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1 Inference

CPM comprises a spatial component, which represents the inferred place clusters, and a tempo-
ral component, which represents the inferred place distributions for each weekhour. The model is
depicted in Figure 1.

Figure 1: Graphical model representation of CPM. The geographic coordinates, denoted by `, are the only
observed variables. The model assumes that all users share the same coefficients over the component place
distributions.

We present the derivation of our inference algorithm in multiple steps. First, we use a strategy
popularized by Griffiths and Steyvers [1], and derive a collapsed Gibbs sampler to sample from the
posterior distribution of the categorical random variables conditioned on the observed geographic
coordinates. Second, we derive the conditional likelihood of the posterior samples, which we use to
determine the sampler’s convergence. Finally, we derive formulas for approximating the posterior
expectations of the non-categorical random variables conditioned on the posterior samples.
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1.1 Collapsed Gibbs Sampler

In Lemmas 1 and 2, we derive the collapsed Gibbs sampler for variables z and y, respectively.

Given a vector x and an index k, let x�k indicate all the entries of the vector excluding the one at
index k. For Lemmas 1 and 2, assume i = (u,w, n) denotes the index of the variable that will be
sampled.

Lemma 1. The unnormalized probability of zi conditioned on the observed location data and re-

maining categorical variables is
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k are defined in the proof. t denotes the bivariate t-distribution
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Proof. We decompose the probability into two components using Bayes’ theorem:
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In the first part of the derivation, we operate on (1). We augment it with � and ⌃:
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below, we treat all variables other than �
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Since the normal-inverse-Wishart distribution is the conjugate prior of the multivariate normal dis-
tribution, the posterior is also a normal-inverse-Wishart distribution,
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The posterior parameters depicted above are derived based on the conjugacy properties of Gaussian
distributions, as described in [2]. We rewrite (1) by combining (3), (4), and (5) to obtain
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where t is the bivariate t-distribution. (6) is derived by applying Equation 258 from [2].

Now, we move onto the second part of the derivation. We operate on (2) and augment it with ✓:

p

�

zi = k | yi = f, z�i,y�i

�

=

ˆ
p

⇣

zi = k | yi = f, z�i,y�i,✓
f
u

⌘

p

⇣

✓

f
u | yi = f, z�i,y�i

⌘

d✓

f
u

=

ˆ
p

⇣

zi = k | yi = f,✓

f
u

⌘

(7)

⇥p

⇣

✓

f
u | yi = f,y�i, z�i

⌘

d✓

f
u. (8)

We convert (8) into a more tractable form. As before, let ˜
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where the last step follows because Dirichlet distribution is the conjugate prior of the categorical
distribution. We rewrite (2) by combining (7), (8), and (9):
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The last step follows because it is the expected value of the Dirichlet distribution.
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Finally, we combine (1), (2), (6), and (10) to obtain the unnormalized probability distribution:
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Lemma 2. The unnormalized probability of yi conditioned on the observed location data and re-

maining categorical variables is
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where the last step follows because Dirichlet distribution is the conjugate prior of the categorical
distribution. We rewrite (12) by combining (14), (15), and (16):
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Finally, we combine (11), (12), (13), and (17) to obtain the unnormalized probability distribution:
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1.2 Likelihoods

In this subsection, we derive the conditional likelihoods of the posterior samples conditioned on the
observed geographical coordinates. We use these conditional likelihoods to determine the sampler’s
convergence.

We present the derivations in multiple lemmas and combine them in a theorem at the end of the
subsection. Let � denote the gamma function.
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·,w are defined in the appendix.

