
MIT Media Laboratory, Perceptual Computing Technical Report #440
Appears in: Proceedings of ICCV'98, Bombay, India, January 4-7, 1998

Mixtures of Eigenfeatures for Real-Time Structure from Texture

Tony Jebara, Kenneth Russell and Alex Pentland

Perceptual Computing, M.I.T. Media Laboratory

Massachusetts Institute of Technology

20 Ames Street, Cambridge, MA 02139

f jebara, kbrussel, sandy g @media.mit.edu

Abstract
We describe a face modeling system which estimates

complete facial structure and texture from a real-time
video stream. The system begins with a face tracking
algorithm which detects and stabilizes live facial im-
ages into a canonical 3D pose. The resulting canonical
texture is then processed by a statistical model to �l-
ter imperfections and estimate unknown components
such as missing pixels and underlying 3D structure.
This statistical model is a soft mixture of eigenfea-
ture selectors which span the 3D deformations and
texture changes across a training set of laser scanned
faces. An iterative algorithm is introduced for deter-
mining the dimensional partitioning of the eigenfea-
tures to maximize their generalization capability over
a cross-validation set of data. The model's abilities
to �lter and estimate absent facial components are
then demonstrated over incomplete 3D data. This ulti-
mately allows the model to span known and regress un-
known facial information from stabilized natural video
sequences generated by a face tracking algorithm. The
resulting continuous and dynamic estimation of the
model's parameters over a video sequence generates a
compact temporal description of the 3D deformations
and texture changes of the face.

1 Introduction
Several approaches have been proposed for the re-

covery of 3D structure from 2D imagery. These meth-
ods include shape from shading [1], structure frommo-
tion [2] [4], stereo techniques, geometric modeling and
other variants. We investigate the use of an appear-
ance based technique for the recovery process. This
approach models the correlation between the texture
of a face and its 3D structure from a training set of
3D laser scanned faces. The learning process uncovers
statistical correlations between these two forms of data
directly. Thus, we can rely on probabilistic learning
to abstract the complex solutions often required for
�nding shape from low-level approaches.

One issue that arises when using statistical methods
is that the interesting relationships in the data are typ-
ically di�cult to uncover in the presence of unwanted
variations and non-linearities. Large changes due to
pose, illumination, and irrelevant features can easily
dominate the data. Therefore, we propose normal-

izing these external factors by performing 3D align-
ment, segmentation and color correction on the faces.
This preprocessing is applied to both scanned 3D head
models and to the video stream using a 3D face track-
ing algorithm. Thus, we generate a new representation
of the data by stabilizing it using vision and alignment.
This limits its variations so that the interesting cor-
relations between texture and structure can be stably
recovered and modeled by statistical learning.

The statistical model we introduce is a mixture of
feature eigenspaces. Traditionally, a single eigenspace
is formed over the whole data set (of dimensionality
M). However, if the number of samples (N) in this
set is relatively small, the model may not have enough

exibility (at most N parameters) and the N samples
may not be su�cient to adequately train it. Thus,
we propose training a multitude of eigenspaces, each
specializing over di�erent dimensions of the data, and
then merging their results. This allows us to have a
more
exible model which has an intermediate com-
plexity between that of the eigenspace (N) and the
original representation (M).

To maximize the generalizability of the model we
develop an iterative algorithm for partitioning the di-
mensions or the features given by the original rep-
resentation. The method iterates by optimizing fea-
ture partitioning over a cross-validation data set and
then computing the corresponding eigenspace mod-
els on the training set. This algorithm is demon-
strated to converge to a modular feature decompo-
sition which permits the mixture of eigenfeatures to
generalize to the cross-validation set of faces. The
consequent model is thus capable of superior general-
ization.

2 System Overview
The proposed system is depicted in Figure 1. Auto-

matic face detection is used to �nd a face which is then
tracked in 3D (at 30 Hz). A 3D normalization is used
to warp the texture data of the image into a canoni-
cal con�guration. This texture data is then processed
by a statistical model of the correlations between fa-
cial texture and structure to estimate a full 3D facial
model. The dashed line shows the possible feedback
of the estimated 3D shape model to the 3D normal-

FACE DETECTION

AND 3D TRACKING

LOCALIZATION

VIDEO
RECOVERED STRUCTURE FEEDBACK

FACE MODELING

STATISTICAL 3D

RECOVERED

3D FACE

NORMALIZATION

STRUCTURE

TEXTURE

3D NORMALIZED

Figure 1: The Integrated System Components: Detec-
tion, Tracking, Normalization and Modeling

ization stage which could be made adaptive.
We begin by describing the pre-processing and rep-

resentation of the data used for training. Our sta-
tistical model and its iterative optimization are then
presented. We discuss the application of the statistical
model to incomplete data and demonstrate its ability
to �lter known and estimate unknown components.
A video tracking system is then discussed and its in-
put to the modeling stage is explained. The combined
modeling and tracking system is evaluated to show the
resulting structural estimation from a video stream.

