
A multi-agent control framework for co-adaptation in
brain-computer interfaces

∗Josh Merel1, ∗Roy Fox2, Tony Jebara3, Liam Paninski4
1Department of Neurobiology and Behavior, 3Department of Computer Science,

4Department of Statistics, Columbia University, New York, NY 10027
2School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel

jsm2183@columbia.edu, royf@cs.huji.ac.il,
jebara@cs.columbia.edu, liam@stat.columbia.edu

Abstract

In a closed-loop brain-computer interface (BCI), adaptive decoders are used to
learn parameters suited to decoding the user’s neural response. Feedback to the
user provides information which permits the neural tuning to also adapt. We
present an approach to model this process of co-adaptation between the encod-
ing model of the neural signal and the decoding algorithm as a multi-agent for-
mulation of the linear quadratic Gaussian (LQG) control problem. In simulation
we characterize how decoding performance improves as the neural encoding and
adaptive decoder optimize, qualitatively resembling experimentally demonstrated
closed-loop improvement. We then propose a novel, modified decoder update rule
which is aware of the fact that the encoder is also changing and show it can im-
prove simulated co-adaptation dynamics. Our modeling approach offers promise
for gaining insights into co-adaptation as well as improving user learning of BCI
control in practical settings.

1 Introduction

Neural signals from electrodes implanted in cortex [1], electrocorticography (ECoG) [2], and elec-
troencephalography (EEG) [3] all have been used to decode motor intentions and control motor
prostheses. Standard approaches involve using statistical models to decode neural activity to control
some actuator (e.g. a cursor on a screen [4], a robotic manipulator [5], or a virtual manipulator [6]).
Performance of offline decoders is typically different from the performance of online, closed-loop
decoders where the user gets immediate feedback and neural tuning changes are known to occur
[7, 8]. In order to understand how decoding will be performed in closed-loop, it is necessary to
model how the decoding algorithm updates and neural encoding updates interact in a coordinated
learning process, termed co-adaptation.

There have been a number of recent efforts to learn improved adaptive decoders specifically tailored
for the closed loop setting [9, 10]. In other contexts, emphasis has been placed on training users to
improve closed-loop control [11]. Some efforts towards modeling the co-adaptation process have
sought to model properties of different decoders when used in closed-loop [12, 13, 14], with em-
phasis on ensuring the stability of the decoder and tuning the adaptation rate. One recent simulation
study also demonstrated how modulating task difficulty can improve the rate of co-adaptation when
feedback noise limits performance [15]. However, despite speculation that exploiting co-adaptation
will be integral to state-of-the-art BCI [16], general models of co-adaptation and methods which
exploit those models to improve co-adaptation dynamics are lacking.

∗These authors contributed equally.

1



We propose that we should be able to leverage our knowledge of how the encoder changes in order
to better update the decoder. In the current work, we present a simple model of the closed-loop co-
adaptation process and show how we can use this model to improve decoder learning on simulated
experiments. Our model is a novel control setting which uses a split Linear Quadratic Gaussian
(LQG) system. Optimal decoding is performed by Linear Quadratic Estimation (LQE), effectively
the Kalman filter model. Encoding model updates are performed by the Linear Quadratic Regulator
(LQR), the dual control problem of the Kalman filter. The system is split insofar as each agent has
different information available and each performs optimal updates given the state of the other side
of the system. We take advantage of this model from the decoder side by anticipating changes in
the encoder and pre-emptively updating the decoder to match the estimate of the further optimized
encoding model. We demonstrate that this approach can improve the co-adaptation process.

2 Model framework

2.1 Task model

For concreteness, we consider a motor-cortical neuroprosthesis setting. We assume a naive user,
placed into a BCI control setting, and propose a training scheme which permits the user and decoder
to adapt. We provide a visual target cue at a 3D location and the user controls the BCI via neural sig-
nals which, in a natural setting, relate to hand kinematics. The target position is moved each timestep
to form a trajectory through the 3D space reachable by the user’s hand. The BCI user receives visual
feedback via the displayed location of their decoded hand position. The user’s objective is to control
their cursor to be as close to the continuously moving target cursor as possible. A key feature of this
scheme is that we know the “intention” of the user, assuming it corresponds to the target.