Proof. Let � = (�1, . . . ,�W ) denote the collection of random variables for all weekhours. Below,
we will augment the marginal probability with �, and then factorize it based on the conditional
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independence assumptions made by our model:
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defined in more detail in the appendix:
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factorize it based on the conditional independence assumptions made by our model:
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Now, we substitute the probabilities in (19) with Dirichlet and categorical distributions, which are
defined in more detail in the appendix:
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f=1

ˆ 0
@DirichletKu

⇣

✓

f
u | ↵

⌘

Y

j2M ·,f
u,·

Categorical
⇣

zj | ✓f
u

⌘

1

A

d✓

f
u

=

U
Y

u=1

F
Y

f=1

ˆ  
1

B (↵)

Ku
Y

k=1

⇣

✓

f
u,k

⌘↵�1
! 

Ku
Y

k=1

⇣

✓

f
u,k

⌘mk,f
u,·

!

d✓

u
f

=

U
Y

u=1

F
Y

f=1

ˆ  
1

B (↵)

Ku
Y

k=1

⇣

✓

f
u,k

⌘↵�1+mk,f
u,·

!

d✓

u
f

=

U
Y

u=1

F
Y

f=1

1

B (↵)

B

�

↵+m

1,f
u,· , . . . ,↵+m

Ku,f
u,·

�

=

U
Y

u=1

F
Y

f=1

� (↵Ku)

Ku
Q

k=1
�

⇣

↵+m

k,f
u,·

⌘

� (↵)

Ku
�

⇣

↵Ku +m

·,f
u,·

⌘

.

For our final derivation, let �2 denote the bivariate gamma function, and let |·| denote the determi-
nant.

Lemma 5. The conditional probability of the observed locations ` conditioned on z and y is

p (` | z,y) =
U
Y

u=1

Ku
Y

k=1

�2

⇣

v̂u
k
2

⌘

|⇤k|
⌫
2
p

u
k

⇡

mk,·
u,·
�2

�

⌫
2

�

�

�

�

ˆ⇤
k

u

�

�

�

v̂u
k
2

p̂

u
k

.

The parameters v̂

u
k ,

ˆ⇤
k

u, and p̂

u
k are defined in the proof, and the counts m

k,·
u,· are defined in the

appendix.
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Proof. We will factorize the probability using the conditional independence assumptions made by
the model, and then simplify the resulting probabilities by integrating out the means and covariances
associated with the place clusters:

p (` | z,y) = p (` | z)

=

U
Y

u=1

Ku
Y

k=1

p

⇣

`Mk,·
u,·

| z
⌘

=

U
Y

u=1

Ku
Y

k=1

ˆ ˆ
p

⇣

`Mk,·
u,·

| z,�k
u,⌃

k
u

⌘

p

⇣

�

k
u,⌃

k
u

⌘

d�

k
u d⌃

k
u

=

U
Y

u=1

Ku
Y

k=1

ˆ ˆ
p

⇣

�

k
u,⌃

k
u

⌘

Y

j2Mk,·
u,·

p

⇣

`j | zj ,�k
u,⌃

k
u

⌘

d�

k
u d⌃

k
u

=

U
Y

u=1

Ku
Y

k=1

ˆ ˆ
N
 

�

k
u | µu,

⌃k
u

p

u
k

!

IW

⇣

⌃k
u | ⇤k, v

⌘

(20)

⇥
Y

j2Mk,·
u,·

N
⇣

`j | �k
u,⌃

k
u

⌘

d�

k
u d⌃

k
u.

We apply Equation 266 from [2], which describes the conjugacy properties of Gaussian distributions,
to reformulate (20) into its final form:

p (` | z,y) =

U
Y

u=1

Ku
Y

k=1

ˆ ˆ
N
 

�

k
u | µu,

⌃k
u

p

u
k

!

IW

⇣

⌃k
u | ⇤k, v

⌘

Y

j2Mk,·
u,·

N
⇣

`j | �k
u,⌃

k
u

⌘

d�

k
u d⌃

k
u

=

U
Y

u=1

Ku
Y

k=1

�2

⇣

v̂u
k
2

⌘

|⇤k|
⌫
2
p

u
k

⇡

mk,·
u,·
�2

�

⌫
2

�

�

�

�

ˆ⇤
k

u

�

�

�

v̂u
k
2

p̂

u
k

.