3 3D Data Preprocessing
3.1 Training Data

The system begins by o�-line learning of the re-
lationships between structure and texture from a set
of N texture mapped 3D facial models which are ob-
tained from a Cyberware laser range scanner. This
data is to be vectorized so that it can be treated as
a sample of a random vector and modeled probabilis-
tically. In addition, we need to remove certain varia-
tions in the model so that its parameters only span de-
formations and texture changes. Thus, pose changes,
illumination and irrelevant data must be factored out
and modeling resources must be focussed on the cor-
relation between texture and 3D structure.

The Cyberware data is comprised of a cylindrical
depth map and an RGB texture map. A scalar value
is speci�ed at each pixel coordinate, (h; �), to indicate
the voxel's radial distance from the cylindrical axis.
Three scalar values are speci�ed to indicate the pixel's
red, green and blue color components, (R;G;B). To
represent this data as a vector, we simply rasterize it.

3.2 Alignment and Segmentation
For each of the models in the training database, the

coordinates of the eyes, nose and mouth were manu-
ally selected as anchor points to align the 3D heads
with a rigid transformation. Once aligned, the faces
can be automatically cropped to remove most of the
irrelevant data such as the hair and shoulders.

3.3 Color Correction
Color correction is performed to shift an RGB im-

age into a canonical con�guration so that illumination
and camera chromatic variations are removed from the
modeling process. This operation is referred to as his-
togram �tting for gray-scale images. Given a desti-
nation gray scale image, Id, and a source gray scale
image, Is, one can compute a mapping for each of the
intensities in Is. We compute the cumulative density

0 20 40 60 80 100 120 140 0

50

100

0

10

20

30

40

50

60

70

80

R

G

B

60
70

80
90

100
110 40

50

60

70

80

15

20

25

30

35

40

45

50 60 70 80 90 100 110 120 20

40

60

80

10

15

20

25

30

35

40

45

50

(a) RGB Data (b) Gaussian (c) Eigenvectors

Figure 2: The Eigenspace Basis for Histogramming

(b) Rendered (c) Rendered (d) Cylindrical

Figure 3: The Mean Face in Canonical Con�guration

functions for each image cd(i) and cs(i) and map the
intensities of Is via the transfer function in Equation 1.

Ts!d(i) = c�1d (cs(i)) (1)

To apply this process to a color image, one can treat
the R,G and B components independently as one di-
mensional distributions and compute histogram �tting
on each. However, for skin colors, R,G and B com-
ponents are not independent. Instead, we compute
a Gaussian pdf over the RGB samples of the face.
The eigenvectors e1; e2; e3 that span this distribution
decorrelate the data (see Figure 2) and histogram �t-
ting along these vectors under independence assump-
tions is more justi�able. Thus, the RGB values of each
face are mapped into canonical distributions.

The average training face is shown after pre-
processing in Figure 3 both in its cylindrical form as
well as its 3D rendered form. The e�ects of align-
ment, hair, shoulders, global illumination and global
chromatic changes have been reduced so that these do
not consume signi�cant modeling resources later on.

4 The Model
4.1 Mixture of Eigenfeatures

We now introduce our mixture of eigenfeatures sta-
tistical model and describe how it di�ers from a tra-
ditional eigenspace. Typically, principal components
analysis is used in an unsupervised learning setting
to �nd the dominant eigenvectors that best span the
variations in the data. However, we note that PCA is
sensitive to scaling of di�erent features or dimensions
of the data.

A data set is modeled with a Gaussian (which de-
�nes an eigenspace) in Figure 4(a). The eigenspace in
Figure 4(a) was then recomputed over the same data
after it was stretched vertically by a factor of 4 and
generated the Gaussian in (b). Figure 4(c) displays
the rescaled eigenvectors from each of the 2 Gaussians
superimposed. Note how the eigenvectors rotated af-
ter we scaled the vertical dimension by a factor of 4.