The complete graphical model of this system is provided in figure 1. xt in our simulations is a three
dimensional position vector (Cartesian Coordinates) corresponding to the intended hand position.
This variable could be replaced or augmented by other variables of interest (e.g. velocity). We
randomly evolve the target signal using a linear-Gaussian drift model (eq. (1)). The neural encoding
model is linear-Gaussian in response to intended position xt and feedback x̂t−1 (eq. (2)), giving
a vector of neural responses ut (e.g. local field potential or smoothed firing rates of neural units).
Since we do not observe the whole brain region, we must subsample the number of neural units
from which we collect information. The transformation C is conceptually equivalent to electrode
sampling and yt is the observable neural response vector via the electrodes (eq. (3)). Lastly, x̂t is
the decoded hand position estimate, which also serves as visual feedback (eq. (4)).

xt = Pxt−1 + ξt; ξt ∼ N (0, Q) (1)
ut = Axt +Bx̂t−1 + ηt; ηt ∼ N (0, R) (2)
yt = Cut + εt; εt ∼ N (0, S) (3)
x̂t = Fyt +Gx̂t−1. (4)

xt

ut

yt

x̂tx̂t−1

xt+1

ut+1

yt+1

x̂t+1

A

B

C

F
G

P

A

B

C

F
G

Figure 1: Graphicalmodel relating target sig-
nal (xt), neural response (ut), electrode ob-
servation of neural response (yt), and de-
coded feedback signal (x̂t).

During training, the decoding system is allowed ac-
cess to the target position, interpreted as the real in-
tention xt. The decoded x̂t is only used as feedback,
to inform the user of the gradually learned dynamics
of the decoder. After training, the system is tested
on a task with the same parameters of the trajectory
dynamics, but with the actual intention only known
to the user, and hidden from the decoder. A natural
objective is to minimize tracking error, measured as
accumulated mean squared error between the target
and neurally decoded pose over time.

For contemporary BCI applications, the Kalman fil-
ter is a reasonable baseline decoder, so we do not
consider even simpler models. However, for other
applications one might wish to consider a model in
which the state at each timestep is encoded indepen-

dently. It is possible to find a closed form for the optimal encoder and decoder that minimizes the
error in this case [17, 18].

2



Sections 2.2 and 2.3 describe the model presented in figure 1 as seen from the distinct viewpoints
of the two agents involved – the encoder and the decoder. The encoder observes xt and x̂t−1, and
selects A and B to generate a control signal ut. The decoder observes yt, and selects F and G
to estimate the intention as x̂t. We assume that both agents are free to performed unconstrained
optimization on their parameters.

2.2 Encoding model and optimal decoder

Our encoding model is quite simple, with neural units responding in a linear-Gaussian fashion to
intended position xt and feedback x̂t−1 (eq. (2)). This is a standard model of neural responses for
BCI. The matrices A and B effectively correspond to the tuning response functions of the neural
units, and we will allow these parameters to be adjusted under the control of the user. The matrix
C corresponds to the observation of the neural units by the electrodes, so we treat it as fixed (in our
case C will down-sample the neurons). For this paper, we assume noise covariances are fixed and
known, but this can be generalized. Given the encoder, the decoder will estimate the intention xt,
which follows a hidden Markov chain (eq. (1)). The observations available to the decoder are the
electrode samples yt (eq. (2) and (3))

yt = CAxt + CBx̂t−1 + ε
′

t; ε′t ∼ N (0, RC) (5)
RC = CRCT + S. (6)

Given all the electrode samples up to time t, the problem of finding the most likely hidden intention
is a Linear-Quadratic Estimation problem (figure 2), and its standard solution is the Kalman filter,
and this decoder is widely in similar contexts. To choose appropriate Kalman gain F and mean
dynamics G, the decoding system needs a good model of the dynamics of the underlying intention
process (P , Q of eq.(1)) and the electrode observations (CA, CB, and RC of eqs. (5) & (6)).
We can assume that P and Q are known since the decoding algorithm is controlled by the same
experimenter who specifies the intention process for the training phase. We discuss the estimation
of the observation model in section 4.

xt

yt

x̂tx̂t−1

xt+1

yt+1

x̂t+1

CA

CB
F

G

P

CA

CB
F

G

Figure 2: Decoder’s point of view – target
signal (xt) directly generates observed re-
sponses (yt), with the encoding model col-
lapsed to omit the full signal (ut). De-
coded feedback signal (x̂t) is generated by
the steady state Kalman filter.

xt

ut

x̂tx̂t−1

xt+1

ut+1

x̂t+1

A

B
FC

G

P

A

B
FC

G

Figure 3: Encoder’s point of view – target sig-
nal (xt) and decoded feedback signal (x̂t−1)
generate neural response (ut). Model of de-
coder collapses over responses (yt) which are
unseen by the encoder side.