The definitions for v̂uk , ˆ⇤
k

u, and p̂

u
k are provided in (5).

Finally, we combine Lemmas 3, 4, and 5 to provide the log-likelihood of the samples z and y

conditioned on the observations `.
Lemma 6. The log-likelihood of the samples z and y conditioned on the observations ` is

log p (z,y | `) =

0

@

W
X

w=1

F
X

f=1

log�

�

�w,f +m

·,f
·,w
�

1

A

+

0

@

U
X

u=1

F
X

f=1

 

� log�

�

↵Ku +m

·,f
u,·
�

+

Ku
X

k=1

log�

�

↵+m

k,f
u,·
�

!

1

A

+

 

U
X

u=1

Ku
X

k=1

✓

log�2

✓

v̂

u
k

2

◆

�m

k,·
u,· log ⇡ � v̂

u
k

2

log

�

�

�

ˆ⇤
k

u

�

�

�

� log p̂

u
k

◆

!

+ C,

where C denotes the constant terms.

Proof. The result follows by multiplying the probabilities stated in Lemmas 3, 4, and 5, and applying
the logarithm function.

1.3 Parameter estimation

In Subsection 1.1, we described a collapsed Gibbs sampler for sampling the posteriors of the cate-
gorical random variables. Below, Lemmas 7, 8, and 9 show how these samples, denoted as y and z,
can be used to approximate the posterior expectations of �, ✓, �, and ⌃.
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Lemma 7. The expectation of � given the observed geographical coordinates and the posterior

samples is

�̂w,f = E [�w,f | y, z, `] = �w,f +m

·,f
·,w

P

f

⇣

�w,f +m

·,f
·,w

⌘

,

where the counts m

·,f
·,w are defined in the appendix.

Proof.

p (�w | y, z, `) = p

⇣

�w | yM ·,·
·,w

⌘

=

p

⇣

yM ·,·
·,w

| �w

⌘

p (�w)

p

⇣

yM ·,·
·,w

⌘

=

p (�w)
Q

j2M ·,·
·,w

p (yj | �w)

p

⇣

yM ·,·
·,w

⌘

/ DirichletF (�w | �w)

Y

j2M ·,·
·,w

Categorical (yj | �w)

= DirichletF
�

�w | �w,1 +m

·,1
·,w, . . . ,�w,F +m

·,F
·,w
�

=) �̂w,f = E [�w,f | y, z, `] =

�w,f +m

·,f
·,w

P

f

⇣

�w,f +m

·,f
·,w

⌘

.

Lemma 8. The expectation of ✓ given the observed geographical coordinates and the posterior

samples is

ˆ

✓

f
u,k = E

h

✓

f
u,k | y, z, `

i

=

↵+m

k,f
u,·

Ku↵+m

·,f
u,·

,

where the counts m

k,f
u,· and m

·,f
u,· are defined in the appendix.

Proof.

p

⇣

✓

f
u | y, z, `

⌘

= p

⇣

✓

f
u | y, z

⌘

= p

⇣

✓

f
u | zM ·,f

u,·
,y

⌘

=

p

⇣

zM ·,f
u,·

| ✓f
u,y

⌘

p

⇣

✓

f
u | y

⌘

p

⇣

zM ·,f
u,·

| y
⌘

=

p

⇣

✓

f
u

⌘

Q

j2M ·,f
u,·

p

⇣

zj | ✓f
u,y

⌘

p

⇣

zM ·,f
u,·

| y
⌘

/ DirichletKu

⇣

✓

f
u | ↵

⌘

Y

j2M ·,f
u,·

Categorical
⇣

zj | ✓f
u

⌘

= DirichletKu

⇣

✓

f
u | ↵+m

1,f
u,· , . . . ,↵+m

Ku,f
u,·

⌘

=) ˆ

✓

f
u,k = E

h

✓

f
u,k | y, z, `

i

=

↵+m

k,f
u,·

Ku↵+m

·,f
u,·

.
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Lemma 9. The expectations of � and ⌃ given the observed geographical coordinates and the

posterior samples is

ˆ

�

k

u = E
h

�

k
u | y, z, `

i

=

ˆ

µ

u
k

and

ˆ⌃
k

u = E
h

⌃k
u | y, z, `

i

=

ˆ⇤
k

u

v̂

u
k � 3

.

