn
how to move the arm in order to bring the object from the
periphery of the visual field(x0, y0) to the center of it(xc,
yc). In other words, the eyes should teach the robot arm to
solve the task, the object was the visual stimulus and the
way to solve the task was the movement of the robot arm.
A typical experiment is shown in Figure 2. For more details
see [5, 6].

Figure 3. Neural structure and its connections to the robot’s
sensors and motors. Neuronal areas: (a) RedColorField. (b) Red-
MovementToRightField. (c) ProprioceptiveField. (d) RedMove-
mentToLeftField. (e) NeuronalField. (f) MotorField. (g) MotorAc-
tivites.

4 Neural control architecture

The components of the neural structure and its connec-
tions to the robot arm are depicted in Figure 3.

4.1 Sensory field

• Color information. Three receptor types are consid-
ered: red (r), green (g), and blue (b). A ”broadly”
color-tuned channel was created for red:

R = r − (g + b)/2 (1)

This channel yields maximum response for the fully
saturated red color, and zero response for black and
white inputs. The negative values were set to zero.
Each pixel was then mapped directly onto the 8x8 neu-
ronal units of areaRedColorField(see Figure 3a). The
activitySi of the i-th neuron of this area was calculated
as:

Si =
{

1.0 : if Ri > θ1

0.0 : otherwise
(2)

WhereRi is the value of the red color-tuned channel
for the i-th pixel; andθ1 is a threshold value.

Figure 4. Motion detection. (a) Movement was detected from
right to left. (b) Movement was detected from left to right. (c)
and (d) Motion detectors reacting only to red objects moving in the
environment.

• Motion detection. Motion detectors were created to
detect movements of red objects in the environment.
These motion detectors are based on the well-known
elementary motion detector (EMD) of the spatio-
temporal correlation type [10], a description of the
model implemented, can be found in [7]. Motion
detectors reacting to red objects moving to the right
side of the image were mapped directly to neuronal
units of the areaRedMovementToRightField(see
Figure 3b) and the motion detectors reacting to red
objects moving to the left side of the image were
mapped directly to neuronal units of the areaRed-
MovementToLeftField(see Figure 3d). Both neuronal
areas have a size of 8x8. The activities of the neurons
in these areas were calculated as:

Si =
{

1.0 : if |EMDOutputi| > θ2

0.0 : otherwise
(3)

Where Si is the activity of the i-th neuron;
EMDOutputi is the output of the motion de-
tector at position i-th; andθ2 is a threshold value.
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• Proprioceptive information. The movements of each
joint of the robot arm were encoded using eight neu-
ronal units. During the experiments the size of the
neural areaProprioceptiveField(see Figure 3c) was in-
creased. The minimum size was 8x1 when it encoded
the joint: J0, it had a medium size of 8x2 when it en-
coded the joints:J0 andJ2, and it had a maximum
size of 8x3 for encoding the joints:J0, J1, andJ2.
JointJ0 had a range of movements from -60 to 60 de-
grees, jointJ1 moved in a range from -25 to 25 de-
grees, and jointJ2 moved in a range from 0 to 100
degrees.

4.2 Neuronal field and motor field

The size of the neuronal areaNeuronalField(see Figure
3e) was 8x8 and its neuronal units had a sigmoid activation
function.
During the experiments the size of the neuronal areaMotor-
Field (see Figure 3f) was increased. The minimum size was
4x4 and the maximum was 16x16 and its neuronal units had
a sigmoid activation function whose outputs were passed di-
rectly to theMotorActivities(see Figure 3g) for controlling
the joints of the arm:J0, J1 andJ2. The size of the neu-
ronal areaMotorActivitieswas 6x1.

4.3 Synaptic connections

Neuronal units in the areasRedColorField, RedMove-
mentToLeftField, andRedMovementToRightFieldwere con-
nected retinotopically to the neuronal units in areaNeu-
ronalField. The neuronal units in the areaProprioceptive-
Field were fully connected to the neuronal units in areaNeu-
ronalField. The neuronal units in areaNeuronalFieldwere
fully connected to the neuronal units in areaMotorField,
which in turn were fully connected to theMotorActivities.

4.4 Learning Mechanism

The active neurons controlling the robot arm were ”re-
warded” if the movement of the arm brought the colored
object closer to the center of the visual field and ”punished”
otherwise. In this way the synaptic connections between
the neuronal areasNeuronalField(see Figure 3e) andMo-
torField (see Figure 3f) were changed. A learning cycle
(i.e., the period during which the current sensory input is
processed, the activities of all neuronal units are computed,
the connection strength of all synaptic connections are com-
puted, and the motor outputs are generated) had a duration
of approximately 0.35 seconds. For more details see [3] and
[5, 6].

5 Simulating development in a real robot

Because we are dealing with embodied systems, there
are two dynamics, the physical one or body dynamics and
the control one or neural dynamics. There is the deep and
important question of how the two can be coupled in opti-
mal ways. It has been hypothesized that given a particular
task environment, a crucial feature of adaptive behavior is
a balance between the complexity of an organism’s sensor,
motor, and control system (this is also referred to as princi-
ple of ecological balance) [13] and [12]. Here, we extended
this principle to developmental time, and attempted to com-
ply to it by simultaneously increasing the sensor resolution,
the precision of the motors, as well as the size of the neu-
ral structure. Such concurrent changes are thought to sim-
plify learning processes providing the basis for maintaining
an adequate balance between the complexity of the three
sub-systems, which reflects the development of biological
systems.

5.1 Increasing the motor capabilities of the robot

The development of the robot’s controllability was
achieved by an initial freezing of mechanical degrees of
freedom and gradual releasing of them. At the beginning
only joint J0 was used, during the second developmental
stage two joints were used (i.e.,J0 andJ2) and during the
third developmental stage three joints were used (i.e.,J0,
J1, andJ2).

Figure 5. Gradual Increase of the sensory resolution. From left
to right the image develops from blurred to high resolution.
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5.2 Increasing the sensory capabilities of the robot

Increasing the resolution of the cameras was achieved by
means of a gradual increase of the sharpness of a Gaussian
blur lowpass filter applied to the original image captured
by the cameras (see Figure 5(right)). Figures 5(left) and
5(center) show the result of applying a 5x5 and a 3x3 Gaus-
sian kernel to the original image respectively.
The number of pressure sensors mounted on the gripper of
the robot was also increased over time.

Figure 6. Gradual increase of the neural structure to cope with
more sensory input and with more degrees of freedom of the motor
system.

5.3 Increasing the complexity of the neural struc-
ture

In Figure 3 an overview of the neural network and its
connections to the sensory-motor system is given. The neu-
ral network was gradually enhanced to cope with more sen-
sory input and with more degrees of freedom of the motor
system by (a) adding eight neuronal units to the areaPro-
prioceptiveField(see Figure 3c) in order to encode another
DOF and (b) making the size of the neuronal areaMotor-
Field (see Figure 3f) four times larger. The new weights
were initialized randomly and the old weights were kept at
their current values in order to preserve the previous knowl-
edge acquired by the robot. The process is shown in Figure
6 and summarized in Table 1.

6 Developmental schedule

Development, in contrast to mere learning, implies on
the one hand changes in the entire organism (not only

Figure 7. Configuration of the sensory, motor and neural com-
ponents of the robot through the developmental approach. From
top to bottom: DS-1 (immature state), DS-2 (intermediate state)
and DS-3 (mature state).

the neural system) over time, and on the other hand a
long-term perspective. The robot’s movements were con-
tinuously shaped by the aforementioned learning mecha-
nism, and “developmental” changes were triggered by the
robot’s internal performance evaluator (see definition of in-
dex “P” for the robot’s task performance in Section 7). Such
changes consisted in advancing the present developmental
stage (DS-i) to the next one. We defined a set of three dif-
ferent developmental stages (DS) in which the robot ”grew
up” as follows:

6.1 Developmental stage number 1 (DS-1)

At this stage, the sensory input to the robotic agent’s
neural structure consisted of a blurred, low resolution
image (a 5x5 Gaussian kernel was applied to the original
image captured by the cameras, see Figure 5(left)), and the
activity of one pressure sensor. The neural network had
286 neuronal units and 13,920 synaptic connections, and
controlled one single degree of freedom (i.e., jointJ0).
This developmental stage corresponds to the ”immature”
state of the robot. See Figure 7(DS-1).

6.2 Developmental stage number 2 (DS-2)

At this stage the robotic agent consisted of a medium
level blurred image (a 3x3 Gaussian kernel was applied
to the original image captured by the cameras, see Figure
5(center)), two pressure sensors, two DOF (i.e., joint
J0 and J2), and the neural network had 342 neuronal
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units and 17,792 synaptic connections. This corresponds
to the ”intermediate” state of the robot. See Figure 7(DS-2).

6.3 Developmental stage number 3 (DS-3)

At this stage the robotic agent consisted of the full high
resolution image from the cameras (see Figure 5(right)),
four pressure sensors, three DOF (i.e.,J0, J1 and J2),
and the neural network had 542 neuronal units and 31,744
synaptic connections. This corresponds to the ”mature”
state of the robot. See Figure 7(DS-3).

6.4 Control setup

The control setup had the same configuration of the fully
matured robotic agent at stage number 3.

The schedule on how the robot was changed over time
was determined by the learning mechanism, every time that
the robot was considered to have learned to solve the task its
configuration was changed moving from one developmental
stage to the next one. This was achieved as follows:

• The resolution of the camera image was increased.

• one or two pressure sensors were added.

• another degree of freedom came into operation and the
size of the neuronal area: ”ProprioceptiveField” (see
Figure 3c) was increased in 8 neuronal units.

• the size of the neuronal area: ”MotorField” (see Figure
3f) was increased by a factor of four, the new weights
were initialized randomly and the old weights were
kept at their current values in order to preserve the pre-
vious knowledge acquired by the robot.

Figure 7 presents a summary of the configuration of the
robot at each developmental stage. The number of neuronal
units in each neuronal area at each developmental stage can
be found in Table 1.
Through this simulated development (from DS-1 to DS-3)
the initial setup with reduced visual capabilities, noisy mo-
tor commands, low number of degrees of freedom, a few
pressure sensors and a neural control architecture with a
reduced number of neuronal units, was converted into an
experimental setup with good vision, larger number of de-
grees of freedom, larger number of pressure sensors and a
neural control architecture with a sufficient number of neu-
ronal units.
At developmental stage number 3, the robotic agent reaches
the same sensory, motor and neural configuration than the
control setup. At this point, their performances could be

Table 1. Neural structure at each developmen-
tal stage

Neuronal
Area stage 1 stage 2 stage 3

RedColorField 64 64 64
RedMovementToRightField 64 64 64
ProprioceptiveField 8 16 24
RedMovementToLeftField 64 64 64
NeuronalField 64 64 64
MotorField 16 64 256
MotorActivites 6 6 6

Total neuronal units 286 342 542

compared to see whether the learning was affected or not
by the developmental approach described above.

7 Experiments and results

Figure 8 shows a typical experiment where the robot
learned to move the object from the periphery of its visual
field to the center of it by means of its robotic arm. To
evaluate the change of the robot’s task performance over
time, at each time stepi, we computed the cumulated
distance covered by the center of the object projected onto
one of the robot’s cameras (xi, yi):

Ŝ =
N−1∑

i=0

√
((xi+1 − xi)2 + (yi+1 − yi)2) (4)

Thus, (x0, y0) is the initial position of the object as per-
ceived by the robot, and (xN , yN ) = (xc, yc) is the center
of the robot’s visual field (assuming that the robot learns to
perform the task).
The shortest possible path between (x0, y0) and (xc, yc) is
defined as:

S =
√

((x0 − xc)2 + (y0 − yc)2) (5)

By usingS andŜ, we defined an index for the robot’s task
performance:

P =
S

Ŝ
(6)

The closerP is to 1, the more straight the trajectory, and
therefore the better the robot’s behavioral performance.

Figure 9 shows how the robot’s behavior improved over
time for the last part of the experiment number 1 (see Figure
8 interval d.) and gives the performance measure over time.
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(a) (b)

(c) (d)

Figure 8. Experiment number 1. Learning to move a colored
object from the upper left corner of the visual field to the center of
it. Position of the center of the object in the visual field during the
learning cycles in the interval (a) [1, 400]. (b) [401, 800]. (c) [801,
1200]. (d) [1201, 1602].

A total of 15 experiments were performed with two types
of robotic agents: one subjected to developmental changes
(i.e., DS-1, then DS-2 and finally DS-3), and one fully de-
veloped since the onset (control setup). The results clearly
show that the robotic agents that followed a developmen-
tal path took considerably less time to learn to perform the
task. These robotic agents started with the configuration
of the developmental stage number 1 and learned to solve
the task during the learning cycle483 ± 70 (where± indi-
cates the standard deviation), then they were converted to
robotic agents with a configuration as described by the de-
velopmental stage number 2 which subsequently learned to
solve the task around the learning cycle1671± 102 and fi-
nally they become to be in the developmental stage number
3 (with the same configuration than the control setup) and
solve the task around the learning cycle4150± 149 (this is
a cumulative value).
The control setup agents with full resolution camera images,
four pressure sensor, three DOF (i.e.,J0, J1 andJ2), and
a neural network with 542 neuronal units (randomly initial-
ized synaptic connections) learned to solve the task around
the learning cycle7480± 105.
In other words, a reduction of about 44.5 percent in the
number of learning cycles needed to solve the task can be
observed in the case of robotic agents that followed a de-

(a) (b) (c)

(d) (e) (f)

Figure 9. Robot’s internal performance evaluator“P” during
the learning cycles in the interval (a) [1232, 1266],P=0.2898; (b)
[1313, 1340],P=0.3574; (c) [1370, 1393],P=0.5114; (d) [1438,
1455], P=0.5402; (e) [1502, 1519],P=0.6569;(f) [1565, 1582],
P=0.9176. (see Figure 8d).

velopmental approach when compared to the control setup
agents.

8 Discussion and conclusions

We set out to investigate if the immaturity of sensory,
motor, and neural system, which at first sight appears to be
an inadequacy, might speed learning and task acquisition.
In other words, we hypothesize that rather than being a
problem, immaturity might effectively decrease or even
eliminate excessive information and its potentially detri-
mental effects on learning performance.
This might be indeed the case as shown by the results
presented in this paper. A system starting with low res-
olution sensors and low precision motor systems, whose
resolution and precision are then gradually increased during
development, learns faster than a system starting out with
the full high resolution high precision system from scratch.
For this particular case, by employing a developmental
approach the learning was speeded up by 44.5 percent. To
our knowledge this is the first time that this point is actually
shown in a quantitative way.
There is a trade-off between finding a solution following a
developmental approach and the potentially better solution,
when starting out from the full high resolution high preci-
sion system from scratch.
Important is to keep in mind that the motor abilities should
be increased gradually with the sensor abilities, since this
significantly reduces the learning problem.
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9 Future research

We will add proprioceptive information about the posi-
tion of each motor of the active vision system and one pos-
sible task for the robot would be to not only bring the object
to the center of the visual field, but also to normalize the size
of the object in the camera image (i.e., a big object would
be presented by the arm to the cameras further away than
a smaller one) providing the robot with an ”Embodied con-
cept of size”. In a future set of experiments we will put the
developmental schedule under the control of an Artificial
Evolutionary System.
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Abstract

This paper presents a theory of developmental mental ar-
chitecture for robots, motivated by neuroscience. Six types
of architecture are presented, from the observation-driven
Markov decision process as Type-1. From Type-1 to Type-6,
the architecture progressively becomes more complete to-
ward the necessary functions of autonomous mental devel-
opment. Properties of each type are presented.

1. Introduction

A computational system can be specified at one of the
four levels of detail: (1) constraint, (2) architecture, (3) al-
gorithm, and (4) program, with increasing order of detail
from one to the next. Studies in psychology often address
issues at the constraint level while many engineering pa-
pers discuss systems at the algorithmic level. This paper
deals with the architecture level. Mental architecture is
a challenging and important subject, but there have been
relatively few systematic (agent-wise) investigations. The
working of the mind is hard to understand without under-
standing autonomous mental development (AMD). Both are
hard to understand without investigating mental architecture
in a mathematically rigorous way.

Supervised and reinforcement learning, based on the
Markov Decision Process (MDP) architecture (single- or
multi-level), enables a robot to learn autonomously while
the environment (including humans) provides labels [11] or
rewards [7, 13]. However, the MDP architecture, as ex-
plained in the following sections, has fundamental limita-
tions that prevent them to be effective for the developmental
robots described in [19].

Several alternative general-purpose architectures have
been proposed. Major remarkable ones include Soar pro-
posed by Laird, Newell & Rosenbloom [9], ACT-R by An-
derson [2], and the architecture by Albus [1]. Soar and
ACT-R incorporated many useful concepts that are neces-

sary for human intelligence. Albus’ architecture outline is
motivated by neural architecture. The subsumption archi-
tecture proposed by Brooks [3] is a biologically motivated
architecture component well suited for what is now known
as the behavior-based approach.

The architecture models discussed above do not di-
rectly address perception, such as vision and audition.
Neisser [10] pointed out that any model of vision that is
based on spatial computational parallelism alone is doomed
to failure. He proposed a two-stage visual process which
consists of a pre-attentive phase followed by an attentive
phase. Feldman & Ballard [5] proposed a “100-step rule:”
A biologically plausible algorithm for immediate vision
(one that does not involve slower deliberate thinking) can
require no more than 100 steps. John Tsotsos’ study [14] on
the complexity of immediate vision proposed a coarse archi-
tecture for a biologically motivated general purpose vision
system (for immediate vision). All these architectures are
nondevelopmental in the sense that the information proces-
sor is not generated through real-time interactions with the
environment.

Recently, there has been an onset of efforts on compu-
tational studies of autonomous mental development (e.g.,
the workshop report in [20]). There is a lack of studies
on the developmental mental architecture. This paper deals
with this important issue. It does not describe developmen-
tal algorithms that use such architecture, but there has been
experimental systems (e.g., [16]) with algorithm detail that
support some architecture models described here. Studies
of actual experimental systems cannot replace studies on
architecture since the former does not provide properties of
alternative architectures.

The history of studies on mental architecture has shown
that this subject is hard to study and challenging to under-
stand. This paper does not mean to solve all the problems
and answer all the questions about this subject. It is a the-
oretical step toward the goal. In the following sections, I
introduce a series of architectures, from simple to complex,
along with the associated properties.
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Figure 1. The Type-1 architecture of a multi-sensor multi-
effector agent: Observation-driven Markov decision pro-
cess. In the temporal sensory and effector streams, each
square denotes a receptor (e.g., pixel) or motor and verti-
cally aligned squares form a time frame. The Type-1 archi-
tecture takes the entire image frame without applying any
mask. The block marked with L is a set of context states
(prototypes), which are clusters of all observed context vec-
tors l(t).

2. Type-1: Observation-driven MDP

Definition 1 The internal environment of an agent is the
brain (or “the central nervous system”) of the agent. The
external environment consists of all the remaining parts of
the world, including the agent’s own body (excluding the
brain).

Definition 2 An external sensor Se and an internal sensor
Si are sensors that sense the external and internal environ-
ments, respectively. An external effector Ee and an internal
effector Ei are effectors that act on the external and internal
environments, respectively.

Fig. 1 illustrates a multi-sensor multi-effector model of
agent. The agent A(t) operates at equally spaced discrete
time instances t = 0, 1, .... We assume that an image is pro-
duced at each time instance by the sensor, independent of
the sensing modality, visual, auditory, touch, etc. Without
loss of generality, we assume that the agent has two exter-
nal sensors and two external effectors. Each external sensor
Sei, i = 1, 2, senses a random multi-dimensional sensory
frame xe(t) = (xe1(t), xe2(t)) at each time instance t and
the sensed signal is fed into the agent. Each external effec-
tor Eei, i = 1, 2, receives from the agent an effector frame
ae(t) = (ae1(t), ae2(t)) at each time instance t. Note that
we change a variable of a vector to its subscript (e.g., change
x(t) to xt) when it is convenient.

Definition 3 (MDP) The Markov decision process (MDP)
is as follows. Suppose S = {1, 2, ..., n} is a set of n pre-
defined symbolic states that is used to model a part of the
world. The state st at time t is a random variable taking
one of the values in S. Its prior probability distribution is
P (s0). The action at is the action of the agent at time t. Let
Ht be the random history from time t = 0 up to time t − 1:

Ht = {st−1, st−2, ..., s0, at−1, at−2, ..., a0}.

If its conditional state transitional probability P (st | Ht)
satisfies

P (st | Ht) = P (st | lt)

where lt is the short last k frames of the history

lt = {st−1, st−2, ..., st−k, at−1, at−2, ..., at−k},

we call it the k-th order MDP [7, 13].

In many applications, the state of the world is not directly
observable by the agent, or observable but with noise.

Definition 4 (Partially Observable MDP) If the state st

of the world is not totally observable to the agent. Instead,
there is an observation xt at time t that depends on the state
st by an observation probability P (xt | st), the process is
called partially observable MDP or POMDP [7, 13] (or
HMM [11]).

In contrast, consider the following observation driven
Markov Decision Process.

Definition 5 (Type-1) Let xt ∈ X and pt ∈ P be the ob-
servations and outcome covariates (i.e., random vectors) at
time t, respectively. Let Ht be the random vector of the
entire history:

Ht = {xt, xt−1, ..., x0, pt−1, ..., p0}.

If its state transitional probability P (st | Ht) satisfies

P (pt | Ht) = P (pt | lt)

where lk is the last k observations:

lt = {xt, xt−1, ..., xt−k , pt−1, ..., pt−k}

as shown in Fig. 1, we call the process as the k-th order
Observation-driven MDP (ODMDP) [4]. The Type-1 men-
tal architecture is a k-th order ODMDP.

In the developmental ODMDP, the random observations in
lt across time t = 0, 1, ..., t are the source from which the
agent automatically generates states in the form of clusters
l ∈ L, where L consists of all possible observations of the
last contexts L = {lt | 0 ≤ t}. The predicted consequence
pt consists of predicted action at and the predicted value vt,
pt = (at, vt).

The following are the major differences between a
POMDP (or HMM) and an ODMDP:
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1. The POMDP is world-centered, where each state cor-
responds to an object or event of the world (e.g., a cor-
ner). The ODMDP is mind-centered (from sensors),
where each state corresponds to an observation from
the environment (e.g., a view of the corner with other
background objects).

2. The states st of POMDP are hand-specified but the
states of ODMDP can be automatically generated (de-
veloped) on-the-fly. With the POMDP, the mean of
each state must be specified so that the initial estimates
of the three probability distributions can be provided.

3. In the POMDP, there are two layers of probability:
the state transition probability P (st | xt, st−1) and
the state observation probability P (xt | st), while the
observation-driven MDP has only one layer of prob-
ability: P (pt | lt), making a more efficient learning
algorithm possible.

Higher cerebral cortices realize the regressor R. It is a great
challenge to incrementally generate R from real-time ex-
perience (cortical development). We implemented the re-
gressor R using the Incremental Hierarchical Discriminant
Regression (IHDR) [18, 17]. Given any observed (last) con-
text l(t), the regressor R produces multiple consequences
(primed contexts) p1(t), ..., pk(t) having a high probability:

{p1(t), ..., pk(t)} = R(l(t)). (1)

Thus, the regressor R is a mapping from the space of the
last context L to the power set of P :

R : L 7→ 2P . (2)

R is developed incrementally through the real-time experi-
ence.

The value system V (t) (called motivational system in
neuroscience [8]) selects a desirable context from multiple
primed ones:

V (R(l(t))) = V ({p1(t), p2(t), ..., pk(t)}) = pi(t) (3)

where 1 ≤ i ≤ k and k varies according to experience.
The value function selects the best consequence pi(t) that
has the best value vi(t) in pi(t) = (ai(t), vi(t)): i =
argmax{v1(t), v2(t), ..., vk(t)}. We applied the real-time
Q-learning algorithm [15] to estimate the value vi of each
consequence pi(t), i = 1, 2, ..., k, by handling delayed re-
wards [16]. Therefore, the value system V is a mapping
from the power set of P to the space of P :

V : 2P 7→ P . (4)
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Figure 2. Progressive additions of architecture compo-
nents from Type-2 to Type-5. Type-2: adding T and Ei1.
Type-3: Adding M and Ei2. Type-4: Adding Si and
primed sensation. The block marked with D is a delay
module, which introduces a unit-time delay. Type-5: De-
velopmental T , R, M and V .

3. Type-2: Observation-driven Selective MDP

The Type-1 mental architecture is sensory nonselective
in the sense that it is not able to actively select a subpart
of relevant information from the sensory frame (intra-modal
attention) or to attend a particular modality but not the other
(inter-modal attention).

Given a d-dimensional input vector x, the attention can
be modeled by an attention mask m, where m is a d-
dimensional vector whose elements are either 0 or 1. Sup-
pose that the input vector is x = (x1, x2) and the mask
is m = (m1, m2). Then the corresponding attended input
vector is x′ = x ⊗ m = (x1m1, x2m2), where ⊗ denotes
vector pointwise product. Not all the masks are admissi-
ble. For example, the set of admissible masks consists of
circles with different radiuses ρ at different center positions
(r0, c0) of the image frame. Then, the attention selection
effector has three degrees of freedom: (r0, c0, ρ).

Definition 6 (Type-2) The Type-2 mental architecture is a
Type-1 architecture, with the addition of an attention selec-
tor

T : Y ×Ai 7→ L,

as shown in Fig. 2, where Y is the space of all possible pre-
attention contexts Y = {l(t) | 0 ≤ t}, Ai is the space of
all possible attention selections for T , and L is the space of
attention-masked last contexts.
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In order to investigate the properties of different archi-
tectures, we define a concept called higher architecture.

Definition 7 (Higher architecture) Given a set D of tasks,
we say that a developmental architecture A2 is higher than
another developmental architecture A1, if given the same
teaching environment E, the architecture A2 requires sta-
tistically fewer teaching examples than A1, expected over
the environment E and over the tasks in D.

As a convention, we regard environment as part of the spec-
ification of a task. For example, a task is more challenging
if the environment of the task execution is uncontrolled.

Theorem 1 (Existence of higher architecture) There is
at least one class D of tasks and the associated teaching
environment E in which the Type-2 architecture is higher
than the Type-1 architecture.

Due to the limit of space, here only a sketch of proof is pro-
vided. Construct a set D of tasks whose goal is to classify
sensory information in set C (e.g., human bodies). Without
loss of generality, assume that at any time, only one of the
attention squares of sensor Se1 contains an element (e.g.,
human body) in C and the other window does not (e.g., nat-
ural background that is free of human bodies). The Type-2
architecture enables the teacher to teach the agent to pay
attention to Se1, but the Type-1 architecture cannot.

Clearly, the major rule of attention is to generalize better
in new settings. E.g., in order to understand new settings
where a familiar human face appears in new backgrounds,
the agent architecture must enable the agent to pay attention
to the human face and the background components sepa-
rately. The higher architecture enables better generaliza-
tion, but requires additional skills (e.g., attention selection).
A higher architecture typically requires more sophisticated
learning.

4. Type-3: Observation-driven Selective Re-
hearsable MDP

The Type-2 architecture does not have a motor mapping
M . Therefore, it cannot autonomously rehearse an action
sequence to evaluate its consequences without actually car-
rying out the action sequence. The rehearse is autonomous
in that there is no pre-defined program segments that spec-
ify when and how to rehearse.

Definition 8 (Type-3) The Type-3 mental architecture is a
Type-2 mental architecture, with the addition of an action
releaser M :

M : P ×Ai 7→ P ,

as shown in Fig. 2, where P is the space of all possible
predicted consequences, Ai is the space of all possible at-
tention selections for M .

The action releaser M is a special case of the more general
motor mapping (corresponding to the motor cortex) which
also generates representation for frequently practiced ac-
tion sequences (e.g., using the principal component anal-
ysis PCA or independent component analysis ICA) so that
smooth action sequences can be generated.

With a traditional MDP with hand-designed states, it is
possible to compute all the possible next states and perform
planning. The Q-learning method uses the estimated action
value Q(s, a) of action a at state s to select the best action
a∗ = maxa∈A Q(s, a), from the set A of all the possible
actions. This best next action a∗ maximizes the expected
rewards in the future. This kind of approach has two fun-
damental problems. First, the value system is rigid. No
matter what value model is used (finite horizon, time dis-
count model, etc.), the agent cannot autonomously change
the way the value is determined [7, 13]. For example, if
the time discount model is used, the agent is short-sighted.
It prefers small rewards in the near further to faraway but
important reward. Second, the agent is not able to learn to
predict events (not just value) using the learned experience.
For example, fed well and sleep well can be a reasonable
goal for a human infant, but a human adult has a more so-
phisticated value system.

The Type-3 architecture does not suffer from these limi-
tations. However, as long as the predicted action (e.g., drop
a cup) is released, the effect that it causes to the external
world will result (the broken cup). Can we design an archi-
tecture that enables the robot to autonomously “consider”
and “plan” a significant amount of time ahead before it re-
leases the action? The next type makes it possible.

5. Type-4: Observation-driven SASE MDP

Type-4 architecture is Self-Aware and Self-Effecting
(SASE). The term “self” here means the brain, instead of
the body of the agent.

Definition 9 (Awareness) The awareness of a task b in an
(internal and external) environment E by an agent A is the
capability of the agent to (1) sense various context states s

of task b from E and (2) recall the predicted multiple con-
texts (primed contexts) p = R(s) using the regressor R.

By definition, the agent must use its sensors, the entry
point of its sensory architecture (the input of T ), to sense
the contexts. In the above definition for awareness, we con-
sider a particular b and an environment E. This is because
any awareness has a scope. A person who is aware of the
boiling temperature of water in a domain (e.g., in a normal
environment) may not necessarily be aware of the boiling
temperature of water in another domain (e.g., lower in a
low pressure environment). With the above definition, we
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are ready to address the issue of self-awareness and self-
effecting.

Theorem 2 (Necessary conditions of self-awareness)
Suppose an agent is aware of its mental activities (sen-
sations and actions) about a task b in an environment E.
Then the following must be true: (1) It senses such mental
activities using its sensors. (2) It feeds the sensed signal
into its perceptual entry point just like that for external
sensors.

Proof: Point (1) is true because, according to the definition
for the awareness of an object, the agent must sense the ob-
ject using its sensors. Point (2) is true because the status
of the object must be sensed and fed into the entry point
for sensors for proper perception and recall of the primed
contexts. �

Based on the last two theorems, let us examine the issue
of self-awareness more closely. If an agent runs a learning
algorithm (e.g., the Q-learning algorithm to be explained
later) but it does not sense the voluntary decision process
using its sensors which are linked to its entry point for sen-
sors, the agent is not aware of its own algorithm. For the
same reason, humans do not sense the way their primary
cortex works and, therefore, normally they are not aware of
their own earlier visual processing. However, the voluntary
part of the mental decision process does require a conscious,
willful decision.

The traditional model of agent has a fundamental flaw.
The model is for an agent that perceives only the external
environment and acts on the external environment. It does
not sense its internal “brain’s” activities. In other words,
its internal decision process is neither a target of its own
cognition nor a subject for the agent to explain when the
agent is sufficiently mature.

The human brain allows the thinker to sense what he is
thinking about without performing an overt action. For ex-
ample, visual attention is a self-aware and self-effecting in-
ternal action (see, e.g., Kandel, et al.[8], pp. 396 - 403).
Motivated by neuroscience, the mathematical model of the
self-aware and self-effecting (SASE) agent, shown in Fig. 3,
is defined as follows.

Definition 10 A self-aware and self-effecting (SASE) agent
has internal sensors Si and internal effectors Ei for this
internal (brain) environment, in addition to its external sen-
sors Se and external effectors Ee for its external environ-
ment (outside brain). The regressor R takes signals from Si

and Se and generates internal and external actions for Ei

and Ee, respectively.

The major design principles for a SASE agent include:

1. A SASE agent must have a sensor for each of its vol-
untary external effectors, so that it can sense what each

External
sensors

External
effectors

Brain

Agent body

Internal
sensors

Internal
effectors

Internal environment

   External environment

Figure 3. A self-aware self-effecting (SASE) agent. It
interacts with not only the external environment but also its
own internal (brain) environment: the representation of the
brain itself.

effector is doing. For example, the muscle spindles
sense the tension of human muscles to tell the position
of the arms.

2. A SASE agent must have internal effectors and inter-
nal sensors for its voluntary internal effectors. For ex-
ample, it needs a set of internal attention effectors to
select the most relevant part of sensory information for
later processing, which eventually leads to voluntary
actions for attention selection.

3. A SASE agent needs pre-motor areas, where it stores
information about the control of the effectors, but the
signal in the pre-motor area is not sent to the effectors
unless an action release signal is issued. The effec-
tor signals in the pre-motor areas are also sensed by
internal sensors so that the robot can “talk to itself”
internally.

It is important to note that not all the internal brain rep-
resentations are sensed by the brain itself. Early processing
actions are typically not sensed.

Definition 11 (Type-4) The Type-4 mental architecture is
a Type-3 mental architecture, but additionally, the internal
voluntary decision is sensed by the internal sensors Si and
the sensed signals are fed into the entry point of sensors,
i.e., the entry point of the attention selector T . In order
to recall the effects of the voluntary actions, not only the
expected reward value is estimated by the value system, but
also the primed context which includes not only the primed
action, but also the primed sensation.

The architecture illustrated in Fig. 2 is a Type-4 archi-
tecture. Two voluntary internal actions are modeled by Ei1

for attention selection, and by Ei2 for action release. Both
internal actions are sensed by the internal (virtual) sensors
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Si1 and Si2, respectively. The rehearsed external action (not
released) is sensed by the virtual internal sensor Si3.

The regressor R maps each attended context l ∈ L to a
set of multiple primed contexts, from which the value sys-
tem selects a single primed context p ∈ P . In other words,
the composite function of R followed by V gives a map-
ping: V ◦ R : L 7→ P . With a SASE agent, both external
context (sensed by Se) and internal context (sensed by Si)
are available in l.

Through a consecutive time series t = 1, 2, ..., k, the
composite function V ◦ R performs a series of reasoning,
represented by the regression sequence:

s = ((l1, p1), (l2, p2), ..., (lk, pk)) (5)

where each regression pair (li, pi) is an input-output pair of
the composite function V ◦R, pi = V ◦R(li), i = 1, 2, ..., k.
The link between two consecutive regression pairs can be
realized by two paths, the external path and the internal
path, denoted by e and i respectively. Symbolically, the
reasoning process can be represented by the following com-
posite reasoning sequence:

s =

(

(l1, p1),

[
e1

i1

]

, (l2, p2), ..., (lk, pk),

[
ek

ik

])

(6)

where [
ei

ii

]

, i = 1, 2, ..., k

represents the parallel external and internal paths. Whether
the result of external and internal paths are taken into ac-
count at any time t by the regressor depends on the attention
selection in T .

Definition 12 (External and external reasoning process)
There are three types of reasoning processes, external,
internal, and mixed, corresponding to the attention in
which the attention module T attends to external, internal
or both, respectively.

From the above discussion, we have the following sum-
mary:

• Type-1 through Type-3 architectures allow the agent to
perform external reasoning processes, but not internal
reasoning as defined above.

• A Type-4 architecture is able to execute external, inter-
nal, and mixed reasoning processes.

Theorem 3 The Type-4 architecture allows internal rea-
soning to realize the following kinds of learning (1) nonas-
sociative learning, (2) classical conditioning, and (3) in-
strumental conditioning.

Proof: First we prove the nonassociative learning[12]. The
nonassociative learning occurs when the agent is exposed
to stimulus because of the history of similar or dissimilar
stimuli. Sensitization and habituation are two well known
examples of nonassociative. In Eq. (6), the nonassociative
learning can be accomplished by the link (li, pi) realized
by the composition of regression R and the value system:
pi = V ◦ R(li). The value system plays a central role. For
example, the action (e.g., looking at another direction) that
is predicted to generate more novel stimuli then alternative
action (e.g., continue looking after repeated exposure to the
similar stimuli), the former action is selected by the value
system V from the alternative actions predicted by R.

Next, we prove the case for classical conditioning. In
classical conditioning, a conditional stimulus CS (e.g., tone)
is repeatedly paired with unconditional stimulus US (e.g.,
food) that elicits unconditional response UR (e.g., saliva-
tion). In this case, li = CS, li+1 = US, and pi+1 =
salivation, for all the time instances i where the event oc-
curs. The Q-learning used by the value system V back-
propagates repeatedly the primed action pi+1 through time
i, so that li primes pi = salivation even in the absence of
li+1.

Finally, we establish the case for instrumental condition-
ing. When li stimulus is present, two actions a1 and a2 are
predicted, (a1, a2) = R(li). According to past experience,
a1 has a low value and a2 has a higher value, using, e.g.,
Q-learning by the value system V . Thus, a2 is selected by
V . �.

For a realization of the nonassociative learning, the clas-
sical conditioning, and the instrumental conditioning, using
the Type-4 architecture, see Huang & Weng [6], Zhang &
Weng [21], and Huang & Weng [6], respectively. The in-
strumental conditioning has been known as reinforcement
learning in the machine learning community and has been
very widely studied using the traditional MDP architecture
[7] [13]. A major contribution here is that a single architec-
ture realizes all three types of learning.

There are many more complex internal mental activities
enabled by the architecture. As an example, we addresses a
complex activity known as autonomous planning. Planning
has been conducted extensively using the traditional MDP
architecture, based on the Q-learning mechanism (i.e., time
discounted value propagation) [15]. However, Q-learning
based planning has a major drawback: It prefers immediate
small rewards to future large rewards. One can program the
planner in such a way so that only the final goal produces
a reward and intermediate goals do not. However, such a
task-specific setting is too inflexible for the general setting
of mental development, where various rewards are gener-
ated from the real world at different stages and it is impos-
sible for the programmer to write a different program for a
different planning task (due to the task non-specific nature
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of autonomous mental development Weng et al. [19].)

Theorem 4 The Type-4 architecture allows internal rea-
soning to realize autonomous planning.

Proof. Autonomous planning requires first an accumulation
of experiences so that alternative condition-action pairs are
learned. Suppose that there are two plans according to the
experiences: The execution path of the plan (a) is recalled
as:

(l1, pa,1), (la,2, pa,2), ..., (la,i, pa,i))

and that of the plan (b) is recalled as:

(l1, pb,1), (lb,2, pb,2), ..., (lb,j , pb,j)).