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

−6 −4 −2 0 2 4 6
−20

−15

−10

−5

0

5

10

15

−6 −4 −2 0 2 4 6
−20

−15

−10

−5

0

5

10

15

(a) (b) (c)

Figure 4: Eigenvector Rotation due to Scaling

EIGENSPACE
MODULAR

SAMPLE #1 SAMPLE #2
TRAININGTRAINING

Figure 5: Modular Eigenspace Span

At the extreme, certain dimensions can be discarded
(i.e. by scaling by zero) and the eigenspace will be
computed only over a portion of the dimensionality of
the original data.

Dimensional scaling helps reduce the impact of cer-
tain features or eliminates them altogether. This is of-
ten done manually as a pre-processing step to limit an
eigenspace so that it only spans the interesting compo-
nents of the data and to favor more signi�cant dimen-
sions. For instance, Moghaddam and Pentland [8] use
modular eigenspaces to compute PCA only over small
windows centered at the eyes, the nose and mouth
instead of the whole face. This prevents the eigenvec-
tors from wasting modeling resources to span irrele-
vant features such as hair. Eliminating features also
alleviates the sparse data problem since fewer param-
eters (i.e. elements of a smaller covariance matrix) are
to be estimated from N samples.

In addition, a modular eigenspace allows the com-
bination of di�erent instances of the modules to occur
even though the training set did not contain any of
them originally. Take for example, the training data
consisting of two faces in Figure 5. One face has closed
eyes and a closed mouth, and the other has open eyes
and an open mouth. To generate a face with a closed
mouth and open eyes would be straightforward using
modular eigenspaces. However, this change in the data
is not feasible in the original full space since no linear
combination of the original 2 full dimensional vectors
can generate it. Thus, the modular eigenspace can be
a superset of the single eigenspace.

The mixture of eigenfeatures used is composed of
\softly" modular eigen spaces. Dimensions are scaled
for each module by a value between [0; 1] to arti�cially
weight di�erent features and rotate the eigenvectors
in their favor. In our training set fxg we have N
M -dimensional vectors, i.e. xi with i�[1; N]. With-
out of loss of generality, the training set is assumed
to be zero-mean (simply by subtracting the average
face in Figure 3). We form J eigenspaces by com-
puting the PCA on fxg weighted by the vector wj

(j�[1; J] is the label of the modular eigenspace). Each
eigenspace is computed from a weighted covariance
matrix as in Equation 2. The reconstruction of a face
from the mixture of eigenfeatures is performed by sum-
ming the weighted approximations of each eigenspace
as in Equation 3. We next introduce a technique for
training such a model which will automatically recover
the eigenvectors for each module as well as a set of par-
titioning weight vectors (i.e. the modular eigenspace's
partition) which will be used to scale the dimensions
of the training set.

Vj�
jVj

T = [ej
1
:::e

j
N]diag([�

j
1
:::�

j
N])[e

j
1
:::e

j
N]

T

=
PN

i=1(diag(wj)xi)(diag(wj)xi)T
(2)

x̂i = (
JX

j=1

diag(wj))
�1 (

JX
j=1

VjVj
Tdiag(wj)xi) (3)

4.2 An Iterative Algorithm for Mixtures
of Eigenfeatures

The mixture of eigenfeatures has two sets of pa-
rameters: the individal modular eigenspaces Vj and
the weight vectors wj which represent the domain or
features spanned by each eigenspace. We propose an
iterative algorithm which will converge the model to
a local minimum of error by alternately taking steps
to minimize the error. The algorithm alternates by
updating the modular eigenvectors and then updating
the feature weighting vectors of each module. If each
of these constrained steps in the model con�guration
space increases likelihood (i.e. decreases error), then
their iterative application will also increase likelihood
and the system will converge to a local minimum.

An eigenspace model has the capacity to perfectly
span the training data if all the eigenvectors are uti-
lized. However, if the set of faces presented to the
algorithm is split into a training set and a cross-
validation set, we can check how well an eigenspace is
performing on data that it has not encountered dur-
ing training (and thus won't be perfectly spanned).
Each eigenspace is constructed from the training sam-
ples and then evaluated on the cross validation sam-
ples. The external set of samples tests the eigenspace's
ability to generalize to new and previously unseen in-
stances of the random vector we are modeling. We
wish to optimize the residual error as the mixture of
eigenspaces attempts to span the cross validation (via
Equation 3).