Parameters

ˆ

µ

u
k ,

ˆ⇤
k

u, and v̂

u
k are defined in the proof of Lemma 1.

Proof.

p

⇣

�

k
u,⌃

k
u | y, z, `

⌘

= p

⇣

�

k
u,⌃

k
u | z, `

⌘

= p

⇣

�

k
u,⌃

k
u | z, `Mk,·

u,·

⌘

=

p

⇣

`Mk,·
u,·

| �k
u,⌃

k
u, z

⌘

p

⇣

�

k
u,⌃

k
u | z

⌘

p

⇣

`Mk,·
u,·

| z
⌘

=

Q

j2Mk,·
u,·

p

⇣

`j | �k
u,⌃

k
u, z

⌘

p

⇣

�

k
u,⌃

k
u

⌘

p

⇣

`Mk,·
u,·

| z
⌘

=

N
⇣

�

k
u | µu,

⌃k
u

pu
k

⌘

IW

⇣

⌃k
u | ⇤k, v

⌘

Q

j2Mk,·
u,·

N
⇣

`j | �k
u,⌃

k
u

⌘

p

⇣

`Mk,·
u,·

| z
⌘

/ N
 

�

k
u | µu,

⌃k
u

p

u
k

!

IW

⇣

⌃k
u | ⇤k, v

⌘

Y

j2Mk,·
u,·

N
⇣

`j | �k
u,⌃

k
u

⌘

=) p

⇣

�

k
u,⌃

k
u | y, z, `

⌘

= N
 

�

k
u | ˆµu

k ,
⌃k

u

p̂

u
k

!

IW

⇣

⌃k
u | ˆ⇤

k

u, v̂
u
k

⌘

=) p

⇣

�

k
u | y, z, `

⌘

= tv̂u
k�1

 

�

k
u | ˆµu

k ,

ˆ⇤
k

u

p̂

u
k (v̂

u
k � 1)

!

=) ˆ

�

k

u = E
h

�

k
u | y, z, `

i

=

ˆ

µ

u
k

=) p

⇣

⌃k
u | y, z, `

⌘

= IW

⇣

⌃k
u | ˆ⇤

k

u, v̂
u
k

⌘

=) ˆ⌃
k

u = E
h

⌃k
u | y, z, `

i

=

ˆ⇤
k

u

v̂

u
k � 3

.

2 Appendix

2.1 Miscellaneous notation

Throughout the paper, we use various notations to represent sets of indices and their cardinalities.
Vectors y and z denote the component and place assignments in CPM, respectively. Each vector
entry is identified by a tuple index (u,w, n), where u 2 {1, . . . , U} is a user, w 2 {1, . . . ,W} is a
weekhour, and n 2 {1, . . . , Nu,w} is an iteration index.

For the subsequent notations, we assume that the random variables y and z are already sampled. We
refer to a subset of indices using
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M

k0,f0
u0,w0

= {(u,w, n) | zu,w,n = k0, yu,w,n = f0, u = u0, w = w0} ,
where u0 denotes the user, w0 denotes the weekhour, k0 denotes the place, and f0 denotes the
component. If we want the subset of indices to be unrestricted with respect to a category, we use the
placeholder “·”. For example,

M

·,f0
u0,w0

= {(u,w, n) | yu,w,n = f0, u = u0, w = w0}

has no constraints with respect to places.