Both lead to a completion of the task. Both plans are re-
called sequentially using only the internal path, i path in-
stead of e in Eq. (6). Finally the value of pa,i is compared
with that of pb,j . The value system decides which value
is better and so chooses the corresponding plan (a) or (b).
The association of a to the primed action in pa,1 and b with
that in pb,1 is represented by “talking to itself:” For exam-
ple, the selected plan in pa,i as part of the last context in l,
which primes the first action in pa,1. The similar process
takes place for plan (b). �

I expect that early demonstration of autonomous plan-
ning is possible in a restricted (simplified) natural setting.
Anywhere any-time planning in uncontrolled natural set-
tings is possible after a significant amount of “living ex-
perience.” It is important to note that attention (intra-model
and intermodal) at each sensorimotor path plays a powerful
role of generalization for new and unexpected settings (see
the task-transfer and action chaining in [21]).

One might think at this point that the internal process
looks like “thinking.” Yes, the Type-4 architecture is capa-
ble of thinking. However, the internal process defined here
is not equivalent to autonomous thinking which is funda-
mental to human intelligence. A necessary piece for think-
ing is autonomous mental development, as explained below.
The skills of thinking must be autonomously developed.

6. Type-5: Developmental observation-driven
SASE MDP

Definition 13 (DOSASE MDP) The developmental
observation-driven SASE MDP (DOSASE MDP) has an
architecture Type-4 or higher, that satisfies the following
requirements:

1. During the programming time, the tasks that the agent
will learn are unknown to the programmer.

2. The agent A(t) starts to run at t = 0 under the guid-
ance of its developmental program Pd. After the birth,
the brain of the agent is not accessible to humans.

3. Human teachers can only affect the agent A(t) as a
part of its environment through its sensors and effec-
tors recursively: At any time t = 0, t = 1, ..., its ob-
servation vector at time t is the last context l(t). The
output from A(t) at time t is its selected primed con-
text p(t) ∈ P . A(t − 1) is updated to A(t), including
T , R (and L), M , and V .

In contrast with the traditional MDP, the DOSASE MDP
(A(t), Pd) is developmental in the sense that the developing
program Pd does not require a given estimate of the a priori
probability distribution P (l) for all l ∈ L, nor even a given
set of states. Consequently, Pd does not require a given
estimate for the state observation probability P (lt | lt−1)
nor that for the state observation probability P (xt | lt).

When the number of states is very large, it is practi-
cally sufficient to keep only track of the states that have
a high probability, instead of estimating probability of all
the states, which is too computationally expensive to reach
the real-time speed. In HMM, this technique is called beam
forming.

7. Type-6: Multi-level DOSASE MDP

The Type-5 architecture has only one sensorimotor level,
although each mapping T , R, and M have multiple levels
in their own internal structure. We call it a sensorimotor
level because the pathway from T through R up to M cor-
responds to a pathway from sensory input to motor output.
The primed context of such a level can be fed into another
sensorimotor level for the following reasons:

1. Abstraction. While a low level is tightly linked to fine
time steps, the higher levels become more “abstract,”
in the sense that the higher level clusters of context
states are coarser in temporal granularity and grouped
more according to actively attended events.

2. Self-generated context: Allow voluntarily generated
motor actions to serve as context input to the higher
level. Thus the agent is able to “talk to itself” at a
more abstract level.

3. Enabling a higher degree of sensory integration. It is
not practical to integrate all the receptors in a human
body by a single attention selection module T , because
otherwise, e.g., the attention is too complex.

Definition 14 (Type-6) The Type-6 mental architecture is
composed of several levels of Type-5 architecture. The
primed contexts from a lower-level system is fed into the
sensory input of the higher-level system.

Fig. 4 illustrates the Type-6 architecture. The input to the
attention selector T at level 2 includes the primed context
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Figure 4. The Type-6 architecture.

p(t) = (xp(t), ap(t)) from level 1, where xp(t) and ap(t)
are primed sensation and primed action, respectively. One
or multiple levels can feed their primed contexts into the
next higher level for sensory integration.

We have systematically introduced six types of archi-
tectures. Although the order at which new capabilities are
added to the previous type is primarily a design choice, the
order used here is motivated by a relatively large payoff in
capability with a minimal addition of the architecture com-
plexity.

8. Conclusions

The observation-driven MDP (Type-1), seems more
suited for autonomous mental development than the tra-
ditional MDP. This paper provides Type-1, through Type-
5 (DOSASE MDP), up to Type-6 (multilevel DOSASE
MDP). A DOSASE MDP can perform nonassociative learn-
ing, classical conditioning, instrumental conditioning and
planning. The realization of higher capabilities has yet to
be demonstrated.
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Abstract

We present a virtual reality platform for developing and
evaluating embodied models of cognitive development. The
platform facilitates structuring of the learning agent, of its
visual environment, and of other virtual characters that in-
teract with the learning agent. It allows to systematically
study the role of the visual and social environment for the
development of particular cognitive skills in a controlled
fashion. We describe how it is currently being used for con-
structing an embodied model of the emergence of gaze fol-
lowing in infant-caregiver interactions and discuss the rel-
ative benefits of virtual vs. robotic modeling approaches.

1. Introduction

Recently, the field of cognitive science has been paying
close attention to the fact that cognitive skills are unlikely to
be fully specified genetically, but develop through interac-
tions with the environment and caregivers. The importance
of interactions with the physical and social environment for
cognitive development has been stressed by connectionist
[7] and dynamical systems [17] approaches.

Developmental schemes are also being proposed in the
field of intelligent robotics [1, 3, 18]. Instead of building a
fully working robot, a body capable of interacting with the
environment is given general learning mechanisms that al-
low it to evaluate the results of its actions. It is then “set
free” in the world to learn a task through repeated interac-
tions with both the environment and a human supervisor.

Our motivation is to develop embodied models of cog-
nitive development, that allow to systematically study the
emergence of cognitive skills in naturalistic settings. We fo-

cus on visually mediated skills since vision is the dominant
modality for humans. The kinds of cognitive skills whose
development we would ultimately like to model range from
gaze and point following and other shared attention skills
over imitation of complex behaviors to language acquisi-
tion. Our hope is that embodied computational models will
help to clarify the mechanisms underlying the emergence of
cognitive skills and elucidate the role of intrinsic and envi-
ronmental factors in this development.

In this paper, we present a platform for creating em-
bodied computational models of the emergence of cogni-
tive skills using computer-generatedvirtual environments.
These virtual environments allow the semi-realistic ren-
dering of arbitrary visual surroundings that make it easy
to relate model simulations to experimental data gathered
in various settings. Our platform facilitates structuring of
the graphical environment and of any social agents in the
model. Typically, a single developing infant and a single
caregiver are modeled, but arbitrary physical and social set-
tings are easily accommodated. To illustrate the features
of our our platform, we show how it can be used to build
an embodied model of the emergence of gaze following in
infant-caregiver interactions. This effort is a component of
a larger research project studying the emergence of shared
attention skills within the MESA (Modeling the Emergence
of Shared Attention) project at the University of California
San Diego1.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our modeling platform and the underlying
software infrastructure. Section 3 shows how it is currently
being used to build an embodied model of the emergence
of gaze following in mother infant interactions. Finally,
we discuss our work and the relative benefits of virtual vs.

1http://mesa.ucsd.edu
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Figure 1. Left: various views of a virtual living room used to model the emergence of gaze following.
From top left, clockwise: caregiver’s view, birds eye view, lateral view, and infant’s view. Right:
Saliency maps generated by analyzing the infant’s visual input (lower left image in left half of figure).
Top row, left to right: red, green, blue. Bottom row, left to right: yellow, contrast, face position. Bars
on left of each saliency map indicate the intrinsic reward of this feature and the current habituation
level.

robotic modeling approaches in Section 4.

2. The Platform

2.1. Platform Overview

The platform allows the construction of semi-realistic
models of arbitrary visual environments. A virtual room
with furniture and objects can be set up easily to model,
say, a testing room used in a controlled developmental psy-
chology experiment, or a typical living room. These visual
environments are populated with virtual characters. The be-
havior and learning mechanisms of all characters can be
specified. Typically, a virtual character will have a vision
system that receives images from a virtual camera placed
inside the character’s head. The simulated vision system
will process these images and the resulting representation
will drive the character’s behavior [15]. Figure 1 shows an
example setting.

An overview of the software structure is given in Fig-
ure 2. The central core of software, the “Simulation Envi-
ronment,” is responsible for simulating the learning agent
(infant model) and its social and physical environment
(caregiver model, objects, . . . ). The Simulation Environ-
ment was programmed in C++ and will be described in
more detail below. It interfaces with a number of 3rd party
libraries for animating human characters (BDI DI-Guy),
managing and rendering of the graphics (SGI OpenGL Per-
former), and visual processing of rendered images to simu-
late the agents’ vision systems (OpenCV).

Simulation Environment

handling of graphics objects and light sources, scene rendering

character animation
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Figure 2. Overview of software structure.

The platform currently runs on a Dell Dimension 4600
desktop computer with a Pentium 4 processor running at
2.8GHz. The operating system is Linux. An NVidia
GeForce video graphics accelerator speeds up the graphi-
cal simulations.

2.2. Third Party Software Libraries

OpenGL Performer. The Silicon GraphicsOpenGL
Performer2 toolkit is used to create the graphical environ-
ment for running the experiments. OpenGL Performer is

2http://www.sgi.com/products/software/performer/
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a programming interface built atop the industry standard
OpenGLgraphics library . It can import textured 3D objects
in many formats, including OpenFlight (.flt extension) and
3D Studio Max (.3ds extension). OpenGL is a software in-
terface for graphics hardware that allows the production of
high-quality color images of 3D objects. It can be used to
build geometric models, view them interactively in 3D, and
perform operations like texture mapping and depth cueing.
It can be used to manipulate lighting conditions, introduce
fog, do motion blur, perform specular lighting, and other vi-
sual manipulations. It also provides virtual cameras that can
be positioned at any location to view the simulated world.

DI-Guy. On top of OpenGL Performer, Boston Dy-
namics’sDI-Guy libraries3 provide lifelike human charac-
ters that can be created and readily inserted into the virtual
world. They can be controlled using simple high-level com-
mands such as “look at position(X,Y, Z),” or “reach for
position(X, Y, Z) using the left arm,” resulting in smooth
and lifelike movements being generated automatically. The
facial expression of characters can be queried and modi-
fied. DI-Guy provides access to the character’s coordinates
and link positions such as arm and leg segments, shoul-
ders, hips, head, etc. More than 800 different functions for
manipulating and querying the characters are available in
all. Male and female characters of different ages are avail-
able, configurable with different appearances such as cloth-
ing style.

OpenCV. Querying the position of a character’s head
allows us to dynamically position a virtual camera at the
same location, thus accessing the character’s point of view.
The images coming from the camera can be processed us-
ing Intel’s OpenCV library4 of optimized visual process-
ing routines. OpenCV is an open-source, extendable soft-
ware intended for real-time computer vision, and is use-
ful for object tracking, segmentation, and recognition, face
and gesture recognition, motion understanding, and mobile
robotics. It provides routines for image processing such as
contour processing, line and ellipse fitting, convex hull cal-
culation, and calculation of various image statistics.

2.3. The Simulation Environment

The Simulation Environment comprises a number of
classes to facilitate the creation and running of simulations.
Following is a description of the most important ones.

The Object Class. The OBJECT class is used to create
all inanimate objects (walls, furniture, toys, etc.) in the sim-
ulation. Instances of theOBJECTclass are created by giving
the name of the file containing the description of a 3D ge-
ometrically modeled object, a name to be used as a handle,

3http://www.bdi.com
4http://www.intel.com/research/mrl/research/opencv/

a boolean variable stating whether the object should be al-
lowed to move, and its initial scale. The file must be of a
format readable by OpenGL Performer, such as 3D Studio
Max (.3ds files) or OpenFlight (.flt files). When anOB-
JECT is created, it is attached to the Performer environment.
There are methods for changing the position of theOBJECT,
for rotating it, and changing its scale. Thus, it can easily be
modeled that characters in the simulation can grasp and ma-
nipulate objects, if this is desired.

The Object Manager Class. The OBJECT MANAGER

class holds an array of instances of theOBJECT class. The
OBJECTMANAGER has methods for adding objects (which
must be previously created) to the scene, removing them,
and querying their visibility from a specific location. The
latter function allows to assess if, e.g., an object is within
the field of view of a character, or if the character is looking
directly at an object.

The Person Class. The PERSON class is used to add
any characters to the simulation. These may be rather com-
plicated models of, say, a developing infant simulating its
visual perception and learning processes, or they may be
rather simplistic agents that behave according to simple
scripts. To create an instance of thePERSON class, a DI-
Guy character type must be specified, which determines the
visual appearance of the person, along with a handle to the
OpenGL Performer camera assigned to the character. The
BRAIN type andV ISION SYSTEM type (see below) must be
specified. If the character’s actions will result from a script,
then a filename with the script must be given. For example,
such a script may specify what the character is looking at at
any given time. OneBRAIN object and oneV ISION SYS-
TEM object are created, according to the parameters passed
when creating thePERSON object. ThePERSON object
must be called periodically using the “update” method. This
causes the link corresponding to the head of the character to
be queried, and its coordinates to be passed to the virtual
camera associated with the character. The image from the
virtual camera in turn is passed to the character’sV ISION

SYSTEM, if the character has any. The output of theV I-
SION SYSTEM along with a handle to the DI-Guy character
is passed to theBRAIN object, which will decide the next
action to take and execute it in the DI-Guy character.

The Brain class.TheBRAIN class specifies the actions
to be taken by an instance of thePERSONclass. The space
of allowable actions is determined by the DI-Guy character
type associated with the person. The simplest way of how a
BRAIN object can control the actions of aPERSONis by fol-
lowing a script. In this case thePERSONwill “play back” a
pre-specified sequence of actions like a tape recorder. More
interestingly, aBRAIN object can contain a simulation of
the person’s nervous system (at various levels of abstrac-
tion). The only constraint is that this simulation has to run
in discrete time steps. For example, theBRAIN object may
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instantiate a reinforcement learning agent [14] whose state
information is derived from a perceptual process (see be-
low) and whose action space is the space of allowable ac-
tions for this character. An “update” method is called every
time step to do any perceptual processing, generate new ac-
tions, and possibly simulate experience dependent learning.

The actions used to control a character are fairly high-
level commands such as “look to location (X,Y,Z),” “walk
in directionΘ with speedv,” or “reach for location (X,Y,Z)
with the left arm,” compared to direct specification of joint
angles or torques. Thus, this simulation platform is not well
suited for studying the development of such motor behav-
iors. Our focus is on the development of higher-level skills
that use gaze shifts, reaches, etc. as building blocks. Thus,
it is assumed that elementary behaviors such as looking and
reaching have already developed and can be executed reli-
ably in the age group of infants being modeled — an as-
sumption that of course needs to be verified for the partic-
ular skills and ages under consideration. The positive as-
pect of this is that it allows to focus efforts on modeling
the development of higher level cognitive processes with-
out having to worry about such lower-level skills. This is
in sharp contrast to robotic models of infant development,
where invariably a significant portion of time is spent on im-
plementing such lower level skills. In fact, skills like two-
legged walking and running, or reaching and grasping are
still full-blown research topics in their own right in the area
of humanoid robotics.

The Vision System class.The V ISION SYSTEM class
specifies the processing to be done on the raw image cor-
responding to the person’s point of view (as extracted from
a virtual camera dynamically positioned inside the person’s
head). It is used to construct a representation of the visual
scene that aBRAIN object can use to generate behavior.
Thus, it will typically contain various computer vision al-
gorithms and/or some more specific models of visual pro-
cessing in human infants, depending on the primary goal of
the model.

If desirable, theV ISION SYSTEM class may also use so-
called “oracle vision” to speed up the simulation. Since the
simulation environment provides perfect knowledge about
the state of all objects and characters in the simulation, it
is sometimes neither necessary nor desirable to infer such
knowledge from the rendered images through computer vi-
sion techniques, which can be difficult and time consuming.
Instead, some property, say the identity of an object in the
field of view, can simply be looked up in the internal repre-
sentations maintained by the simulation environment — it
functions as an oracle. This simplification is desirable if the
visual processing (in this case object recognition) is not cen-
tral to the developmental process under consideration, and if
it can be assumed that it is sufficiently well developed prior
to the developmental process being studied primarily. In

contrast, in a robotic model of infant development, there is
no “oracle” available, which means that all perceptual pro-
cesses required for the cognitive skill under consideration
have to be modeled explicitly. This is time-consuming and
difficult.

Main Program and Control Flow. The main pro-
gram is written in C++ using object-oriented programming.
OpenGL Performer is first initialized, and a scene with a
light source is created and positioned. A window to display
the 3D world is initialized, and positioned on the screen.
Virtual cameras are created and positioned in the world, for
example as a birds eye view or a lateral view. Cameras
corresponding to the characters are created but positioned
dynamically as the characters move their heads. Each cam-
era’s field of view can be set (characters would usually have
around a 90o field of view), and can be configured to elimi-
nate objects that are too close or too far. All cameras created
are linked to the window that displays the 3D world. Envi-
ronment settings such as fog, clouds, etc. can be specified.
The DI-Guy platform is then initialized, and a scenario is
created. The scenario holds information about all the char-
acters, and must be used to create new characters. New in-
stances of thePERSONclass are created, and their activities
are specified by periodically giving them new actions to per-
form. The level of graphical detail of the characters can be
specified to either get fairly realistically looking characters
or to speed up processing.

Statistics gathering. Throughout the session, statistics
are gathered by querying the different libraries: DI-Guy
calls can be used to extract the position of the different
characters or the configuration of their joints. TheOBJECT

MANAGER can be used to query the position of objects and
their visibility from the point of view of the different char-
acters. In addition, the internal states of all characters’ sim-
ulated nervous systems are perfectly known. This data or
arbitrary subsets of it can easily be recorded on a frame by
frame basis for later analysis. These statistics are useful
for analyzing long-term runs, and allow to evaluate whether
the desired behavior is being achieved and at what rate. We
point out that every simulation is perfectly reproducible and
can be re-run if additional statistics need to be collected.

3. A First Example: Gaze Following

The motivation for constructing the platform was to fa-
cilitate the development of embodied models of cognitive
and social development. To illustrate how the platform can
be used through a concrete example, we will outline how we
are currently developing an embodied model of the emer-
gence of gaze following [5]. Gaze following is the capacity
to redirect visual attention to a target when it is the object of
someone else’s attention. Gaze following does not occur at
birth, but instead develops during a child’s first 18 months
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of life.

The model we are developing is aimed at testing and re-
fining thebasic set hypothesis[8], which states that the fol-
lowing conditions are sufficient for gaze following to de-
velop in infants: a) a reward-driven general purpose learn-
ing mechanism, b) a structured environment where the care-
giver often looks at objects or events that the infant will find
rewarding to look at, c) innate or early defined preferences
that result in the infant finding the caregiver’s face pleas-
ant to look at, and d) a habituation mechanism that causes
visual reward to decay over time while looking at an ob-
ject and to be restored when attention is directed to a differ-
ent object. Recently, Carlson and Triesch [4] demonstrated
with a very abstract and simplified computational model,
how the basic set may lead to the emergence of gaze follow-
ing and how plausible alterations of model parameters lead
to deficits in gaze following reminiscent of developmental
disorders such as autism or Williams syndrome.

In our current work, we want to investigate if the ba-
sic set hypothesis still holds for a more realistic situation,
where learning takes place in a complex naturalistic envi-
ronment. The platform is configured for an experimental
setup consisting of a living room with furniture and a toy,
all of them instantiations of theOBJECTclass and built from
3D Studio Max objects. Two instantiations of thePERSON

class are created, one for the caregiver and one for the baby.
The caregiver and learning infant are placed facing each
other. The caregiver instantiates aBRAIN object control-
ling its behavior. A single toy periodically changes location
within a meter of the infant, and its position is fed to the
caregiver’sBRAIN. In a first version of the model, the care-
giver’s BRAIN will simply cause the character to look at the
position of the interesting toy with fairly high probability
(75%). No visual system is given to the caregiver.

The baby instantiates aV ISUAL SYSTEM object that
models a simple infant vision system. In particular, it evalu-
ates thesaliencyof different portions of the visual field [9],
it recognizes the caregiver’s head, and it discriminates dif-
ferent head poses of the caregiver. Saliency computation is
based on six different features, each habituating individu-
ally according to Stanley’s model of habituation [13]. The
feature maps (see Figure 1) are: red, green, blue and yellow
color features based on a color opponency scheme [12], a
contrast feature that acts as an edge detector by giving a
high saliency to locations in the image where the intensity
gradient is high, and finally a face detector feature that as-
signs a high saliency to the region of the caregiver’s face,
which is localized through orace vision. The saliency of the
face can be varied depending on the pose of the caregiver’s
face with respect to the infant (infant sees frontal view vs.
profile view of the caregiver). A similar scheme for visual
saliency computation has been used by Breazeal [2] for a
non-developing model of gaze following, using skin tone,

Image Scale Vision Map Display Animation
80×60 0.0226 0.0073 0.0476

160×120 0.0539 0.0092 0.0431
240×180 0.0980 0.0121 0.0522
320×240 0.1507 0.0113 0.0422
400×300 0.2257 0.0208 0.0507
480×360 0.3025 0.0276 0.0539

Table 1. Simulation times (sec.)

color, and motion features.
The infant’sBRAIN object consists of a two-agent rein-

forcement learning system similar to that used in [4]. The
first agent learns to decide when to simply look at the point
of highest saliency (reflexive gaze shift) or whether to exe-
cute a planned gaze shift. The second agent learns to gener-
ate planned gaze shifts based on the caregiver’s head pose.
The infant should learn to direct gaze to the caregiver to
maximize visual reward, and habituation will cause him/her
to look elsewhere before looking back to the caregiver. With
time, the infant learns to follow the caregiver’s line of re-
gard, which increases the infant’s chance of seeing the inter-
esting toy. However, the caregiver’s gaze does not directly
index the position of the object, but instead only specifies a
direction with respect to the caregiver but not the distance
from the caregiver. One goal of the current model is to better
understand such spatial ambiguities and how infants learn to
overcome them [11].

3.1. Platform Performance

To illustrate the performance of the platform given our
current hardware, we made a number of measurements
to establish the computational bottlenecks for this specific
model. The time spent for each frame was divided into three
separate measures for analysis: the time to calculate the fea-
ture maps (Vision), the time to display them (Map Display),
and the time for the DI-Guy environment to calculate the
next character positions and display them (Animation). Ta-
ble 1 shows how the times vary with the resolution of the
infant’s vision system. As can be seen, most time is spent
on simulating the infant’s visual processing. Real time per-
formance is achievable if the image resolution is not set too
high.

4. Discussion

The platform presented here is particularly useful for
modeling the development ofembodiedcognitive skills.
In the case of the emergence of gaze following discussed
above, it is suitable because the skill is about the inference
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Property Robotic Model Virtual Model
physics real simplified or ignored
agent body difficult to create much easier to simulate
motor control full motor control problem substantially simplified
visual environment realistic simplified computer graphics
visual processing full vision problem can be simplified through oracle vision
social environment real humans real humans or simulated agents
real time requirements yes no, simulation can be slowed down or sped up
data collection difficult perfect knowledge of system state
reproducibility of experiments difficult perfect
ease-of-use very difficult easy
development costs extremely high very modest

Table 2. Robotic vs. virtual models of infant cognitive development.

of mental states from bodily configurations, such as head
and eye position, which are realistically simulated in our
platform.

4.1. Virtual vs. Robotic Models

Recently, there has been a surge of interest in building
robotic models of cognitive development. Compared to the
virtual modeling platform presented here, there are a num-
ber of important advantages and serious disadvantages of
robotic models that we will discuss in the following. A sum-
mary of this discussion is given in Table 2.

Physics.The virtual simulation is only an approximation
of real-world physics. The movements of the characters do
not necessarily obey physical laws but are merely animated
to “look realistic.” For the inanimate objects, we currently
do not simulate any physics at all. In a robotic model, the
physics are real, of course. The justification of neglecting
physics in the virtual model is that the cognitive skills we
are most interested in are fairly high-level skills, i.e., we
simply do not want to study behavior at the level of muscle
activations, joint torques, and frictional forces, but at the
level of primitive actions such as gaze shifts, reaches, etc.,
and their coordination into useful behaviors.

Agent body. In the virtual modeling platform, we can
choose from a set of existing bodies for the agents. These
bodies have a high number of degrees of freedom, compara-
ble to that of the most advanced humanoid robots. Further,
since physics is not an issue, we are not restricted by current
limitations in robotic actuator technology. Our characters
will readily run, crawl, and do many other things.

Motor control. Our interface to the agents in the model
allows us to specify high-level commands (walk here, reach
for that point, look at this object). The underlying motor
control problems do not have to be addressed. In contrast,
for a robotic model the full motor control problem needs

to be solved, which represents a major challenge. Clearly,
the platform should not be used to study the specifics of
human motor control but it makes it much easier to focus
on higher level skills. At the same time, perfect control over
individual joint angles is possible, if desired.

Visual environment. The simulated computer graphics
environment is of course vastly simpler than images taken
by a robot in a real environment. For example, shadows
and reflections are not rendered accurately, and the virtual
characters are only coarse approximations of human appear-
ance. Clearly, again, such a modeling platform should not
be used to, say, study the specifics of human object recog-
nition under lighting changes. The skills we are most inter-
ested in, however, use object recognition as a basic building
block (e.g., the ability to distinguish different head poses
of the caregiver with a certain accuracy). We believe that
the details of the underlying mechanism are not crucial as
long as the level of competence is accurately captured by
the model.

Visual processing.In the virtual modeling platform we
can vastly simplify perceptual processes through the use of
oracle vision. In a robotic model, this is not possible and
the perceptual capabilities required for some higher level
cognitive skills may simply not have been achieved by con-
temporary computer vision methods.

Social environment. A robotic model can interact with
a real social environment, i.e., one composed of real human
beings. In our virtual modeling platform we could achieve
this to some extent by using standard Virtual Reality inter-
faces such as head mounted displays in conjunction with
motion tracking devices. In such a setup a real person would
control a virtual person in the simulation, seeing what the
virtual person is seeing through the head mounted display.
However, the ability to experiment with vastly simplified
agents as the social environment allows us to systematically
study what aspects of the social environment, i.e., which be-
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haviors of caregivers, are really crucial for the development
of specific social skills [16]. This degree of control over
the social environment cannot be achieved with human sub-
jects. Also, the social agents may be programmed to exhibit
behavior that replicates important statistics of caregiver be-
havior observed in real infant caregiver interactions. For ex-
ample, Déak et al. are collecting such statistics from videos
of infant-caregiver dyad interactions [6]. We are planning
on developing caregiver models that closely replicate the
observed behaviors.

Real time requirements.A robotic model must be able
to operate in real time. This severely limits the complexity
of the model. Perceptual processes in particular are noto-
riously time consuming to simulate. In the virtual model,
we are not restricted to simulating in real time. Simulations
may be slowed down or sped up arbitrarily. In addition, the
availability of oracle vision allows to save precious compu-
tational resources.

Data collection. In the virtual model it is trivial to record
data about every smallest detail of the model at any time.
This is much harder to achieve in a robotic model inter-
acting with real human caregivers. In particular, the exact
behavior of the caregiver is inherently difficult to capture.
Useful information about the caregiver behavior can be re-
covered by manually coding video records of the experi-
ment, but this information is not available at the time of the
experiment.

Reproducibility of experiments. Along similar lines,
the virtual modeling platform allows perfect reproducibility
of experiments. Every last pixel of the visual input to the
learning agent can be recreated with fidelity. This is simply
impossible in a robotic model.

Ease-of-use. Not having to deal with robotic hard-
ware shortens development times, reduces maintenance ef-
forts to a minimum, and makes it much easier to exchange
model components with other researchers. Also, recreat-
ing the specific setup of a real-world behavioral experiment,
only requires changing a configuration file specifying where
walls and objects are, rather than prompting a renovation.

Development costs.Finally, robotic models are much
more expensive. Most of the software components used
in our platform (Linux OS, SGI OpenGL Performer, Intel
OpenCV) are freely available to researchers. The lion share
of the costs is the price of the BDI DI-Guy software.

All these benefits may make a virtual model the method-
ology of choice. Even if a robotic model is ultimately de-
sirable, a virtual model may be used for rapid proto-typing.
We see the use of virtual and robotic models as comple-
mentary. In fact, we are pursuing both methodologies at the
same time in our lab [10].

4.2. Possible Extensions

There are several extensions to our platform that may be
worth pursuing. First, we have only considered monocular
vision. It is easy to incorporate binocular vision by simply
placing two virtual cameras side by side inside a charac-
ter’s head. Foveation could also be added to the characters’
vision systems. Second, in order to model language acqui-
sition, a simulation of vocal systems and auditory systems
of the characters could be added. Even in the context of
non-verbal communication, a caregiver turning his head to
identify the source of a noise may be a powerful training
stimulus for the developing infant. Third, the platform is
not restricted to modeling human development, but could
be extended to model, say, the development of cognitive
skills in a variety of non-human primates. To this end the
appropriate graphical characters and their atomic behaviors
would have to be designed. Fourth, on the technical side, it
may be worth investigating in how far the simulation could
be parallelized to run on a cluster of computers.

4.3. Conclusion

In conclusion, we have proposed a research platform
for creating embodied virtual models of cognitive devel-
opment. We have outlined how the platform may be used
to model the emergence of gaze following in naturalistic
infant-caregiver interactions. The virtual modeling platform
has a number of important advantages compared to robotic
modeling approaches. The relative benefits of virtual mod-
els over robotic models on the one hand or more abstract
computational models on the other hand need to be evalu-
ated on a case-by-case basis.
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ABSTRACT
Sparse representation is a desirable property for machine
learning architectures, because it improves the generaliza-
tion capability of the learning system. In supervised learn-
ing, the goal is to derive a mapping based on the training
samples. The generalization capability is accomplished by
reducing the complexity of the model, which is character-
ized by the number of non-zero parameters. This prob-
lem is formalized as `0 norm minimization, which is called
sparseness. It is known that `0 norm minimization is NP-
hard. Thus, it is usually approximated by assuming a super-
Gaussian priori and applying a MAP (maximum a posteri-
ori) procedure. If the Laplace priori is used, this problem is
boiled down to LASSO regression, a minimization of resid-
ual error with an `1 norm regularization term.

In this paper, we propose a new perspective to achieve
sparseness via the winner-take-all principle for the linear
kernel regression and classification task. We form the du-
ality of the LASSO criteria, and transfer an `1 norm mini-
mization to an `∞ norm maximization problem. Two solu-
tions are proposed: it can be solved by standard quadratic
programming with linear inequality constraints. We show
that the number of parameters to be estimated in the `∞
normed space is half of the parameters in the solution sug-
gested by David Gay for `1 normed space. Second, we
introduce a novel winner-take-all neural network solution
derived from gradient descending, which links the sparse
representation and the competitive learning scheme. This
scheme is a form of unsupervised learning in which each
input pattern comes through learning, to be associated with
the activity of one or at most a few neurons. However,
the lateral interaction between neurons in the same layer is
strictly preemptive in this model. This framework is appli-
cable to a variety of problems, such as Independent Compo-
nent Analysis (ICA), feature selection, and data clustering.

1. INTRODUCTION

The central problem of supervised learning or regres-
sion can be formulated as function approximation. In ei-

ther case we have pairwise correspondence of samples x

and y from two sample space X and Y, and the task is
to find a function f(·), such that y = f(x). More pre-
cisely, if the model of the function is chosen, the function
can be written as y = f(x, β), where β is the parameter
vector of the model. For example, the linear kernel regres-
sion assumes such function is a linear combination of a set
of basis functions, i.e. y =

∑

i

βihi(x) = h(x)>β, where

β = [β1, ...βd]
>
∈ <d, h(x) = [h1(x), ...hd(x)] is a set of

basis functions. hi(x) = K(x,xi), where K(·) is a certain
symmetric kernel function.

Typically, it is assumed that the output variable y from
the training set was contaminated by additive white Gaus-
sian noise, i.e. yi = f (xi, β) + wi, for i = 1, ..., n, where
[w1, ..., wn] is a set of i.i.d. white Gaussian random variable
with variance σ2. Thus, the conditional probability p(y|β)
is Gaussian, i.e. p(y|β) = N(y|h(x)>β, σ2I). We write
H = h(x)>, where H is called design matrix.

Simply apply Maximum Likelihood Estimator (MLE),
we get least square error estimation, β̂ = (H>H)−1H>y.
Note there is not any preference on β, so its prior is a uni-
form distribution. With a zero-mean Gaussian prior for β
with variance A, the estimation is turned into maximum a
posteriori (MAP) process. The prior of β then becomes an
`2-norm regularization term in the log-likelihood, where it
will prefer a small β. When A = µ2I , it is called ridge
regression [1].

Other β prior can also be applied. If sparseness is pre-
ferred, then Laplacian prior can be adopted for β, i.e.

p(β|α) =
(α

2

)k

exp(−α ‖β‖1),

where α is a parameter of the Laplacian pdf, and ‖x‖i,
i = 0, ...∞ is the so called `i-norm. Laplacian distribution
features heavy tail and has a high concentration at near-zero
area, which means that most of the β’s components will be
zero, and the probability of having a large value is relatively
high, comparing to the Gaussian distribution with the same
variance. Utilizing the same MAP process, the estimation
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of β is given by

β̂ = arg min
β

{
‖y − Hβ‖

2
2 + t ‖β‖1

}
, (1)

where t = 2σ2α is a control parameter, which can favor
either the squared error term or the `1-norm regularization
term. This criterion is also known as LASSO [2]. It is worth
noting here that due to the non-Gaussian prior, the MAP es-
timation is not equivalent to the Bayesian estimation as it
is in the ridge regression. So the estimation is biased. To
make a unbiased estimation, one needs to integrate in all
β space, which is computationally prohibitive. However,
if the posterior concentrates at certain point, then this bi-
ased estimation may only have a small variance from the
unbiased estimation, which is desirable. This is one rea-
son why a concentrated sparse prior is preferred. Some re-
searchers introduced “hyper-parameter” to further steepen
the prior, like in Relevance Vector Machine (RVM) [3] and
Figueiredo’s work [4].

Another reason that a sparse representation is desirable is
because it improves the generalization of a learning system.
For example in supervised learning, the goal is to infer a
mapping based on the training samples. The generalization
capability is accomplished by reducing the complexity of
the model, which is characterized by the number of non-
zero parameters. This problem is formalized as `0-norm
minimization. It is known that `0-norm minimization is NP-
hard [5]. However, it is established that the solution of the
`1 problem is the same as the `0 problem if certain condition
is satisfied. So, `1-norm problem is still an important issue.

In this paper, we proposed a method to solve the `1-
norm version of the problem. We construct the dual problem
of LASSO criterion as in Eq. (1) and use a gradient-based
method to find the solution. This method is by no means
claimed to be superior to the quadratic programming (QP)
based method, however it opens a perspective to address
the problem differently. We have shown that the proposed
method actually applies the competitive learning principle.
And this nature can also motivate other biologically plausi-
ble models for solving similar problems.

The reminder of paper is organized as follows: In Sec-
tion 2 we formulate the dual problem of the LASSO, and
propose a solution base on gradient descend. We reformu-
late the proposed algorithm in Section 2.5. The experiment
results and comparison with existing sparse optimization al-
gorithms is in Section 3. Section 4 provides conclusions.

2. METHOD

2.1. Duality

First, we will construct the dual problem of Eq. (1). Fig. 1
illustrates this problem. The Eq. (1) can be geometrically

||ß||1

||Y-Hß||
2
2

B

K

Z

A

ß

Fig. 1. Geometry explanation of duality. Point B is the closest
point in K to origin.

explained as the minimum `1-norm between the origin and
the convex set K. This distance, according to duality theory,
is equal to the maximum `∞-norm distance between the ori-
gin and the plane that separate the origin and the convex set
K. In Fig. 1, the parabola denotes the convex set K. Point
B is the closest point to the origin, in terms of `1-norm. Ac-
tually the `1-norm of B consists of two parts, the quadratic
form of Eq. (1) and t ‖β‖1 in Eq. (1), as illustrated in Fig. 1.

Point A is on the tangent plane of point B, and A is the
closest point to the origin, in terms of `∞-norm. The duality
theory establishes that the `∞ norm reaches its maximum
value while the `1-norm reaches its minimum value. Thus,
with a few manipulation, we get the following theorem to
formulate this intuitive geometric explanation.

Theorem 2.1 If we have

β̂′ = arg max
β

−

[
∂Z
∂tβ

−1

]T [
tβ

Z

]

∥
∥
∥
∥

[
∂Z
∂tβ

−1

]∥
∥
∥
∥
∞

where Z = ‖y − Hβ‖
2
2, then β̂′ = β̂, and β̂ is the same

as in Eq. (1).

The generalized proof can be found in [6].

2.2. Derivations

Let Z = ‖y − Hβ‖
2
2 = β>H>Hβ − 2y>Hβ + y>y,

and denote

J(β) =

[
∂Z
∂tβ

−1

]>

=

[
2/t(H>Hβ − H>y)

−1

]>

(2)
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Now we can formulate the dual problem of the original
LASSO criterion,

E (β) = −

J(β)

[
tβ

Z

]

‖J(β)‖∞
, (3)

Therefore,

∂Z

∂tβ
=

2

t
(H>Hβ − H>y). (4)

∂J

∂β
=




 2

t H
>H

0
...
0




 . (5)

Letting C = H>H = [c1, ..., cn], and plugging with Eq. (5)
and Eq. (4), we get

∂E

∂β
=

2Cβ

‖J(β)‖∞
−

[
β>Cβ − y>y

]

‖J(β)‖
2
∞

·
∂ ‖J(β)‖∞

∂β
.

Now we proceed to compute the partial derivative of ‖J(β)‖∞
w.r.t. β.

‖J(β)‖∞ = max
i

{∣
∣
∣
∣
2

t

(
β>ci − y>hi

)
∣
∣
∣
∣ , 1

}

=

√
√
√
√max

i

{∣
∣
∣
∣
2

t
(β>ci − y>hi)

∣
∣
∣
∣

2

, 1

}

So,
∂ ‖J(β)‖∞

∂β
=

1

2
‖J(β)‖

−1
∞

·
∂

∂β
max

i

{∣
∣
∣
∣
2

t

(
β>ci − y>hi

)
∣
∣
∣
∣

2

, 1

}

.

(6)

The last partial derivative term in Eq. (6) needs some spe-
cial treatment. The difficulty of the analysis lies in the dis-
continuity caused by the maximum function. This problem
can be circumvented by the use of the following equality.
Let {ai} be a set of positive real scalars; then it generally
holds that

max
i

{ai} ≡ lim
r→∞

[
∑

i

ar
i

] 1

r

.