The iterative algorithm starts with in an initial con-
�guration of the mixture of eigenfeatures model. This
overall con�guration is composed of a set of J co-
variance estimates of the data (or equivalently sets of
eigenvectors Vj) and a corresponding set of J weight
vectors wj used to partition the pixels.

E1 =
X

i � Training Data

(xi � x̂i)
T (xi � x̂i) (4)

dE1

dVj
=

X
i � Training Data

(xi � x̂i)
T dx̂i
dVj

= 0 8 j (5)

In step 1 of the optimization, we wish to minimize
the reconstruction error over the training data (Equa-
tion 5) by varying the eigenspaces Vj and holding the
weight vectors wj �xed. The best estimate of the Vj
could be solved by taking the derivatives with respect
to the error and setting them to zero. If we assume
that the wj are binary and do not overlap (i.e. not
softly modular, or a winner-takes all approach) in the
dimensional partitioning, the eigenvectors that mini-
mize error can be computed from the covariance ma-
trix given by Equation 2. This covariance matrix is
the maximum likelihood estimate from the scaled seg-
mented data under the assumption that the process
being observed is a zero-mean Gaussian. This approx-
imation is computationally e�cient and is acceptable
as long as the modular eigenspaces do not overlap sig-
ni�cantly.

Next we optimize the error over the cross-validation
data set by holding the Vj constant and varying wj .
Ideally, this would be done by computing the partials
of the error with respect to each wj and setting them
to zero as shown in Equation 7.

E2 =
X

i � Cross V alidation

(xi � x̂i)
T (xi � x̂i) (6)

dE2

dwj
=

X
i � Cross V alidation

(xi � x̂i)
T dx̂i
dwj

= 0 8 j (7)

However, if we again assume that the weight vectors
are not softly modular, a simple, e�cient heuristic ap-
proach can be used to calculate the weight vectors. To
compute the update in the partitioning or the weight-
ing vectors of the model, we use a winner-takes-all
strategy. We �rst compute each modular eigenspace's
individual reconstruction of the cross-validation data
as in Equation 8. What we wish to do is to determine
which modular eigenspace is best at reconstructing a
given pixel coordinate in the cross-valiation set. When
we �nd the modular eigenspace which does best at this
pixel, we increase its weight vector (and decrease that
of the other modular eigenspaces). This allows this
modular eigenspace to dominate the mixture (Equa-
tion 3) at that pixel. Consequently, the reconstruction
at that pixel will be closer to the true data, decreasing
error or increasing likelihood.

x̂
j
i = diag(wj)

�1VjVj
Tdiag(wj)xi (8)

wj(d) =

�
1 if j = supJ

PN
i=1(x̂

J

i (d)� xi(d))2

� otherwise
(9)

Thus, during training, the algorithm assumes that
the modular eigenspaces are not soft and that strict
boundaries in the dimensions exist. In other words,
the eigenspace which best approximates pixel d over
the cross-validation data takes ownership of that pixel.
We end up with a calculation of wj in Equation 9.
However, at each iteration, we re-inject soft modular-
ity by using a regularizer and smoothing. Note that

0 5 10 15 20 25 30 35 40
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

8

Iteration

Er
ro

rs
 o

n
X−

Va
lid

at
io

n

Errors from Single Eigenspace

Errors from Mixture of EigenFeatures

Figure 6: Cross-Validation Error over Iterations

the modules are never set to 0 for any value of d but
rather � < 1. The value � is a small regularizer which
allows the modules to always have some minimumsup-
port over the full M dimensional space (Equation 9).
In addition, at each iteration, a small spatial blur op-
eration is applied to the masks (i.e. the weight vec-
tors) to insure soft mixing near the boundaries. The
softness allow perceptually appealing reconstructions
since no artifacts or edges are visible at the boundaries
of the modular eigenspaces. We update the model iter-
atively until the system converges to a local minimum
of error. To evaluate the performance of the mixture of
the eigenfeatures, we use the approximation of Equa-
tion 3. The squared residual error between the x̂i and
xi is summed over the whole cross-validation set to
determine the total error.