Given a subset of indices denoted by M , the lowercase m = |M | denotes its cardinality. For
example, given a set of indices

M

·,f0
u0,· = {(u,w, n) | yu,w,n = f0, u = u0} ,

its cardinality is
m

·,f0
u0,· =

�

�

M

·,f0
u0,·
�

�

.

For the collapsed Gibbs sampler, the sets of indices and cardinalities used in the derivations exclude
the index that will be sampled. We use “⇠” to modify sets or cardinalities for this exclusion. Let
(u,w, n) denote the index that will be sampled, then given an index set M , let ˜

M = M�{(u,w, n)}
represent the excluding set and let m̃ =

�

�

�

˜

M

�

�

�

represent the corresponding cardinality. For example,

˜

M

·,f0
u0,· = M

·,f0
u0,· � {(u,w, n)}

and
m̃

·,f0
u0,· =

�

�

�

˜

M

·,f0
u0,·

�

�

�

.

In the proof of Lemma 1, parameters ṽuk , ˜µu
k , ˜⇤

k
u, and p̃

u
k are defined using cardinalities that exclude

the current index (u,w, n). Similarly, in the proof of Lemma 9, parameters ˆ

µ

u
k , ˆ⇤

k

u, and v̂

u
k are

defined like their wiggly versions, but the counts used in their definitions do not exclude the current
index.

We define additional notation to represent the sufficient statistics used by the learning algorithm. Let
i = (u,w, n) denote an observation index. Then,

S

u
k =

X

i2Mk,·
u,·

`i

denotes the sum of the observed coordinates that have been assigned to user u and place k. Similarly,

P

u
k =

X

i2Mk,·
u,·

`i`
T
i

denotes the sum of the outer products of the observed coordinates that have been assigned to user u
and place k.

2.2 Probability distributions

Let �2 denote a bivariate gamma function, defined as

�2 (a) = ⇡

1
2

2
Y

j=1

�

✓

a+

1� j

2

◆

.

Let ⌫ > 1 and let ⇤ 2 R2⇥2 be a positive definite scale matrix. The inverse-Wishart distribution,
which is the conjugate prior to the multivariate normal distribution, is defined as

IW (⌃ | ⇤, ⌫) =

|⇤|
⌫
2

2

⌫
�2

�

⌫
2

� |⌃|
�⌫�3

2
exp

✓

�1

2

tr

�

⇤⌃�1�
◆

.
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Let ⌃ 2 R2⇥2 be a positive definite covariance matrix and let µ 2 R2 denote a mean vector. The
multivariate normal distribution is defined as

N (` | µ,⌃) = (2⇡)

�1 |⌃|�
1
2
exp

✓

�1

2

(`� µ)

T ⌃�1
(`� µ)

◆

.

Let ⌫ > 1 and let ⌃ 2 R2⇥2, then the 2-dimensional t-distribution is defined as

tv (x | µ,⌃) =
�

�

⌫
2 + 1

�

�

�

⌫
2

�

|⌃|�
1
2

⌫⇡

✓

1 +

1

⌫

(x� µ)

T
⌃

�1
(x� µ)

◆� ⌫
2�1

.

Let K > 1 be the number of categories and let ↵ = (↵1, . . . ,↵K) be the concentration parameters,
where ↵k > 0 for all k 2 {1, . . . ,K}. Then, the K-dimensional Dirichlet distribution, which is the
conjugate prior to the categorical distribution, is defined as

DirichletK (x | ↵) =

1

B (↵)

K
Y

k=1

x

↵k�1
k ,

where

B (↵) =

K
Q

k=1
� (↵k)

�

✓

K
P

k=1
↵k

◆ .

We abuse the Dirichlet notation slightly and use it to define the K-dimensional symmetric Dirichlet
distribution as well. Let � > 0 be a scalar concentration parameter. Then, the symmetric Dirichlet
distribution is defined as

DirichletK (x | �) = DirichletK (x | ↵1, . . . ,↵K) ,

where � = ↵k for all k 2 {1, . . . ,K}.
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