This is just another identity of the `∞-norm, which is dif-
ferentiable. We have not yet get the strict derivation of this
method. In fact, a similar technique can be seen in [7], in
which Kohonen derived the vector quantization (VQ) algo-
rithm base on this idea. In [8], a competitive learning algo-
rithm has been derived from a maximum criteria function.
Based on aforementioned observation, we conjecture that

the order of the partial derivative and the max function can
be exchanged. This leads to the following updating rules.

∂

∂β
max

i

{∣
∣
∣
∣
2

t

(
β>ci − y>hi

)
∣
∣
∣
∣

2

, 1

}

=






8

t

(
β>cm − y>hm

)
· cm, if

4

t2

(
β>cm − y>hm

)2
> 1

[0, 0...0]>, otherwise.
,

(7)
where

m = arg max
j

(∣
∣β>cj − y>hj

∣
∣
)
. (8)

Rearrange these equations, we have the final updating
rules,

∇β ∝






2Cβ
‖J(β)‖

∞

−
4[β>Cβ−y>y]

t‖J(β)‖3

∞

·
(
β>cm − y>hm

)
cm

2Cβ
‖J(β)‖

∞

(9)
The switching condition of these two updating rules is the
same as that in Eq. (7)

Remarks: Eq. (8) defines a competitive learning pro-
cess. The algorithm will find the winner and use the updat-
ing rule with the winners value.

The aforementioned method will search the optimal value
of β to minimize the criteria function in Eq. (1). With the
`1-norm constrain, some of the components βi of vector β
will gradually decay, however due to the nature of the gra-
dient method, they will not be exact zero. So an additional
step that set βi that is closed to zero to zero will help the
convergence of the algorithm.

The choice of learning rate in any gradient algorithm is
important. Here we used a dynamic learning rate, called
amnesic average. Suppose there are two statistical estima-
tors Γ1 and Γ2 for estimating parameter θ. If E ‖Γ1 − θ‖

2

< E ‖Γ2 − θ‖
2, Γ1 is said to be more statistically efficient

than Γ2.
We consider (w>

i x)x with ‖wi‖ = 1 as an “observa-
tion.” The goal is to get the mean of this observation, while
wi is estimated incrementally. It is known that for many
distributions, the sample mean is the most efficient estima-
tor for the mean of the random variable. When the distri-
bution is unknown, the sample mean is the best linear es-
timator, which results in the minimum error variance. For
many distributions, the sample mean reaches of approaches
the Cramér-Rao bound (CRB).

Then an efficient estimator is one that has the least vari-
ance from the real parameter W, and its variance is bounded
below by the CRB. Thus, we estimate an independent com-
ponent vectors wi by the sample mean of the observation
(w>

i x)x.
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The sample mean uses a batch method. For incremental
estimation, during which W is continuously improved, we
use what is called an amnesic mean [9].

x̄(n) = w1 (n) x̄(n−1) + w2 (n)xn, (10)

where x̄(n) is the mean at the n-th iteration, xn is the n-th
sample, and w1 (n) and w2 (n) are defined by

w1 (n) =
n− 1 − µ(n)

n
, (11)

and

w2 (n) =
1 + µ(n)

n
. (12)

µ(n) is a non-negative small function that discounts old
estimate and gives more weight to the new observation xn

at time n. When µ(n) ≡ 0, x̄(n) is exactly the sample mean.
The algorithm is guided by the statistical efficiency, but

it is not absolutely the most efficient one, because

1. the true distribution of the observation is unknown;

2. the distribution changes with W being incrementally
estimated and therefore;

3. amnesic average is used to gradually discount “old”
observations, which reduces the statistical efficiency
moderately.

2.3. Quadratic Programming

Quadratic programming (QP) is used for finding the so-
lution of LASSO regression. The method suggested by David
Gay [2] transforms the LASSO to a QP problem with 2n
variables and (2n + 1) constraints, where n denotes the
number of the kernels. In this subsection, we are proposing
the dual-QP algorithm, which converts the original problem
into a problem with fewer variables (n) and 2n constraints.

The dual problem of LASSO regression is described in
Eq. (3) and we recapitulate it as finding β̂, s.t.

β̂ = arg max
β

−

J(β)

[
tβ

Z

]

‖J(β)‖∞
(13)

This optimization problem is equivalent to

β̂ = arg max
β

−J(β)

[
tβ

Z

]

= arg min
β

−[t2β>(βH>βH)β − y>y]

s.t.
‖J(β)‖∞ = 1 (14)

The constraint Eq. (14) can be written as

max(‖
2

t
H>Hβ − H>y‖∞, 1) = 1

and is simplified to be

‖
2

t
H>Hβ − H>y‖∞ ≤ 1 (15)

Written in component form, Eq. (15) becomes

max
i

|
2

t
c>i β − αi |≤ 1, for i = 1, ..., n

where

H>H =








c>1
c>2
...

c>n








and 2H>y =








α>
1

α>
2
...
α>

n








The inequality can be expressed in

−1 ≤
2

t
c>i β − αi ≤ 1

We write the inequality in vector form

2H>y − 1 ≤ 2H>Hβ/t ≤ 1 + 2H>y

Thus, the equivalent QP problem becomes

β̂ = arg min[β>H>Hβ]

s.t.,
−2H>Hβ/t ≤ 1 − 2H>y
2H>Hβ/t ≤ 1 + 2H>y

It is worthy noting that the above QP has n variables and 2n
constraints.

2.4. Filter Development

Let us reconsider the original linear kernel regression
problem in a special case. Suppose the design matrix H is
orthogonal n by nmatrix, and there is no additive noise. So,
β = H>y. Also we are not considering optimization with
respect to β, but instead, with respect to the design matrix
H. Then, we get the criteria function adapted from Eq. (1)

Ĥ = arg min
H

{
∥
∥H>y

∥
∥

1
}.

Using the same gradient technique described in section 2.2,
we can get the updating rule of design matrix H,

∇hj ∝ 2δcj(h
T
c y)y,

where c = arg max
i

{
|h>

i ·y|
‖hi‖

}

, and δcj is the Kronecker

delta: δcj = {1 if c = j, 0 otherwise}. This is precisely
a “winner-take-all” algorithm. Only the winning kernels
(neurons) will get updated. For more details about this method,
see [10].
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2.5. Gradient Sparseness Optimization Algorithm

Algorithm 1 Gradient Sparseness Optimization Algorithm

1: Preprocessing: Get the training set (xi,yi), i =
0, 1, 2, ..., n. For each i, yi = yi − ȳ, where ȳ =

1
m

m∑

i=1

yi.

2: βi = 0, i = 0, 1, 2, ..., k.
3: Initialize the design matrix H, and compute C =

H>H.
4: repeat
5: k = 1.
6: Compute m = arg max

j

(∣
∣β>cj − y>hj

∣
∣
)
.

7: if 4
t2

(
β>cm − y>hm

)2
> 1 then

8: Update β with:

βnew = w1(k)βold + w2(k)[
2Cβ

‖J(β)‖∞
−

4
[
βT Cβ − yT y

]

t ‖J(β)‖
3
∞

·
(
βT cm − yT hm

)
cm],

where w1 and w2 is the same as in Eq. (11) and
Eq. (12).

9: else
10: Update β with:

βnew = w1(k)βold + w2(k)
2Cβ

‖J(β)‖∞

11: end if
12: k = k + 1.
13: until Objective function in Eq. (3) reaches the target

value, or ∆β is less than some threshold.

We summarize the training procedure in Algorithm 1.
Each iteration of this algorithm is computational efficient,
because it only involves matrix multiplication and maxi-
mum function. The time complexity of each iteration is
O(kn), where k is number of basis vector and m is the di-
mension of each basis vector.

3. EXPERIMENTS

3.1. Kernel Regression

Our first experiment illustrates the performance of the
proposed algorithm in kernel regression. The regression
model is

y = f(x, β) = β0 +

k∑

i=1

βiK(x,xi),
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Fig. 3. Objective function vs. number of iterations. We utilize a
dynamic learning rate mechanism called Amnesic Average. Inter-
ested reader can refer to [8] for more details.

where K(x,xi) = exp{− ‖x−xi‖
2

2σ2 } is the kernel function,
xi and σ are the kernel parameters. The function to be
approximated is 1 − d sinc function y = sin(x)/x. We
randomly collected 150 samples and added Gaussian noise
with variance 0.01. The first row in Fig. 2 shows the fitting
results of proposed method, ridge regression and the pro-
posed dual-QP LASSO regression algorithm, respectively.
The dots are samples with noise, and the dashed lines are
the ground truth sinc function. Solid lines show the approx-
imation results. The circled dots correspond to the kernels
with nonzero weight, a.k.a the “supporting kernels”. In the
second row, we use the bar figure to display the weights of
those kernels. As it clearly indicated, both proposed gradi-
ent sparseness method and dual-QP LASSO achieve sparse-
ness. The `∞-norms are also marked on these figures. The
proposed method in our testing performs better than LASSO
regression.

Fig. 3 shows the convergence procedure. The proposed
method takes about 200 iterations to converge. Fig. 4 illus-
trate how the control parameter t = 2σ2α affects the mean
square error and model sparseness. We conducted 20 tests
with t ranging from 0.3 to 1.5. As indicated in the figure,
greater tmakes the model fit well but increases its complex-
ity, and vice versa.

3.2. Classification

The experiment addressed the kernel-based classifier for
two-class problems: A special case of the regression prob-
lem with y ∈ {+,−}. The classifier is formulated as the
following two functions:

p(+ | x) = ψ(Hβ+)
p(− | x) = ψ(Hβ−)
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Fig. 2. Kernel regression results. The dashed lines are true sinc functions. Solid lines are approximation results. (a) Proposed gradient
method. (b) Ridge regression. (c) LASSO regression.
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where ψ denotes the logistic function. If p(+ | x) > p(− |
x), x belongs to the class +. Otherwise, x belongs to the
class −.

We used two data sets from real-data problems: the Pima
indian diabetes1, which were collected from women of Pima
heritage and the goal is to decide whether a subject has dia-
betes or not, based on 7 different tests; the Wisconsin breast
cancer (WBC)2, whose goal is to diagnose (benigh/malignant)
based on the results of 9 measurements. In WBC, we re-
moved the cases with missing attributes for simplicity. Ta-
ble 1 shows the results of the proposed classifier on the 5-
fold cross validation experiment. For comparison, we also
include the results of the kernel-based logistic classifier. In
both data sets, the proposed classifier is better. The perfor-
mance is improved partially by setting some decayed kernel
weight to be exact zero.

1Downloadable at www.stats.ox.ac.uk/pub/PRNN
2Downloadable at www.ics.uci.edu/ mlearn/MLSummary.html
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Table 1. The result of the 5-fold cross-validation.

ROC/No. kernels Pima WBC

Logistic 0.750/200 0.772/455
Proposed classifier 0.965/70 0.980/253

Fig. 5. Basis functions of natural images. The basis dimensional-
ity is 16× 16.

3.3. Filter Development

We also conducted experiment on filter development of
natural image patches. 500,000 of 16 × 16 image patches
were randomly taken from thirteen natural images. The im-
age patches were subtracted by mean and pre-whitened, but
the original dimensionality was kept. The proposed algo-
rithm was applied to the pre-whitened data to update the
design matrix H. Each column of the matrix is shown in
Fig. 5 by a 16 × 16 patch, as the features of the natural
scenes. A total of 256 basis 256-dimensional vectors are
displayed. They all look smooth and most of them are lo-
calized as expected. The entire learning procedure took less
than 46 minutes on a Pentium III 700MHz PC with 512MB
memory compared to over 10 hours of learning time for the
Fixed Point algorithm [11] using 24% of the samples (disk
thrashing is also a factor).

4. CONCLUSIONS

In this paper, we have formulated the dual problem of the
`1 norm based sparse approximation. We show the geomet-
ric relation of the duality and solve the dual `∞ maximiza-
tion problem by gradient and quadratic programming. The
algorithm’s performance is close to or better than the result

of LASSO regression. Comparing with traditional method,
the efficiency of this algorithm is quite remarkable.
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Abstract

The paper presents a new text-independent system for ex-
tracting features that are shown to have the capability to
provide discrimination of speaker emotional state. The sys-
tem is a novel tool that finds low-level features in a particu-
lar projection space. The result is a representation of acous-
tic signals in form of timing sequences. The representation
reveals characteristic structures in data. The key feature of
the method is the learning of the timing information directly
from the data. An analogy is pointed out between the tim-
ing representation and auditory-like signal encoding. The
features are shown to contain information necessary to per-
form text-independent affect recognition. The experiments
are performed using sentences from a German-language
emotional speech corpus [1]. The corpus includes sen-
tences spoken with two primary emotions: happiness and
cold anger, and in a neutral speaking style, and two types
of sentence accentuation: on a noun and on the final verb.
The features are shown to have basic discrimination prop-
erties similar to pitch but provide far better performance
than pitch in noisy conditions.

1. Introduction

Human-computer interfaces, medical diagnostics, and
consumer product design are just a few of the fields that
can benefit from technology that can recognize and adapt
to users emotional state. Effective human-computer inter-
actions necessitate that machines posses at least a subset of
emotion processing skill of humans. A computer that rec-
ognizes what a person says but ignores how the person says
it will appear as if talking but never listening, thus likely to
annoy the user.

In the medical field this technology is useful in evaluat-
ing patient emotional states and stress. In consumer product
design, it can be used in assessing user acceptance of ever
more complicated technologies by evaluating the level of
frastration arising from interaction with a product.

Although humans can easily perceive emotions from au-
ditory cues, corresponding machine recognition technol-
ogy has been slow to develop. The difficulty in recog-
nizing emotions is compounded by their wide range. Not
only there are numerous emotional extremes that sometimes
are not even discriminated consistently the same by hu-
man speakers, for example, joy-happiness-elation, but the
expression of emotions spans a continuum between these
extremes. Emotions that carry a similar connotation, i.e.
negative (or positive) emotions, may have very dissimilar
speech features, that reflect, among other things, very dif-
ferent levels of arousal. Anger and sadness are example of
emotions that have a negative connotation but entirely dif-
ferent arousal level, high in anger and low in sadness [2].
Thus a fundamental question, what would constitute an ef-
fective definition system for emotions, remains open.

A widely accepted system is to divide emotions into pri-
mary and secondary. Secondary emotions are expressed
through combinations of primary emotions. The list of pri-
mary emotions that is generally agreed on is: anger, disgust,
fear, happiness, sadness, and surprise [3]. However, other
classification systems, in particular ones based on physical
properties, e.g. arousal level [2], also have been considered.

The difficulty in identifying emotions is also com-
pounded by the localized and nonstationary nature of nature
of emotional expression. A speaker may place the entire
emotional expression on one word in the sentence, or spread
it over some segment and even the duration of a sentence.
Emotional expression can also vary with prosodic content,
pitch and pronunciation. Some individuals have acoustic
’gestures’ in their expression of affect that are unique to
them and problematic for current automated recognition
systems.

So far to be most effective feature for automated affect
recognition has been pitch and measures derived from it.
Pitch is the fundamental frequency of a signal, commonly
denoted by F0. Mean and standard deviation of F0, mean
duration, variability, slope, jitter (number of changes in sign
of the pitch derivative in a window), and range have been
used by a number of researchers, e.g. [4, 5, 6, 7, 8]. Notably,
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the best results in these papers were reported when pitch-
based measures were combined with others, most common
of which were mean energy, value of high frequency energy,
energy per phone, articulation rate, speech rate (frequency
of occurrence of unvoiced periods), speed of speaking (du-
ration of inter-sentence silences), intensity, intensity vari-
ance and tremor (measure of tremor in the intensity over
the intensity curve).

Speech rate, in particular, has been shown to be consis-
tently modulated by certain emotions, highest in ’anger’ and
slowest in ’sadness’. Most recently, good recognition rates
have been reported, using long-term (high-level) and short-
term (low-level) features derived from these multiple met-
rics. Noam showed recognition rates with long-term fea-
tures ranging from 55% to 98% [9]. Li and Zhao suggest
that long-term features perform better then short-term fea-
tures [10], but good recognition results have been shown
with short-term features as well. Noquerias et. al. [11] used
short-term features with recognition rates of 82.5%.

The present paper explores a novel acoustic-level feature
for affect recognition from continuous speech. The moti-
vation for the method is to model the physical mechanism
involved in speech production that give rise to the acoustic
gestures related to affect. To this end, we propose a new
feature space derived through a projection of data as de-
scribed in Section 3. The resulting approach is shown to
exploit structures in signals which it learners directly from
the signals. The structures are expressed in the form of a
timing sequence. We refer to this representation as the In-
terval Domain (ID) representation. The modeled structures
can be arbitrarily complex, containing any combination of
linear (i.e. periodic) and nonlinear (aperiodic) components
plus stochastic noise.

The feature space used is derived as a projection de-
signed to minimize effect of noise. Being able to analyze
an arbitrary structure embedded in noise, without a priori
having to establish the nature of the signal, is one powerful
feature of this technique.

The method is tested using sample sentences from a
German-language emotional speech corpus [1]. It is shown
to extract features correlated happy, and angry emotions and
with a neutral speaking style. The performance comparison
between pitch and new feature shows that the ID feature is
comparable to pitch in noise free conditions, but that it dras-
tically outperform pitch in noise. The ID-feature is shown
to identify affect related gestures in -5dB SNR levels when
pitch can no longer identify voiced parts of speech.

The mammalian auditory system is known to encode in-
coming acoustic signals as timing sequences of neuronal
spikes. The mathematical principle for such encoding of
a temporal signal as a timing sequence is not known. How-
ever, it is interesting to note that our mathematically derived
approach results in the same general principle for represen-

tation in terms of a timing sequence that is used by the mam-
malian auditory system.

The paper does not address design of a recognition sys-
tem based on the new features. The aim here is to under-
stand the basic properties of the features first. Many factors
go into design of a succesfull affect recognition systems in-
cluding choce of scoring functions made of multiple signal
features. Thus, the new feature may prove useful in combi-
nation with traditional features in particular where robust-
ness to noise is required. Investigation of these issues is left
for future work.

2. Emotional Speech Corpus

The experiments in this paper use seven sentences from
the German language emotional speech corpus described in
[1]. The entire corpus is comprised of 148 sentences with
identical syntactic form (subject-auxiliary-NP-verb), where
NP stands for ’the nominal phrase’. The 148 sentences are
divided according to their lexical content. The lexical con-
tent, neutral, positive, or negative, was determined by hav-
ing a group of subjects (n=20) rate the sentences. The sen-
tences were recorded while spoken in Standard German by
a trained female speaker. Each sentence was recorded and
appeared in the database 6 times, using two forms of ac-
centuations (on the NP and on the verb) and three forms of
emotional state (happiness, neutral, and cold anger). Thus
recorded utterances either matched sentence lexical content
or mismatched it. The seven sentences were randomly cho-
sen from the corpus and the six recordings of each of the
sentence were provided to us.

One of the objectives in creating this corpus was to ex-
amine the connection between affect-dependent acoustic
features and the neural responses of listeners, which were
monitored using event-related brain potentials (ERPs). One
of the study aims was to discriminate the different seman-
tic conditions from listener responses. The use of the two
forms of the accentuation were motivated by the hypoth-
esis that the accented syllables are hyper-articulated while
unaccented syllables are hypo-articulated. Vocal effort in-
volved in hyper-articulation may produce measurable dif-
ferences in acoustic features of emotional expression. The
match/mismatch between the lexical content and the spo-
ken affect was the other variable condition. The researchers
in [1] hypothesized that the mismatch condition would pro-
duce a stronger emotive expression.

The objective of the present study is different from the
goals in [1]. We are not concerned with discriminating
among the different semantic conditions (match versus mis-
match, NP versus final verb accent). The aim here is to rec-
ognize the expressed affect from spoken sentences. Thus we
use only the speech corpus part of the data in our analysis.
The different semantic conditions used in the original study
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yield an interesting dataset for testing affect-recognition in
a variety of speech forms.

3. Timing sequence model for affect recogni-
tion

The method presented here is derived from the embed-
ding concept of nonlinear dynamics theory [12]. The im-
petus for its development was the need to analyze real-life
data that could originate in unknown environments that are
complex, unstructured, and highly noisy.

At the heart of the method is identification of the de-
terministic structure in data that may be embedded in high
amplitude, random noise. The formulation of the problem
is straightforward. Given some data, we are interested in
identifying the presence of all structures, periodic (linear)
as well as aperiodic (nonlinear), they may contain. The
problems associated with analysis of stochastically contam-
inated time series using classical nonlinear dynamics theory
has been well described in the past. Casdagli at al. in [13]
showed that given even arbitrarily small amounts of noise,
some of the degrees of freedom of a system become com-
pletely unrecoverable. This means that classical embedding
theory cannot be expected to be almost valid when data are
almost deterministic. In other words, formal embedding re-
construction is not directly applicable to noisy data.

To deal with this problem several researchers have used
projective schemes that identify a manifold in the embed-
ding space (e.g. [14, 15]). The idea is that deviations of
a trajectory in the embedding space from a manifold are
caused by random noise in the data and the projection onto
the manifold filters this noise, thus recovering the determin-
istic structure buried in data. Such projection techniques
have been proposed and demonstrated on a number of sig-
nals including speech [14]. The projective techniques used
in these works rely on recovery of the manifold from a re-
constructed embedding.

The approach taken here is different. One of the immedi-
ate restrictions of the classical embedding theory is the fact
that information contained in the embedded representation
is critically influenced by the choice of embedding param-
eters and in particular the choice of the time delay values.
There have been practical examples where the theoretically
sufficient dimension can produce less optimal results than
using a smaller dimension []. A relevant consensus from
the existing works is that to optimize the embedding per-
formance, including minimizing redundancy in the recon-
struction, one should consider time delays that are variable
in length, not integer multiples of a common lag [16].

We interpret this conclusion in a derivation where we
learn the time delay parameters from data. Starting with
the classical embedding theory, one can represent the state
of an L-dimensional system from its output time series

x(t) by constructing an object in a space spanned by the
time series and its time-delayed replicas. The object is
a phase trajectory which can then be written as x(t) =
{x(t), x(t − τ1), . . . , x(t − τD−1)}, which is a function of
delayed coordinates. Based on the discussion above, we ex-
plicitly assume non-uniform delays τi, 1 ≤ i ≤ D − 1.

The importance of this construct is that it is diffeomor-
phic to the original phase space for sufficiently large D so
that topological properties of the original high-dimensional
system are preserved in the embedding under relatively
loose restrictions. This means we can extend embedding
theory to model the dynamics of the system output. Specif-
ically, we express the evolution of the state vector dx(t)/dt
as a function of the phase trajectories, i.e. dx(t)/dt =
F[x(t),x(t − τ1), . . . ]. This formulation provided a novel
data representation strategy. Instead of chosing delays to
construct the embedding, we estimate the parameters of the
deterministic function F from the data derivative dx(t)/dt.

We estimate it in the following way. A general non-linear
real-valued function can be extressed in a Taylor series
expansion of functionals of increasing complexity around
some fixed point. When the function F[·] represents behav-
ior of a dynamical system, that is, a time series model where
the input is formed from past inputs [x(t), x(t − τ1), . . . ],
the expansion becomes a Volterra series. We have

dx(t)
dt

= x0 +
∞∑

i=0

gixτi +
∞∑

i1=0

∞∑

i2=0

gi1,i2xτi1 xτi2 + · · ·+

∞∑

i1=0

∞∑

i2=0

· · ·
∞∑

iq=0

gi1,i2,...,iqxτi1 xτi2 . . .xτq

(1)
Equation (1) models the linear and non-linear data com-

ponents as separate model terms. To find a model that is
a projection onto a stable manifold, we consider low-order
models made of a finite number of leading terms of equa-
tion (1). In other words we subselect candidate structures
from equation (1) and fit them to data until we identify the
smallest best fitting model.

We find the following low-order general structure to
work well in many practical applications that we have at-
tempted, including modeling affect expression

F (x, t) =
∑

k

akx
l
τix

m
τj , (2)

where xτi = x(t − τi) is a delayed data vector with the
delay τi , i, j, l,m ∈ N0 and τi,j permiting zero values, i.e.
the signal itself.

This idea of restricted complexity of the model, i.e. leav-
ing some of the dynamics unmodeled, plays a key role in the
development of the practical algorithm. First of all, it allows
us to reduce the computational load in this ill-posed prob-
lem to a manageable level so we can solve for the terms
of the model. We describe this later when we present the

246



final practical design model. Second, the unmodelled dy-
namics provides a means to control effect of noise on the
estimation, much like the use of regularization in linear es-
timation.

The model in (2) permits polynomial functions with up
to two non-zero delayed data vectors. The linear part of the
equation can contain the scaled data itself plus up to two
scaled delayed versions of the signal. The non-linear part
of the equation permits any number of two term products of
data and/or their delayed versions.

The model estimation problem reduces to a two part task:
first select an appropriate low order model expansion and
then fit the unknown parameters using the derivatives of
the measured data. This estimation problem is non-trivial
because its highly ill-posed and because the unknown pa-
rameters depend non-linearly on the data. We use a genetic
algorithms (GA) to perform optimization here.

4. Emotive Feature Extraction

The analysis in this paper was done using sample sen-
tences from the German-language emotional speech corpus
[1] described in Section 2. Seven sentences, which were
numbers 17, 43, 83, 85, 112, 123 in the corpus, were ran-
domly chosen by a third party and provided to us for analy-
sis. Of the seven sentences provided to us, three were rated
as having positive lexical content, three sentences rated as
having negative lexical content and one sentence rated as
having neutral content. Each sentence was recorded and ap-
peared in our database six times: with three types of affect
and two types of accentuations as described in Section 2.
Hence, we had a total of 42 records available for analysis.

Bellow is a list of the seven sentences. The number in
front of each sentence indicates its position in the corpus
and the sign ’+’, ’-’, or ’0’ indicates the positive, negative,
or neutral rating of the sentence.

85 + Sie hat es ans Licht gebracht.
(She brought some facts to light.)

103 + Er hat um ihre Hand angehalten.
(He asked for her hand in marriage.)

112 + Sie hat den Rekord gebrochen.
(She broke the record.)

17 − Sie hat ihn mit der Waffe bedroht.
(She threatened him with the weapon.)

40 − Er hat sie von der Klippe gestoben.
(He pushed her from the cliff.)

83 − Er hat ihn ins Gesicht geschlagen.
(He slapped him in the face.)

123 0 Er hat den Brief geschrieben.
(He wrote the letter.)

Affect-recognition is typically investigated in the lexical
context that is either nonspecific or consistent with the exp-
resed affect. Yet, in practice, many instances can be found

where the spoken affect mistmaches the lexical content, sar-
castic expression being one example. Affect-lexicon mis-
match in the given corpus provide an interesting study case
in this respect. The authors in [] hypothesize that a speaker
may use a stronger expression of affect in the mismatched
condition, thus resulting in stronger acoustic features than
in the neutral or matched condition. As shown below, we
find strong evidence in our models that supports this.

4.1. Feature extraction model

Prior to analysis, the data were down-sampled from the
original 44100Hz down to 8820Hz. The speech feature
model was derived in two steps. Two, three, and four term
’best’ models from the general model, Eq. (2) were esti-
mated for the 42 sentence dataset using GA and the model
coefficients were calculated for frames ranging from 20-ms
to 100-ms with various overlaps. The model-frame-overlap
combination which was consistently selected by our GA al-
gorithm to produce the smallest fit error (RMS) in all 42
recordings was the following two delay 2nd order model

ẋ = a1xτ1 + a2xτ2 + a3xτ1xτ2 . (3)

with 74.3-ms frames and 12-ms updates.
This model-frame-overlap setting was selected for the

subsequent analysis. Parameters for all 42 records and all
frames were re-calculated again using this setting. Analy-
sis of the results is presented in the next subsection. Un-
like typical derivation of a recognition model, no training
for affect recognition occurred during this model selection.
The model was strictly derived based on the smallest RMS
error fit to continuous speech segments. Thus, this model
is a general model of speech features represented in the
ID space, in theory, could account for the speaker specific
acoustic features, phonetic features, affect related features,
and accentuation, and possibly other features of speech.
Analysis of this model parameters and coefficients reveals
that the coefficients a1, a2, a3 each relate in a different way
to the phonemes in the sentence. The relationship between
the coefficients a1 and a2 reflects speaker acoustic charac-
teristics and the parameter τ2 is related to the emotive ex-
pression and to some degree to the sentence accentuation.
Thus, the ID model provides a full spectrum of low-level
features in speech signals.

4.2. Results from experiments: ID feature model

All seven sentences each spoken six different ways were
analyzed using model Eq. (3). The present study focuses on
the performance of the τ2 parameter only. We summarize
the results and present selected examples as space allows.
The following questions are addressed in the study: 1) How
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consistent τ2 responds to changes in affect. 2) The depen-
dency of the response on the sentence lexical content and
the placement of accentuation. 3) How the τ2 feature com-
pares to pitch. 4) Performance of the τ2 feature and pitch in
the presence of noise. Overall, the τ2 values from model Eq.
(3) were found to correlate consistently and in a meaning-
ful way with the three expressed affects: neutral, happiness,
and cold anger. This was consistent across all seven sen-
tences and for both forms of accentuation. The observed
level of discrimination of affect was similar to that of pitch
in noise-free environments. τ2 performed significantly bet-
ter than pitch in noise.

Figure 1 shows the computed raw τ2 values for each win-
dow for the sentence #17 spoken with negative affect and
NP accentuation. The values form a clearly visible line,
except during unvoiced segments, in which randomly dis-
tributed τ2 values are seen. To aid in the future classification
process, the unvoiced segments are identified and removed
by setting τ2 values in these segments to zero. Filtered τ2

values are shown in Figure 1 as well. The employed filter
is a moving data clustering predictive filter. Throughout the
remainder of the paper we use filtered τ2 values.
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 τ2 values for sentence 17, negative affect and neutral accent

raw
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Figure 1. Raw and filtered τ2 values for sen-
tence number 17, negative affect, neutral ac-
cent.

The present section examines how consistent τ2 responds
to changes in affect. The results we present are consistent
across all seven sentences and for both forms of accentua-
tion. For reasons discussed below, we find least well defined
separation in τ2 for the three affect conditions when the sen-
tence is lexically neutral (number #123) when NP is being
accentuated.

The first experiment was performed using the first lex-
ically non-neutral sentence (number #17, negative) with
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 (a)  τ2 values for sentence 17, neutral accentuation
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(b)  τ2 values for sentence 17, accentuation on the final verb

neutral
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neutral
negative
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Figure 2. τ2 values for the three forms of ex-
pressed affect in the lexically negative sen-
tence number 17. (a) Neutral accent. (b) Ac-
cent on the final verb.

the three affect expressions and two forms of accentuation.
Plots of the filtered τ2 values are shown in Figure 2(a), neu-
tral accentuation, and (b), accentuation on the final verb.
Three clearly separated lines can be observed in the plots.
In both plots, the three lines begin at about the same level
but separate quickly. The upper line shows no significant
change in amplitude and corresponds to the neutral expres-
sion, the middle line, to cold anger, and the bottom line to
happiness. The relative differences in τ2 are analogous to
those in pitch values as shown later. In the NP accentuation
case, the three affect conditions are separated throughout
most of the sentence, coming together at the very end, at the
point of unaccented verb. The τ2 values settle at their char-
acteristic level quickly and remain consistent at that level
through the first half of the sentence, so that recognition of
expressed affect could be made from the values in that half
of the sentence. In the final verb accentuation case, the τ2

values are also separated throughout most of the sentence,
although slightly less pronounced in the first half of the sen-
tence. In the second half of the sentence, the general three-
level pattern remains but around frame 500 the values for
the ’happiness’ condition rise slightly above the values for
the ’anger’ condition and then decline back to their low lev-
els. The rise may reflect the accentuation of the final verb
rather than the difference in affect. Alternatively, the rise
may be related to the change in affect, implying that affec-
tive expression may be described not solely by the τ2 values
but also the their dynamics of the τ2 profile.
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(b)  τ2 values for sentence 123, accentuation on the final verb
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Figure 3. τ2 values for the three forms of ex-
pressed affect in the lexically neutral sen-
tence number 123. (a) Neutral accent. (b)
Accent on the final verb.

Plots in Figure 2 demonstrate typical results obtained in
all 7 sentences. The lexically neutral (number #123) sen-
tence with NP being accentuated may be considered to pro-
vide a slight deviation from the typical results. Plots of the
filtered τ2 for this sentence are shown in Figure 3. The top
to bottom line order is the same as for sentence #17 in Fig-
ure 2. The ’anger’ line, however, follows the neutral line at
the beginning and drops down at approximately the 180th
frame, shortly prior to and during the accented part of the
sentence only. On the other hand, the ’happiness’ line stays
clearly separated at a low level throughout the entire first
part of the sentence, as in all other sentences. The late drop
in the anger line, in fact, may facilitate recognition between
anger and happiness. In the final verb accentuation case, the
τ2 values are separated throughout the sentence, character-
istic of what is seen in the rest of the sentences for the verb
accentuation case.

NP accentuation is the default accentuation in German
for verb-final sentences. Thus this sentence utterance rep-
resents the most ’regular’ form of speech. The response in
τ2 immediately prior to and during the accented part of the
sentence only in the ’anger’ case may support the hypoth-
esis that vocal effort involved in the normal speech is less
than in the cases of unusual constructs. Less vocal effort
translates into less pronounced affect expression, hence it
can only be recognized during the accented part of the sen-
tence.

To assay the affect-lexicon independence we compare τ2

values for the two primary emotions, happiness and cold
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(c)  τ2 values for sentences 40, 85, and 123 with emotive happiness and accentuated final verb
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(d)  τ2 values for sentences 40, 85, and 123 with emotive anger and accentuated final verb

Figure 4. τ2 values for three different lexical
connotations, sentence numbers 40, 85, and
123 ploted for ’anger’ and ’happiness’ forms
of affect and the two forms of accent. (a) Ex-
pression of happiness, neutral accent. (b)
Expression of anger, neutral accent. (c) Ex-
pression of happiness, accented final verb.
(d) Expression of anger, accented final verb.

anger, across the different lexical conditions. Overall, very
little difference in τ2 values was found accross the lexically
different sentences for each form of affect expression. Fig-
ure 3 shows τ2 plots for three lexically different sentences
(numbers 40, 85, and 123), for two affect conditions, ’hap-
piness’ and ’anger’, separated by the two forms of accentu-
ation. The only obvious separation in τ2 values can be seen
in frames 325-350 in the top plot of Figure 3. This point is
where the main emphasis is placed in the sentence, a point
of hyper-articulation.

4.3. Results from experiments: comparison with
pitch

A number of effective algorithms is available for com-
puting pitch. For this paper, F0s were estimated using the
Tcl/Tk Snack audio analysis module on a Linux platform
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 (a) Pitch values for sentence 17, neutral accentuation

20 40 60 80 100 120 140 160 180
50

100

150

200

250

300

350

Frame number

pi
tc

h

(b) Pitch values for sentence 17, accentuation on the final verb
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Figure 5. Pitch values for the three forms of
expressed affect in the lexically negative sen-
tence number 17. (a) Neutral accent. (b) Ac-
cent on the final verb.

[17]. The ESPS method in Snack was used to compute
pitch which integrates normalized cross-correlation pitch
candidate generation with dynamic programming to select
the optimal pitch track. The default settings of 10 msec
and 7.5 msec were used respectively for the value spac-
ing (-framelength) and the window length. Because ESPS
method also calculates probability of voicing, the pitch val-
ues were selected only for the voiced speech segments and
were set to 0 for the unvoiced speech segments.

Figure 5 show pitch curves for the same sentence num-
ber #17 as shown in Figure 2. The order of the curves is the
same but inverted from the τ2 curves of Figure 2. The lower
τ2 values correspond to higher F0s. Otherwise, the corre-
spondence is similar in noisy-free case and is consistent for
all seven sentences.

4.4. Results from experiments: performance in
noise

Performance in noise between F0 and τ2 is significantly
different. Two experiments, with 0dB and−5dB SNR lev-
els are shown here. In both cases, white, Gaussian dis-
tributed noise of appropriate level was added to the speech
signal. For consistency, the analysis is done using the same
sentence number #17, first record, which was recorded
with angery expression and neutal accentuation. The noisy
signals were not filtered prior to analysis. F0 and τ2 val-
ues were computed, using the same methods as above, for
the noisy signals. The derived τ2 values were also filtered
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 (d) Filtered  τ2 values for sentence 17, SNR = −5dB 
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Figure 6. τ2 values for noisy data, sentence
number 17 with angry expression and neutral
accent. (a) Raw τ2 values for 0dB SNR and
noise-free case. (b) Filtered τ2 values for 0dB
SNR and noise-free case. (c) Raw τ2 values
for -5dB SNR and noise-free case. (d) Filtered
τ2 values for -5dB SNR and noise-free case.

as described above. Figures 6 and 7 show plots of τ2 and
F0, respectively, for 0dB and −5dB SNR levels. For illus-
tration, both raw and filtered τ2 values are shown in Figure
6. In the 0dB SNR case, the filter is able to successfully
recover the τ2 values of the noise free case even through
the raw τ2 values are fairly noisy. In the −5dB SNR case,
clusters of raw τ2 values are seen distributed everywhere in
the plot space. The employed filter is able to recover the τ2

values of the noise free case in the first half of the sentence,
after which out filter estimates diverged from the noise-free
values. Note that in the noise free case the affect is clearly
differentiated only in the first half of this sentence as well,
which reflects dimished vocal effort in the second part of
the sentece. A more sophisticated filter could possibly track
τ2 throughout the sentence and could be attempted.

Pitch estimates were not consistent in the 0dB SNR case
with many sections of the sentence determined to be un-
voiced speech. In the −5dB SNR case, the entire signal
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 (a) Filtered pitch values for sentence 17, SNR = 0dB
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Figure 7. Pitch values for noisy data, sentence
number 17 with angry expression and neutral
accent. (a) Filtered pitch values for 0dB SNR
and noise-free case. (b) Filtered pitch values
for -5dB SNR and noise-free case.

was determined to be unvoiced speech. This was observed
in all seven sentences.

The drastic difference in performance in noise between
F0 and the ID-feature is expected. The projection onto
the manifold discussed in Section 3 is designed to mitigate
noise in data. Since affect recognition in noise is a signifi-
cant problem for current technology, we consider this result
to be of great interest that warant further investigation of the
proposed methodology.