Given an encoding model, and assuming a very long horizon 1, there exist standard methods to
optimize the stationary value of the decoder parameters [19]. The stationary covariance Σ of xt

given x̂t−1 is the unique positive-definite fixed point of the Riccati equation

Σ = PΣPT − PΣ(CA)T (RC + (CA)Σ(CA)T )−1(CA)ΣPT +Q. (7)

The Kalman gain is then

F = Σ(CA)T ((CA)Σ(CA)T +RC)
−1 (8)

with mean dynamics
G = P − F (CA)P − F (CB). (9)

1Our task is control of the BCI for arbitrarily long duration, so it makes sense to look for the stationary
decoder. Similarly the BCI user will look for a stationary encoder. We could also handle the finite horizon case
(see section 2.3 for further discussion).

3



We estimate x̂t using eq. (4), and this is the most likely value, as well as the expected value,
of xt given the electrode observations y1, . . . , yt. Using this estimate as the decoded intention is
equivalent to minimizing the expectation of a quadratic cost

clqe =
∑

t

1
2
‖xt − x̂t‖

2. (10)

2.3 Model of co-adaptation

At the same time as the decoder-side agent optimizes the decoder parameters F andG, the encoder-
side agent can optimize the encoder parametersA andB. We formulate encoder updates for the BCI
application as a standard LQR problem. This framework requires that the encoder-side agent has an
intention model (same as eq. (1)) and a model of the decoder. The decoder model combines eq. (3)
and (4) into

x̂t = FCut +Gx̂t−1 + Fεt. (11)

This model is depicted in figure 3. We assume that the encoder has access to a perfect estimate of the
intention-model parameters P and Q (task knowledge). We also assume that the encoder is free to
change its parameters A and B arbitrarily given the decoder-side parameters (which it can estimate
as discussed in section 4).

As a model of real neural activity, there must be some cost to increasing the power of the neural
signal. Without such a cost, the solutions diverge. We add an additional cost term (a regularizer),
which is quadratic in the magnitude of the neural response ut, and penalizes a large neural signal

clqr =
∑

t

1
2
‖xt − x̂t‖

2 + 1
2
uT
t R̃ut. (12)

Since the decoder has no direct influence on this additional term, it can be viewed as optimizing for
this target cost function as well. The LQR problem is solved similarly to eq. (7), by assuming a very
long horizon and optimizing the stationary value of the encoder parameters [19].

We next formulate our objective function in terms of standard LQR parameters. The control depends
on the joint process of the intention and the feedback (xt, x̂t−1), but the cost is defined between xt

and x̂t. To compute the expected cost given xt, x̂t−1 and ut, we use eq. (11) to get
E ‖x̂t − xt‖

2 = ‖FCut +Gx̂t−1 − xt‖
2 + const (13)

= (Gx̂t−1 − xt)
T (Gx̂t−1 − xt) + (FCut)

T (FCut) + 2(Gx̂t−1 − xt)
T (FCut) + const.

Equation 13 provides the error portion of the quadratic objective of the LQR problem. The standard
solution for the stationary case involves computing the Hessian V of the cost-to-go in joint state[

xt

x̂t−1

]
as the unique positive-definite fixed point of the Riccati equation

V = P̃TV P̃ + (Ñ + P̃TV D̃)(R̃+ S̃ + D̃TV D̃)−1(ÑT + D̃TV P̃ ) + Q̃. (14)
Here P̃ is the process dynamics for the joint state of xt and x̂t−1 and D̃ is the controllability of this
dynamics. Q̃, S̃ and Ñ are the cost parameters which can be determined by inspection of eq. (13).
R̃ is the Hessian of the neural response cost term which is chosen in simulations so that the resulting
increase in neural signal strength is reasonable.

P̃ =

[
P 0
0 G

]
, D̃ =

[
0

FC

]
, Q̃ =

[
I −GT

−G GTG

]
, S̃ = (FC)T (FC), Ñ =

[
−FC

GT (FC)

]
.