4.3 Initialization and Convergence

The optimization can be initialized randomly as
well as manually via a user-speci�ed prior set of wj.
We tested a random and manually speci�ed partition
involved segmenting the eyes, nose, mouth and face re-
gions. We then looped the algorithm over a set of faces
which were split into training and cross-validation sets.
The performance on the cross-validation set is dis-
played in Figure 6. Note the rapid convergence which
is achieved in less than 10 iterations (i.e. a few min-
utes). At each iteration, the algorithm decreases the
cross-validation error until a �nal solution is obtained
for wj as well as the corresponding eigenfeatures. The
algorithm converged to a modular space whose recon-
struction outperformed that of the single eigenspace,
a random set of modular eigenspaces and the manu-
ally generated set of modular eigenspaces. The mod-
ular eigenfeatures and their weight vectors or masks
are displayed in Figure 7 at initialization ((a)-(d)) and
convergence ((e)-(h)).

We used the masks to form 4 modular eigenspaces
(of 20 eigenvectors each) and a single eigenspace (also
of 20 eigenvectors) over the training set and crossval-
idation set. These two were tested on an unobserved
test set of faces to compute the squared residual re-
construction errors: 3.26e+08 for the single eigenspace
and 1.97e+08 for the modular eigenspace which per-
formed better. Figure 8 shows some of the eigenvec-
tors (eigenheads) that were generated in both the sin-
gle and one of the modular spaces.

(a) Masks over Depth

(b) Masks over Texture

(c) Errors over Depth

(d) Errors over Texture
INITIALIZATION

(e) Masks over Depth

(f) Masks over Texture

(g) Errors over Depth

(h) Errors over Texture
CONVERGENCE

Figure 7: Initial and Final Solution

(a) e1 (b) e2 (c) e1 (d) e2
Single Eigenspace Modular Eigenspace

Figure 8: Single and Modular Eigenvectors (+ Mean)

5 Model Application and Evaluation
We now describe three useful applications of the

model: compact representation, �ltering and regres-
sion.

5.1 Compact Projection and Filtering
Recall that each 3D face can be represented as a

set of coe�cients for each of the eigenspaces requiring
J � Npca parameters where Npca < N is the number
of eigenvectors we keep for each eigenspace. These
coe�cients are computed as in Equation 10 for each
sample i using each module j.

c
j
i = Vj

Tdiag(wj)xi (10)

Reconstruction is performed by summing the eigen-
vectors scaled by these coe�cients. Essentially, the
equivalent of Equation 3 is evaluated. This process
projects data into the mixture of eigenspaces and then
reconstructs it. In so doing, the algorithm �lters out
unusual data that was not spanned by the original
distribution and stores the data e�ciently.

5.2 Regression
Having formed a statistical model of the joint space

of structure and texture, it is now possible to condition
on either one of the two to obtain a maximum likeli-
hood estimate of the other. Thus, if only texture is
observed, we can compute the probability distribution
of the structure component of the random variable. In

Observed Texture Regressed 3D True 3D

Figure 9: Regressing 3D Data from Observed Texture

fact, any component of the data can be regressed from
evidence in other dimensions. Typically, sophisticated
non-linear local models are used to compute structure
from 2D images. We propose a comprehensive statis-
tical model which utilizes global properties of the face
and merges various redundant cues to predict each
depth map value. Thus, a simple global estimation of
structure is favored over a complex local computation.

p(xk; xu) =

expf�1

2

hxk
xu

iT "�kk
�uk

�uk
�uu

#�1 hxk
xu

i
g

(2�)D=2

vuut�����
�kk
�uk

�uk
�uu

�����
(11)

p(xujxk) / expf �1

2
(xu � �uk�

�1

kk xk)
T�

(�uu � �uk�
�1

kk�ku)�1�
(xu � �uk�

�1

kkxk) g
(12)

x� =

�
xk
x̂u

�
=

"
xk

�uk�
�1

kk xk

#
(13)

Given a zero-mean Gaussian pdf as in Equation 11
we can split the data into known (xk) and unknown
(xu) components as shown. The conditional density
of the unknown components given the known ones is
displayed in Equation 12. The optimal linear estimate
of the unknown data (x�) is given by the conditional
mean as in Equation 13. For a mixture of weighted
eigenspaces, we can �nd the eigenspace regression for
each space individually using Equation 13, reconstruct
the scaled projections from there and sum them as in
Equation 3.

Thus, from known data, we can estimate unknown
facial components. This is demonstrated in Figure 9.
Note the ability to regress unknown 3D facial struc-
ture from only the texture map of the 3D model. We
shall now describe a system for automatically gener-
ating these canonical texture components of the data
from a live video source. Ultimately, we should be
able to apply a similar regression to a video image if
we stabilize and generate a normalized facial texture.
This texture could then be used to obtain a 3D model
as shown above.