5. Conclusions

We introduce the concept of timing domain represen-
tation, which is implemented by estimating directly from
data the delay parameters of a projection onto a manifold in
an embedding space. The resulting model estimates deter-
ministic structures in data and the residual stochastic com-
ponent. Affect recognition power of the model is demon-
strated at the acoustic feature level. The model is shown
to find features that distinguish neutral, happy, and angry
emotions expressed by a speaker.

The concept of learning embedding parameters from
data is in its infancy and it ushers in an entirely new ap-
proach. There are a number of areas that require further
research, such as design of a classifier based on the pre-
sented model, training data requirements, and potential im-
provement of discrimination by adding conventional speech

features to those identified here.
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Abstract

Cross-task learning is essential for an artificial agent to
explore in the real world. With this capability, an agent can
learn multiple tasks and use acquired knowledge to learn
new tasks. In this paper, we propose the Developmental,
Observation driven, Self-Aware, Self-Effecting, Markov De-
cision Process (DOSASE MDP) model, which enables an
agent to find the relatedness between different tasks and to
develop cross-task learning capability by interacting with
the environment. One challenge of this work is that no task
is defined in advance. The trainer shapes the behavior of
the agent to learn different tasks interactively and continu-
ously through interactions. The development is conducted
in real-time using high-dimensional input, which is another
challenging issue. We tested the architecture on an arti-
ficial agent for vision-based navigation. The results show
that DOSASE is an effective model for autonomous men-
tal development (AMD) and dramatically reduces both time
and space complexities for cross-task learning.

1 Introduction

Cross-task learning capability is very important for an
artificial agent to explore in the real world. By cross-task,
we mean that the same system must learn multiple tasks in-
crementally in the same mode, dealing with task specific
contexts correctly. With this capability, the agent can learn
different tasks and transfer learned knowledge to new tasks.
Scientists in psychology proposed a lot of models to simu-
late human cognition in cross-task learning. Lovett [4] used
an architecture called ACT-R to model how people organize
knowledge and produce intelligent behaviors.They claimed
that after separately fitting performance on a preliminary
task, the model can make zero-parameter cross-task predic-
tion of performance in on a second task. Computer scien-
tists are also interested in building multiple-task learning
models for artificial agents. Thrun [6] proposed the task-

clustering algorithm, which learns the relationship between
different tasks. When facing new a task, the algorithm first
finds the most related task, then exploits information from
this task. Pratt [5] and Caruana [1] investigated the similar
problem: how to use information from one neural network
to help a second network learn a related task. The limita-
tions of these methods consist of: 1) human programmers
know the task knowledge at the beginning. 2) in order to
build up the relationship between different tasks, real-time
learning is impossible. For a typical developmental agent,
these limitations are not acceptable. A developmental agent
has to run in real time and face different tasks, which are
unknown to the agent before training.

In this paper, we propose the Developmental, Observa-
tion driven, Self-Aware, Self-Effecting, Markov Decision
Process (DOSASE MDP) as the model of autonomous men-
tal development (AMD) [8] to conduct cross-task learning.
The advantages of the model include: 1) no task is defined
at the beginning. By interacting with the trainer, the agent
incrementally learns different tasks. 2) the agent can learn
task-relatedness online in real-time. 3) the agent transfers
learned knowledge to new tasks and dramatically reduces
both time and space complexities. The model has been suc-
cessfully tested on an artificial agent for vision-based navi-
gation.

In the following section, we will first formulate what is
cross-task learning. The DOSASE MDP model is intro-
duced in section 3. Experimental results are shown in sec-
tion 4 and then we conclude with a summary and discussion
about future works.

2 Problem Description

To be precise in our further discussion, we need mathe-
matical notations.

Definition 1 Context: A contextc(t) of an agent is a
stochastic process. It consists of two partsc(t) =
(x(t), a(t)), wherex(t) denotes the sensory vector at time
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t, which collects all signals sensed by the agent at timet,
a(t) is the effector vector consisting of all the signals sent
to the effectors of the agent at timet.

Definition 2 Length of Context: The context related to the
agent from the previous timet1 up to a later timet2 is a
realization of a stochastic process{c(τ)|t1 ≤ τ ≤ t2}. The
length of the context isL = t2 − t1.

Definition 3 Given an agent at timet1, suppose that the
agent produces different action contextsa1 and a2, from
two different contextsC1 = {c(t) | t1 ≤ t ≤ t2} and
C2 = {c(t) | t1 ≤ t ≤ t3}, respectively. Ifa1 and a2

are considered different by a social group (human or robot),
conditioned onC1 andC2, then we say that the agentdis-
criminatestwo contextsC1 and C2 in the society. Other-
wise, we say that the agent does notdiscriminateC1 and
C2 in the society.

For example, given a voice command “Go to the eleva-
tor,” the speech signals of the command are different from
different people. However, humans consider the commands
are the same. In this case, the agent should not discriminate
the above commands from different people.

Definition 4 Cross-task Learning: 1). There are N tasks:
Γ = {Ti|i = 1, 2, ..N}. 2). For each task, the learn-
ing goal is to generate the mapping from context to action:
M : C → A, whereA is the action space,C is the context
space, which could consists of different sensory input: vi-
sion, audition, touch etc. 3). Given the first N tasks, the
agent uses acquired knowledge to speed up learning the
N+1th task.

A typical setting is shown in Fig. 1. There are two tasks:
T1 andT2. For example, in autonomous navigation prob-
lem, T1 is “go around” andT2 is “go to the elevator.” The
contexts of each task areC1 andC2, respectively.

Definition 5 Shared context: The overlapped trajectory be-
tween these two tasks is called shared contextCshare =
C1

⋂

C2. Non-overlapped trajectory is called non-shared
contextCnon share = C1

⋃

C2 − Cshare.

Give the above figure as an example,
C1 = {C11, C12, C13, C14, C15} and C2 =
{C21, C22, C23, C24, C25}. In the task space, the shared
context isCshare = {C12, C14} and the non-shared context
is Cnon share = {C11, C13, C15, C21, C23, C25}.

Definition 6 Merge point and break point: The point,
where the contexts of two or more tasks begin to overlap,
is call “merge point” (M1, M2). The point, where the
contexts of two or more tasks begin to diverge is “break
point” (B1, B2).

Task 1 Task 2

point

Merge
point

Break

M 1

M

B

2

1

2C C

CC

C C

C C

C C

15

14

13

12

11 21

22

23

24

25

C

B

Figure 1. Typical setting of cross-task learning.

3 Architecture of DOSASE MDP

We propose the Developmental, Observation driven,
Self-Aware, Self-Effecting, Markov Decision Process
(DOSASE MDP) as a model of autonomous mental devel-
opment to conduct cross-task learning. The architecture of
this model is shown in Fig. 2. There are two level-building
element (LBE) components. The first LBE online learns the
association between task label and verbal commands. The
second LBE learn the specific tasks (for example, differ-
ent vision-based navigation tasks). A developmental agent
is self-aware and self-effecting, which means the agent can
sense both internal and external inputs and generate both
internal and external actions. A typical internal action is
thinking.

Definition 7 Internal action and external action: Action
consists of two component. That isa(t) = (ai(t), ae(t)),
whereai(t) andae(t) are the internal action and external
action, respectively.ai(t) changes the internal state while
ae(t) changes the external state.

The input goes through a channel selector, which only
pay attention to part of context. For example, the first LBE
pays attention to auditory input while the second one pays
attention to visual input. The input through the channel se-
lector is fed into an observation-driven state transition func-
tion. After generating the current state, the cognitive map-
ping engine finds the best match and outputs the associated
action. In the following subsections, we will discuss each
component in details. It is worth noting that in the experi-
ment only the second LBE is used for vision based naviga-
tion. The experimental result of voice command learning is
not presented.
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Figure 3. Observation-driven state transition function.

3.1 Observation-driven state transition function

After going through channel selector, the sensory input
is fed into the observation-driven state transition compo-
nent. Let’s first define last context:l(t) = f(a(t−1), x(t)),
which consists of last actiona(t−1) and current inputx(t).
l(t) is pushed into a context queue as shown in Fig. 3 and
is combined with last state information to generate the cur-
rent state. Mathematically, this is called observation-driven
state transition functiong : S × L 7→ S, whereS is the
state space,L is the context space and is generated by a
queue of multiple sensory input. This is a general architec-
ture. We can chose different lengths of the context queue.
The observation-driven state transition function generates
current state from last state and current contextl(t), which
is defined as

s(t) = g(s(t − 1), l(t)). (1)

We should notice thats(t) can be also defined as:

s(t) = g(s(t − 1), l(t), l(t − 1), ..., l(0)). (2)

If we use Eq. 1, then we can treat it as a Markov decision
processing. We call this model the Developmental, Ob-

servation Driven, Self-Aware, Self-Effecting, Markov De-
cision Process (DOSASE MDP). The difference between
DOSASE MDP and POPDP are:

1. POMDP is a computational model but it is not a
model generator. It requires humans to hand-design
the model. However, DOSASE MDP contains both: a
computational model and the model generator.

2. DOSASE MDP is a SASE model, but POMDP is not.
By SASE, we mean that the model can sense inter in-
put and issue internal action (for example, attention).

3. The state in the former is a symbol, which means that
every state is different but there is no information about
distance between states. The state in DOSASE MDP
has a representation, which is subject to internal action.

3.2 Online learning of one task through cognitive
mapping

Many problems like content-based retrieval, vision-
based navigation can be formulated as a complicated func-
tion which maps high dimensional input and the current
state to low-dimensional output signals. We use a decision
tree to approximate this function, which is implemented by
Locally Balanced Incremental Hierarchical Discriminating
Regression (LBIHDR) [2] [3].

A detailed explanation is beyond scope. Basically, given
a states, the IHDR finds the best matcheds′ associated with
action. The mapping is done through a coarse-to-fine tree
structure. Each node of the tree is modeled byq Guassians.
The originald-dimensional input space can be mapped into
a q-1 dimensional discriminant subspace. We only con-
duct Linear Discriminant Analysis (LDA) in the very-low
dimensional subspace, which saves tremendous computa-
tional cost. Each Gaussian is represented by its first two-
order statistics: mean and covariance matrix. Mean is up-
dated incrementally as follows:

s̄(n+1) =
n − µ

n + 1
s̄(n) +

1 + µ

n + 1
sn+1 (3)

wheresn+1 is the(n + 1)th state,̄s(n+1) is the mean after
this state is trained,µ is a parameter. Ifµ > 0, the new input
gets more weight than old inputs. We called this implemen-
tation the amnesic average. The covariance matrix can be
updated incrementally by using the amnesic average too. In
the testing phase, givens, we use K-nearest neighbor rule
to find the best match in the leaf node.

s′ = arg min
1≤i≤K

‖ s′i − s ‖ (4)

Using IHDR, the relatedness of different task is measured
by the similarity between the states generated for differ-
ent tasks. If some of the states generated by two or more
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tasks are the same, then we say these tasks are related.
That’s why our architecture is better than the task-clustering
method [6], which has to define different tasks in advance to
measure the relatedness. Using the DOSASE MDP model,
we don’t need to know the task in advance but generat-
ing states for different tasks incrementally. IHDR intrin-
sically has incremental online learning capability to adapt
to new inputs, which is a requirement for autonomous men-
tal development. And because of its efficiency, it can learn
high dimensional input, which outperforms the typical neu-
ral network algorithm [1].

3.3 One-task learning algorithm by a develop-
mental agent

The algorithm to learn one task by a developmental agent
is as follows:

Procedure 1 One task learning. Learn the association be-
tween context and action.

1: Collect the current contextc(t).
2: Go through channel selector to get sensory inputx(t) =

cv(t). (For vision-based navigation task.)
3: Pushx(t) to the context queue and generate generate

last contextl(t).
4: Use observation-driven state transition function

(Eq.(1)) to generate the current states(t).
5: Find the best matchs′ of s(t). If they are similar, use

amnesic average to updates′.
6: If imposed action is given, take this action. Otherwise,

choose the action (a) associated withs′.
7: Go back to step 1.

3.4 Multiple task learning through DOSASE

How can this architecture learn multiples tasks? We
know that the agent can learn one task with the model. Us-
ing the same architecture multiple tasks can be learned if
the Ci andAi are provided. Now, the problem is how to
speed up learning if the agent acquires useful knowledge
from former tasks? Given the tasks in Fig.1 as an example,
if T1(“go around”) has been learned, how the agent learns
T2 (“go to the elevator”)? Let’s take a look at the state space
generated for each task.

A part of the state generated by these two tasks is
shown in Fig. 4. The context ofT1 is C1 = {c1, c2, c3}.
The state generated forT1 is S1 = {s1, s2, s3}, where
sj = {sj1, sj2, ..., sjnj

}. j = {1, 2, 3} while nj denotes
the number of state generated forjth context. Now, the
agent faceT2. The context isCa = {ca, cb, cc}. The
state generated forT2 is S2 = {sa, sa, sc}, wheresm =
{sm1, sm2, ..., smnm

}. m = {a, b, c} while nm denotes the
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Figure 4. State space for 2 tasks.

number of state generated formth context. The shared con-
text of T1 andT2 is c2 (cb). The advantage of cross-task
learning is that if the agent learnsCshare for T1, then there
is no need to experience it again forT2.

Lemma 3.1 If the number of states generated for non-
shared context ofT1 and T2 is NNshare and the number
of states generated for shared context isNshare: the ratio
of the space complexity saved for multiple task learning is:

Nshare

NNshare+Nshare

Now let’s think about the complexity in the training time
space.

Lemma 3.2 If theN +1th task shares context with the for-

merN tasks:Cshare = (
N
⋃

i=1

Cn)
⋂

CN+1, the saved time

for training theN + 1th task isLshare.

3.5 Attention mechanism for the break point set

Suppose the agent has been trained withC1 andCshare,
in the testing phase, the agent would go through the same
context trajectory. However, there is a problem if the agent
experiencesbnb

(the last state of contextcb) again. Since
for different tasks the external actionsae associated with
sbnb

are different. ForT1, the external action should make
the state move froms2n2

to s31 while for T2, the external
action should make the state move fromsbnb

(equal tos2n2
)

to sc1. What should the agent do at the “break point?”
An attention mechanism is necessary to solve the prob-

lem. Remember that the agent learn the task label through
the first LBE. If the agent get into the states2n2

(e.g.sbnb
),

there are two external actionsae1, ae2. Each external ac-
tion is associated with a task label. Using the task label
information, the agent knows what action should be taken
to reach next state. Fig. 5 shows how the task label informa-
tion helps discriminate state transition. Adding task label as
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another dimension, the break point is split into two points.
By checking current task label, the agent knows which ac-
tion to. The internal action generated by the attention mech-
anism is defined as:

ai =
{

1 if Ti = 1
0 otherwise

(5)

The output external action isa = ae

⊗

ai, where
⊗

is
component-wise multiplication. Only after checking the
task label information, can an action be issued.

3.6 Cross-tasking learning algorithm

The algorithm is as follows:

Procedure 2 Cross-task learning.

1: Collect the current contextc(t). x(t) = c(t).
2: Pushx(t) to the context queue and generate generate

last contextl(t).
3: Use observation-driven state transition function (Eq. 1)

to generate the current states(t).
4: Find the best matchs′ of s(t). If they are similar, use

amnesic average to updates′. Check the task label. If
these two states have different task labels, generate a
new action fors′.

5: If imposed action is given, take this action. Otherwise,
check task label, then use Eq. 5 to pay attention to task
label and take the corresponding action.

6: Go back step 1.

4 Experimental Results

In order to test the cross-task learning capability of the
DOSASE MDP model , a simulation environment is devel-

Figure 6. Simulation interface.

Figure 7. A subset of input images.

oped. The simulation map is shown in Fig. 6. The arti-
ficial agent (rectangle with an arrow) can navigate through
the white area. There is an elevator on the bottom right
(white rectangle). In every state, the agent has three possi-
ble actions: go straight, turn left and turn right. Some of
the example input images are shown in Fig 7. The second
and the third images on the third row are the images near
the elevator. The dimension of input image is25 × 25.

4.1 Trajectory and transferred knowledge

Only two tasks are considered:T1 “go around” andT2

“go the elevator.” The contexts of these tasks areC1 and
C2. The non-shared context isC′. The trajectories of two
tasks are shown in Fig. 8. In the training stage,C1 (solid
line) is trained and thenC′ (dot line from point ‘A’ to point
‘B’) is trained. C′ includes context near the elevator. In
the testing phase, the agent successfully finished these two
navigation tasks. For task 2, its trajectory is different from
that of task 1 around the “elevator” since this part is the non-
shared. While another part of its trajectory is overlapped
with that of task 1 because another part is not trained for
task 2 but transferred from the knowledge of task 1.

Fig. 9 shows the task label of each sample when testing
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Figure 8. Trajectory of two tasks.

on task 2. The task label in the testing phase is switch-
ing between 2 and 1. Tab. 1 shows that there are totally
5380 samples. 2442 of them are retrieved with task label 2
while 2938 of them are retrieved with task label 1, which
means that for this test about 54.61% knowledge is trans-
ferred from task 1 to task 2.
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Figure 9. Task label information. The plot
shows the retrieved task label of each sam-
ple when testing on task 2.

4.2 Complexity reduced in terms of space and
time

The structures of IHDR trees for different tasks are
shown in Fig. 10. The first two plots correspond to the
IHDR tree architecture if task1 and task 2 are trained sep-
arately. The plots shows the number of states in different
layers. The depth of both trees is 6. In the forth layer, the

Table 1. Trasfered knowledge when testing on
task 2.

Task 1 2 All Transferred
knowledge

No. of samples 2938 2442 5380 54.61%

tree saves most of the states. The third plot shows the IHDR
tree structure if the agent learnsC1 first and then learnsC′.
As you can see, the depth of tree is still 6, which means
that the system learns two tasks but the space complexity
does not increase too much comparing with learning only
one task.
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Figure 10. HDR tree structure. The first two
plots show the number of states in different
layers for task 1 and task 2, respectively. The
third plot shows the tree structure if cross-
task learning is conducted.

Table. 2 shows how cross-task learning reduces the com-
plexity in terms of both space and time complexities. If
we train 2 tasks separately, the size of the IHDR trees are
22.6M and 27.5M, respectively. If we train task 1 (C1), and
then train the non-shared context (C′) of C1 andC2, the
size of the tree is 36.6M. The percentage of saved space is
22.6+27.5−36.6

22.6+27.5 = 26.95%. The training time of task 1 and
2 is 147.42s and 143.75s, respectively. If cross-task learn-
ing is conducted, the training time is 205.83s. The percent-
age of saved time is about 29.31%. The experimental result
shows that the model is effective in principle and cross-task
learning really reduces a lot in terms of time and space com-
plexities.

The training time of each step for task 1 is shown in
Fig. 11. The average training time of each step is 0.043s
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Table 2. Complexity reduced in terms of space
and time.

Task 1 2 All Complexity
reduced

Tree size 22.6M 27.5M 36.6M 26.95%
Training time 147.42s 143.75s 205.83 29.31%

and the highest training time is 0.14s. Obviously, the system
can work well in real time, which is a necessary condition
to conduct autonomous mental development for an artificial
agent.
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Figure 11. Training time of each step for task
1.

5 Conclusions

In this paper, we propose the DOSASE MDP architec-
ture to model the cross-task learning in autonomous mental
development. No prior knowledge is needed for each task.
The model helps an agent to find the relatedness between
different tasks by comparing the similarity of states gener-
ating for each task. The agent doesn’t need to know all the
tasks in advance. The learned knowledge in shared context
can be transferred to new task, which speeds up the train-
ing procedure. The model is tested in a simulation envi-
ronment for vision-based navigation. Two tasks have been
incrementally learned in real time. There are big gains in
terms of time and space complexities. The experimental re-
sult shows the effectiveness of the AMD paradigm. For the
future work, we will test the model on a robot in the real
world. This is a challenging problem since in the real world

the number of state could be huge, which makes learning
difficult. Also we would like to expand the model for learn-
ing using multi-modal inputs to see how a robot develops
its visual and auditory capabilities at the same time.
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Developmental Connectivity Schemes and Their Performance Implications 
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Abstract 

 The development of connectivity between brain net-
works (e.g., thalamo-cortical, cortico-thalamic, cortico-
cortical) proceeds via a combination of axon and dendrite 
growth. Connectivity tends to be extremely sparse; it has 
been estimated that the probability of contact between two 
neocortical excitatory cells that are 0.2-0.3 mm apart is 
less than 0.1, and between two such cells that are more 
than 1mm apart, p < 0.01 (Braitenberg & Schuz, 1998). 
When one group or layer of neurons (A) generates a set of 
projections to another (B), interesting computational 
constraints can be educed as a function of characteristics 
of the originating and receiving networks. First some 
conditions are described that are clearly undesirable 
(e.g., if any cells in A produce no contacts in B, part of the 
“signal” from A presumably cannot be transmitted to B). 
Remaining conditions include a number of distinct cases 
with different information-theoretic utility, suggesting 
differential value for certain connectivity schemes over 
others. We characterize the tradeoffs among utility and 
costs and their dependence on different classes of strate-
gies by which axons from A are assigned to dendrites in 
B. It is shown that hypergeometric distributions optimize 
a range of measures of these costs as compared to com-
peting projection distributions. 
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Exact Inference in Robots Using Topographical 
Uncertainty Maps  

Josh Susskind, John Hershey, Javier Movellan  

Abstract  

Many problems in social robotics require a real-time combination of incoming 
sensor information and prior information about likely behaviors of the objects in 
the world. For example, tactile, visual and acoustic information may all inform a 
distribution of beliefs about the location of humans with whom the robot may 
want to interact. When sensory information is not available, the uncertainty in 
this distribution should increase in a principled manner to reflect the fact that 
people are not static objects.  

Bayesian filtering provides a principled approach to solve these problems and has 
thus become a method of choice in robotics. Most of the Bayesian filtering 
methods applied to robotics rely on analog hypothesis spaces and find 
approximate solutions to the resulting non-linear filtering problem using Monte-
Carlo approximations (i.e., particle filters). Unfortunately, particle-filters tend to 
be very inefficient, thus greatly limiting the applicability of the approach. We 
propose an alternative approach based on digitizing the hypothesis space into a 
large number of hypotheses (on the order of 100,000). The approach has not been 
tried in the past because, in principle, solving the filtering equations requires order 
n-squared operations per time step, where n is the number of hypotheses. This 
means that as the hypothesis space expands, solving the filtering equations 
becomes rapidly prohibitive.  

We show that in many problems, one can make use of the spatial-temporal 
structure of the hypothesis space and we propose an algorithm to solve the 
filtering operations in order n operations, vastly reducing the computational strain 
on the system. In practice, this allows handling hundreds of thousands of 
hypothesis in real time. We illustrate how the algorithm works for the problem of 
tracking human faces in real time. In this problem, possible object locations and 
scales (states) arrange in a three-dimensional topology (two dimensions for 
location and one for scale). Rectangular convolution kernels capture movement 
uncertainty over scales and locations. Interestingly the resulting architecture 
resembles the functional architecture of primary visual cortex, suggesting 
explanations for the computational role of forward, lateral and top-down 
connections in V1. 
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We describe a new research initiative in embodied 

cognition that will create and exploit a 54 degree-of-
freedom humanoid robot. It has the two-fold goal of (1) 
creating an open and freely-available humanoid platform 
– RobotCub – for research in embodied cognition, and 
(2) advancing our understanding of cognitive systems by 
exploiting this platform in the study of cognitive 
development. 

We plan to construct an embodied system able to 
learn: i) how to interact with the environment by 
complex manipulation and through gesture production 
and interpretation; and ii) how to develop its perceptual, 
motor and communication capabilities for the purpose of 
performing goal-directed manipulation tasks. 

The design of the humanoid robotic platform – 
RobotCub – is presently at its incipit. The final system 
will be made freely available to the scientific community 
through an open systems GNU-like general public 
license together with any software developed within this 
research initiative. RobotCub will have physical size and 
form similar to that of a two year-old child. 

In addition, the project will further a research agenda 
in cognitive systems centered on manipulation in its 
widest sense including exploration, manipulation of 
objects, imitation, and communication through gestures. 
This agenda borrows heavily from experience in 
developmental psychology and cognitive neuroscience. 
The project includes interdisciplinary collaboration 
between neuroscientists and developmental 
psychologists on one side and roboticists and computer 
scientists on the other. 

Our guiding philosophy – and the motivation for 
creating RobotCub – is that cognition cannot be hand-
coded but has to be the result of a developmental process 
through which the system becomes progressively more 

skilled and acquires the ability to understand events, 
contexts, and actions, initially dealing with immediate 
situations and increasingly acquiring a predictive 
capability. 

The RobotCub approach rests on three pillars: (1) its 
scientific stance on cognition: that cognition emerges 
through embodied development, (2) its research 
methodology: that cognition is best studied through a 
programme of progressive development, and (3) its 
research strategy: that progress in the global scientific 
community is best served by creating an open systems 
platform and by exploiting consequent synergies in that 
community. 

To enable the investigation of relevant cognitive 
aspects of manipulation the design of the robot will be 
aimed at maximizing the number of degrees of freedom 
of the upper part of the body (head, torso, arms, and 
hands). The lower body (legs) will be designed to 
support crawling on four legs and sitting on the ground 
in a stable position with smooth autonomous transition 
from crawling to sitting. This will allow the robot to 
explore the environment and to grasp and manipulate 
objects on the floor. The sensory system will include a 
binocular vision system, touch, audition, and inertial 
sensors. Functionally, the system will be able to 
coordinate the movement of the eyes and hands, grasp 
and manipulate lightweight objects of reasonable size 
and appearance, crawl on four legs and sit. 

Finally, we wish to emphasize again that one the 
principal goal of this initiative is to help foster the study 
of embodied cognition throughout the global research 
community by making the RobotCub humanoid and 
cognitive software freely available. 
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Why do animals make their play more difficult? 

Stan Kuczaj 

 

Play is common in the young of many species, and it seems likely that play influences 
development and learning. One way in which play may influence learning is in the 
provision of contexts within which an organism can safely experience and benefit from 
moderately discrepant events. Such events are believed to facilitate learning because they 
consist of challenges that the organism can resolve, the successful resolution of the 
challenges resulting in cognitive growth. The possibility that play is linked to moderately 
discrepant events is explored by considering the play behavior of young dolphins and 
killer whales. Our systematic observations of these animals demonstrate that they 
consistently modify their play behavior to make the goal more difficult to achieve, 
demonstrating that the play activity is at least as important as the play outcome. This 
suggests that the animals are purposely producing their own moderately discrepant 
events, and that one of the functions of play is to provide cognitive stimulation. Such 
stimulation might result from an organism’s own activities as well as the activities of play 
partners. Thus, play may have evolved to facilitate cognitive development in both solitary 
and social animals.  
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Social Dynamics: Signals and Behavior 

Alex Pentland 
MIT Media Lab, E15-387, 20 Ames St, Cambridge MA 02139  

Abstract 

 Nonlinguistic social signals (e.g., `tone of voice’) are 
often as important as linguistic content in predicting 
behavioural outcomes [1,2].  This paper describes four 
automated measure of such social signalling, and shows 
that they can be used to form powerful predictosr of 
objective and subjective outcomes in several important 
situations. Finally, it is argued that such signals are 
important determinants of social position. 

1. Introduction  

Animals communicate their social structure in many 
ways, including dominance displays, relative positioning, 
access to resources, etc.  Humans add to that a wide 
variety of cultural mechanisms such as clothing, seating 
arrangements, and name-dropping.  Most of these culture-
specific social communications are conscious and are 
often manipulated.  

However in many situations non-linguistic social 
signals (body language, facial expression, tone of voice) 
are as important as linguistic content in predicting 
behavioral outcome [1,2].   Tone of voice and prosodic 
style are among the most powerful of these social signals 
even though (and perhaps because) people are usually 
unaware of them [2]. In a wide range of situations 
(marriage counseling, student performance assessment, 
jury decisions, etc.) an expert observer can reliably 
quantify these social signals and with only a few minutes 
of observation predict about 1/3d of the variance in  
behavioral outcome (which corresponds to a 70% binary 
decision accuracy) [1].  It is astounding that observation 
of social signals within such a `thin slice’ of behavior can 
predict important behavioral outcomes (divorce, student 
grade, criminal conviction, etc.) when the predicted 
outcome is sometimes months or years in the future.   

Nonlinguistic vocal signaling is a particularly familiar 
part of human behavior. For instance, we speak of 
someone `taking change' of a conversation, and in such a 
case this person might be described as `driving the 
conversation' or `setting the tone' of the conversation.  
Such dominance of the conversational dynamics is 
popularly associated with higher social status or a 

leadership role. Similarly, some people seem skilled at 
establishing a `friendly' interaction.  The ability to set 
conversational tone in this manner is popularly associated 
with good social skills, and is typical of skilled 
salespeople to social `connectors' [3].   

The machine understanding has studied human 
communication at many time scales --- e.g., phonemes, 
words, phrases, dialogs --- and both semantic structure 
and prosodic structure has been analyzed.  However the 
sort of longer-term, multi-utterance structure associated 
with social signaling has received relatively little attention 
[4].  In this paper I develop an automatic measurement 
method for quantifying some of these non-linguistic social 
signals, and describe how these measurements can be 
used to form powerful predictors of behavioral outcome 
in some very important types of social interaction: getting 
a date, getting a job, and getting a raise.  

 

2.  Measuring Social Signals 

I have constructed measures for four types of vocal 
social signaling, which I have designated activity level, 
engagement, stress, and mirroring. These four measures 
were extrapolated from a broad reading of the voice 
analysis and social science literature, and we are now 
working to establish their general validity.  To date they 
have been used to predict outcomes in salary negotiation, 
dating, friendship, and business preferences with accuracy 
comparable to that of human experts in analogous 
situations.  

Calculation of the activity measure begins by using a 
two-level HMM to segment the speech stream of each 
person into voiced and non-voiced segments, and then 
group the voiced segments into speaking vs non-speaking 
[5].  Conversational activity level is measured by the z-
scored percentage of speaking time plus the frequency of 
voiced segments. 

Engagement is measured by the z-scored influence 
each person has on the other's turn-talking. When two 
people are interacting, their individual turn-taking 
dynamics influences each other and can be modeled as a 
Markov process [6].   By quantifying the influence each 
participant has on the other we obtain a measure of their 

263



engagement...popularly speaking, were they driving the 
conversation?  To measure these influences we model 
their individual turn-taking by an Hidden Markov Model 
(HMM) and measure the coupling of these two dynamic 
systems to estimate the influence each has on the others' 
turn-taking dynamics [7].   Our method is similar to the 
classic method of Jaffe et al. [6], but with a simpler 
parameterization that permits the direction of influence to 
be calculated and permits analysis of conversations 
involving many participants.  

Stress is measured by the variation in prosodic 
emphasis.  For each voiced segment we extract the mean 
energy, frequency of the fundamental format, and the 
spectral entropy.  Averaging over longer time periods 
provides estimates of the mean-scaled standard deviation 
of the energy, formant frequency and spectral entropy.   
The z-scored sum of these standard deviations is taken as 
a measure speaker stress; such stress can be either 
purposeful (e.g., prosodic emphasis) or unintentional 
(e.g., physiological stress caused by discomfort). 

Mirroring behavior, in which the prosody of one 
participant is `mirrored' by the other, is considered to 
signal empathy, and has been shown to positively 
influence the outcome of a negotiation [8].  In our 
experiments the distribution of utterance length is often 
bimodal.  Sentences and sentence fragments typically 
occurred at several-second and longer time scales.  At 
time scales less than one second there are short 
interjections (e.g., `uh-huh'), but also back-and-forth 
exchanges typically consisting of single words (e.g., 
`OK?', `OK!', `done?', `yup.').   The z-scored frequency of 
these short utterance exchanges is taken as a measure of 
mirroring.   In our data these short utterance exchanges 
were also periods of tension release. 

2.1. Signaling Dynamics 

These measures of social signaling can be computed on 
a conventional PDA in real-time, using a one-minute 
lagging window during which the statistics are 
accumulated.  It is therefore straightforward to investigate 
how these `social signals' are distributed in  conversation.  
In [9] we analyzed social signaling in 54 hours of two-
person negotiations (described in more detail in the next 
section) on a minute-by-minute basis. We observed that 
high numerical values of any one measure typically occur 
by themselves, e.g., during periods in which participants 
showed high engagement they did not use high stress, 
etc., so that each participant exhibits four `social display' 
states, plus a `neutral' relaxed state in which the 
participant is typically asking neutral questions or just 
listening.  The fact that these display states were largely 
unmixed provides evidence that they are measuring 
separate social displays.  

The signaling state of the two participants was strongly 
coupled, so that (ignoring symmetries and outliers) the 
joint state space has only six states rather than the 
expected fifteen. For instance, when one participant 
displayed engagement, the other participant almost always 
followed suit (90% of the time), resulting in a highly 
engaged, roughly equal conversation.   When one 
participant displayed mirroring behavior, the other would 
usually join in (74% of the time).   When one participant 
became active, the other became neutral (75% of the 
time).  However when one participant used stress, the 
result differed according to status.  If the high status 
participant used stress, then low-status participant would 
usually (66% of the time) signal activity and only 11% of 
the time would the low-status participant also show stress.  
When the low-status participant used stress, the high-
status participant would usually become active (54% of 
the time) but 24% of the time would respond with 
matching stress.  

2.2. Negotiation Experiment 

In this experiment we investigated what might be 
thought to be a prototypically rational form of 
communication: negotiating a salary package with your 
boss.  The intuition is that negotiation participants who 
`take change' of the dynamics of the conversation, what 
might be described as `driving the conversation' will do 
better than those who are more passive.    

In Pentland, Curhan, et al [10] we collected audio from 
forty-six gender-matched dyads (either male/male or 
female/female, 28 male dyads and 18 female dyads) that 
were asked to conduct a face-to-face negotiation as part of 
their class work. The mock negotiation involved a Middle 
Manager (MM) applying for a transfer to a Vice 
President's (VP) division in a fictitious company.  Many 
aspects of the job were subject to negotiation including 
salary, vacation, company car, division, and health care 
benefits; these aspects were summed into an overall 
objective score based on their market value. Participants 
were offered a real monetary incentive for maximizing 
their own individual outcome in the negotiation.  Subjects 
were first year business students at MIT Sloan School of 
Management, almost all with previous work experience.   

Data collected included individual voice recordings of 
both parties in a closed room plus ratings of subjective 
features.  There was no time limit set and the negotiations 
length ranged from 10 to 80 minutes in length, with an 
average duration of approximately 35 minutes, for a total 
of 54 hours of data. 

Subjective features analyzed were the answers to the 
questions `What kind of impression do you think you 
made on your counterpart?' `To what extent did your  
counterpart deliberately let you get a better deal than 
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he/she did?' and `To what extent did you steer clear of 
disagreements?  

 
 

2.2.1. Results 

Our hypothesis was that negotiation participants who 
showed the most engagement, stress and mirroring would 
do better than those who were more passive, i.e., that the 
time-averaged  influence on each participant + amount of 
stress + amount of mirroring would predict the objective 
outcome of the negotiation.  Following [1], we measured 
signaling in only the first five minutes of the negotiation 
and used that `thin slice' of behavior to predict the final 
negotiation outcome.  

 

 
Figure 2: Outcome predicted from social signals at 

end of first five minutes of negotiation.  (Female VPs 
shown). 

 
This predictor had a strong (r= 0.57, p=0.001) 

correlation with the objective outcome of the negotiation.   
Thus the accuracy of this predictor is similar to that of 
human experts performing similar tasks [1]. 

Post-hoc analysis showed that the relationship differed 
for high- and low-status participants. For VPs, 
engagement + stress predicted almost half of their 
variation in outcome (r=0.75).  For MMs, the mirroring 
measure alone predicted almost a third of the variation in 
their objective outcome (r=0.57).   

The engagement measure had a significant positive 
correlation (r=0.63) with the subjective "impression I 
thought I made on my partner'' rating and a with the "did 
your partner let you win'' rating (r=0.65).  The mirroring 
measure had a significant positive correlation with the 
extent to which participants said they were seeking to 
avoid disagreements (r=0.62). 

 

2.3.  Attraction Experiment 

Speed dating is relatively new way of meeting many 
potential matches during an evening. Participants interact 
for five minutes with their `date', at the end of which they 
decide if they would like to provide contact information to 
him/her, and then they move onto the next person.   A 
'match' is found when both singles answer yes, and they 
are later provided with mutual contact information.  

In Madan, Caneel and Pentland [11] we analyzed 57 
five-minute speed-dating sessions.  In addition to the 
`romantically attracted' question (where a postive answer 
from both participants resulting in sharing of contact 
information), participants were also asked two other 
yes/no questions: would they like to stay in touch just as 
friends, and would they like to stay in touch for a business 
relationship.  These `stay in touch' questions were 
hypothetical, since contact information would not be 
exchanged in any case, but allowed us to explore whether 
vocal signals of romantic attraction could be differentiated 
from other types of attraction. 

2.3.1.  Results 

Liniar regression was used to form predictors of the 
question responses using the values of the four social 
signaling measures.  For each question the resulting 
predictor could account for more than 1/3rd of the 
variance, providing approximately 70% accuracy at 
predicting the questions response. This accuracy is 
comparable to that of human experts performing similar 
tasks [1]. 

 For the females responses, for instance, the correlation 
with the ‘attracted’ responses were r=0.66, p=0.01, for the 
‘friendship’ responses r=0.63, p=0.01, and for the 
‘business’ reponses r=0.7, p=0.01.  Corresponding  values 
for the male responses were  r=0.59, r=0.62, and r=0.57, 
each with p=0.01.  

 For the ‘attracted’ question the most predictive 
individual feature was the female activity measure.  The 
engagement measure was the most important individual 
feature for predicting the ‘friendship’ and ‘business'’ 
responses. The mirroring measure was also significantly 
correlated with female ‘friendship’ and ‘business’ ratings, 
but not with with male ratings.  

An interesting observation was that for the ‘attracted'’ 
question female features alone showed far more 
correlation with both male (r=0.5,p=0.02) and female 
(r=0.48, p=0.03) responses than male features (no 
significant correlation).  In other words, female social 
signaling is more important in determining a couples 
‘attracted’ response than male signaling.  
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Figure 3: Frequency of female `attracted' responses 

(black=no) vs. predictor value.  The cross-validated linear 
decision rule produces 71% accuracy. 

 
Figure 3 illustrates a two-class linear classifier based 

on the social signaling measures; this classifier has a 
cross-validated accuracy of 71% for predicting the 
`attracted' response.  The two fitted Gaussians are simply 
to aid visualization of the distributions' separability. 