6 Tracking and Texture Stabilization
The face tracking system used to stabilize the 3D

texture map is composed of two stages: an automatic
detection system and a closed loop feedback tracking

3D EIGENHEAD

FROM MOTION
STRUCTURE

TRACKING
FEATURE

MODELING

30 HZ

TRACKINGDETECTION

DFFS < TDFFS > T

0.5 HZ

3D NORMALIZATIONOPERATIONS
SYMMETRY

CLASSIFICATION
SKIN

FACE SPACE
DISTANCE FROM

Figure 10: Face Tracking System

system as displayed in Figure 10. Note the fast face
tracking loop and the slower face detection loop. The
system switches between these two modes using eigen-
face measurements. If the object being tracked is a
face, tracking continues. However, if the object being
tracked is not face-like, reliable face detection is used
to search the whole image for a new face (see [7]).

6.1 Facial Feature Detection
Human skin forms a dense manifold in RGB color

space which makes it an easy feature to detect in im-
ages. We obtain multiple training samples of skin and
compute a mixture of Gaussians on the RGB values
(using EM). When a new image is acquired, the like-
lihood of each pixel is evaluated using the pdf to label
the pixel as skin or non-skin. Then, a connected com-
ponent analysis is used to group skin pixels into a large
skin region.

Using the detected skin contour, a window can be
de�ned which is expected to contain the eyes. We
then use the dark symmetry transform [3] [9] [6] as
an eye detector. This is an annular sampling region
which detects perceptually signi�cant edge con�gura-
tions that enclose an object. Dark axial symmetry is
computed from a phase and edge map by wave propa-
gation and subsequently we compute dark radial sym-
metry. The peaks of dark radial symmetry are used as
candidates for eye positions. Horizontal limb extrac-
tion is performed on the axial symmetry to �nd the
mouth. Additionally, a coarse estimate for the nose's
vertical location is found by searching for the strongest
vertical gradient between the eyes and mouth.

At this stage, a variety of candidates have been
detected as possible facial features. Several eye loci,
mouth loci and many nose loci are generated. These
candidates must be accurately evaluated to select the
best localization.

6.2 Evaluating Localization via an
Eigenspace of 3D Normalized Faces

The system considers each possible set of facial fea-
ture candidates that was generated previously. Each
combination is evaluated to determine how face-like it
is. This is done by aligning a 3D facial model (i.e. the
average 3D Cyberware head) to the candidate facial
features (which act as anchor points). The head is tex-
ture mapped and rotated into frontal view, projecting

(a) Initial Localization (b) Final Localization
1 2 3 4 5 6 7 8 9 10 11 12

.49 .34 .35 .34 .32 .43 .36 .32 .19 .16 .17 .24
(c) Mug-shots & DFFS for Trial Noses

Figure 11: Pruning Localizations

Figure 12: Initialized Correlation Trackers

a head-on mug-shot. This process (followed by the his-
togramming described earlier) generates a normalized
mug-shot face. We can then use a 2D eigenspace of
frontal faces to compute a `distance-to-face-space'[8]
and note how face-like that projection was. The more
face-like a normalized mug-shot seems, the more likely
the original 4 candidate anchor points corresponded to
correct facial features (eyes, nose and mouth).

For instance, take Figure 11(a). The system has
a candidate for two eyes, one mouth and 12 candi-
dates for the nose (along a line). Thus, we attempt
12 di�erent normalizations and eigenspace projections
along the horizontal line across the nose's bottom (Fig-
ure 11(c)). The mug-shot with the minimal DFFS (#
10) corresponds to the best possible nose localization
(Figure 11(b)).

6.3 2D Feature Tracking
We now describe the tracking algorithm which

tracks the facial features as the face undergoes large
3D variations [7]. After having determined the loca-
tions of facial features in the image as explained above,
it is now possible to de�ne a number of windows on
the face which will be used for template matching via
SSD or normalizaed correlation [5]. Eight tracking
windows are initialized on the nose, mouth corners
and the eyes as shown in Figure 12. From frame to
frame, a linear approximation of the behavior of the
image patch under small translation, scaling and ro-
tation perturbations can be used to recover the 2D
motion of the patch.