 

 
 
Figure 4. Frequency of female `business' responses 

(black=no) vs. predictor value.  The cross-validated linear 
decision rule produces 74% accuracy.. 

 
Figure 4 illustrates a two-class linear classifier for the 

`business' responses, based on the social signaling 
measures; this classifier has a cross-validated accuracy of 
74%.  The two fitted Gaussians are simply to aid 
visualization of the distributions' separability. 

2.4. Social Network Experiment 

In Choudhury and Pentland [7] we collected audio data 
from 23 subjects from 4 different research groups over a 
period of 11 days, resulting in an average of 66 hours of 
data per subject. The subjects were a representative 
sample of the community, including students, faculty and 
administrative staff.  During data collection users had a 

small audio recording device on them for six hours a day 
(11AM -5PM) while they were on the MIT campus. The 
data was automatically analyzed to detect the pair-wise 
conversations, and this was used to analyze the 
distribution of conversational statistics within the sampled 
conversations, including the engagement and activity 
measures  

2.4.1. Results  

Our first finding was that the Markov statistics 
describing individuals’ turn-taking styles are distinctive 
and stable across different conversational partners, and 
that these turn-taking patterns are not just a noisy 
variation of the same average style (p < 0.001).  Since 
these Markov statistics effectively determine the average 
values of the activity and engagement measures, the 
implication is that people have characteristic patterns of 
activity and engagement signaling. 

Male and female patterns were extremely different, 
with only slight overlap between the range of parameters 
observed for males and those observed for females.   
Surprisingly, the total speaking time for males and 
females was nearly equal. 

Choudhury [12] in her PhD thesis investigated the 
hypothesis that the `engagement' measure (e.g., the inter-
Markov process influence parameter) would be correlated 
with information flow within their social network 
structure.  To investigate this hypothesis she compared the 
engagement measure to the individual subject's 
betweeness centrality, which is a standard social science 
measure of how important an individual is to information 
flow within a social network [13]. The correlation value 
between this centrality measure and the influence 
parameter was 0.90 (p-value < 0.0004, rank correlation 
0.92).    Thus the amount of time an individual displayed 
engagement was a nearly perfect predictor of how much 
of a `connector’ they were. 

 

3. Discussion 

In this paper I have proposed a method of measuring 
social signaling using non-linguistic vocal features, and 
shown that the measured signaling can be used to create 
powerful predictors of both objective and subjective 
outcome in social situations.  In addition, at least some 
aspects of people's position in a social network appears to 
be signaled and negotiated via this same mechanism.   

In our negotiation experiment we showed that 
signaling during the first five minutes of a negotiation 
account for more than 1/3d of the variation in objective 
outcome, and that the `winning' strategy is different for 
high-status vs low-status participants. For the high-status 
participants engagement and use of stress was most 
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important.  For low-status participants the use of 
mirroring was most important.  The correlation between 
the engagement measure and the subjective questions 
concerning control, and between the mirroring measure 
and the subjective question concerning cooperation, 
support the validity of these features as measures of social 
signaling. 

In our attraction experiment we showed that signaling 
during the first five minutes of conversation again 
accounted for more than 1/3d of the variation in outcome, 
and that the signaling and interaction is different for male 
and female participants.    The high correlation between 
the female activity measure and the `attraction’ responses 
aupports the validity of this feature as a measure of social 
signaling. 

We found that in a research laboratory environment 
peoples' signaling mirrored the information flow within 
the social network.  The more a person was a `connector' 
within the social network, the more they displayed 
engagement.  This suggests that social signals are part of a 
continual, implicit `negotiation' between members of a 
social network that establishes each individual's 
appropriate position in the network.   

Is this social signaling just a part of `normal' speaking 
prosody?  Prosody is most commonly studied within the 
framework of speech understanding, where pitch, 
duration, and amplitude are used to modify, select, or 
emphasize the semantics conveyed by the words [2,4].  In 
contrast to this type of prosody the vocal features 
measured in these experiments occur at time scales that 
are far too long to be related to individual words or 
phrases.   

The social signaling discussed in this paper instead 
seems to communicate and be involved in mediating 
social variables such as status, interest, determination, or 
cooperation, and arise from the interaction of two or more 
people rather than being a property of a single speaker.  
Semantics and affect are important in determining what 
signaling an individual will engage in, but they seem to be 
fundamentally different types of phenomina.   The social 
signaling measured here seems to be a sort of `vocal body 
language’ that operates relatively independently of 
linguistic or affective communication channels.  

Finally, it is interesting that people in these 
experiments were only vaguely aware of their own vocal 
characteristics, and they were unable to articulate the 
connection between these characteristics and the 
behavioral outcome.  It is interesting to speculate about 
what might happen if people were made more aware of 
their social signaling.  One idea is to construct a small 
wearable `social signaling’ meter that could provide users 
with real-time feedback.   We are now beginning tests 
with such a meter and expect to be able to report the 
results by the time of the conference. 
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Abstract

Autism has been proposed to stem from a pervasive abnormality of neural information processing possibly involving decreased
signal-to-noise in neural systems [6]. Such a final common pathway of dysfunction at the network level may admit a wide fan-in
of causal factors at the level of cells, molecules, and genes, and could be expected to interact with normal neurodevelopmental
programmes and gradients to fan out into a wide range of abnormalities of cognition and behaviour [1]. Autism may therefore
serve as a useful test case for theories of normal brain and cognitive development at the junction of network modelling with
developmental cognitive neuroscience. Behavioural and cognitive findings on autism have been dominated by a combination of
facilitated processing of local features and impairment in complex, integrative cognition. These behavioural results are supported
by functional imaging and quantitative EEG studies that find abnormally strong, unselective responses within sensory regions and
abnormally weak functional correlations between distant regions (e.g. [5]). One possible explanation for this pattern is abnormal
strengthening of local network connectivity at the expense of global connectivity – a combination that may sabotage the ‘small-
world’ property [7] in which cortical networks combine strong local connectivity with short mean path length. Indiscriminately
strong anatomical connectivity within local processing regions may actually decrease computational connectivity, if crosstalk is
increased to a degree at which relevant stimuli cannot be discriminated from noise [2]. Network abnormalities of this sort may
explain an autistic learning style founded on statistical association rather than on instructive focus on relevant stimuli. Aberrant
patterns of cortical connectivity are suggested by reports of decreased size of cortical minicolumns [3], early developmental
hyperplasia in short-range white matter but not longer-range white matter compartments [4], associations with neuroligins and
other substances involved in synaptogenesis and synaptic modification, and comorbidity with disorders that involve abnormal
excitability or alterations in synaptic structure, such as epilepsy and Fragile X syndrome. We describe fMRI findings from two
visual selective attention tasks that bear on this issue of neural connectivity in the autistic brain. In Experiment 1, adults with
autism spectrum disorders (ASDs) and normal controls covertly attended to one or the other stream of rapid serially presented
colour stimuli in left and right hemifields, shifting attention in response to cues within the attended stream. In Experiment 2,
10-to-15-year-old boys with ASDs, their non-autistic brothers, and unrelated normal controls performed a cognitively demanding
task combining selective attention to location, colour, and orientation. These studies revealed findings consistent with abnormalities
of local and long-range connectivity, including (1) abnormally strong and unselective processing within visual areas of cortex, (2)
abnormal deactivation of more anterior, integrative brain regions including inferior frontal gyrus, anterior cingulum, frontal pole,
and medial temporal lobe, and (3) abnormally low functional correlations between anterior and posterior regions. In addition,
other results may reflect cognitive strategies that attempt to compensate for abnormal excitability of sensory cortices, including (4)
abnormally strong activation of parietal cortex during suppression of visual distractors and (5) deactivation of auditory cortex during
difficult visual discriminations. Preliminary data suggest that non-autistic sibs share some of the anterior deactivations but none of
the posterior hyperactivations; sibs are a useful contrast in disentangling the more subtle, primary effects of genetic susceptibilities
from the complicated, secondary dysfunctions associated with the full syndrome of autism. Although this hypothesis of autism
as a developmental effect of abnormal network properties remains speculative in the absence of any large-scale microanatomical
studies directly examining autistic brains across anatomical regions and developmental periods, it provides a useful entry point
for the study of social cognition, a complex capacity whose proper development may depend on a balance between connections
that subserve local processing and global integration.
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Although high-functioning individuals with autistic disorder (i.e. autism and Asperger 
syndrom) are of normal intelligence, they have life-long abnormalities in social 
communication and emotional behavior. However, the biological basis of socio-emotional 
difficulties in autism is still poorly understood. We investigated if high-functioning people 
with autistic disorder show neurobiological differences from controls when they explicitly or 
implicitly attributed hostile or friendly intentions to actors who directed their gaze towards or 
away from them.  
Using fMRI, 14 healthy subjects and 12 high functioning patients were scanned while 
viewing video sequences of actor’s faces displaying either happy or angry expressions. In 2 
conditions subjects were required to actively engage in interpreting emotions from the 
perceived faces, whereas in 2 other conditions subjects had to judge the actor’s age. Statistical 
random effect analysis using SPM99 examined contrasts between conditions. Effective 
connectivity using Structural Equation Modeling (SEM) was then performed on the data of 
each population.  
Although occipital, temporo-ventral and right posterior superior temporal cortex were found 
commonly activated in both population, subjects with autistic disorders differed from controls 
in the activity of dorso-medial (DMPFC) and right lateral prefrontal (RLFPC) cortical areas 
when explicitly processing emotional expressions. Interestingly, effective connectivity 
analysis revealed a distinct pattern of interactions between brain regions of this functional 
network in the two populations. Whereas controls specifically exhibit functional relations 
between fusiform gyrus, superior temporal sulcus, DMPF and RLPFC, patients with autism 

do not (Fig 1.). These results 
suggest that high-functioning 
people with autistic disorders 
have biological differences from 
controls when processing 
emotional informations, and 
that these differences are most 
likely due to abnormal 
functional relations between 
brain structures known to be 
involved in social cognition.  
 
 
Fig. 1. Results of effective 
connectivity modeling on the data 
from the autistic population. 
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Abstract 

 The clinical onset of autism has recently been found to 
be preceded by a period of abnormally accelerated brain 
growth [1] , apparently following delayed prenatal devel-
opment. Findings from comparative neuroanatomy [2-4]  
and developmental neuroscience [5, 6]  motivate the hy-
pothesis that this growth trajectory will give rise to ab-
normalities in the development of cortico-cortical connec-
tivity. Conduction delay is proportional to brain size [7] , 
and so developmental growth abnormalities provide a 
force that should influence the development of cortical 
networks. The growth trajectory seen in children with 
autism should cause an initial increase in long-distance 
connectivity, and then a reduction. And the more extreme 
the under and overgrowth, the greater should be both the 
initial increase and the subsequent reduction. The loss of 
connectivity from birth to adolescence may thus be far 
more deviant than is revealed by comparisons of the con-
nectivity that remains. 

 Substantial learning of linguistic and social relevance 
takes place during the last months of prenatal develop-
ment and in the first few postnatal months [8] . A great 
deal of what is learned during this period is represented 
in neural assemblies that make substantial use of long-
distance connections. According to our hypothesis, the 
prenatal growth trajectory in autism will initially lead to 
even greater than normal reliance on long-distance con-
nectivity; but the conduction delay associated with the 
postnatal brain overgrowth will cause the postnatal loss 
of these connections. The changes in connectivity may 
thus explain the regression in functional development 
often reported in children with autism, and their subse-
quent failure to progress [9, 10] .  

To explore this hypothesis, neural networks which 
modelled interhemispheric interaction were grown at the 
rate of either typically developing children or severely 
autistic children. The long-distance connections were 
lesioned at `birth', restored, and lesioned again at `age 4'. 
The networks that modelled autistic growth were more 

effected by the lesions at `birth' — indicating a greater 
reliance on the long-distance connections — and those 
that modelled typical development were more effected by 
the lesions at `age 4'. 
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Abstract 

Understanding how the human visual system learns to 
perceive objects in the environment is one of the 
fundamental challenges in neuroscience, and is also the 
motivation behind a new humanitarian and scientific 
initiative that we have launched in India, called ‘Project 
Prakash’. This project involves a systematic study of the 
development of object perception skills in children 
following recovery from congenital blindness. Here we 
provide an overview of Project Prakash and also describe 
a specific study related to the development of face-
perception skills following sight recovery. A few studies 
have reported profound impairments in face recognition 
following early visual deprivation. However, it is 
unknown how visual deprivation influences performance 
on the more basic task of face versus non-face 
classification. Here we report studies with two children, 
both of whom suffered from congenital blindness lasting 
at least the first 7 years of life. We assessed their face 
classification skills following surgical restoration of sight. 
For one child, the experiments were performed 1.5 
months after surgery and for the other, four years post-
surgery. Our results indicate that these children are able 
to detect faces and distinguish them from distracters with 
high reliability, comparable to control subjects. 
Furthermore, this ability appears to be based on the use 
of overall facial configuration rather than individual 
features – a finding that presents an interesting contrast 
to the hypothesis of piecemeal processing used to explain 
impairments in face identification. These results have 
implications for the nature of face-concept learning 
schemes in human and computational vision systems. 

 

1. Introduction to Project Prakash  

Through a process of extensive and continuous exposure, 
the brain comes to be able to parse complex visual scenes 
into distinct objects. Several issues about this process 
remain open. How much visual experience is needed for 

the development of this ability? What are the intermediate 
stages in the evolution of object representations? How 
critical is early visual experience for the development of 
object perception?  
 
There are two dominant approaches for studying these 
questions: 1. experimentation with infants, and 2. 
experiments with adults using novel objects. These 
approaches have yielded valuable results, but their 
usefulness is limited by some significant shortcomings. 
For instance, infant experiments are operationally difficult 
and the development of object perception processes is 
confounded with the development of other brain 
subsystems such as those responsible for attention 
deployment and eye-movement control. Experiments with 
adults, on the other hand, are necessarily contaminated by 
the subjects' prior visual experience, even though the 
objects used as stimuli may be novel. 
 
We have identified a unique population of children in 
India that allows us to adopt a very different approach. 
According to the WHO, India is home to the world's 
largest population of blind children. While the incidence 
of congenital blindness in developed nations such as the 
USA and UK is less than 0.3 per 1000 children, the 
incidence in India is 0.81/1000. Many of these children 
have treatable conditions, such as congenital cataracts. 
However, poverty, ignorance and lack of simple 
diagnostic tools in rural areas deprive these children of 
the chance of early treatment. Recently, in response to 
government initiatives for controlling blindness, a few 
hospitals have launched outreach programs to identify 
children in need of treatment and perform corrective 
surgeries at low cost. These initiatives are beginning to 
create a remarkable population of children across a wide 
age-range who are just setting out on the enterprise of 
learning how to see. We have launched Project Prakash 
with the goal of following the development of visual 
skills in these unique children to gain insights into 
fundamental questions regarding object concept learning 
and brain plasticity. 
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Such a population is not available in developed countries 
such as the United States. Given the extensive network of 
neonatal clinics and pediatric care in these countries, 
congenital cataracts are invariably treated surgically 
within a few weeks after their discovery. Consequently, in 
the developed world, it is rare to find an untreated case of 
blindness in a child of more than a few months of age. In 
India on the other hand, many children with congenital 
cataracts spend several years, or even their entire lives, 
without sight. The societal support and quality of life for 
blind children in India is extremely poor, leading to a life 
expectancy that is 15 years shorter than that of a sighted 
child. There is clearly a humanitarian need to help such 
children get treatment, and a key goal of Project Prakash 
is to help address this need. Furthermore, in tackling this 
need, the Project is presented with a unique scientific 
opportunity. 
 
The scientific goal of Project Prakash is to study the de-
velopment of low-level visual function (such as acuity, 
contrast sensitivity and motion perception), as well as 
object perception following recovery from congenital 
blindness. We are investigating the time-course of differ-
ent object-perception skills as assessed behaviorally, the 
concurrent changes in cortical organization, and also the 
development of neural markers associated with object-
perception. Of special interest to us is face perception, 
including face localization, identification and expression 
classification. Few object domains can rival the ecological 
relevance of faces. Much of the human social infrastruc-
ture is critically dependent on face-perception skills. We 
are studying both the deficiencies and proficiencies of 
children after onset of sight. The former allow us deter-
mine the visual skills that are susceptible to early visual 
deprivation while longitudinal studies of the latter yield 
insights about how face-perception develops and what the 
underlying processes might be.  
 

We call this project 'Prakash', after the Sanskrit word 
for 'light', symbolizing the infusion of light in the lives of 
children following treatment for congenital blindness and 
also the illumination of several fundamental questions in 
neuroscience regarding brain plasticity and learning. 

1.1. The broader impact of Project Prakash 

The WHO estimates that the number of blind children 
globally increases by 500,000 every year. Significant 
advances have been made in pediatric eye-care to counter 
this problem. Treatments now exist to restore sight in a 
significant proportion of the afflicted children, such as 
those suffering from congenital cataracts. However, 
merely treating the eyes is not sufficient for ensuring 
restoration of normal visual function. An equally 

important requirement for sight recovery is that a child’s 
brain be able to correctly process the visual information, 
after having been deprived of it for several years. Based 
on past animal studies of the consequences of visual 
deprivation on subsequent function [Wiesel and Hubel, 
1963; Bauer and Held, 1975; Hubel et al., 1977; LeVay et 
al., 1980; Jacobson et al., 1981], we can expect that the 
treated children will exhibit visual deficits relative to 
normally reared children. However, we know very little 
about what the nature of these deficits will be, and Project 
Prakash is a step towards acquiring this information. 
Determining which skills the children are impaired at is 
crucial for creating effective rehabilitation schemes that 
would allow the children to be integrated into mainstream 
society and lead a normal active life. It is important to 
emphasize that although the patient population for this 
study will be drawn from India, the results will be 
relevant to child health in general. Furthermore, the 
spotlight this project is bringing to bear upon the problem 
of treatable childhood blindness is likely to strengthen 
outreach programs not just in India but globally. 
 
Within this broad context of Project Prakash’s motiva-
tions and goals, we have conducted several specific stud-
ies of object perception. Here we report an investigation 
of face-classification skills following recovery from 
blindness. 
 
2. A study of face-classification following 
long-term visual deprivation 
 
Past work has suggested that early visual deprivation 
profoundly impairs object and face recognition [Gregory, 
1963; Valvo, 1971; Sacks, 1995; Fine et al., 2003]. Even 
relatively short periods of deprivation, ranging from the 
first 2 to 6 months of life, have been shown to have 
significant detrimental consequences on face recognition 
abilities [Le Grand et al., 2001]. However, we currently 
lack experimental data that address the more basic issue 
of the influence of early visual deprivation on face versus 
non-face discrimination (hereinafter also referred to as 
'face classification'), i.e., can face discrimination skills be 
learned later in life? Results from infant studies of face 
perception are not too helpful in formulating a hypothesis 
in this context. While it is generally accepted that visual 
experience during the first 2 to 3 months of life is 
sufficient for the babies to exhibit a reliable preference for 
face-like patterns [Goren et al., 1975; Maurer and Barrera, 
1981; Nelson and Ludemann, 1989; Johnson and Morton, 
1991; Pascalis et al., 1995], it is not known whether 
similar learning processes continue to be available later in 
life. It is possible that long-term visual deprivation might 
permanently impair an individual’s face-classification 
skills. 
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In order to investigate face/non-face classification skills 
following extended visual deprivation, we studied two 
children, SB and KK, who had both recovered sight after 
several years of congenital blindness. SB is a 10 year old 
boy who was born with dense bilateral cataracts. Prior to 
treatment, he showed no awareness of people's presence 
via visual cues and could orient to them only based on 
auditory cues. The cataracts severely compromised his 
pre-operative pattern vision. He was unable to discern 
fingers held up against a bright background beyond a 
distance of 6 inches. By comparison, subjects with normal 
acuity can perform this task at 60 feet and even an 
individual with 20/400 acuity, who would be classified as 
legally blind according to WHO guidelines, would be able 
to do this task at approximately 36 inches. It is an 
indicator of the poor state of awareness in rural India 
regarding childhood blindness, that when SB was brought 
in to a hospital, it was not to treat his eyes, but rather a leg 
injury he had suffered after tripping on an obstacle. After 
having been blind for 10 years, SB underwent cataract 
surgery in both eyes (the two procedures were a month 
apart). The opacified lenses were replaced with synthetic 
intra-ocular lenses (IOLs). Post-operative acuity in SB’s 
eyes was determined to be 20/120, significantly below 
normal, but a great improvement over his original 
condition. SB's left eye currently exhibits significant 
strabismus. 
 
KK is an 11 year old girl, also born with dense bilateral 
cataracts. Visual deprivation appears to have been severe 
right from birth since the white reflex in her eyes was 
pronounced even while she was an infant and KK did not 
exhibit any visually-guided responses. Furthermore, the 
nystagmus that KK currently exhibits also suggests severe 
visual deprivation during infancy. In tracing KK's family 
history, we found that her father had also been born with 
congenital cataracts. Thus, KK’s blindness at birth was 
considered ‘destined’ (a blind father being expected to 
have a blind daughter) and no effort was made by her 
family to seek medical attention. It was only when KK 
was 7 years old that she happened to be examined by an 
ophthalmologist visiting her village as part of an outreach 
program. She was treated shortly thereafter and the 
opaque lens in her right eye was replaced with an IOL. 
Current visual acuity in this eye is approximately 20/120. 
Her left eye is still untreated and provides no useful 
vision.   
 
With their guardians’ permission, we conducted simple 
experiments to study SB and KK’s face/non-face 
classification performance. The experiments were 
conducted six weeks post (first) surgery for SB and 4 
years post-surgery for KK. Figure 1 shows SB and KK's 
eyes at the time of the study. SB's strabismus and KK's 
dense cataract in the left eye are evident in the images.  

 
 

Figure 1. Views of SB's (top) and KK's eyes at the time 
our studies were conducted. Both have recovered 
functional vision in their right eyes. However, SB has 
significant strabismus in his left eye while KK continues to 
have a dense cataract in her left eye. 
 
The first set of studies involved discriminating between 
face and non-face patterns and also locating faces in 
complex scenes. We also assessed the performance of two 
age and gender-matched controls with normal vision. Our 
stimulus set for the ‘face/non-face discrimination’ task 
comprised monochrome face images of both genders 
under different lighting conditions and non-face patterns. 
The non-face distracters included patterns selected from 
natural images that had similar power-spectra as the face 
patterns and also false-alarms from a well-known 
computational face-detection program developed at the 
Carnegie Mellon University by Rowley et al (1995). 
Sample face and non-face images used in our experiments 
are shown in figures 2a and b, respectively. All of the face 
images were frontal and showed the face from the middle 
of the forehead to just below the mouth. Face and non-
face patterns were randomly interleaved and, in a 'yes-no' 
paradigm, the observer was asked to classify them as 
such. Presentations were self-timed and the images stayed 
up until the subject had responded verbally. No feedback 
was provided during the experimental session. The 
patterns subtended 10 degrees of visual angle, 
horizontally and vertically. 
 
For the ‘face-localization’ task, we used natural scenes, 
containing one, two or three people (a few sample stimuli 
are shown in figure 2c). Face sizes ranged from 2 to 4 
degrees of visual angle. The subjects' task was to indicate 
the locations of all faces in a scene by touching the 
display screen with the index-finger. The response was 
recorded as a ‘hit’ if the first touch was within a face 
boundary. Incorrect locations were recorded as ‘false-
alarms’. Both the number and correctness of responses to 
each scene were recorded. 
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Figure 2. The kinds of stimuli we used in our experiments 
(rows are labeled a-f top to bottom). (a) Images of upright 
faces (b) Non-face distracters (c) Scenes with front-facing 
people (d) Blurred upright faces (e) Inverted faces, and (f) 
Isolated face parts. 
 
As the top row of figure 3 shows, SB and KK exhibited a 
high hit-rate and a low false-alarm rate on the face/non-
face discrimination task, achieving performance similar to 
that of the age-matched controls. On the face localization 
task as well, the two groups were comparable. These data 
suggest that the ability to discriminate between faces and 
non-faces and also to localize faces in complex scenes can 
develop despite prolonged visual deprivation. 
Furthermore, the fact that SB exhibited this performance 
within six weeks of treatment suggests that face 
classification abilities develop rapidly after visual onset.  
 
These results bring up the important issue of the nature of 
information used by SB and KK for accomplishing face-
classification tasks. Past work [Le Grand et al, 2001] 

suggests that individuals with a history of deprivation are 
impaired at processing faces holistically and instead 
analyze them in terms of isolated features such as the 
eyes, nose and mouth. We attempted to determine 
whether SB and KK’s face classification abilities were 
based on the use of such a piecemeal strategy wherein the 
presence of a face was indicated by the presence of 
specific parts. To this end, we performed an additional set 
of experiments that specifically investigated the use of 
holistic versus featural information. These experiments 
used images that were transformed to differentially effect 
featural versus configural analysis. 
 
We created three stimulus sets. The first comprised low-
pass filtered face and non-face patterns. The low-
resolution of these images obliterated featural details 
while preserving the overall facial configuration. The 
second comprised vertically inverted faces. Vertical 
inversion is believed to compromise configural processing 
while leaving featural analysis largely unaffected 
[Diamond and Carey, 1986]. The third set comprised 
images of individual features (eye, nose and mouth). 
These feature images were enlarged so that low-level 
acuity issues would not confound the recognition results. 
Sample stimuli from each of these sets are shown in 
figure 2d-f. The first two sets were used in a face/non-
face discrimination task while for the third, the subjects’ 
task was to indicate what the image depicted. A feature-
based strategy would predict that performance would be 
poor with the first set (low-resolution images devoid of 
featural details), and comparable to controls for the 
second and third sets. 
 
The results are summarized in the lower row of figure 3. 
We found that SB and KK performed as well as the age-
matched controls on the low-resolution face classification 
task. However, their performance was significantly poorer 
with inverted faces and isolated features. Notice that the 
controls do not exhibit impaired performance with in-
verted faces. This lack of an 'inversion effect' is not sur-
prising, since the task here is not identification, but sim-
ply face/non-face classification. This pattern of results 
strongly suggests the use of overall configural informa-
tion by SB and KK. Details of individual face parts ap-
pear to be neither necessary nor sufficient for classifying 
a pattern as a face. 
 
3. Discussion 
 
Taken together, our experimental results suggest that 
children can rapidly develop face classification abilities 
even after prolonged visual deprivation, lasting from birth 
for several years. Furthermore, the face concept used for 
classification appears to encode configural information 
rather than piecemeal featural details. This particular 
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encoding strategy may well be a consequence of the rela-
tively poor acuity the children possess following treat-
ment for prolonged blindness. Acuity limitations reduce 
access to fine featural details and may, thereby, induce the 
use of holistic face information available in low-
resolution images. 
 

 
 

 
 
Figure 3. Results from SB, KK and two age-matched 
controls on various face-perception tasks. 
 
This finding is also interesting in that it may guide the 
development of computational models of human face 
detection skills. Most current models implicitly assume 
that faces are encoded in terms of their parts (Lee and 
Seung, 1999; Ullman et al., 2002; Heisele et al. 2003). 
Face concept learning in these models proceeds by first 
acquiring facial parts which are then, optionally, 
combined into a larger representation. This emphasis on 
the use of face-parts as pre-requisites for face 
classification, is not reflected in our experimental results. 
A model that proceeded by developing a holistic face 
representation without need for featural details, which 
may be added later as higher acuity information becomes 
available, would be more congruent with these 
experimental data. 
 
One way of reconciling our results with past reports of 
piece-meal processing is by assuming that visual 
deprivation does not compromise the encoding of overall 
facial configuration per se, but rather, the ability to 
discern differences between variants of the basic 
configuration. This has the consequence of increasing 

reliance on featural differences for distinguishing one face 
from another, a characteristic of piecemeal processing. 
 
In considering whether these results have any bearing on 
the development of face perception skills in normal in-
fants, it needs to be remembered that children like SB and 
KK differ in many ways from neonates. Unlike the new-
born, SB and KK have had extensive experience of the 
environment through sensory modalities other than vision. 
This experience has likely led to the creation of internal 
representations that may well interact with the acquisition 
of visual face concepts. Furthermore, the deprivation may 
have led to structural changes in neural organization. For 
instance, projections from other senses may have claimed 
sections of the cortex that, in normal brains, would be 
devoted to visual processing. Thus, a priori, we cannot 
assume that the developmental courses of face perception 
in a 10 year old recovering from blindness will have much 
similarity to that in the newborn. However, some interest-
ing parallels deserve further scrutiny. Primary among 
these is the quality of initial visual input. Both these 
populations typically commence their visual experience 
with poor acuity. The compromised images that result 
may constrain the possible concept learning and encoding 
strategies in similar ways. Thus, there exists the possibil-
ity that normal infants, and children treated for blindness 
at an advanced age, may develop similar schemes as a 
consequence of the similarity in their visual experience. 
However, the validity of this conjecture needs to be tested 
via further experimentation. 
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Abstract

What is the difference between processing faces and
other objects such as letters? What makes humans face ex-
perts, and what makes this expertise different from other
identi�cation skills? It is well known that people are very
sensitive to the con�gural information in faces. How does
the sensitivity to face con�guration compare to sensitivity to
con�gurations of other stimuli? To investigate these issues,
Nishimura et al. (2004) designed a test to contrast two types
of processing using the same stimuli. They primed subjects
to see four blobs as either a �Y� or as a face. Then they
asked the subjects to discriminate pairs of these stimuli that
differed only in small shifts in the blob locations. Although
the stimuli were exactly the same, subjects were more ac-
curate in the face condition than the �Y� condition. With
Nishimura et al., we assumed that the subjects were relying
on their letter recognition networks in the �Y� condition
and their face recognition networks in the face condition to
perform the task. We therefore trained two networks, a face
recognition network and a letter recognition network that
were otherwise identical in structure, and show here that the
internal representations in the letter network for the blobs
were less differentiated than the internal representations for
the blobs in the face network. We argue that this is a natural
consequence of the requirements of the two tasks.

1. Introduction

We have developed a simple neurocomputational model
of face and object recognition that accounts for a number of
important phenomena in facial expression processing, holis-
tic processing and visual expertise [9, 7, 11, 19]. Here, we
investigate the model's ability to account for a recent exper-
iment that shows differential human sensitivity to con�gural
information based on priming. Nishimura et al. (2004) con-
structed �blob� stimuli consisting of four gaussian blobs in
the same spatial arrangement as the eyes, nose and mouth

of human faces. The blob stimuli were also constructed to
have about the same variability in location as those features
in human faces. They then primed one group of subjects to
see these blobs as a �Y� and another group to see them as
parts of a face. The �rst group was less able to discrimi-
nate the blob stimuli than the second group. They suggest
that this is because the face group is using their face recog-
nition system to discriminate the blobs, and present this as
further evidence that face processing utilizes a sensitivity to
con�guration that other tasks do not.

Why would subjects show these differential sensitivities?
We �rst discuss what is known about face processing. Face
processing has long been described as holistic or con�gural.
Holistic is typically taken to mean that subjects use some
kind of whole-face representation when processing faces.
This is re�ected at least two ways. First, subjects have dif-
�culty recognizing parts of the face in isolation � there is a
whole-face superiority effect. Second, subjects have dif�-
culty ignoring parts of a face when making a decision about
another part. For example, subjects are slower in making an
expression judgement about the top half of a face if the bot-
tom half is displaying an incongruent expression [3]. Our
model of face processing is able to account for this kind of
data because it uses representations that are global; that is,
they are composed of whole-face templates we have called
holons [7, 8]. Inputs that match part of one of these repre-
sentational units cause it to �re. Units later in the processing
stream take this to be a vote for the whole template, so that
the system as a whole responds as if both halves of the face
had been of the type matched.

Con�gural processing means that subjects are sensitive
to the relationships between the parts, e.g., the distances
between the eyes. Thus, small changes in the spacing of the
eyes cause subjects to see the faces as different people. This
is presumably due to long experience with many people,
and the need to differentiate these faces. This sensitivity
to con�guration, however, takes a surprisingly long time to
develop [23].

What kind of processing is required to recognize objects,
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and how does it differ from faces? Diamond and Carey [14]
were among the �rst to discriminate between the types of
processing involved in face and object recognition. They
proposed that �rst-order relational information, which con-
sists of the coarse spatial relationships between the parts
of an object (e.g. eyes are above the nose), is suf�cient
to recognize most objects at the basic level. By contrast,
second-order relational information (e.g. the spacing be-
tween individual features such as the eyes and the mouth), is
needed for face recognition. They found that inverting im-
ages severely disrupted subjects' ability to discriminate be-
tween faces, and that this effect was stronger for faces than
for dogs and landscapes in naive subjects. However, dog
experts also showed an inversion effect for dogs. These re-
sults suggest that face processing is a kind of expertise, and
that experts become over-tuned to the typical orientation of
the stimuli in their domain of expertise. Their ability to dis-
criminate based upon subtle con�gural differences is overly
disrupted by inversion. Diamond and Carey [14] suggest
that experience allows people to develop a �ne-tuned pro-
totype and to become sensitive to second-order differences
between that prototype and new members of that category
(e.g. new faces).

One implication of the Diamond and Carey study is that
the inversion effect (a large reduction in same/different per-
formance on inverted faces, compared to inverted objects)
is based on a relative greater reliance on second-order rela-
tional information, and that perhaps this characteristic dis-
tinguishes face/expert-level processing from regular object
recognition. Farah et al. [15] found that encouraging part-
based processing eliminated the inversion effect, whereas
allowing/encouraging non-part-based processing resulted in
a robust inversion effect. Thus Farah et al. conclude that the
inversion effect, in faces and other types of stimuli, is asso-
ciated with holistic pattern perception. Thus, regular object
classi�cation is thought to use a parts-based representation.

However, our model uses the same kind of representa-
tion for all stimuli. The only difference is the requirements
of the task, between a version of our model that recognizes
faces and one that recognizes objects, such as letters. In face
identi�cation, the model must take similar looking stimuli,
and magnify small differences between them in its internal
representation (see Figure 1, left). On the other hand, in or-
der to recognize letters, the model must take similar looking
things (the same letter in different fonts, for example) and
represent them as the same thing (see Figure 1, right). This
point has been made before [17]; here, we construct models
that automatically implement those differences via learning
the different tasks. Then we may analyze the models in
ways that we cannot analyze human subjects.

Our use of separate networks for these two tasks is mo-
tivated by fMRI experiments that have shown that face-
related tasks and letter-related tasks activate different brain

regions [17, 20, 5]. The fusiform face area tends to be in
right medial fusiform gyrus, whereas there appears to be
a letter form or word form area in the left midfusiform
gyrus [5, 6, 22]. We model this by having two networks,
each trained to do one of the tasks. We hypothesize that the
priming in Nishimura et al.'s experiment causes one of these
networks to be primed, and therefore used for the task. Then
we show how blobs are represented differentially in the two
networks.

Figure 1. Faces are automatically perceived
as different individuals despite the similarity,
while the �F�s are perceived as the same let
ter. Adapted from [17].

In the following, we describe Nishimura et al.'s experi-
ments and our account of their data. We found that different
encoding due to different tasks in our model could account
for their data, which suggests that the effect in human sub-
jects may come from using the letter system verses the face
system to encode the stimuli. Finally, we discuss plans for
future work.

1.1. Nishimura et al's Stimuli and Experiments

To compare sensitivity to con�gural information for
faces and non-faces, Nishimura et al. (2004) created a group
of stimuli that contain 4 blobs located over the eyes, nose
and mouth of con�gurally different faces (Figure 2). Two
groups of subjects were then primed to see the blobs as
either a face or as the letter �Y�, respectively (Figure 3).
The subjects then performed same/different tasks on differ-
ent pairs of blobs that differed only in their relative loca-
tions. The results showed that when people take these blobs
as faces, they discriminate them better than when they see
them as the letter Y (Figure 4). This suggests that by differ-
ent priming, ambiguous stimuli might be represented differ-
ently. In this work, we concentrate on modelling this using
our neurocomputational model of visual object recognition.

2. A Computational Model of Classi�cation

Our model is a three level neural network that has been
used in previous work (Figure 5). The model takes manu-
ally aligned images as input. The images are �rst �ltered by
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Figure 2. 4 blobs are located over the eyes,
nose and mouth of 5 faces used in previous
studies (from [24]).

Figure 3. The blobs are primed as either face
or letter Y. (from [24]).

2D Gabor wavelet �lters, which are a good model of simple
cell receptive �elds in cat striate cortex [18]. PCA (prin-
cipal component analysis) is then used to extract a set of
features from the high dimensional data. In the last stage,
a simple back propagation network is used to assign a class
to each image. We now describe each of the components of
the model in more detail.

2.1. Perceptual Level

Research suggests that the receptive �elds of the striate
neurons are restricted to small regions of space, respond-
ing to narrow ranges of stimulus orientation and spatial
frequency[18]. DeValois et al [13] mapped the receptive
�elds of V1 cells and found evidence for multiple lobes of
excitation and inhibition. 2D Gabor �lters [12](Figure 6)
have been found to �t the 2D spatial response pro�le of
simple cells quite well[18]. In this processing step the
image was �ltered with a rigid 23 by 15 grid of overlap-
ping 2-D Gabor �lters[12] in quadrature pairs at �ve scales
and eight orientations [11](Figure 7). We thus obtained
23 × 15 × 5 × 8 = 13, 800 �lter responses in this level,
which is termed the perceptual level [11].

2.2. Gestalt Level

In this stage we perform a PCA of the Gabor �lter re-
sponses. This is a biologically plausible means of dimen-
sionality reduction[11], since it can be learned in a Heb-
bian manner. PCA learns features that encode correlations
between features at the previous level. Thus, for exam-
ple, if the Gabor �lter responses to the left eye are highly
correlated with the Gabor �lter responses to the right eye,

Figure 4. Mean accuracy of the subjects in
the face group was higher than that of those
in the letter group. (from [24]).

Figure 5. Object recognition model (from
[11]).

there will be a principal component that corresponds to both
of these, capturing the redundancy in the Gabor �lter re-
sponses. The eigenvectors of the covariance matrix of the
patterns are computed, and the patterns are then projected
onto the eigenvectors associated with the largest eigenval-
ues. At this stage, we produce a 50-element PCA represen-
tation from the 13,800 Gabor vectors.

2.3. Categorization Level

The classi�cation portion of the model is a two-layer
back-propagation neural network. 50 hidden units are used.
A scaled tanh [21] activation function is used at the hidden
layer and the softmax activation function yi = eai/

∑
k e

ak

was used at the output level. The network is trained with
the cross entropy error function [1] to identify the images
using localist outputs. Networks trained in this way learn to
produce the conditional probability of the output class given
the input.
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Figure 6. A Gabor function is constructed by
multiplying a Gaussian function by sinusoidal
function[12]. We use �ve scales and eight
orientations.