However, the 8 trackers follow the face individually

T

α 1...N

β

X

Y

^

^

y
2D Features

Residuals Constrained 2D Features
y

X

R Adaptive
Noise Matrix

X̂

H

ω
xyz
xy

EIGENSPACE

KALMAN
EXTENDED

FILTER

SfM

POINT-WISE
STRUCTURE

z
yz

xyz
x

ω
T

α 1...N

β

Figure 13: Constrained, Adaptive SfM

and are fundamentally spanning only 2D variations.
So, they may stray o� course under 3D changes and
occlusion. What is desired is a global framework that
overcomes some of the di�culties inherent in simple
2D tracking by coupling the individual trackers to a
global 3D structure. Structure from motion is com-
puted online as the 2D feature trackers follow the face
and is then fed back to constrain their individual be-
havior and avoid feature loss.

6.4 Structure from Motion
In [2], structure from motion has been reformu-

lated into a stable recursive estimation problem and
been shown to converge reliably. The SfM algorithm
is implemented as an extended Kalman �lter which
recovers an internal state vector x. This state vector
contains the translation (tX ; tY ; tZ�), focal length (�)
and the incremental Euler angles (!X ; !Y ; !Z). The
point-wise depth of each facial feature, (�1; :::; �N) is
also recovered in x. The input to the Kalman �l-
ter is the 2D feature locations (X1; Y1; :::; XN ; YN) at
each time step. These form the observation vector, y.
Unlike some other formulations which are underdeter-
mined at every time step, the above parameterization
is well-posed and, when 7 or more 2D feature points
are being tracked, a well-constrained solution can be
found recursively.

For each frame, we also compute an appropriate
weighting of the tracked features which depends on
the current orientation and scale of the correlation
trackers, their residual values and the spatial sensi-
tivity characteristics of their corresponding texture
[7]. Thus, the Kalman �lter is adaptive and dynami-
cally changes its con�dence in the 2D feature tracking
(via the noise covariance matrix R). In addition, the
point-wise depth structure (�i) is constrained by an
eigenspace of structure formed by analyzing Cyber-
ware depth data over the points we are tracking. So,
the SfM is specialized and constrained to estimate fa-
cial structure as in Figure 13 [7].

6.5 System Integration and Feedback
We now go over the implementation details of the

system integration and the feedback process. The sys-
tem begins with the face detection loop and repeats
until a face is detected (i.e. satis�es a threshold on
distance from face-space). The facial features detected
are eyes, nose and mouth. From these features, a set
of template windows can be placed on the face. These

(a) Subject's 3D Scan (b) Mean 3D Head

acquire the underlying texture and then begin track-
ing the face patch by minimizing the SSD error.

Simultaneously, at each iteration, the Kalman �lter
computes an estimate of the rigid 3D structure that
could correspond to the motion recovered by the set
of 2D SSD trackers. This global estimate is weighted
using the noise characteristics and residuals of the in-
dividual 2D trackers. The EKF's 3D structural esti-
mate is �ltered using an eigenspace of 3D head shape.
The �ltered 3D structure, motion and focal length are
used to projected feature points back onto the image
to predict the constrained position of the 2D feature
trackers in the next time step. The feedback from the
adaptive Kalman �lter maintains a sense of 3D struc-
ture and enforces a global collaboration between the
separate 2D trackers.

In addition, at each iteration, the orientation of the
face is computed and is used to warp the face im-
age back into frontal view to compute distance to face
space. If DFFS is below a threshold, tracking contin-
ues. Otherwise, the system reverts back to the initial
detection stage.

7 Testing Tracking and Modeling
Figure 14 shows a real-time live video sequence

where the subject was tracked stably (using an SGI
O2). Initialization of the tracking took under 2 sec-
onds and the user underwent translations, in and out-
of-plane rotations and facial deformations which were
tracked at 30Hz ((a)-(d)(i)). The system maintained
a stabilized canonical cylindrical texture map ((a)-
(d)(ii)) which was used to regress the 3D structure
using the mixture of eigenfeatures. The dynamically
estimated 3D structure is shown in frontal and side
view ((a)-(d) (iii) & (iv)). For comparison, we also
show the mean 3D face and the subject's Cyberware
scanned face (the subject was scanned once into the
training data) in Figure 7.