Figure 7. An image �ltered with a rigid 23
by 15 grid of overlapping 2D Gabor �lters
in quadrature pairs at �ve scales and eight
orientations (from [10]).

3. Modelling Nishimura et al.

We set up two networks, one engaged in face iden-
tity classi�cation and the other in letter classi�cation. Af-
ter training, blobs were fed to these two networks. The
mean discriminabilities were computed respectively and
then compared between the two classi�ers. The results
showed that the face network considers the blob stimuli to
be more different than the letter network does.

3.1. The Image Sets

We had 182 face images of 26 individuals (7 images for
each individual). We also used 182 letter images of the
26 upper case letters (7 images for each letter in 7 fonts).
27 blob stimuli were created by manipulating the eye blob
and/or mouth blob's position.

The FERET database is a large database of facial im-
ages, which is now standard for face recognition from still
images[25]. We used 182 face images of 26 individuals, 7
images each. In [11], where the task was to learn facial ex-
pressions, images were aligned so that eyes and mouth went
to designated coordinates. This alignment removes the con-
�gural information which is crucial for our work, because
we are trying to understand how con�gural processing is

better learned in the face recognition task than in the letter
recognition task. To avoid this negative effect, we required
that the relative spacing between the parts of the face re-
main the same. We formed a triangle from the eyes and
mouth of the original face, and then translated, rotated and
scaled this triangle to be as close as possible to a target tri-
angle in terms of the sum squared differences between the
�nal eye and mouth coordinates and the target coordinates.1
This manipulation preserves the relative distance between
the features of the face (Figure 8). Thus, a triangle rep-
resented by the eyes and mouth is scaled and moved to �t
closely to a reference location, but the relative sizes of the
sides of the triangle are not changed. The aligned images
were 192 pixels by 128 pixels.

Figure 8. Two examples of face image normal
ization. The faces were cropped with the eyes
and the mouth as close as possible to the tar
get position while keeping the shape of the
triangle among these features the same.

We also used 182 192 by 128 pixel letter images of the
26 upper case letters, 7 images each (Figure 9). The letter
images were aligned so that the ends of the letter Y were
approximately where the eyes and mouth were in the face
stimuli.

Figure 9. Some letter images.

Blob images were generated by setting gaussian blobs
(of width σ = 5 pixels) at left eye (80(±3), 36(±3)),
right eye (80(±3), 92(±3)), nose (115, 65) and mouth
(150(±3), 65) positions. Note the two eye blobs were al-
ways symmetric. Thus 3 ∗ 3 ∗ 3 = 27 blob images were
generated.

3.2. Training and Learning

A learning rate of 0.05 and a momentum of 0.5 were
used in the results reported here. Two networks were set

1The objective function for the minimization was (||Eyeright −
targetEyeright||2 + ||Eyeleft − targetEyeleft||2 + ||Mouth −
targetMouth||2).
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Figure 10. Some �blob� images.

up for faces and letters respectively. In a pilot experiment,
10 percent of the images were selected randomly as a test
set and another 10 percent as a validation set [10]. Both
networks achieve 80-90 percent accuracy within 50 epochs.
This classi�cation rate was good enough to show that our
model represented the images well.

For the following experiments, we simply trained both
networks on all 182 images, since we are only interested in
obtaining a good representation at the hidden layer. Train-
ing was stopped at the 50th epoch based on the above pilot
experiment. After training, the blob images were presented
to the network. Note for the face network, the blob images
were projected according to the face image eigenvectors in
the PCA level while for the letter network, they were pro-
jected onto those of letters.

3.3. Modelling Discrimination

Hidden unit activations were recorded as the network's
representation of images. In order to model discriminability
between two images, we present an image to the network,
and record the hidden unit response vector. We do the same
with a second image. We model similarity as the correla-
tion between the two representations, and discriminability
as one minus similarity [11]. The pairwise average within
the blob image set was taken as the measure of the net-
work's ability to discriminate the blob images. For both the
face network and the letter network, the average of the dis-
criminabilities was computed over 50 networks which were
all trained in the same way, but used different initial random
weights.

The results (Figure 11) showed that the face network bet-
ter discriminates the difference between blob images than
the letter network (F = 24.72, p < 0.001). I.e. the rep-
resentations of blob images in the face network were more
differentiated (further apart) from one other than those in
the letter network.

To visualize this difference, we extracted the principal
components of the hidden layer representations and then
projected their activations onto the �rst three principal com-
ponents (the ones that represent most of the variance of the
activations) (Figure 12). Notice the hidden layer represen-
tations of the blobs in the face network are better separated,
which suggests that the face network is especially sensitive
to con�gural differences.

Figure 11. Mean discriminability of the blobs
in the face network was higher than that in
the letter network (F = 24.72,p < 0.001).

Figure 12. The projection of the hidden activ
ities onto the �rst 3 principal components.

3.4. Inverted blobs

While Nishimura et al. did not present inverted blobs to
their subjects, it is theoretically interesting to see what sub-
jects would do with inverted stimuli if they are perceiving
them as letters or as faces. If they see them as faces, then
one expects that there should be an �inverted blob effect.�
This is easy to do with the networks. The same set of the
blobs were inverted and then presented to the two types of
networks. We expect that the face network should show a
greater loss of discrimination than the letter network. The
results, plotted along with the original data from Figure 11
for comparison, are shown in Figure 13. As expected, there
is an inverted blob effect for the face network, while the let-
ter network shows a slight increase in discriminability for
the blobs. As there is no human data for this case, this is a
prediction of the model.

4. Discussion

Our results qualitatively match those from human sub-
jects. In the two networks, the difference in the discrim-
inability of the same stimuli comes from the different en-
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Figure 13. Discriminability results for the let
ter and face networks when the blobs are pre
sented upright and inverted. There is no dif
ference between the networks on the inverted
stimuli (F = 3.11,p = 0.0808), but there is a sig
ni�cant difference between the face network's
ability to discriminate the inverted blobs over
the upright blobs (F = 21.9,p < 0.001). There
is a small but signi�cant increased discrim
inability for the letter networks (F = 4.3,p =
0.0407).

coding in the two tasks. Note that because all the faces share
the same �rst-order relational features, the categorization
need to be carried out at �ner level. The face network needs
to spread out similar face images to categorize individuals,
while the letter network needs to squeeze different fonts of
the same letter to a letter prototype. So the face network
tends to magnify small differences in face images while the
letter network tends to ignore such variability. This is con-
sistent with our previous results with faces, objects and let-
ters [19, 26]. Thus the con�gural differences between the
blob stimuli are better noticed by the face network. Con-
sidering our separate face and letter networks to be analo-
gous to the separate face and letter processing systems in
the brain, we can apply the reasoning derived from our net-
works to the brain, as follows. The face processing system
learns to pay attention to small differences such as con�g-
ural changes in faces while the letter processing system ig-
nores them. Thus, when the blobs are perceived as faces,
the differences are more present in the inner representation
by the face system, while when the blobs are perceived as
letters, the differences are less present in the inner represen-
tation by the letter system.

Our model makes a prediction concerning an inverted
blob effect. We have previously shown that our face net-
works show an inverted face effect � they are poorer at dis-
criminating upside down faces [27]. We also showed that
con�gural differences take the biggest hit in discrimination
when compared with featural changes between the stimuli

to be discriminated. The con�gural effect generalizes to the
blobs. Interestingly, the letter network does not show this
effect � its discriminability scores increase slightly when
the stimuli are inverted. Possibly this is because it is poor at
discriminating the upright stimuli that all match a particular
letter �Y�. In the inverted case, we speculate that the blobs
fall in regions where it may have to discriminate slight dif-
ferences between letters (e.g., �R� and �A�).

How might these effects vary with development? As the
participants were undergraduates [24], we would expect a
lower strength of this effect in young children since sensi-
tivity to con�guration is lower in children [16, 23]. Further-
more, if the inverted blob effect is found in adults, as pre-
dicted by our model, we would expect that children would
not show this effect. This is because developmentally, chil-
dren show either no inversion effect, or less of an inversion
effect, depending on their age [4, 2]. We are currently ex-
ploring adding a developmental component to our model in
order to account for these developmental changes.
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Abstract

We present new evidence to support criticisms of infant
looking time experiments. One such experiment, in which
Baillargeon concluded from looking times that infants un-
derstand object permanence, is examined in detail. An al-
ternative model of infant cognition, using the idea that in-
fants look longer at particular scenes based on visual pro-
cessing at the pre-attentive level, rather than based on any
understanding of the objects they are seeing, is suggested.
The model is implemented on Nico, a humanoid robot cur-
rently being developed in the Yale Social Robotics Lab.
The validity of the model is established by running Nico
through a reenactment of Baillargeon’s initial experiment
and achieving comparable results. The argument is made
that while these results do not prove the suggested model
is correct, they do prove that the suggested model is suffi-
cient for explaining Baillargeon’s results. We conclude that
the demonstrated validity of the model prevents Baillargeon
from claiming that the initial experiment provides proof of
an understanding of object permanence in infants. We sug-
gest that the model could be further validated by running
Nico through other looking time experiments.

1. Introduction

In the past few years, the validity of infant cognition
studies has been under debate. Because infants are unable
to communicate their thoughts and, in the case of particu-
larly young infants, unable even to control their bodies in
meaningful ways, researchers desiring to determine what
infants are thinking have been forced to rely exclusively on
indirect cues such as looking times. In one popular looking
time paradigm, the violation of expectation study, the infant
watches a scene that is either physically possible or physi-
cally impossible. If the infant looks longer at the impossible
scene, the researcher concludes that the infant was surprised
by the scene because it is impossible, and that the infant

must therefore possess some understanding of the principles
which make the scene impossible. This paradigm was used
famously by Karen Wynn to suggest that infants understand
basic arithmetic [8]. A similar paradigm, in which infants
habituate to a basic scene before being shown either an im-
possible or a possible variation of it, is also quite popular. It
has been used in a number of studies to suggest infants un-
derstand various concepts about the laws of physics, such as
object continuity [3]. The problem with these studies, crit-
ics such as Haith claim, is that they assume too much about
the conceptual understanding of infants based on percep-
tual evidence [4]. According to Haith, infants may behave
the way they do without any knowledge of such concepts as
arithmetic, object continuity, or impossibility. Infants may
follow much simpler rules for tracking objects and may re-
spond to novel stimuli, stimuli that the rules did not pre-
dict, by looking longer at these stimuli, without giving any
thought to what is possible or impossible.

Because of the difficulty of finding new ways to study in-
fant cognition, the debate remains unresolved. However, the
field of robotics may be key to determining whether a less
generous model of infant cognition is sufficient to explain
the results of infant cognition studies [1]. If robots, fol-
lowing basic rules without any knowledge of higher-level
concepts, can replicate infant behavior, then it is possible
that infant cognition follows similar basic rules. Schlesinger
[6] created a very simple block animation based on Bail-
largeon’s study [2] in which a cart moves down a track,
briefly passing behind an occluder. Schlesinger evolved a
neural network which received as input all the pixels in a
given frame of the animation, as well as all the pixels in the
foveal area, the part of the animation at which the agent was
currently ”looking.” The neural network produced as output
directives on where in the scene the agent should look next.
After training the net with the basic animation, Schlesinger
tested it on animations corresponding to the possible and
impossible scenes used by Baillargeon.

Schlesinger was able to draw parallels between the per-
formance of his neural network and the performance of in-
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fants in Baillargeon’s study. However, because Schlesinger
used a basic simulation with a simplified animation to repre-
sent what his agent was seeing, his interpretations are open
to criticism. The agent did not have to deal with real world
constraints such as noise in an image, nor could it benefit
from real world cues such as depth. Furthermore, because
the simulation involved evolving a net for a particular ani-
mation, using the same agent to mimic other infant cogni-
tion studies would be a nontrivial matter. At the very least,
animations would have to be built for each study, and a sep-
arate neural network might need to be evolved for interact-
ing with each one. Even then, it is unclear whether the same
types of results would be achieved. Thus, it is hard to justify
generalizing his results to the performance of infants in the
real world.

In the present paper, a new model of infant cognition
is proposed as an alternative explanation for the results
achieved in Baillargeon’s looking time experiment. This al-
ternative model is a pre-attentive model, meaning the model
presupposes that the results in looking time experiments can
be explained in terms of visual processing that goes on in
the infant’s brain before the infant is consciously aware of
any visual stimuli. If the model is correct, then infants do
not look longer at a particular stimulus because they make
a conscious decision to look at what they find particularly
surprising. Instead, they look longer at a stimulus because
of basic, automatic mechanisms.

The model is implemented on the humanoid robot Nico.
Because Nico is an embodied entity existing in the physical
world, the robot must deal with all the constraints and cues
facing actual infants, rather than merely those factors which
a programmer has thought to include in a simulation. The
model is tested by running Nico through an experiment sim-
ilar to Baillargeon’s. The purpose of this experiment is not
to determine whether the model accurately describes what
is occurring within an infant’s brain. The purpose is rather
to demonstrate that the model could potentially result in in-
fants behaving the way Baillargeon found them to behave.

2. Baillargeon’s Experiment

In Baillargeon’s object permanence experiment [2], 6-
month-old and 8-month-old infants were first shown two
randomly ordered familiarization trials. In both trials, a yel-
low cart stood immobile on a downward-sloping track. A
red screen, which would otherwise have occluded the cart,
was held up above the track. A green box was placed on
the track next to the yellow cart in one trial and behind the
track in the other trial. After seeing both familiarization tri-
als, infants were exposed to a series of habituation trials. In
each trial, they were shown an eight-second scene that re-
peated until they lost interest in it. They were considered
to have lost interest when they looked away for at least two

seconds. Because the scene was divided into two-second
segments, the infants had to lose interest for at least one en-
tire segment for the trial to end. As the scene began, the red
screen stood in front of the track, occluding a small part of
it. In the first two-second segment, the red screen was lifted
up into the air and then lowered. In the second segment,
nothing happened. In the third segment, the yellow cart ap-
peared at the top of track, took approximately two seconds
to travel down the track, briefly disappearing behind the red
occluder, and then moved out of the infant’s view at the bot-
tom of the track. In the fourth segment, nothing happened
again. Experimenters recorded the total time it took infants
to lose interest in this scene and then repeated the habitua-
tion trials until the time in three consecutive trials was half
of what it had been in the first three trials, at which point the
infant was considered to have habituated to the scene. On
average this required about eight habituation trials.

After habituation was achieved, each infant was given
the two familiarization trials again. Then, the infant was
given three more trials. For half the infants, these tri-
als followed a possible-impossible-possible pattern, and for
half the infants the trials followed an impossible-possible-
impossible pattern. The possible trials were the same as
the habituation trials, except that when the red screen rose
into the air, the infants saw the green box sitting behind the
track. The impossible trials were the same except that when
the red screen rose, the infants saw the green box sitting on
the track. This scene was considered impossible because
the presence of the green box on the track suggested that as
the cart travelled behind the occluder, the cart was actually
moving through the green box. According to Baillargeon,
the infants looked at the impossible scene longer because
they were surprised that one object could move through an-
other object. Since the impossible event apparently occured
behind the red screen, Baillargeon concluded that infants
represent the locations of objects located behind occluders,
represent the velocity trajectories of objects moving behind
occluders, and understand object permanence, i.e. the idea
that one object cannot move through another.

3. An Alternative Explanatory Model

Our model begins with one of the most basic human per-
ceptual abilities: feature detection. Every human has neu-
rons in the brain that are activated for certain types of visual
stimuli at certain locations in the visual field. These neurons
respond at a pre-attentive level. They include neurons that
respond to stimuli of particular colors, neurons that respond
to stimuli at particular depths, and neurons that respond to
stimuli with particular motion vectors [5]. When an infant
sees a red ball moving through its visual field, the appro-
priate neurons for a red object at a particular depth moving
with a particular velocity are activated.
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Another basic cognitive ability that does not require con-
scious thought is the ability to create associations in the
mind between two stimuli. Classical conditioning experi-
ments show us that even rodents can do this [7]. Suppose,
then, that human infants can build and remember associa-
tions between groups of stimuli. These associations can be
seen as very basic mental constructs, which will be called
elements. Imagine that an element is represented by an ar-
ray of neurons, with each neuron in the array corresponding
to a location in the visual field. In the case of the red ball,
the infant might associate one such array with the redness,
the motion vector, the location in the visual field, and the
depth in the visual field. If the infant later saw a red ball
moving in the same direction very close to where the red
ball element was first formed, the associations between all
these features and the red ball element would cause the neu-
ron for the new red ball’s location to be excited. If, on the
other hand, the red ball vanished and a blue ball appeared
in its place, the neuron would be excited to a lesser degree,
as the element would share only the location, velocity, and
depth features of the new stimulus.

Of course, remembering an element’s location in the vi-
sual field is only of limited use. A human’s eyes are con-
stantly moving as the person focuses on different stimuli.
Once an element disappears from view, perhaps by mov-
ing behind an occluder, its last known location in the visual
field quickly becomes unreliable. Therefore, it may be more
useful to remember an element’s location relative to the lo-
cations of other elements, particularly if they are near each
other. One can imagine that there are associations between
elements in the infant’s memory. If one element was last
seen moving behind a second, then there will be a strong
association between the elements, and simply looking at the
second will excite the neuron for the first at the same loca-
tion.

The model can be examined in greater detail, although
details beyond the basic framework are little more than
speculation. When an object appears in the visual field, if it
shares any features with any elements in the infant’s mem-
ory, those elements will be excited for the object’s location
in the visual space. If an element is sufficiently excited for
a particular location, then it will become activated for that
location. This has several effects. First, an element’s acti-
vation at one location in space inhibits its activation at other
locations, meaning an element cannot be activated for more
than one location at the same time. Second, an element’s
activation inhibits the creation of a new element at the same
location, so the infant will not make the mistake of assum-
ing an object is both an old element and a new element.
Thirdly, the element’s activation causes the infant to habitu-
ate to the element, meaning the infant will find the element
slightly less exciting than it has in the past. Finally, the ele-
ment’s activation stimulates the infant to look at the object’s

location in visual space. The element’s activation does not
inhibit the activation of another pre-existing element at the
same location in space, meaning that two elements may be
activated for a single object. This quirk in the infant’s cog-
nitive ability will prove important in explaining infant be-
havior in Baillargeon’s study.

When an object disappears from the visual field, the ac-
tivation of any elements associated with it will persevere for
a short time and then cease. At this point, the element’s last
known location in the visual field will decay very quickly.
Unless the object reappears in a short time, the element will
lose all association with any location in visual space. The
other associations, however, will remain for a longer time.
As the infant gradually forgets the element, the element’s
level of habituation will decrease. However, the more time
the infant has spent looking at the element, the harder it is
for the infant to forget the element.

4. Interpreting Baillargeon’s Results

Now, suppose we apply the model to Baillargeon’s ex-
periment. Instead of imagining that infants understand and
are able to habituate to an entire scene, the model suggests
that infants are merely habituating to a set of elements. In
the habituation trials, the red screen is always in the infant’s
field of view, while the cart is only in the field of view for
about two out of every eight seconds. Thus, one might as-
sume that infants would habituate to the red screen much
more quickly than they would habituate to the yellow cart.
However, it seems plausible to suggest that when the stim-
uli associated with an object change significantly, such as
when the red screen moves up and down, the degree of ha-
bituation decreases. Since the red screen remains stationary
most of the time, it may become much more interesting to
the infant during the two seconds when it is moving. Since
the yellow cart is always moving, its motion would be less
exciting. Suppose that the infant will never look away dur-
ing the two seconds when the red screen is moving. Once
the infant has habituated sufficiently to the red screen, the
infant will look away during the two seconds before and af-
ter the red screen moves, as nothing happens during these
intervals. However, the infant must look away for a total of
at least two seconds for the trial to end. This means that un-
less the infant looks away immediately at the beginning of
one of the intervals where nothing happens, the infant will
need to look for some time beyond the length of these in-
tervals for the trial to end. The only remaining interval is
the two seconds when the yellow cart is visible. Thus, the
infant must completely habituate to the yellow cart before
the infant will look away for a total of two or more seconds.

During the intervals between trials, none of the objects
are visible to the infant. Presumably, during these inter-
vals the infant partially forgets the elements associated with
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the red and yellow objects, losing some of the habituation
to these elements. After each trial, the infant has seen the
objects for more time and thus has more trouble forgetting
their elements, so after each trial the infant dehabituates to a
lesser degree, causing each successive trial to take less time.

In the possible test trial, the green box is introduced. The
green box was visible during the familiarization trials but
not during any of the habituation trials, and thus it is much
more interesting to the infant. However, the box is only
visible while the red screen is moving up and down, and
this is not the period when the infant looks away. Thus, the
green box has little effect on the total time of the trial.

The impossible event is similar to the possible event, but
with one important distinction: the green box is placed on
the cart’s track. The infant may not realize this, or even
know what a track is. However, this distinction also means
that the green box’s depth, i.e. its distance from the eyes of
the infant, is the same as the depth of the cart. When the red
screen moves up and down, the infant creates a green box
element and associates this element with its depth, with its
color, and with the red screen element, since it was last seen
being occluded by the red screen. During the first cycle of
the impossible trial, as the yellow cart appears, it catches
the infant’s attention, and the infant’s eyes move to follow
it. As the cart moves behind the red screen, it is briefly
located directly next to the screen. The infant’s green box
element is excited for the position of the red screen because
of the association between the red screen and the green box.
The green box element is also excited because the yellow
cart is located at the same depth as the green box. Some of
the time, this may be sufficient to activate the green box for
this location. As the yellow cart comes out from behind the
red screen on the other side, it again may excite the infant’s
green box element for that location. Since the cart moves
quickly on, the activation is very brief. However, because
elements that have disappeared from view persevere for a
short time, the infant continues attending to the imagined
green box for a little while longer, while the yellow cart
moves on. Because the infant has had less time to habituate
to the green box in previous trials, the infant finds the green
box more interesting than the yellow cart. Thus, the infant
pays less attention to the yellow cart and so habituates to
the cart at a slower rate. It takes the infant more time to
habituate to the yellow cart, and so the impossible trial takes
more time to complete.

5. Methodology

The cognitive model was implemented by building a
memorymodule for the robot Nico. Nico is a humanoid
robot currently being developed at the Yale Social Robotics
Lab. Nico is designed to both look and behave like a nine-
month-old infant. Nico’s head contains six motors, three

Figure 1. Nico, an upper-torso humanoid
robot used in the implementation of our al-
ternative model

of which control Nico’s ”eyes.” One pan motor rotates each
eye from side to side, while a third tilt motor rotates both
eyes up and down. The eyes each consist of two small cam-
eras. One camera possesses a wide field of view, and the
other camera, which represents the fovea, possesses a nar-
rower field of view. Nico also possesses a torso and an arm,
although only software for controlling the head was used in
the present experiment.

5.1. Nico’s Software

Nico is controlled by a set of software modules running
in parallel on 16 networked computers. Some of these mod-
ules have been ported from code written for Cog, a hu-
manoid robot at MIT, while other modules have been de-
veloped by members of the lab. The modules pass informa-
tion to each other through the ”port system.” Each module
performs a basic cognitive operation similar to a function
that might be performed by a particular area in the human
brain. The modules can be divided into perceptual process-
ing modules and behavior control modules.

The basic purpose of the perceptual processing modules
is to extract information from the video cameras that make
up Nico’s eyes. The lowest-level modules detect single-
pixel features in the image. For example, the color mod-
ule detects bright colors in an image. The skin module de-
tects colors that are likely to be skin tones. The motion
module detects motion in the form of changes in a single
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Figure 2. The Visual Processing Pipeline: the image is passed to the Skin, Color, and Motion modules,
each of which produces a saliency map; the PAV module performs a weighted summation of their
output and boxes interesting objects; the memorymodule performs habituation and chooses the most
salient object (the images shown above represent typical output from each module)

pixel’s intensity over time. Each of these modules produces
a saliency map, a grayscale image in which the value for
each pixel represents the degree to which the module found
that pixel to be salient.

The pre-attentive vision module, or PAV, receives any
combination of saliency maps and performs a weighted
summation of their values, using weights determined either
by the user or by some other module. Because the weights
are variable, PAV can be adjusted to cause Nico to pay more
attention to particular types of stimuli. After computing the
weighted sum, PAV groups neighboring highly salient pix-
els together to form boxes. These boxes generally corre-
spond to actual objects in the physical world. For example,
if PAV is attending to color and a red ball is placed in front
of it, it would box all of the adjacent red pixels together to
form a box representing the location of that ball in the vi-
sual field. PAV can also be adjusted to change what types of
pixels will be grouped together in the same box. For exam-
ple, it can be set to box skin and color separately, so that a
green toy and the hand holding the toy are treated as distinct
objects. It can even be set to box different colors separately,
so that a blue object and a yellow object that are adjacent
in the visual field are kept distinct. Once PAV has found its
boxes, it sends the most salient ones on to the next module.

There are several modules which may use the output
from PAV as their input. Two such modules which are

used for behavioral control are saccade and smooth pur-
suit. These modules represent two different types of eye
movements found in humans. A saccade is a movement in
which, after a person first becomes interested in an object,
the person’s eyes quickly move to a position in which they
are fixated on that object. Smooth pursuit is used after a
saccade has placed an object in the center of a person’s field
of view. As the object moves around in space, the person’s
eyes follow that object, so that it remains in the center of the
person’s field of view. In Nico, both of these modules re-
ceive boxes from PAV telling them where in the visual space
objects of interest are located. They perform basic transfor-
mations to determine how far or quickly the eye rotation
motors should move to compensate for any discrepancy be-
tween the most salient object’s location and the center of
the visual field. They produce output in the form of motor
commands that are sent to an arbiter, which keeps track of
whether Nico is currently engaging in a saccade or smooth
pursuit and passes on the appropriate command to the motor
module, which actually communicates with the eye motors.

Because Baillargeon conducted her experiments with a
red object, a yellow object, and a green object, the color
module was used as the sole input to PAV in the present
experiment. PAV was set to box differently colored pix-
els separately, based on the assumption that infants have
no trouble distinguishing between two adjacent objects of
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different colors. A separate instance of the color and PAV
modules was run for each of Nico’s eyes. Only the wide
field of view cameras were used, as they provided sufficient
detail for a foveal view to be unnecessary. The two PAV
modules each passed their output boxes to depth, a module
that matches up the PAV boxes from the left and right eyes
and outputs the horizontal disparity between them. Dispari-
ties values give a rough idea of the relative distance from the
eyes to an object, i.e. the object’s depth. However, on their
own they are only reliable if the eye cameras are parallel
and stationary, so they could not be used as an indicator of
absolute depth in the present experiment. The output from
both the left eye’s PAV module and the depth module were
connected to thememorymodule.

5.2. ThememoryModule

The memorymodule receives PAV boxes as input and
produces its own modified boxes as output. The module
uses an array of elements to ”remember” what it has seen
over time. When it first receives a box from PAV, repre-
senting an object in the visual field it has not seen before,
it matches the box up with a disparity from depth, repre-
senting the object’s relative depth. It then associates one of
its elements with the features of the new box. It stores the
element’s color and location in the visual field. If there is
currently another visible element that has been present for
some time, it associates the new element with that old ele-
ment, storing the new element’s location and depth, relative
to the old element. This is a somewhat simplistic treatment
of the infant cognition model, since there are presumably
many more features that may be associated with an object.
However, thememorymodule is limited by Nico’s current
perceptual abilities. The features mentioned are sufficient
for replicating Baillargeon’s experiment.

Every timestep,memoryreceives a set of boxes from
PAV. It first checks to see whether those elements that were
visible the previous timestep are still visible. Elements that
are currently visible are associated with a location in the
visual field and with a color.Memorythen checks to see
whether elements that were not visible the last timestep are
now visible. If an element was last seen near its associated
relative element, it will be strongly associated both with its
last known depth relative to that element and with that el-
ement’s location. Suppose element A disappears while di-
rectly adjacent to element B. If a box with the same color as
A later appears near B, it will activate element A. However,
if a box later appears adjacent to B and that box does not
have the same color as A but the box is at the same relative
depth, it can still result in the activation of element A.

When Nico is attending to a particular PAV box, i.e.
when that box is the most salient, Nico habituates to the
element associated with the box at an especially high rate.

As the element’s level of habituation increases, the box’s
saliency decreases. However, if the box to which Nico is at-
tending begins moving after remaining stationary for some
time, the associated element’s level of habituation jumps
down, and the box immediately becomes more interesting.
After the box stops moving, the level of habituation returns
to its previous level.

Because the details of how habituation works in an in-
fant are unimportant for the present experiment, themem-
ory module does not not use a realistic implementation of
habituation. The implementation is simply designed to be
sufficient for fitting the data from Baillargeon’s experiment.
While an element is visible, Nico habituates to the element
at a steady rate. This continues until the element leaves
Nico’s sight or it reaches a saliency of 0, at which point
Nico ignores the object with which the element is associ-
ated completely. When an element disappears from Nico’s
view, Nico remains habituated to the element for several
seconds and then slowly begins to lose habituation. How-
ever, Nico does not lose all habituation to the element. The
minimum level of habituation to an element, which begins
at 0 when the element is first created, gradually increases
as Nico habituates to an element. After the element leaves
Nico’s sight, Nico’s level of habituation can drop no lower
than this value. Thus, every time Nico sees the element, it
takes Nico less time to habituate to the element. This allows
Nico to habituate more quickly on each successive trial run,
just as the infants did. The minimum level of habituate can-
not rise higher than a little above 1/2, so trial times will not
drop significantly below half of the initial trial time.

5.3. The Experiment

Baillargeon’s experiment was replicated by building a
short metal ramp. A toy train with a yellow piece of poster
board affixed to it represented the yellow cart. It traveled
down the ramp behind a thin red screen, the occluder, which
could be lifted and lowered. A thin green folder represented

Cart (yellow) Occluder (red)

Figure 3. The Setup: the cart moves down the
ramp, behind the occluder
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the green box. It could either be clipped to the front of the
track immediately behind the red occluder or be held up in
a vice a good distance behind the occluder. Because Nico’s
depth perception is poor, the green folder appeared to be at
the exact same depth as the yellow cart when it was clipped
to the ramp. The fact that it was actually a thin folder rather
than being a box placed across the ramp is irrelevant since
Nico has no understanding of three-dimensional objects.
The trials were run in a dark room with a light shining di-
rectly onto the ramp. No other brightly colored objects in
the room received enough light to distract Nico.

Because Nico’s habituation to objects is free of the myr-
iad arbitrary factors that may affect infants, a simpler crite-
rion was used for ending the habituation trials. Instead of
ending when Nico concluded three consecutive trials in at
most half the time of the first three trials, the trials simply
ended when Nico concluded a single trial in half the time of
the first trial. After each trial, the red occluder was covered
so that there were no salient objects in Nico’s field of view,
and Nico was given time to lose habituation to the elements
in its memory. If a shortcut hadn’t been programmed in to
speed up this process, it would have required a delay of at
most 80 seconds between each trial, which does not seem
to be an unreasonable amount of time. Because Nico has
no understanding of the objects it sees beyond their associ-
ation with elements in Nico’s memory, the familiarization
trials were deemed unnecessary and were not used.

Finally, because there simply was not time to run the
experiment in two-second segments, the segments were
lengthened to three seconds, meaning that the entire scene
repeated at 12-second intervals rather than 8-second inter-
vals. This also meant that Nico had to lose interest in the
scene for three seconds before a habituation trial ended.
The criterion for ending a trial was further increased to four
seconds so that occasional mistakes by the experimenter
that might have caused one of the boring segments to last
for slightly longer than three seconds would not result in
a trial ending prematurely. These changes should not have
affected on the generalizability of the experiment, as Bail-
largeon did not claim there was anything significant about
using 8-second cycles.

6. Results

Nico’s state was saved after each trial so that if a compo-
nent of the system should crash, the trials could be contin-
ued from the same point with the same habituation values
used for each element. The data that will be reported was
obtained from a single series of trials. However, because
there is no random factor in Nico’s system, there is no rea-
son to suspect there would be any variation in multiple runs
of the experiment. On occasions when trials were repeated,
comparable results were achieved, with any variation result-

Figure 4. Time required to habituate in the
habituation and test trials

ing from differences in the way the scene was presented by
the experimenter. In the initial trial run, Nico met the cri-
terion for losing interest in the scene after 61 seconds. On
the sixth trial, Nico lost interest after 25 seconds, meeting
the criterion for ending the habituation trials. These results
are similar to those achieved by Baillargeon, who found that
infants on average showed a 50% decrease in trial times in
three consecutive trials after the eighth trial.

After the sixth trial, Nico’s state was saved. The saved
state was tested on the ”possible” and ”impossible” test tri-
als. On the ”possible” test trial, in which the green folder
was placed far behind the red occluder, the green folder
failed to interfere with Nico’s performance because its as-
sociated element was only activated while the red occluder
was up. This trial took 24 seconds, about the same as the
sixth habituation trial. On the ”impossible” trial, in which
the green folder was located directly behind the red oc-
cluder, the green folder’s associated element was activated
immediately before and immediately after the yellow cart
moved behind the red occluder. This activation did not in-
terfere significantly with the habituation to the yellow cart
simply because Nico had already been exposed to the cart
on six previous trials, and so it took Nico very little time to
habituate to the cart. However, the activation did prevent
Nico from losing interest in the scene when it otherwise
would have because the activation of the green folder perse-
vered for several timesteps after Nico had fully habituated to
the yellow cart. As a result, the ”impossible” trial lasted 33
seconds, 9 seconds longer than the ”possible” trial. This dif-
ference was similar to the difference that Baillargeon found
between the possible and impossible trials.

7. Discussion

The result from the ”impossible” test trial is particularly
interesting because while the increase in total time for the
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trial was expected, the reason for the increase was unex-
pected. The prediction was that the ”impossible” trial would
take longer because Nico would habituate to the yellow cart
more slowly, whereas what actually happened was that the
trial took longer because Niko took an interest in the imag-
ined appearance of the green element. This result demon-
strates one of the great advantages of robot studies: no mat-
ter how well thought-out a model may be, it is impossible
to say for certain how the model will work until the model
is tested in the real world. There are simply too many fac-
tors to consider all of them in theory or test all of them in
simulation. With a robot, a scientist can test a theory in the
real world while at the same time being able to look into the
robot’s head and see exactly how its cognitive operations
are interacting with the feedback from the world.

Unfortunately, the results achieved in this experiment are
not perfect. While they do match those predicted by the
cognitive model, they do not entirely match the results re-
ported by Baillargeon. Although Baillargeon does not re-
port exactly how long the habituation trials took on aver-
age, she does say that trials were automatically ended if
they took more than 60 seconds, implying that the first ha-
bituation trial lasted slightly under a minute, while the last
habituation trial lasted well under 30 seconds. However,
she reports that the ”possible” and ”impossible” test trials
took about 48 seconds and 61 seconds, respectively. These
results seem to suggest that even in the ”possible” trial, the
mere presence of the green block in the scene caused the
infants to find the scene as a whole more interesting, result-
ing in a longer looking time. If this is true, then infants are
habituating to the entire scene, rather than to individual ob-
jects within the scene, meaning the theory proposed in this
paper is incorrect.

However, there are alternative explanations. Baillargeon
did not attempt to standardize the delays of time between
trials. It is possible that the delays before or after the famil-
iarization trials were longer, giving the infants more time to
forget the objects before viewing the test trials. It is even
possible that the infants lost habituation to the elements as-
sociated with the objects during the familiarization events
themselves, perhaps because the infants were used to seeing
the yellow cart moving rather than stationary. A more accu-
rate reenactment of Baillargeon’s experiment, perhaps using
her own apparatus, might help to clear up this quandary.

One could easily argue that the findings from this exper-
iment are not generalizable to most looking time studies.
The memorymodule in its current form uses only a small
number of features. Even one of these features, depth, is
not entirely dependable, meaning thatmemoryhad to be
modified to throw out noisy depth values, values that in an-
other experiment might actually be valid. It seems as though
the memorymodule has been designed specifically for the
purpose of replicating Baillargeon’s results. However, it is

important to remember that Nico is still in the process of
being developed. As new modules that extract new features
are built for Nico, Nico will be able to more closely approx-
imate the suggested model of infant cognition. That model
was not merely designed to match Baillargeon’s results. It
was also meant to be applicable to other looking time stud-
ies. As individual studies are tested out using Nico, the
model can change to accommodate those studies. Eventu-
ally, the model may have to be thrown out entirely. After all,
it is designed to be a possible model, not a correct model.
As long as it or some other model that can be tested with a
robot remains a possibility, experimenters who use looking
times to study infants will have to concede that their inter-
pretations of cognitive abilities may be a little too generous.
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Abstract

Color perception is a scathing expositor of the very different points of view that exist about perception.
Besides the philosophical debate about phenomenal experience, colors raise fundamental questions about
the contribution of innate and acquired knowledge at the perceptual level, and about the respective weight of
neuronal and environmental constraints in learning. Colors provide a specially incisive testbed because they
show, in addition to these difficult questions, that the identification of the object of perception is not always
a simple matter: psychophysical experiments indeed support the idea that color perception is concerned
with the reflecting properties of surfaces[1], rather than with light per se as it is often assumed.

The case of color perception recalls an obvious point: before addressing the way neuronal adaptation
takes place in living organisms (be it at the phylogenetical or ontogenetical scale), it is mandatory to ques-
tion what they adapt to. This is not a simple question because the nervous system can rely to such an extent
on indirect cues (spectral composition of light) to estimate the object of perception (surface reflectance),
that the presentation of these cues elicits a sensation without the presence of the actual object of perception.
It is thus difficult to distinguish, practically and conceptually, what is cue and what is object of perception.
Further, to make things even more complicated, it is problematic to satisfy oneself with an understanding
of the physical object of perception without taking into account the under-determinacy of the sensorimotor
system. For instance, it is obvious that reflecting properties of surfaces concerned with lights outside of
the visible spectrum are irrelevant for color perception. But just as important is the fact that there are
much less obvious aspects within the so-called visible spectrum that are irrelevant as a result of the few
photopigments that biological organisms possess.

We will show how to interpret the physical notion of reflectance in a biological way, so that it involves
only those aspects of the light/surface interaction that are relevant with respect to a given set of molecular
photopigments. From this it will become apparent that surfaces exhibit categorical differences in the way
they modify those aspects of light’s spectral composition that impact the photopigments of that set. With
the three photopigment kinds usually assumed for the human visual system, this biological interpretation
predicts eight special colors of three different kinds, corresponding to white/black, red/green/blue and yel-
low/purple/cyan. These differences will finally be shown to correspond to differences in the sensorimotor
contingency[2] that the organism engages in when visually exploring colored surfaces.
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Abstract

Binding is one of the most fundamental cognitive func-
tions, how to find the correspondence of sensations between
different modalities such as vision and touch. Without a pri-
ori knowledge on this correspondence, binding is regarded
to be a formidable issue for a robot since it often per-
ceives multiple physical phenomena in its different modal
sensors, therefore it should correctly match the foci of at-
tention in different modalities that may have multiple cor-
respondences each other. Learning the multimodal repre-
sentation of the body is supposed to be the first step toward
binding since the morphological constraints in self-body-
observation would make the binding problem tractable. The
multimodal sensations are expected to be constrained in
perceiving own body so as to configurate the unique parts
in the multiple correspondence reflecting its morphology. In
this paper, we propose a method to match the foci of atten-
tion in vision and touch through the unique association by
cross-anchoring different modalities. Simple experiments
show the validity of the proposed method, and future issues
are discussed.

1 Introduction

Binding is one of the most fundamental cognitive func-
tions, how to find the correspondence of sensations between
different modalities such as vision and touch, both of which
are major sources of perception not only for the external
world but also for the agent’s body itself. The latter is
closely related to the body representation which is often
given by the designer and fixed but has much influence on
the adaptability to the changes in the environment and the
robot body itself. Assuming that the designer does not give
any explicit knowledge on the body representation, a robot

should construct its body representation only from its unin-
terpreted multimodal sensory data. In this process,binding
has a significant role.

Recently, researchers in other fields focus on the binding
problem, which concerns the capability to integrate infor-
mation of different attributes [1]. Although there are already
some models of binding, for example based on attention [2],
firing in synchrony [3, 4], and so on, it has not been still
clear how to bind different sensor modalities since they fo-
cused on the binding problem between visual attributes. To
propose the model for the cross-modal binding mechanism
of humans based on a constructivist approach, we should
start with an assumption that the designer does not give any
a priori knowledge on what the robot’s sensors receive, but
the robot can discriminate the different sensor modalities
such as vision and touch. Generally, receptive fields for
touch and vision are simultaneously stimulated, but often
respond to different physical phenomena since the foci of
attention in these modalities are often different. In other
words, the robot does not always watch its touching region.
Therefore, to bind different modalities, the robot should
correctly match the foci of attention in different modalities
that may have multiple correspondences each other.

We suppose that learning the multimodal representation
of body should be the first step toward binding since the
morphological constraints in self-body-observation would
make the binding problem tractable. The multimodal sensa-
tions are expected to be constrained in perceiving own body
so as to configurate the unique parts in the multiple corre-
spondence reflecting its morphology. Therefore, building a
robot that can acquire the representation from multimodal
sensory data is an interesting issue from a viewpoint of a
constructivist approach towards both establishing the design
principle for an intelligent robot and understanding the pro-
cess how humans acquire their body representation [7]. In
this study, as an example of the binding problem, we focus
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how it can learn to watch its body part when it detects the
collision on it. The previous work on the issue of acquir-
ing body representation escaped from this kind of problem
by assuming that it can observe only matched sensations in
different modalities (ex. [5, 6]).

Yoshikawa et al. have proposed the method to learn
the multimodal representation of the body surface through
double-touching, that is touching its body with its own body
part [8]. It is based on the fact that double-touching co-
occurs withself-occlusion, that is the occlusion caused by
covering its body with its own body part in its view. Al-
though they did not take multiple self-occlusions caused by
the physical volume of the body into account, which makes
the binding problem remain formidable, it seems still rea-
sonable to utilize the fact that double-touching co-occurs
with self-occlusions. In this paper, we presents a method
to match the foci of attention to its own body in vision and
touch by virtue of the morphological constraint in the re-
lationship between double-touching and self-occlusion. In
the proposed method, the mismatched responses in these
modalities can be discarded through the process ofunique
associationwhere corresponding pairs of subsets in differ-
ent attributes are exclusively connected with each other by
what we callcross-anchoring.

In the rest of the paper, first what kind of problem is to
be solved forbinding in different modalities is explained.
Then, a possible developmental course towards binding and
a basic idea utilizing the morphological constraint of the
human-like robot’s body to perform binding are argued. Af-
ter introducing an anchoring Hebbian learning rule to per-
form unique association, we show preliminary computer
simulations of the robot which has 1-DoF or 2-DoFs arm
and a camera head to test the proposed learning rule works.
Finally, discussion with future issues is given.

2 The binding problem in different modali-
ties

In order to propose the model for the binding mechanism
of humans based on a constructivist approach, we should
start with an assumption that the designer does not give any
a priori knowledge on the robot body representation, but a
robot can discriminate the different sensor modalities such
as vision and touch. Therefore, the problem for the robot is
how to associate these different sensations to build its body
representation needed to accomplish various tasks such as
collision avoidance and object manipulation. In this study,
as an example of the binding problem, we focus how it can
learn to watch its body part in which it detects the collision.
So what is the problem?

There is a series of studies on modeling the brain mech-
anism of binding different visual attributes that are pro-
cessed in segregated areas, such as form, shape and color

[3, 4]. They built a system capable of binding these at-
tributes through the dynamic process called reentry with
topographic connections between the segregated groups of
neurons and made several suggestions to understand the
mechanism of binding in vision. However, since the to-
pographical relationship between different modal sensors
depends how they are embedded in the body, we need to
release the assumption ofa priori topographic connection
in order to cope with the binding problem between different
modalities.

This kind of binding problem has not been focused so
far although it is an important issue for acquiring the multi-
modal representation of the body. In some previous studies
on own body representation with both tactile and visual sen-
sors, the designer provided the agent with the competence
to detect the position of the touch sensors in its view [6] or
assumed that there is only one object which can collide with
its body [5]. In other words, the binding problem is solved
by the designer instead of the robot itself by assuming that
it can observe only matched sensations in different modal-
ities. However, there are often multiple visual responses to
both the body and nonbody that co-occur with the tactile
one on the body since the agent watches multiple objects
at a moment. Therefore, the robot must determine which
visual ones should be bound.

On the issue how to find the matched sensations in these
modalities, Yoshikawa et al. have proposed the cross-modal
map among vision, touch, and proprioception to learn the
representation of the body surface [8]. It is based on the idea
that the tactile sensors which collide with each other also
coincide with each other in its vision. In other words, touch-
ing its body with its own body part (i.e.,double-touching)
always co-occurs the occlusion caused by covering its body
with its own body part in its view (i.e.,self-occlusion). They
assumed that there is only one self-occlusion at a moment.
However, there can be multiple self-occlusions since the
body occupy a certain volume in the physical space. For
example, when the agent touches its body trunk with its
hand, not only the hand but also its arm cover its body trunk
from its sight, therefore, multiple self-occlusions occur.
Therefore, there still remains the binding problem where
it must determine which self-occlusion should be bound to
the double-touching and vice versa.

3 A basic idea

As suggested from the previous work [8], it seems rea-
sonable to utilize the fact that double-touching co-occurs
with self-occlusion although they did not take the physical
volume of the body into account, which makes the bind-
ing problem remain formidable. We will explain a basic
idea how the robot can correctly match double-touching and
self-occlusion based on this fact. In the following, first we
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introduce the assumptions what kinds of cognitive compe-
tences it should possess and argue a possible developmen-
tal course to acquire them. Then, we show a basic idea of
cross-anchoring to solve the binding problem by virtue of
the morphological constraint. In the following argument,
we suppose that it has a human-like configuration in which
it has a trunk with a camera and an end-effector connected
through serial links, that is, the robot consists of its trunk, a
camera head and an arm.

3.1 A possible developmental course of prerequi-
site competences for binding

We assume that the robot has acquired the competences
to detect double-touching and self-occlusion. However, it
is worthy to argue how such assumptions are justified from
a viewpoint of robotics and analogy to the human develop-
ment. We propose a possible developmental course of the
prerequisite competences, which consists of three stages:
1) learning to detect double-touching, 2) finding the major
components of visual changes caused by its own camera
head motions, and 3) learning to detect self-occlusion.

assumed competences

detecting double-touching

detecting self-occlusion

realizing

self-watching
proprio-

ceptive

sensors

tactile

sensors

visual

sensors

memorizing

views of body

finding major

components of 

visual changes

caused by camera 

head motion

modalities

Figure 1. The modalities of the robot and the
competences supposed to possess

Learning to detect double-touching At the first stage,
a robot learns to detect double-touching through the itera-
tions of double-touching. According to the assumption in
the previous work [9] that the sensation of its body is in-
variant with its posture (see Fig. 2), it can judge whether the
tactile sensation is caused by double-touching after learning
the tactile-proprioceptive map that represents how invariant
with its postures the tactile sensations are. Therefore, it can
detect double-touching when it occurs after this stage.

Since it is observed that a human fetus touches its body
with its hands in the womb [10] and it is reported that a
human neonate can distinguish double-touching from being
touched by the other in the study on rooting reflex [11], it
seems biological plausible to assume that an infant has al-
ready possessed the competence to detect double-touching
before the following stages with the visual sensation.

(I)

(II)

(a) a posture with the in-
variant touch

(I)

(II)

(b) a posture with the vari-
ant touch

Figure 2. Examples of the invariance (a) and
variance (b) of the tactile sensation with cer-
tain postures in the different environment (I)
and (II)

Finding major components of visual changes caused by
camera head motion This is prerequisite for detecting
self-occlusion. When the robot moves, an optical flow is
induced in its vision. It is considered that the motion of the
camera mainly contribute to this optical flow due to the fol-
lowing two facts: (1) the motion of the camera usually in-
duces larger optical flow components in wider region than
one of the arm and (2) what a human-like robot observes is
not usually its arm but the environment due to its configura-
tion. In other words, the motion of the camera head would
often predict the changes in the optic flow of a robot with
human-like configuration.

Therefore, the robot can find that the major components
of visual changes by finding the principle component of the
motion to predict the optic flow as performed in the previous
work [12]. Human infants can not hold their heads up in
their first several month [13], and therefore, usually lie on
the bed. It can be conjectured that this kind of immaturities
constraints infant’s motion so that the neck motion is easily
found since it usually watches external world rather than its
arm in such a situation.

Learning to detect self-occlusion According to the same
idea used in the case of double-touching, a robot learns to
detect the occurrence of self-watching, that is watching its
own body, by judging whether the visual sensations is in-
variant with its posture. If the robot learned the invariance
with respect to the posture of the camera head, it is expected
that it can detect the occurrence of self-watching of its trunk
since the visual sensations of the trunk is invariant with the
posture of the camera head. Once it learned to detect the
occurrence of self-watching and memorized the invariant
visual sensations with each posture, it can detect the occur-
rence of self-occlusion by comparing the current sensations
and the memorized one.
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3.2 A learning rule for the binding problem

Since the robot does not havea priori knowledge how to
bind, we suppose that it keeps changing the posture both of
its arm and its camera head at random to explore for bind-
ing. It perceives its posture and the view in the center region
of its camera. Fig. 3 illustrates an example of self-watching
view of a human-like robot (imagine that the robot watches
its body in sitting). Fig. 4 illustrates the simplified situations
of the robot’s exploration for binding in Fig. 3, where DoFs
for the arm is simplified to one to slide its end-effector while
DoFs for the camera head is simplified to one to displace the
camera. Note that the notations in Fig. 4 correspond to those
in Fig. 3.

Concerning a point on the trunk, in this caseB, there are
following five types of experience of the robot (See Fig. 4).
In each experience, the robot detects the posture of its arm,
namely,ΘB in Fig. 4(a)-(c),ΘC in Fig. 4(d), andΘA in
Fig. 4(e). In the case where the robot double-touches with
B and tries to self-watchB (Fig. 4(a)), it detects the occur-
rence of self-occlusion. In the other cases where the robot
double-touchesB, it sometimes detects self-occlusion (Fig.
4(b)) but sometimes does not (Fig. 4(c)) depending on the
posture of its camera head. In the other cases where it self-
watchesB, it sometimes detects self-occlusion (Fig. 4(d))
but sometimes does not (Fig. 4(e)) depending on the posture
of its arm. The robot can not distinguish the self-occlusion
by its end-effector (Fig. 4(a)) from self-occlusions by the
link (Fig. 4(b) and 4(d)). Note that these kinds of experi-
ences uniformly occur for each part on the trunk since the
robot explores at random.

C

D
D'

A
ΘC

ΘA ΘB

ΘD

B

Figure 3. An example of self-watching view
of the robot in double-touching: three ellip-
soids with solid and broken lines are links
in the postures ( ΘA, ΘB , and ΘC) by which it
touches with the parts labeled A, B, and C,
respectively. The rest ellipsoid with the sym-
bols D and D′ is one in the posture ( ΘD) by
which it touches the part labeled D with oc-
clusion at D and D′.

ΘB

BA C

(a)ΘB and
B

ΘB

BA C

(b)ΘB and
A

ΘB

BA C

(c) ΘB and
C

ΘC

BA C

(d)ΘC and
B

ΘA

BA C

(e)ΘA and
B

Figure 4. Five simplified situations in the
robot exploration: A top rectangle indicates
the robot’s trunk while a rectangle with a cir-
cle in the middle indicates the robot’s arm
that has a sliding DoF in the horizontal axis.
The bottom object shows the posture of the
robot’s camera head while the arrow indicates
its focus of attention. Notations correspond
to those in Fig. 3.

A problem in the statistical approach As mentioned
in section 2, the fact that the body occupies a certain
volume in the physical space remains binding problem
formidable. For example, a double-touching posture causes
self-occlusions at multiple parts (see Figs. 4 (a) and (b))
while a self-occlusion at a part is caused by several double-
touching postures (see figs. 4 (a) and (d)).

In the explorations, the robot sometimes experiences the
matched responses in the different modalities which are
caused by focusing on the same region, in this case detect-
ing the self-occlusion at the double-touching point (see Fig.
4 (a)). However, such experiences of the matched response
are not significantly frequent compared to mismatched re-
sponses (see Fig. 4 (b) or (d)) since it explores at random
instead of utilizinga priori knowledge. In other words, the
correctly matched responses are not significantly major in
the obtained data. Therefore, it is difficult to associate them
by considering all obtained data through the exploration.
Then, we need a mechanism to narrow down the influence
of the mismatched data on learning while augmenting the
influence of the matched one.
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Cross-anchoring association Due to the morphological
constraints on the human-like configuration, we can utilize
the following two morphological constraints: 1) how many
double-touching postures occlude a certain part on the trunk
depends on the location of the part to be occluded, and 2)
how many parts the robot occlude by a double-touching
posture depends on the location of the contact part.

These facts indicate that there existcue nodes which
have fewer candidates for matched response in other modal-
ities to be bound. In this case, the self-occlusion atD can be
the cue of double-touching inΘD while a double-touching
in ΘA can be the cue of the occlusion atA. Note that the
matched response of a cue node is also experienced with
mismatched response. For example, the robot sometimes
detects a self-occlusion also atD′ during the cue double-
touching inΘD while it sometimes detects a double touch-
ing in ΘB during detecting the cue self-occlusion atA.
Since the desired correspondence between touch and vision
can be found by unique association in this case, we can uti-
lize such cue nodes as anchors of the unique association.
Therefore, we introduce a learning rule with an anchoring
mechanism which can adapt the learning rate according how
much the responses simultaneously observed are regarded
as unique to each other.

4 Cross-anchoring Hebbian learning rule

In this section, we introduce an cross-anchoring Heb-
bian learning rule as an implementation of the learning rule
with the anchoring mechanism. The architecture consists
of two layers called the double-touching layer and the self-
occlusion one (see Fig. 5). In the double-touching layer,
there areNt nodes each of which is responsible for a set of
certain posture of the armΘi, (i = 1, · · · , Nt) which is as-
sumed to be quantized in advance. When the posture of the
arm isθ ∈ <m, the activation of thei-th node is calculated
by

tai(θ) =
{

1 θ ∈ Θi

0 otherwise
. (1)

On the other hands, in the self-occlusion layer, there areNo

nodes each of which is responsible for the self-occlusion
in a set of certain posture of the camera headΦj , (j =
1, · · · , No) which is assumed to be quantized in advance.
When the posture of the camera head isφ ∈ <n, the activa-
tion of thej-th node is calculated by

oaj(φ) =
{

1 φ ∈ Φj , O
0 otherwise,

(2)

whereO is the phenomenon of detecting occlusion.

ao j

at i

dt ij
do ij

double-touching layer

self-occlusion layer

double-toching

detecter

self-occlusion

detecter

Figure 5. The architecture

Let a connection weight between thei-th neuron in
the double-touching layer and thej-th neuron in the self-
occlusion layer bewij . By the cross-anchoring Hebbian
learning rule,wi∗j∗ is updated as following:

∆wi∗j∗ = η(tdi∗j∗
tai∗ · odi∗j∗

oaj∗ − wi∗j∗), (3)

wherei∗ andj∗ are the most activated units in the double-
touching and the self-occlusion layer,η is a constant learn-
ing rate. The dynamic anchoring rates,tdij andodij , deter-
mine the degrees of anchoring on thej-th node in the self-
occlusion layer from thei-th nodes in the double-touching
layer and on thei-th node in the double-touching layer from
thej-th nodes in the self-occlusion layer, respectively. They
are calculated by

tdij = exp
(
−

∑
k,k 6=j wik

tσ2

)
,

odij = exp
(
−

∑
k,k 6=i wkj

oσ2

)
, (4)

wheretσ andoσ are parameters that determine the degree of
anchoring. Meanwhile, the remaining connection weights
are decreased because they lost the competition;

wij∗(t + 1) = wij∗(t)− ηt(1− tdij∗)∆wi∗j∗ ,
wi∗j(t + 1) = wi∗j(t)− ηo(1− odi∗j)∆wi∗j∗ , (5)

whereηt andηo are constant coefficients of the competition.

In such an anchoring process, more unique combina-
tions of double-touching and self-occluded are bound ear-
lier. Meanwhile, some of the rest combinations become
more unique since the other responses decrease the number
of candidates to be bound by losing the responses that are
already bound to others. Therefore, the process of binding
proceeds step by step. This process is expected to converge
since it is considered that there exist anchoring sensations in
each modality due to the constraint in its human-like con-
figuration.
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5 Simulation results

As preliminary experiments, we tested the cross-
anchoring Hebbian learning rule works so that the robot
solves the binding problem by using the computer simula-
tion. First, we examined a robot with a single DoF to show
how learning proceeds. Then, we examined a robot with
more DoFs.

5.1 Simulation with 1-D robot

In the first experiment, we simulated a robot with a 1-
DoF sliding arm, a 1-DoF rotating camera head. Dur-
ing the exploration for binding, it moves its arm and cam-
era head at random and detects self-occlusion and double-
touching. Fig. 6 shows an example of self-watching view
of the simulated robot in double-touching. For the reader’s
understanding, we quantized the posture space both of the
arm and the camera head so that the nodes in both layers
were matched with each other in one-to-one manner. The
robot was trained for binding in 4,000 double-touching tri-
als with the following network parameters:Nt = No = 10,
η = 0.1, ηt = ηo = 0.5, andtσ = oσ = 1.0.

Figs. 7 (a):(I)∼ (V) show the process of learning con-
nection between double-touching layer and self-occlusion
one. It can be seen that it starts with multiple connec-
tions and finally succeeded in binding since it obtained the
correct one-to-one mapping at the 4,000-th step. Further-
more, we can see that the connections grew up both from
the right and left ends to the center. It seems to show the
process that cross-anchoring between a pair of nodes seems
to make neighbor pairs of nodes more unique to each other
and therefore guides cross-anchoring between the neighbor
pairs. Such propagation of cross-anchoring starts from the
pairs of nodes, either of which is a cue node. Consistently
with the analysis of the learning procedure, the left end node
in the bottom layer and the right end node in the top layer
were cue nodes due to the morphological constraints. In
this case, since the camera and the end-effector were con-
nected through a serial link, how to double-touch and how
to self-occlude were constrained. For example, the double-
touching at the left end of the trunk could guide the self-
occlusion only at the same part while the self-occlusion at
the right end could be caused by the double-touching only
at the same part.

Figs. 7 (b):(I)∼ (IV) show the process of the learning
connections in the case that the posture spaces of the camera
head and the arm were quantized in different resolutions. In
this case, the resolution of the double-touching was twice in
the case of self-occlusion. The parameters wereNt = 12,
No = 6, η = 0.1, ηt = 0.5, ηo = 0.25, andtσ = oσ = 1.0.
Since it finally obtains the desired one-to-many mapping,
we may conclude that it succeeds in binding despite the dif-

CA B

focus of the attention

the region where

self-touching is detecedsliding arm

trunk

Figure 6. An example of self-watching view of
the simulated 1-D robot in double-touching:
The biggest gray box is its trunk while the
other gray box is its sliding arm. Although
each part labeled by a symbol is correspond-
ing to Fig. 3, it is supposed that its trunk is a
plane and the DoFs for the motion of its arm
is one for the simplicity. The small box on the
horizontal line indicates the focus of the at-
tention in vision. The black box indicates the
region where double-touching is detected.

ferent resolutions.
After these processes, when the robot double-touches its

body trunk, it can use the acquired mapping to know how
to shift the focus of attention in the vision to the double-
touching part by propagating the activation of the nodes re-
sponsible for the double-touching through the learned con-
nection. Shortly, it can watch its touching part on its body.

5.2 Simulation of 2-D robot

In the second experiment, we simulated a more realistic
robot with a 2-DoF rotating arm, a 2-DoF rotating camera
head. Taking a posture of the camera head was emulated
by changing the focus of the attention in vision. Fig. 8
shows an example of self-watching view of the simulated
robot in double-touching. For the reader’s understanding,
we quantized the posture space both of the arm and the cam-
era head so that the nodes in both layers were matched with
each other in one-to-one manner. We let the robot learn the
connections 100 times in each of 100,000 double-touching
trials with the following network parameters:Nt = 25,
No = 25, η = 0.1, ηt = ηo = 2.0, andtσ = oσ = 3.0.

Fig. 9 shows the process of learning connections be-
tween double-touching layer (top) and self-occlusion one
(bottom). It can be seen that it started with multiple con-
nections and finally succeeded in binding since it obtained
the correct one-to-one mapping at the 100,000-th step. Fig.
10 shows the averaged time course of the matching errors of
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(I) 100 [step] (I) 100 [step]

(II) 400 [step] (II) 400 [step]

(III) 1000 [step] (III) 1000 [step]

(IV) 2000 [step] (IV) 2000 [step]

(V) 4000 [step] (V) 6000 [step]

(a) one-to-one (b) one-to-many

Figure 7. The process of learning connection
between the layers ((I) ∼ (V)) with the same
resolution (a) and with the different one (b).

C

B

D

D'

A

focusing

region

the region where

self-touching is detected

Figure 8. An example of self-watching view
of the simulated robot in double-touching:
Three ellipsoids with broken curves and one
with the symbols D and D′ are the postures
of the robot arm by which it touches with its
trunk. Although each part labeled by a sym-
bol is corresponding to Fig. 3, the trunk is
supposed to be a plane for the simplicity. The
cross point of the vertical and the horizontal
chain lines indicates the focus of the atten-
tion in vision. The black box indicates the
region where double-touching is detected.

100 times in which the processes of exploration are differ-
ent. Note that only the experimenter knows the desired con-
nection and can determine the matching error. We can see
that learning for binding converged to almost completely
correct one-to-one mapping with small variance. There-
fore, we may conclude that the robot can robustly find the
matched response in different modalities by the anchoring
Hebbian learning rule in a more realistic embodiment.

6 Conclusion

In this paper, we address the issue how to solve the bind-
ing problem in different modalities for body representa-
tion. We propose a method called cross-anchoring Hebbian
learning rule to perform binding by virtue of the morpho-
logical constraints of its human-like configuration in per-
ceiving the self. In the preliminary computer simulations,
we showed that the robot can bind its tactile and visual
sensations through the exploration by the iterations of self-
watching and double-touching.

There are parameters in the proposed learning rule that
determine how much the degree of anchoring is. Since it
should be well selected to obtain the unique association, we
should put a mechanism to adapt it when the system fail to
bind. Topographical constraint caused by the the receptive
fields with continuity that reflects the physical continuity
could be a criteria for adaptation. Furthermore, the robot
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(I) 2500 [step] (II) 12500 [step]

(III) 25000 [step] (IV) 100000 [step]

Figure 9. The process of learning connection
between the layers with the same resolution
in the 2-D robot simulation

needs the competence of binding in the case where it learns
multimodal representation of the external objects. Although
we concentrated on the binding problem concerning the
self body in this paper, extending the proposed method for
the binding problem involving tactile sensations of being
touched by others is one of our future work.
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Abstract 

An open question in neuroscience is how animals com-
bine the various attributes of stimuli in their environments 
into coherent perceptual categories and how they dis-
criminate among objects in a scene. Testing a theory of 
visual binding would require  the simultaneous study of 
brain function at many levels of organization. Present day 
electrophysiology only allows the recording of at most 
hundreds of neurons while an animal is performing a 
behavioral task. Because of this limitation and the sheer 
complexity of the nervous system, computational modeling 
has become essential for investigating theories of brain 
function. Accordingly, our group has constructed a series 
of brain-based devices (BBDs); i.e. physical devices with 
simulated nervous systems that guide behavior, to serve 
as heuristic bases for testing theories of brain function. 
Unlike animal models, BBDs permit analysis of activity at 
all levels of its nervous system as the device behaves in its 
real environment. We present a possible solution to the 
binding problem based on synchronous activity across 
neuronal groups brought about by reentrant connectivity. 
We first show the sufficiency of this theory in a laboratory 
setting and then demonstrate that these principles can be 
transferred to a more real-world application: robots 
capable of playing a game of soccer with humans. 

1. Introduction 

Animals effortlessly combine the various attributes of 
visual stimuli to form coherent perceptual categories and 
to discriminate among multiple objects in a scene. Yet the 
visual brain is functionally segregated: Separate cortical 
regions are specialized to respond to features such as 
shape, color, and object motion, and no single region has 
superordinate control. This poses the so-called binding 
problem [1]: How do these functionally segregated re-
gions coordinate their activities to link various features of 
individual objects while distinguishing among different 
objects? Most proposed mechanisms for solving the bind-
ing problem fall into one of two general classes: 1) bind-
ing through the influence of attentional processes, execu-
tive mechanisms, or superordinate maps [2, 3]. 2) binding 

through the selective synchronization of dynamically 
formed neuronal groups [4-6]. Advocates of neural syn-
chrony suggest that binding is an automatic, dynamic, and 
pre-attentive process arising from low-level neural dy-
namics. For example, the linkage of neuronal groups by 
reentry, the recursive exchange of signals across mu ltiple, 
parallel and reciprocal connections [7], can lead to selec-
tive synchronization [8-11]. Synchronization of activity 
among neuronal groups can form coherent circuits corre-
sponding to perceptual categories [8]. A fundamental 
challenge for proponents of neural synchrony is to show 
how such emergent functional circuits contribute to an 
organism’s adaptive behavior, especially in situations that 
require preferential behavior towards one object among 
many in a scene. 

Elucidation of brain mechanisms underlying behavior, 
such as visual binding followed by discriminatory action, 
requires simultaneous measurements across multiple 
levels. The heuristic value of synthetic modeling using 
brain-based devices (BBDs), which are described here, is 
supported by the fact that such types of measurements are 
difficult to obtain and compare in living animals. Given 
the successful construction of BBDs [12-14], we observe 
their overall behavior while simu ltaneously recording the 
state of all components of their simulated nervous sys-
tems. Since our purpose is to test theories of real nervous 
systems in order to arrive at a better understanding of 
brain function, we base the BBD’s organization on real 
neuroanatomy and physiology. 

We argue that a BBD should be constrained by the fol-
lowing design principles: 1) The device needs to engage 
in a behavioral task. 2) The device’s behavior must be 
controlled by a simulated nervous system having a design 
that reflects the brain’s architecture and dynamics. 3) The 
device needs to be situated in the real-world [15, 16]. 4) 
The behavior of the device and the activity of its simu-
lated nervous system must allow comparisons with em-
pirical data. Because of these constraints, BBD simula-
tions tend to require large-scale networks of neuronal 
elements that reflect vertebrate brain architecture and 
dynamics, high performance computing to run the net-
work in real-time, and the engineering of specialized 
physical devices to embody the network. 
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BBDs are not programmed by instructions like com-
puters, but instead, like biological systems, they operate 
according to selectional principles that allow them to 
adapt to the environment [7]. Their design, which pos-
sesses neuroanatomical structure and large-scale neural 
dynamics, differs fundamentally from that of robots. Ro-
botic approaches using classical artificial intelligence are 
based on data representation, rule-driven algorithms, and 
the manipulation of formal symbol systems.  

BBDs must have a morphology or body plan that al-
lows for active exploration in a real environment with a 
brain simulation controlling the BBD’s behavior. Changes 
in the nervous system that result in lasting modifications 
of the device’s behavior are realized through a neuro-
modulatory value system that signals the salience of envi-
ronmental cues triggering broad changes to the BBD’s 
nervous system. These features yield a system that gener-
alizes signals from the environment into perceptual cate-
gories and adapts its behavior so that it becomes increas-
ingly successful in coping with its environment. The 
BBDs have been designated the Darwin series of auto-
mata. Over the last 12 years, various Darwin automata 
have been shown to develop perceptual categorization, 
invariant visual object recognition, integration of scenes 
containing multiple visual shapes with overlapping fea-
tures, fusion of different sensory modalities, and learning 
in the form of operant conditioning [12-14, 17, 18]. 

In this paper we describe two recent BBDs that address 
the problem of visual binding, scene segmentation, and 
motor behavior. First, we describe Darwin VIII, a BBD 
that demonstrated visual binding through synchronous 
activity across cortical areas brought about by reentrant 
signalling. Second, we apply the principles of Darwin 
VIII to a novel platform, the Segway Robotic Mobility 
Platform (RMP), in a dynamic environment, namely a 
soccer game. 

2. Visual binding in a laboratory setting. 

Darwin VIII, a BBD incorporating an extensive visual 
cortical neural simulation, demonstrated the ability to 
parse a scene composed of ambiguous visual shapes into 
separate and coherent perceptual categories. It solved the 
so-called binding problem, that is, it linked responses in 
different brain areas and modalities to yield selective 
responses to percepts in the absence of any superordinate 
control from a master or executive brain area [1]. The 
behavior of Darwin VIII exploited interaction between 
neural areas, and revealed that reentrant activity (i.e. on-
going reciprocal excitatory activity brought about by 
connections between neuronal units in different neural 
areas) is sufficient for recognizing and distinguishing 
among multiple objects in a scene. 

Darwin VIII  was designed to demonstrate visual cate-
gorization and selective conditioning in a rich environ-

ment [18]. This BBD had a camera for vision, micro-
phones to pick up auditory cues from the environment, 
and infrared (IR) sensors to detect the boundaries of the 
environment.  

2.1. Experimental Setup 

Figure 1 shows Darwin VIII in its environment, which 
consists of an enclosed area with various shapes hung on 
two walls . Near the walls with visual shapes, infrared 
beams we re set up that control speakers (see Figure 1A). 
When Darwin VIII’s movement broke an IR beam, a tone 
was emitted. Darwin VIII reflexively oriented towards the 
sound source and gradually came to associate the sound 
with the object it saw near the sound source. After condi-
tioning, the sound is no longer necessary; Darwin VIII 
approaches visual objects that have become associated 
with preferred sounds. 

 
Figure 1. Experimental setup for Darwin VIII. A. 
Darwin VIII views objects on two of the walls of 
an arena. The area Darwin VIII explores is con-
strained by a boundary of reflective construction 
paper. Detection of this boundary by infrared 
sensor triggers a reflexive turn. When Darwin VIII 
breaks the beam from the IR emitter to the IR 
sensor, a tone is emitted from the speaker. B. 
Photograph of the experimental environment. 

2.2. Simulated Nervous System  

Darwin VIII’s simulated nervous system contains areas 
corresponding to cortical and sub-cortical areas in the 
vertebrate nervous system (see Figure 2). Specifically, 
Darwin VIII’s brain includes simulated cortical areas of 
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the visual system that respond to shape and color 
(V1àV2àV4àIT), a motor system (C), an auditory 
system (Mic-leftàAleft, Mic-rightàAright), and a value 
system (S). Activity in S is analogous to that of ascending 
neuromodulatory systems in that it is triggered by salient 
events, influences large regions of the simulated nervous 
system, and persists for several cycles [19]. Due to its 
projection to the tracking area C, area S has a direct influ-
ence on behavior.  

Neuronal units in Darwin VIII roughly correspond to 
the activity of 100 real neurons over 100 ms. The neu-
ronal units have a firing phase parameter, which specifies 
the relative timing of this activity within each simulation 
cycle (for details, see [8, 18]). This mo deling feature 
provides temporal specificity without incurring the com-
putational costs associated with modeling spiking neurons 
in real time. Simulated synaptic connections follow 
known vertebrate neuroanatomical projections (arrows in 
Figure 2) and include extensive reentrant connectivity 
within and among neural areas. In Darwin VIII, reentrant 
connections among neuronal units encourage phase co-
herence and therefore lead to the emergence of neural 
synchrony. 

Synaptic strengths are subject to modification accord-
ing to a synaptic rule that depends on the phase and activi-
ties of the pre- and postsynaptic neuronal units. Plastic 
synaptic connections are either value-independent (see 
ITàIT in Figure 2) or value-dependent (see ITàS, ITàC 
in Figure 2). Both of these rules are based on a modified 
BCM learning rule [20] in which thresholds defining the 
regions of depression and potentiation are a function of 
the phase difference between the presynaptic and posts y-
naptic neuronal units  (for details, see [18]). Synapses 
between neuronal units with strongly correlated firing 
phases are potentiated and synapses between neuronal 
units with weakly correlated phases are depressed; the 
magnitude of change is determined as well by pre- and 
postsynaptic activities. This learning rule is similar to a 
spike-time dependent plasticity rule [21] applied to jit-
tered spike trains where the region of potentiation has a 
high peak and a thin tail, and the region of depression has 
a comparatively small peak and fat tail [22].     

Value-dependent synaptic plasticity differs from the 
value-independent rule in that an additional term, based 
on the activity and phase of the value system, modulates 
the synaptic strength changes. Synaptic connections ter-
minating on neuronal units that are in phase with the 
value system are potentiated, and connections terminating 
on units out of phase with the value system are depressed. 

2.3. Image Processing and Computation 

The CCD camera sent 320x240 pixel RGB video im-
ages, via an RF transmitter, to a frame grabber attached to 
one of the workstations running the neural simulation. 

The image was spatially averaged to an 80x60 pixel im-
age. Gabor filters were used to detect edges of different 
orientations (45, 90, 135, 180 degrees). The output of the 
Gabor function mapped directly onto the neuronal units of 
the corresponding V1 sub-area. Color filters (red positive 
center with a green negative surround, red negative center 
with a green positive surround) were applied to the image. 
The outputs of the color filters were mapped directly onto 
the neuronal units of V1-Red and V1-Green. V1 neuronal 
units projected retinotopically to neuronal units in V2 (see 
Figure 2). 

Computation in the Darwin VIII simulation was car-
ried out on a Beowulf cluster with 12 1.4 GHz Pentium 
IV processors using MPI. A simulation cycle, in which all 
the neuronal units and plastic synaptic connections were 
updated, took approximately 100 ms. 

 
Figure 2. Global schematic of the regional and 
functional neuroanatomy of Darwin VIII. In the 
version used in the present experiments, the 
simulated nervous system contained 28 neu-
ronal areas, 53,450 neuronal units, and approxi-
mately 1.7 million synaptic connections. The 
gray ellipses denote different neural areas. Ar-
rows between the areas denote projections from 
one area to another. Projections marked with an 
‘X’ are removed during lesion experiments. 
Tracking commands were issued to NOMAD’s 
wheels based on activity in area C. 

When the BBD triggers a speaker as it approaches a 
visual object, the tone emitted by the speaker activates its 
value system. At this time all of the value-dependent 
connections between neural areas (see value-dependent 

303



projections in Figure 2) are subject to value-dependent 
modification. Specifically, the changes dictated by the 
BCM synaptic change rule are further modulated by the 
average activity of the value system (area S in Figure 2).  

As a consequence of these anatomical and dynamical 
characteristics, Darwin VIII autonomously approaches 
and views multiple visual shapes containing overlapping 
features (e.g. red squares, red diamonds, green squares 
and green diamonds) and can be trained to prefer one of 
these shapes by associating that shape with a positive-
value tone (see Figure 1). It demo nstrates this preference 
by orienting toward the preferred object.  

2.4. Experimental Results  

When confronted by a pair of these shapes, Darwin 
VIII learns successfully to track towards the preferred 
object, designated the target, and to avoid the other ob-
jects, designated the distracters. At first, this orientation is 
in response to the tone, but after approximately 10-15 
minutes of viewing pairs of objects, the visual pattern 
alone is enough to elicit this preference. 

All subjects successfully track the four different targets 
over 80% of the time (Figure 3A). Successful perform-
ance on this task is not trivial. Targets and distracters 
appear in the visual field at many different scales and at 
many different positions as Darwin VIII explores its envi-
ronment. Moreover, because of shared properties, targets 
cannot be reliably distinguished from distracters on the 
basis of color or shape alone. Thus, the behavior of Dar-
win VIII demonstrates visual categorization and selective 
conditioning in a rich visual environment.  

To investigate the importance of the presence of reen-
trant connections in the model, certain interareal reentrant 
connections were lesioned at different stages of the ex-
perimental paradigm. In one case, previously trained 
subjects were retested after lesioning. In a second, reen-
trant connections were lesioned in both training and tes t-
ing stages . Lesions were applied to a subset of interareal 
excitatory reentrant connections (projections marked with 
an ‘X’ in Figure 2), which had the effect of transforming 
the simulated nervous system into a ‘feed-forward’ model 
of visual proces sing. To compensate for the reduction in 
activity due to these lesions, neuronal unit outputs in areas 
V2 and V4 were amplified. Figure 3B shows that subjects 
with intact reentrant connections performed significantly 
better than either lesioned group. The decrease in per-
formance observed in the absence of reentry indicates that 
reentrant connections are essential for behavior above 
chance in the discrimination task. 

These observations indicate that reentrant connectivity 
is necessary for the reliable discrimination of targets from 
visually similar distracters. In contrast to previous mo dels 
of target selection, which required external intervention or 
an artificial environment [23, 24], Darwin VIII autono-

mously solved the binding problem in a rich environment 
even in the face of self-movement that generated changes 
in the size and location of visual stimuli. 