Note the model's ability to span deformations as the
user opens his mouth in (b). The modularity of the
eigenspace allows the mouth component to vary its lo-
cal structure independently of other parts of the face.
A single global eigenspace, in comparison, would re-
quire more training examples of possible combinations
of mouths and faces to span the independent mouth
deformation. The mouth's expression is also consis-
tent with the slight smile in (a), the closed mouth
in (c) and the mouth in (d). Some sensitivity to di-
rectional shading can be seen from the results. Note
the out-of-plane rotation in (c) and in-plane rotation
in (d) do not a�ect the estimation of structure too
severely. The 3D structures estimated still bear the
likeness of the subject throughout the sequence even
though each structure was computed independently
and no temporal integration of structural estimates is

(i) (ii) (i) (ii) (i) (ii) (i) (ii)

(iii) (iv) (iii) (iv) (iii) (iv) (iii) (iv)
(a) (b) (c) (d)

Figure 14: Real-Time Tracking and Structure Estimation from Video

being used. The independent 3D estimates of struc-
ture are being updated at 30Hz and are parametrized
by 80 scalar values (the eigenspace coe�cients); the
3D translation and rotation quaternions are also es-
timated. This permits the use of the technique for
real-time very low bandwidth 3D rendering or as an
input to a higher level face and gesture recognition
system.

8 Future Work
Currently, we are investigating combining the struc-

tural estimate at each frame with estimates from pre-
vious frames (via a Kalman Filter). Thus, the struc-
ture and texture knowledge over the whole tracking
sequence can be integrated to obtain a more accurate
and temporally stable model. In addition, we are in-
vestigating feeding back the recovered facial structure
into the normalization algorithm which can use it (in-
stead of the average head's facial structure) to warp
the face into canonical con�guration. This could yield
a higher �delity reconstruction as the normalization
and the 3D structural estimate simultaneously con-
verge to the true face model from the video sequence.
We are also accumulating a larger database which
should yield better eigenvectors and more structural
deformation and detail (only 30 Cyberware heads were
used for the displayed results).

9 Conclusions
We have demonstrated a fully integrated face track-

ing and modeling system. The system utilizes a sta-
tistical model of the correlations between facial struc-
ture and texture to regress unknown components of
the face from those that are currently visible in the
video image. The face tracking system maintains a
real-time stabilized cylindrical texture map of the face
in the image. This is done by automatically detecting
the facial features and tracking them using closed loop
structure-from-motion feedback. A statistical model-
ing system based on a mixture of eigenfeatures is pro-
posed and trained using an iterative algorithm. It is
then used to regress the 3D structure from the given
stabilized texture. This generates a full 3Dmodel from

the image frame which is a compact description of the
facial structure and deformations and dynamically up-
dates in real-time.

Acknowledgements
Thanks to Jill Smith at Headus, Jennifer White-

stone at Wright-Patterson Air Force Base, Brian Cor-
ner and Bob Kinney at Natick Army Labs and Tom
Minka for their collaboration.

References
[1] J. Atick, P. Gri�n, and N. Redlich. Statistical

approach to shape from shading: Reconstruction
of three-dimensional face surfaces from single two-
dimensional images. Neural Computation, 8, 1997.

[2] A. Azarbayejani and A. Pentland. Recursive estima-
tion of motion, structure and focal length. IEEE Pat-

tern Analysis and Machine Intelligence, June 1995.
[3] M. Bolduc, G. Sela, and M. Levine. Fast computation

of multiscalar symmetry in foveated images. In Pro-

ceedings of the Conference on Computer Architectures

for Machine Perception, pages 2{11, 1995.
[4] D. DeCarlo and D. Metaxas. Deformable model-based

face shape and motion estimation. In International

Conference on Automatic Face and Gesture Recogni-

tion, pages 146{160, October 1996.
[5] G. Hager and P. Belhumeur. Real time tracking of im-

age regions with changes in geometry and illumination.
In CVPR96, pages 403{410, 1996.

[6] T. Jebara. 3D Pose Estimation and Normalization for

Face Recognition. McGill Centre for Intelligent Ma-
chines. McGill University, 1996. Bachelor's Thesis.

[7] T. Jebara and A. Pentland. Parameterized structure
from motion for 3d adaptive feedback tracking of faces.
In CVPR97, pages 144{150, 1997.

[8] B. Moghaddam and A. Pentland. Probabilistic visual
learning for object detection. In ICCV95, pages 786{
793, 1995.

[9] D. Reisfeld and Y. Yeshurun. Robust detection of facial
features by generalized symmetry. In ICPR92, pages
I:117{120, 1992.