 
Figure 3. Darwin VIII behavior following condi-
tioning. Three separate Darwin VIII subjects were 
conditioned to prefer one of 4 target shapes (‘rd’ 
= red diamond, ‘rs’ = red square, ‘gs’ = green 
square, ‘gd’ = green diamond). Activity in V2 
areas was used to assess the percentage of time 
for which NOMAD’s visual field was centered on 
a particular visual shape. Bars in both graphs 
represent the mean percentage tracking time 
with error bars denoting the standard deviation. 
A. Darwin VIII subjects with intact reentrant con-
nections tracked the targets (white bars) signifi-
cantly more than the distracters (gray bars) for 
each target shape, averaging over all ap-
proaches (asterisks denote p < 0.01 using a 
paired sample nonparametric sign test). B. Com-
parison of intact subjects with lesioned subjects. 
White bars indicate target tracking performance 
of subjects with reentrant connections intact, 
light gray bars indicate subjects with lesions 
only during testing, and black bars indicate sub-
jects with lesions during both training and test-
ing. Intact subjects tracked significantly better 
than both lesion groups (Asterisks denote p < 
0.01 using the Wilcoxon ranksum test). 

During the behavior of an intact Darwin VIII subject, 
we observed circuits comprising synchronously active 
neuronal groups distributed throughout different areas in 
the simulated nervous system. Multiple objects were dis-
tinguishable by the differences in phase between the cor-
responding active circuits. A snapshot of Darwin VIII’s 
neural responses is given in Figure 4, in which the device 
is approaching a red diamond target and a green diamond 
distracter towards the end of a training session. Each pixel 
in each neural area represents the activity (brightness) and 
phase (color) of a single neuronal unit. The figure shows 
two dynamic neural circuits differentiated by their distinct 
phases which were elicited respectively by the red dia-
mond and the green diamond. As shown in the figure, 
Darwin VIII had not yet reached the beam that triggers 
the speaker to emit a tone. The activity of area S was 
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nonetheless in phase with the activity in areas V2 and V4 
corresponding to the target, and is therefore predictive of 
the target’s  saliency or value. Area IT has two patterns of 
activity, indicated by the two different phase colors, 
which reflect two perceptual categories. The increased 
activity in area C on the side of the target is causing Dar-
win VIII to orient towards the target (i.e. the red dia-
mond). 

 
Figure 4. Snapshot of Darwin VIII’s neuronal 
unit activity after approximately 10 minutes of 
conditioning. Darwin VIII is approaching a red 
diamond target (left) and a green diamond dis-
tracter (right) towards the end of a training se s-
sion. Darwin VIII has not yet broken the beam 
that triggers the sound from the speakers lo-
cated on the left side of the floor. The panels 
next to Darwin VIII show the activity and phase 
of selected neural areas (top row; V2-red, V2-
green, V2-vertical, V2-diagonal, second row; V4-
red, V4-green, V4-vertical, V4-diagonal, third row 
(to the right of Darwin VIII); IT, fourth row (to the 
right of Darwin VIII); C and S). Each pixel in the 
selected neural area represents a neuronal unit; 
the activity is normalized from no activity (black) 
to maximum activity (bright colors), and the 
phase is indicated by the color of the pixel (col-
ors were chosen from a pseudocolor map, there 
is no connection between the color of the stimu-
lus object and the color representing the phases 
of neuronal responses). The neuronal units re-
sponding to the attributes of the red diamond 
share a common phase (red-orange color), 
whereas the neuronal units responding to the 
green diamond share a different phase (blue-
green color). 

Object recognition and perceptual categorization were  
unsupervised. The simulated nervous system of a given 
subject developed distinct patterns of activity for each 
object it observed based on its own experience. Because 
images of the visual objects varied considerably in size 
and position as Darwin VIII explored its enclosure, suc-

cessful discrimination required invariant object recogni-
tion. Darwin VIII’s response to objects was position and 
scale invariant; it responded reliably to target images 
which appeared within ±20-degrees of the center field of 
view (the range of the visual field was approximately 
±35-degrees) and as the apparent target size ranged from 
8-degrees to 27-degrees of visual angle. This invariance 
was achieved due to generalization of a continuous stream 
of input due to self-movement. 

The key mechanisms incorporated into Darwin VIII 
are reentrant connections within and among areas, neu-
ronal units with a mean firing rate and a relative firing 
phase, and a value system modulating synaptic plasticity. 
The operation of these mechanisms, in conjunction with 
the sensorimotor correlations generated by self-motion, 
enable Darwin VIII to categorize visual objects, bind the 
features of visual objects, segment a scene, and demo n-
strate selective behavior in a rich real-world environment. 

Our results are consistent with the hypothesis that vis-
ual binding results from the dynamic synchronization of 
neural activity mediated by reentrant connections among 
many dispersed neural areas. The performance of Darwin 
VIII suggests that specific timing relations and firing rates 
can act in a complementary mode to regulate behavior, 
and that synchrony among groups of neurons, as distinct 
from synchrony between pairs of individual neurons, may 
play a significant role in adaptive neural function. 

3. Brain-Based Device Playing Soccer  

Recently, we applied the visual binding and scene 
segmentation model of Darwin VIII to a BBD that can 
play soccer in both indoor and outdoor environments 
under varying lighting conditions and surfaces . The plat-
form for this device is  based on a modification of the 
Segway balancing technology and allows people on Seg-
way Human Transporters (HT) to interact with Segway 
RMP robots (http://www.segway.com/segway/rmp/). The 
rules for this game are currently under development (see 
[25]) and a new league based on the Segways will be 
proposed for RoboCup 2005 (http://www.robocup.org). 
The rules will dictate that the BBD have the ability to 
both catch and kick a ball and also that that all sensing, 
actuating, and computing are local to the device (see Fig-
ure 5). 

The neural simulation constructed for segmenting a 
soccer scene used the same principles of image process-
ing, visual categorization, reentrant signalling and value-
dependent learning as our previous Darwin automata. A 
high-level schematic of the neural architecture is given in 
Figure 6.  
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Figure 5. Brain-based soccer playing device 
based on the Segway RMP balancing platform. 
The BBD neural simulation receives sensory 
input from a CCD camera, IR sensors used for 
ball detection and obstacle avoidance, and 
odometry from the RMP. The simulation outputs 
to a camera pan-tilt unit, solenoids to capture the 
ball, solenoids to kick the ball, and motor com-
mands to the RMP wheels.  

Since many of the key elements of the soccer scene 
were pre -specified by the rules, certain neural areas were 
dedicated to responding to objects such as the ball, goal 
post, and teammate. Each of these areas had neuronal 
units that responded selectively to attributes of the object 
(e.g. Goal neuronal units were active when pre-synaptic 
neuronal units with similar receptive fields in areas V2-
Green, V2-Yellow, and V2-Horizontal neuronal units were 
active). Activity in these object detection areas triggered 
motor actions (e.g. activity in Goal triggered kicking the 
soccer ball). 

Because the mapping from visual ball recognition to 
the Segway RMP wheel motions was non-linear and com-
plex, value-dependent plasticity was used to learn this 
mapping (see value-dependent learning projections in 
Figure 6). A form of temporal difference learning was 
developed in which value was increased when the number 
of active neuronal units in the Ball neural area increased 
and the activity of Ball neuronal units that respond to the 
center of device’s field of view increased. This learning 
rule had the effects of potentiating BallàM and MECàM 
connections when a motor movement brought the ball 
closer to the device or of depressing connections due to 
erroneous movements away from the ball (see Figure 6). 

Training the BBD to effectively track a soccer ball 
through value-dependent plasticity took approximately 
three minutes. In the first twenty seconds, movements 
were slow and the device’s camera did not stay centered 
on the ball. By the final twenty seconds, ball tracking was 
fast and the device’s camera stayed fixated on the ball. 
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Figure 6. Schematic of the neural simulation 
architecture used for the Brain-base d soccer 
playing device. Visual areas and their connec-
tivity are similar to that of Darwin VIII. Neural 
areas Ball, Goal, and TeamMate respond specifi-
cally to those key objects on a soccer field and 
cause reflexive motor actions such as moving 
the Segway RMP or capturing and kicking the 
soccer ball. Ball tracking was achieved via plas-
tic connections from the Ball and motor effer-
ence copy (MEC) areas to the motorneurons (M). 

 

 

 

 
Figure 7. Goal shooting sequence. In the top 
panel, the BBD recognizes and acquires the soc-
cer ball and then centers its gaze between the 
two goal posts. In the bottom two panels, the 
BBD kicks the ball between the goal posts.  

Kicking to a teammate or the goal was achieved by the 
device recognizing the appropriate object, centering the 
object on its camera, and then kicking the ball (see Figure 
7). Reentrant connections between neural areas facilitated 
dynamic synchronization, and color constancy [26];  al-
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lowing the BBD to recognize objects in a noisy environ-
ment under non-uniform lighting conditions (see Figure 
8). 

 
Figure 8. Snapshot of the BBD’s camera input 
and selected areas in the neural simulation just 
prior to passing to a teammate. The camera input 
is sub-sampled to 60x80 pixels before process-
ing. The activity and phase  representation in the 
neural areas is the same as depicted in Figure 4.  

The soccer playing BBD has successfully performed 
key elements of soccer playing; ball chasing, passing back 
and forth between itself and a human teammate on a Seg-
way HT, and goal kicking. Video clips of the devices 
soccer playing capabilities can be found at: 
http://www.nsi.edu/nomad/segway.  

4. DISCUSSION 

Higher brain functions depend on the cooperative ac-
tivity of an entire nervous system, reflecting its morphol-
ogy, its dynamics, and its interaction with the phenotype 
and the environment. BBDs are designed to incorporate 
these attributes to allow tests of the self-sufficiency of 
such theories of brain function. We have demonstrated 
that BBDs can address many difficult tasks, without in-
struction or intervention, such as invariant object recogni-
tion [14], visual binding of objects in a scene [18], and 
texture discrimination using whiskers [17]. Like the brain, 
these BBDs operate according to selectional principles 
through which they form categorical memory, associate 
categories with innate value, and adapt to novel environ-
ments. These devices may provide the groundwork for the 
development of intelligent machines that follow neurobio-
logical rather than computational principles in their con-
struction. 

We designed BBDs to simultaneously test parallel 
brain functions that could not presently be examined in 
any single animal in the laboratory. The BBDs were de-
signed to yield data, in the form of neuronal activities in 

different brain regions that could be directly compared 
with experimental data. Equally important in the design is 
that a BBD must demonstrate adaptive behavior and this 
behavior must be measurable by an observer. The BBD’s 
neural model, by necessity, is developed at a systems 
level, in which the structure of the brain and its different 
regions gives rise to adaptive behavior. Although the 
devices are still too simple to make direct comparisons to 
neurophysiology, they can make predictions about the 
neuroanatomical and dynamical constraints that subserve 
adaptive behavior.  

Any model of brain function must not only take into 
consideration the structure of different brain regions, but 
must also pay attention to the connectivity within and 
between these brain areas. Brain function is more than the 
activity of disparate regions; it is the interaction between 
these areas that is crucial, as we have shown in Darwin 
VIII and the soccer playing BBD using the Segway. Thus, 
brains are defined by a distinct neuroanatomy in which 
there are areas of special function, which are defined by 
their connectivity to sensory input, motor output, and to 
each other.  

Brains do not function in isolation; rather are tightly 
coupled to the organism’s morphology, history, and envi-
ronment. Therefore, our brain models are embodied in a 
physical device and explore a real as opposed to a simu-
lated environment. The real environment is required for 
two reasons. First, simulating an environment can intro-
duce unwanted and unintentional biases in a model. For 
example, a computer generated object presented to a vi-
sion model already has its shape and segmentation de-
fined by the mo deler and is directly presented to the 
model, whereas a device that views an object hanging on 
a wall has to discern the shape and figure from ground by 
segmentation based on its active vision. Second, real 
environments are rich, multimodal, and noisy. An artifi-
cial design of such an environment would be computa-
tionally intensive and difficult to simulate. All these inter-
esting features of the environment come for “free” when 
we place the BBD in the real world. The modeler is freed 
from simulating an environment and can concentrate on 
the development of a device that can actively explore the 
real world. 

The advantage of a synthetic model is that these meas-
urements can be carried out in every neuron and synapse 
of the BBD’s nervous system during the acquisition and 
recall of a behavior. To be effective,  researchers using 
synthetic models need to analyze their data in such a way 
that they can compare their results to empirical data. By 
analyzing the neural dynamics of the model (i.e. spike 
rates, correlations between areas, neural dynamics and 
prediction), and choosing a behavioral paradigm similar 
to those used when studying behaving animals (i.e. mazes, 
conditioning paradigms, decision-making tasks, etc.), the 
modeler can directly compare the BBD’s behavior with 
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the results of psychological and neurophysiological ex-
periments. This places the burden on modelers to include 
sufficient complexity in their models so that these psycho-
logical and physiological metrics can be compared. 

We have obtained a number of insights and made sev-
eral predictions based on the results of experiments with 
BBDs. In Darwin VIII, the model suggests that synchrony 
between widely separated neural areas may play a key 
role in solving the binding problem and demonstrates the 
importance of reentrant connections in facilitating binding 
through synchrony. The observed behavior demonstrates 
that binding through synchrony is feasible in an unlabeled 
real-world environment in which objects are constantly 
changing in size and position. 

The development of adaptive and autonomous behav-
ior by BBDs is novel in its neurally based approach and 
has implications for the construction of intelligent ma-
chines. The design and construction of such behaving 
devices based on principles of nervous systems may have 
much to offer to basic understanding and practical appli-
cations. 
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Abstract

Learning, like any search, is only tractable if it is tightly
focused. Modularity can provide the information a learn-
ing system needs by supporting specialized representation.
Behavior-based artificial intelligence is a well-known mod-
ular theory of intelligent design, but has not been used sys-
tematically in this way. This paper describes a new design
methodology, behavior-oriented design (BOD), which does.
Examples drawn from mobile robotics and models of learn-
ing in non-human primates show the diversity of informa-
tion this approach supports, from implicit and perceptual
learning to tasks, maps and relationships.

1. Introduction

Behavior-based artificial intelligence (BBAI) is one of
the best-known modular theories of intelligent design. His-
torically, however, although researchers have sometimes in-
corporated learning modules [e.g. 24, 28], there has been
no systematic incorporation of learning into pure behavior-
based design [though see 17]. Some hybrid systems have
been developed which incorporate both BBAI and tradi-
tional planning and learning, but these lose the full ad-
vantages of modularity. Contemporary multi-agent systems
(MAS) are fully modular, but overlook the BBAI advances
in organizing distributed systems of complicated modules.

In this paper I describe how BBAI can be adapted to fully
support modular learning. I begin by reviewing the history
of BBAI. Then I discuss my own methodology, Behavior-
Oriented Design (BOD), and explain how it exploits spe-
cialized learning, using examples from both robotics and
ALife models of non-human primates. BOD allows a sys-
tem with preprogrammed reactive control to behave in an
adaptive manner, because its control relies on modules con-
taining variable state. These modules combine current sen-
sor readings with predictions based on learning.

2 Behavior-Based Artificial Intelligence

Behavior-Based Artificial Intelligence (BBAI) is a
methodology for constructing intelligent agents which spec-
ifies that the attributes of their intelligence should be de-
composed into semi-autonomous modules. The expressed
behavior of these modules is made coherent through some
system of arbitration between these modules. Both the ar-
bitration system and the individual modules are intended to
require relatively little processing power or time, so that the
agent can respond quickly and appropriately to challenges
and opportunities in complex dynamic environments.

When BBAI was introduced by Brooks [3, 5], its primary
purpose was to provide a means to create these responsive
(or reactive) agents. Creating such agents is difficult be-
cause a rich environment provides so many things to react
to. Any living agent in a complex environment must choose
between a large number of possible actions, where each ac-
tion is itself dependent on a large number of environmental
contingencies, and is motivated by competing, mutually ex-
clusive goals.Choosing an optimal next action is impossible
[15]. Even choosing a pretty good one requires searching
an enormous space of possibilities.

Because an individual agent does not have time for such
a search in real time, most of its decisions must be made
in advance of its active life. However, this does not remove
the complexity of the decision nor the amount of search nec-
essary for a pretty-good choice. For animals, most of this
search has been performed by evolution over a period of bil-
lions of years. For animats, the analogous role to evolution’s
is further split between the search conducted by the individ-
ual animat designer and that performed by the designer’s
culture. Designers must anticipate the behaviorally-salient
contingencies that their agent may encounter, and provide
rapid ways to recognize and select the appropriate response.
We do this both through our own analysis and experimen-
tation, and through exploiting the scaffolding of design
knowledge we have previously learned.

BBAI is a piece of design knowledge that significantly

309



advanced the state of agent design, particularly in the ar-
eas of mobile robotics and virtual reality. I believe that the
primary reasons for this success are:

• the increased emphasis on providing engineered
knowledge, which is a side effect of the emphasis on
bottom-up control (sensing not representing), and

• the modular decomposition around individual ex-
pressed behaviors. This exploits the designers’ exist-
ing skills and talents for writing simple programs.

After these significant advances, the complexity of the
agents being built seems to have plateaued before the de-
velopment of animal-level intelligence [22, 26]. Again, I
believe there were two primary causes:

1. the fact that at leastsomeexpertise is best developed by
the agent through experience, particularly of the local
variations of its own physical plant (‘body’), and its
own local environment, and

2. the complexity of programming the behavior-
arbitration systems increases exponentially as the
complexity and number of behavior modules in-
creases.

The first point is key to the thesis of this paper: modular-
ity presents BBAI with the opportunity to maximally fa-
cilitate individual adaptation through providing specialized
representations and processes. The second point, although
important in the history of BBAI, is really a special case
of the first. Modularizing the process of behavior arbitra-
tion and providing it with appropriate representations can
greatly simplify the design process for a behavior-based
agent.

3 A Brief History of Modular AI

This is a brief history of the critical attributes of BBAI
systems which will support the claims I outlined above.
More extensive reviews of the BBAI literature are available
[6, 8], as are more thorough comparisons to neural and psy-
chological theories [8, 10].

I will begin with Fodor’s “The Modularity of Mind” [19],
both because it introduces many of the concepts familiar to
BBAI, and because it presents a theory of intelligence de-
composition which is still actively researched in the natural
sciences today [e.g. 14].

Fodor introduces the terms ‘horizontal’ vs. ‘vertical’
to describe two different sorts of decomposition of intel-
ligence. Horizontal decompositions for Fodor are those
which identify processes (e.g. memory, attention, percep-
tion, judgment) which underlie all of cognition.Vertical
decompositions identify particular skills or faculties (e.g.

mathematics, language, metaphysics) which each have their
own characteristic processes of memory, attention and so
forth. Roughly speaking, evidence for horizontal decompo-
sition is the extent to which performance across domains is
correlated for a particular individual; evidence for vertical
decomposition is the extent to which it is not.

Fodor believes thatpart of human intelligence is decom-
posed in this vertical sense; those parts being perception
and (separately) action. In Fodor’s system, a number of
semi-autonomous perceptual modules run simultaneously
giving quick, automatic analysis of the perceptual scene.
Each module recognizes its own best input, and effectively
trumps the other modules when it is best utilized. The out-
put of these modules is in the language of thought, which is
operated on by a horizontal reasoning system. He presumes
that the reasoning system’s output is interpreted into action
in a similar way, but theorizes less about this process.

Another precursor of BBAI is the “Society of Mind”
[18, 29]. Minsky’s proposal is more substantially vertical
than Fodor’s, although it still has some horizontal elements.
An individual’s actions are determined by simpler agencies,
which are effectively specialists in particular domains. Min-
sky’s agencies exploit hierarchy for organization, so for ex-
ample the agency of play is composed of agencies such as
block-play and doll-play. Arbitration between agencies is
also hierarchical, so the play agency competes with the food
agency for the individual’s attention. Once play establishes
control, the block and doll agencies compete.

Minsky’s agents have both perception and action, but not
memory, which is managed by another network of agencies
of a different sort. Memory (K) agencies are interconnected
both with each other and with the other, actor (S) agents;
each can activate the other. Keeping the whole system
working requires another horizontal faculty: the B brain,
which monitors the main (A) brain for internally obvious
problems such as redundancy or feedback cycles.

The term ‘behavior-based artificial intelligence’ was in-
vented to describe a simplified but fully-implemented sys-
tem used to control multiple, robotic agents. This was
the subsumption architecture [3, 5]. The subsumption ar-
chitecture is purely vertical. The modules were originally
finite state machines, and arbitration between them was
conducted exclusively by wires connecting the modules —
originally literally, eventually as encoded in software. Each
wire could connect one module to another’s input or output
wires, the signal of which the first module could then either
monitor, suppress or overwrite.

Brooks initially asserted that most apparent horizontal
faculties (e.g. memory, judgment, attention, reasoning)
were actually abstractions emergent from an agent’s ex-
pressed behavior, but had no place in the agent’s actual con-
trol [5, p. 146–147]. However, his system was rapidly ex-
tended to have learning systems either inside modules or
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local to layers of modules [e.g. 4, 28]. Unfortunately, this
promising approach was apparently smothered by the at-
tractive simplicity and radicalism of his deemphasis on rep-
resentation and centralized control.

Of the researchers who didnot immediately adopt “no
representation” as a mantra, most attributed the impressive
success of Brooks approach to the fact that he had created
abstracted primitives — the action/perception modules. Be-
cause these primitive units could sort out many of the details
of a problem themselves, they made the composition of in-
telligence underany approach relatively easy [27]. Thus
behavior systems were incorporated as a component into
a large variety of AI architectures which still maintained
centralized, logic-based planning and learning systems [e.g.
2, 21]. Unfortunately, the difficulty of reasoning about rel-
atively autonomous components motivates the trivialization
of behavior modules, e.g. to “fuzzy rules” [25] or vec-
tor spaces [1] which can be easily composed. Despite the
lack of commonality of such approaches to Brooks’ original
ideal, they are still often called either behavior-based or hy-
brid behavior-based systems. Further, by the late nineties,
the work of these researchers had so far outstripped that of
the ‘pure’ BBAI researchers that two significant publica-
tions declared this hybrid approach to have been demon-
strated superior to non-hybrid ones [22, 26].

Given the attributes of BBAI outlined earlier, in some
senses multi-agent systems (MAS) are closer to BBAI than
hybrid behavior-based systems. Each agent performs a par-
ticular task, and may have its own private knowledge store
and representations which are presumably well suited to its
function. However, to date there are fundamental differ-
ences between a MAS and a single, modular agent. These
differences can be seen in the emphasis on communication
and negotiation between modules / agents [35]. The MAS
community is concerned with interoperability between un-
specified numbers and types of agents, and with distribution
across multiple platforms. This creates an administrative
overhead not necessary for a single, modular agent1.

In summary, BBAI was originally conceived and imple-
mented as a clean, simple version of modular hypotheses
that were already influential in psychology and AI. It lead
to substantial improvements in real-time AI, and still has
a great deal of influence not only in robotics [1, 26] but
in virtual reality [33]. However, it is famously difficult to
program [33, 35]. This difficulty has supported the wide-
spread acceptance of hybridization between behavior-based
and traditional AI. Unfortunately, these hybrids lose many
of the advantages of modularity. The next section suggests
ways to reclaim these advantages.

1Where MAS are in fact limited to a single platform and a relatively
fixed architecture, I suspect their engineers should consider them to be
modular single agents [9].

4 Modularity and Learning

In the previous section I explained Fodor’s use of the
terms “horizontal” and “vertical” to describe modular de-
compositions along generic function vs. task specific lines
(respectively.) I also showed that the original behavior-
based AI, the subsumption architecture, used the most
strictly vertical modular decomposition. In this section I
describe my own approach to BBAI and modular decompo-
sition — that is, the problem of deciding how many modules
an agent needs and what should be their capacities.

I believe modular decomposition should be determined
by the requirements of variable state needed for learn-
ing. This idea is not entirely original; it is inspired by
object-oriented design [e.g. 16, 30]. Consequently, I call
it Behavior-Oriented Design (BOD). Under BOD, modular
decomposition is done along the lines of specialized rep-
resentations underlying adaptive requirements for the agent
to be implemented. Most of these representations will sup-
port vertical abilities, for example representations under-
lying navigation or language, but some of them reliably
support horizontal abilities, such as behavior arbitration or
smoothing motor control.

Although this suggestion is simple, I think it brings a
great deal both to BBAI and to the understanding of learn-
ing in intelligent systems, including animals. Compared to
the original BBAI, BOD provides for learning while simpli-
fying behavior arbitration. Compared to hybrid BBAI, BOD
provides both a return to full modularity and a reemphasis
on facilitating hand design.

In terms of understanding learning in intelligent systems,
BOD makes explicit the continuum of adaptivity underlying
intelligent behavior. The BOD development process [see 8]
emphasizes two things:

• increasing the probability of success in learning (or
any other type of search) by providing the agent with
as much information (bias) as possible, and

• maintaining the simplicity of the agent by trading off
complexity between various representations.

4.1 A Module for Behavior Arbitration

BOD particularly emphasizes the tradeoffs to be made
between adaptive state for specialized perception and that
for action selection through behavior arbitration [8]. This
goes back to the notion of whether a module can, on its own,
recognize a situation in which it should operate. I believe
it is more reasonable for a module to recognize when itcan
operate. To recognize when itshouldoperate requires more
information than a largely encapsulated, semi-autonomous
module ought to have access to.
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Figure 1. A patrolling robot cannot base its
steering decisions entirely on external con-
text and cover the entire maze.

In any particular context, there may well be more than
one module that could or even should operate. This is the fa-
miliar problem ofperceptual aliasing, which was originally
seen as a problem of perception, but is in fact just a charac-
teristic of the world. For example, consider a watch-robot
intended to patrol an office space composed of corridors and
junctions (Figure 1). For some junctions, the direction to go
is entirely determined by either the robot’s history (where it
has most recently been) or its intentions (where it needs to
go next.) We could try to read the robot’s history or in-
tentions off of its physical states (such as the direction it is
pointing) but these can be perturbed by other subtasks such
as avoiding people in the hallway. It is far simpler to keep
a brief history of decisions or intentions in the specialized
state that supports arbitration.

The strategy of making behavior arbitration into a spe-
cial, horizontal module allows for a tradeoff between the
complexity of action selection and the complexity of per-
ception. I have argued at length elsewhere that ideally there
should be a structured hierarchical representation under-
lying behavior arbitration, which represents behavior or-
dering and prioritization given a particular context [6, 7].
The advantage of such a decomposition is that it simpli-
fies knowledge acquisition by separating acquisition tasks
that have minimal correlation between them. The behavior-
arbitration module doesn’t need to know how task modules
recognize context or perform their tasks; task modules don’t
need to know what other tasks might be performed in the
same location at the same time, or what their relative prior-
ities are.

4.2 From Perception to Knowledge

I will use the domain of mobile-robot navigation in or-
der to demonstrate the variety of adaptation usefully mod-
eled in behaviors in the BOD system. Although the robot
work described here is old [12], the problems of robot per-

ception and action provide clear and intuitive explanations
for the different requirements for variable state. The robot,
a radially symmetric, 16 sided Nomad 200, navigated in a
smooth, continuous fashion around an office environment,
negotiating doorways barely wider than itself and avoiding
obstacles. It also learned simple paths from instruction.
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Figure 2. Behaviors for moving a robot.

Figure 2 shows behaviors that allow the robot to choose
its speed and precise direction given that it has already de-
termined an approximate goal heading. The vertical mod-
ules have solid boxes, the horizontal ones (including the
robot’s body) are dashed. Beginning at the bottom of the
figure, the robot provides four types of sensory information
relevant to picking a safe path. Adirection behavior will
determine the speed and direction for the robot, based on a
16 value array representing the approximate distance from
each of the robot’s faces to the next obstacle. This array is
maintained byC-sense(compound sense).

Sonar, infra-red and bumpers all give information about
the location of obstacles. Sonar operates by emitting sound
then listening for it to bounce off obstacles. It can be ac-
curate from about 20cm to 6m, but is subject to a variety
of deflections and interference which can make objects ap-
pear suddenly closer or further away. Perceptual memory,
P-Memory processes this information with a simple 6 item
memory buffer. Each time a new sonar reading is received
(about 7 times a second) the reading for each sensor is com-
pared with those of the previous half minute. If a major
discontinuity is perceived in one reading, it is ignored, and
a new one computed based on the previous average value.
However, if the new reading persists for 2 more readings, it
is then ‘believed’ and becomes the new value for that sonar.

Infra-red sensors do not have the non-linearities of sonar,
but have a far more limited range (approximately 0-24cm),
and are also influenced by the color of the reflected surface.
Infra-red sensors must be used for delicate maneuvers such
as passing through doorways which require obstacle detec-
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tion within the blind zone of the sonars. However, some
things will not be detected by either long-range system, and
are instead detected by the robots bumpers. Thebump be-
haviors each represent one such past event. Since a bump
is only detectable at the time and location of the event, the
robot must compute the bump’s approximate location af-
ter having disengaged from the obstacle in order to avoid
it. This computation is based on odometric data. However,
odometry accumulates errors rapidly, so bump events are
forgotten after the robot has moved a few yards.
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Figure 3. Behaviors added for map learning.

The robot thus brings a diverse array of “knowledge” to
the continuous task of choosing a new speed and direction
at any given instant.Direction andAction Selectionwork
in concert for determining whichdirection controls these
variables. Direction stores the current intended direction,
while Action Selectiondetermines the behavioral context
(e.g. going forward normally toward a goal direction, or
backing up after a collision). Eachdirection contains a
template for determining discounts on the importance of the
values of the array inC-Sensepertaining to whether the par-
ticular array value is directly in front, mostly to the side, or
behind the direction of motion before thatdirection’s face.
The value of the discount templates in thedirection behav-
iors was learned off-line by the developer. The values in
theC-Sensearray are determined at any time, based on the
most recent infra-read reading, the last half second of sonar
readings, and perhaps a few minutes of bumper readings.

None of this adaptation would be considered “learning”
in the common usage of the term, because it does not change
state permanently for the lifetime of the agent. Never-
theless, all this knowledge may be considered predictions
which lead to adaptive behavior. For example, the state
recording the last direction of motion is used to predict the
next one, which in turn determines what values are used
in computing the robot’s velocities. Similarly, the historic
sonar readings are treated as more predictive of the true dis-
tance to obstacles than any one current sensor reading. The
only reason to have adaptive state in the robot is because the
past can be used to predict the present, and can do so more

reliably than sensors on their own.
This argument extends to the modules that do map learn-

ing (see Figure 3, described further in [8, Section 7.6.3]).
Heredecision points— locations where the robot suddenly
has a choice of direction (e.g. when it enters a room or
encounters a doorway in a hall) are stored along with the
decisions that were made at them, possibly after soliciting
advice. Thus the robot can create a map (or learn a plan)
from an instructor. This particular robot does not learn a
complete, connected 2-D representation of the world, but
rather a set of cues that can be read from the environment
in order to make future decisions autonomously. Neverthe-
less, it behaves as if it has learned its way around. Now the
common usage of ‘learning’ does apply, but the knowledge
system is fundamentally the same.

5 Generic Types of Specialized State

The key observation about the robot example above is
that BOD has been used to produce a reactive system which
can operate well in a dynamic environment. It does this by
exploiting a variety of types of information:

• Engineering, provided by the developer (or evolution),
which does not change over the lifetime of the agent.
This includes both fixed program code and parameters
set by off-line tweaking and experimentation.

• Reactive plans, which keep track of the robots current
decision context and focus its attention on particular
behaviors. These are the basic representation underly-
ing the Action Selection module.

• Learned values of variable state. Variable state is at
the heart of the vertical / task modules. The ‘learning’
may persist only as very-short-term perceptual mem-
ory, as medium-term working memory, or for the life-
time of the agent.

This decomposition can also be found in real animals
[10, for more details]. The engineered information is
roughly equivalent to genetic predispositions, though in real
animals, it is more difficult to separate development from
learning, since development has evolved to rely on ubiqui-
tous features of the environment as an information source.
Reactive plans play a similar role to the behavior of the
vertebrate forebrain [31], which, when working correctly,
selects, sequences and inhibits behavior expression [13],
though again note that in animals this can be more plas-
tic than it is in BOD. Finally, the vertical behaviors I would
equate with various sorts of cortical activation and plastic-
ity. BOD does not currently discriminate between plastic-
ity from activation levels and plasticity through long-term
changes in connectivity.
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These three types of information are not entirely disjoint:
the reactive plans are hand coded, and are run in a special
action-selection module. Reactive plans are themselves an
elaborate form of specialized variable state. They encode
both engineered information in the form of contingencies
the designer anticipates the agent will encounter, and vari-
able state indicating recent decision-making context, which
constrains choices in the immediate future in order to pro-
vide persistence and reduce search.

In fact, all modules mix engineering with variable state.
What makes the reactive plans special is that both their rep-
resentation and the code that exploits it are used in all BOD
agents. Extensive research has lead me to believe the BOD
reactive plans are simply the best way to do behavior ar-
bitration in a modular single agent [7, 8]. Obviously it
would be useful to find other such generically useful rep-
resentations, since reusing solutions reduces development
time. In the rest of this section, I will discuss three other
biologically-inspired types of learning or plasticity, two of
which I am currently developing under BOD.

5.1 Drives and Emotions

Because the reactive plans underlying BOD action se-
lection are relatively fixed, they do not represent well the
sorts of variation that the brain represents chemically such
as drives for food or sleep, or emotional states such as anger
or fear. Drives and emotions represent and intermediate
time course for intelligent state between the electrical / neu-
ral firing rate (which BOD represents in reactive plans) and
long-term potentiation (which BOD stores in modules.) Re-
active agents without this sort of state can seem erratic [33].
We are currently exploring how including this sort of dura-
tive decision state influences action selection, both from the
perspective of believability (for VR agents) and for evolving
social behavior (in Artificial Life agents.

The way to encode variable state in BOD is as behavior
modules. However, these behaviors are so stereotyped, and
have such simple state (essentially a single drive level) that
they are effectively their own type. We are consequently
developing a standardized representation for modeling of
emotions and drives. Although the drive level itself is sim-
ple variable, each drive or emotion has its own onset and
decay characteristics [34]. Further, the interactions between
these states — with each other and with standard action se-
lection — varies. For example, there must either be a latch-
ing or a blending mechanism to decide which of two con-
flicting drives or emotions is expressed.

To date we have used this type of behaviors both to create
realistic real-time facial animation [34] and to create a sim-
ulation of a primate colony. The primate colony is the first
exploration of combining all three types of intelligent state
together. Its members have two drives: one for grooming

(a stand in for general social behavior) and one for wander-
ing alone (a stand in for foraging.) I have been using this
model to explore the impact of adding simple social behav-
iors (such as tolerance of grooming) on the time spent by the
group as a whole pursuing their goals [9]. We are currently
extending the social model to include emotions or drives
such as anger and affinity in an effort to model differences
in different species of primates social structures.

5.2 Task Learning

The fact that BOD reactive plans are engineered bars
BOD agents from doing something else real animals do:
learn new tasks or new vertical modules. Again though, the
extent to which animals have this capacity tends to be ex-
aggerated in folk psychology. For example, pigeons can’t
learn to flap their wings for food or to peck to avoid shock,
although theycanlearn to flap their wings to avoid shock or
to peck to get food [see further 20, 32].
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Figure 4. Behaviors used for an artificial life
model of transitive inference learning.

I have built a model that learns what is effectively one
component of a reactive plan within a particular context.
The context is a model of transitive inference learning as
performed by animals and children [8, 11]. The model
shows simultaneous learning of both context / action pairs,
and a set of prioritizations between the different contexts.
These prioritizations determine when more than one con-
text applies, which action should be taken. This amounts to
a reactive plan — a prioritized set of context / action pairs.

To date we have demonstrated that this models both hu-
man and non-human primate learning of transitive infer-
ence. I am currently working to extend this model. True
task learning should include not only context / action pairs
and their priorities, but also when new contexts or actions
need to be discriminated, and how this impacts the task rep-
resentation as a whole. The performance context the agent
believes itself to be in will determine the set of things it
might learn as well as the things it might do.
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This task-learning mechanism also has a biological cor-
relate: the hippocampal learning system [11]. Neverthe-
less, such a general-purpose horizontal task-learning mod-
ule should probably not become an expected component of
all BOD agents. Such open-ended learning takes a great
deal of time even with heavy bias, so defies the BOD prin-
ciple of guaranteeing successful and timely learning. How-
ever, it is necessary for true mammalian intelligence.

5.3 Phenotype Swaps

Finally, I’d like to describe a very different form of natu-
ral plasticity. Hofmann and Fernald [23] have shown that
both physical characteristics and expressed behavior can
change extremely rapidly (within minutes) following a sin-
gle traumatic (whether positive or negative) social event.
The representations underlying these changes seem to be
phenotypicin nature, with concurrent changes of gene ex-
pression in large numbers of neural synapses. The pheno-
types in question determine whether a male Cichlid fish fol-
lows a behavior pattern of simple schooling, feeding and
growth, or one of aggressive mating and territory defense
which does not allow much time for growth. Male cichlid
apparently alternate between these phenotypes. Not only
behavior, but coloration change immediately after a deci-
sive social event (a fight outcome), while gonad and overall
size and shape gradually shift during the following weeks.

I have no immediate plans to model this sort of behavior,
but it could be fairly easily done by implementing more than
one action-selection plan hierarchy per agent, plus a special
arbitration mechanism dedicated to swapping between these
two plans. Since top-down expectations influence which
behaviors are actively utilized by a BOD agent, this would
effectively (though not actually) excite or inhibit other rele-
vant behavior modules.

Is this learning? The representation involves no mental
structure, and could not be used or manipulated in any other
way. Yet an event (the result of a fight) selects a set of be-
havior which is only cost effective if that outcome serves to
predict a reasonable period of success in near-future events
of the same kind. The fish will only receive payoff for the
hard work of defending a territory if it does so long enough
to reproduce and protect its progeny. Again, adaptation is a
continuum, and this perhaps the ultimate vertical module.

6 Conclusions

In this paper, I have described how modularity can be
used to facilitate specialized learning, and shown how this
is central to intelligent behavior. I have concentrated on how
this perspective illuminates the history of modular AI, but
I believe it also informs the modularity debate in psychol-
ogy, and provides some explanation for the modularization

we see in the brain. In the future I hope that modular AI
will be able to do for psychology and systems neuroscience
what neural networks research has done for neuroscience
— provide testbeds and intuition pumps to help the natural
sciences form and refine their models.
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