In our formulation, the encoding model (A,B) is equivalent to the feedback gain
[A B] = −(D̃TV D̃ + R̃+ S̃)−1(ÑT + D̃TV P̃ ). (15)

This is the optimal stationary control, and is generally not optimal for shorter planning horizons. In
the co-adaptation setting, the encoding model (At, Bt) regularly changes to adapt to the changing
decoder. This means that (At, Bt) is only used for one timestep (or a few) before it is updated. The
effective planning horizon is thus shortened from its ideal infinity, and now depends on the rate and
magnitude of the perturbations introduced in the encoding model. Eq. (14) can be solved for this
finite horizon, but here for simplicity we assume the encoder updates introduce small or infrequent
enough changes to keep the planning horizon very long, and the stationary control close to optimal.

4



2 4 6 8 10 12 14 16 18 20

6000

7000

8000

9000

10000

11000

12000

13000

14000

er
ro

r (
su

m
m

ed
 o

ve
r x

,y
,z

)

update iteration index

(a)

1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

encoder update iteration index

ρ

(b)

Figure 4: (a) Each curve plots single trial changes in decoding mean squared error (MSE) over
whole timeseries as a function of the number of update half-iterations. The encoder is updated in
even steps, the decoder in odd ones. Distinct curves are for multiple, random initializations of the
encoder. (b) Plots the corresponding changes in encoder parameter updates - y-axis, ρ, is correlation
between the vectorized encoder parameters after each update with the final values.

3 Perfect estimation setting

We can consider co-adaptation in a hypothetical setting where each agent has instant access to a
perfect estimate of the other’s parameters as soon as they change. To keep this setting comparable
to the setting of section 4, where parameter estimation is needed, we only allow each agent access to
those variables that it could, in principle, estimate. We assume both agents know the parameters P
andQ of the intention dynamics, that the encoder knows FC andG of eq. (11), and that the decoder
knowsCA, CB andRC of eq. (5) and (6). These are the same parameters needed by each agent for
its own re-optimization. This process of parameter updates is performed by alternating between the
encoder update equations (7)-(9) and the decoder update equations (14)-(15). Since the agents take
turns minimizing the expected infinite-horizon objectives of eq. (12) given the other, this cost will
tend to decrease, approximately converging.

Note that neither of these steps depends explicitly on the observed values of the neural signal ut

or the decoded output x̂t. In other words, co-adaptation can be simulated without ever actually
generating the stochastic process of intention, encoding and decoding. However, this process and
the signal-feedback loop become crucial when estimation is involved, as in section 4. Then each
agent’s update indirectly depends on its observations through its estimated model of the other agent.

To examine the dynamics in this idealized setting, we hold fixed the target trajectory x1...T as well
as the realization of the noise terms. We initialize the simulation with a random encoding model and
observe empirically that, as the encoder and the decoder are updated alternatingly, the error rapidly
reduces to a plateau. As the improvement saturates, the joint encoder-decoder pair approximates
a locally optimal solution to the co-adaptation problem. Figure 4(a) plots the error as a function
of the number of model update iterations – the different curves correspond to distinct, random ini-
tializations of the encoder parameters A,B with everything else held fixed. We emphasize that
for a fixed encoder, the first decoder update would yield the infinite-horizon optimal update if the
encoder could not adapt, and the error can be interpreted relative to this initial optimal decoding
(see supplementary fig1(a) for depiction of initial error and improvement by encoder adaptation in
supplementary fig1(b)). This method obtains optimized encoder-decoder pairs with moderate sensi-
tivity to the initial parameters of the encodingmodel. Interpreted in the context of BCI, this suggests
that the initial tuning of the observed neurons may affect the local optima attainable for BCI perfor-
mance due to standard co-adaptation. We may also be able to optimize the final error by cleverly
choosing updates to decoder parameters in a fashion which shifts which optimum is reached. Figure
4(b) displays the corresponding approximate convergence of the encoder parameters - as the error
decreases, the encoder parameters settle to a stable set (the actual final values across initializations
vary).

Parameters free from the standpoint of the simulation are the neural noise covariance RC and the
Hessian R̃ of the neural signal cost. We set these to reasonable values - the noise to a moderate

5



level and the cost sufficiently high as to prevent an exceedingly large neural signal which would
swamp the noise and yield arbitrarily low error (see supplement). In an experimental setting, these
parameters would be set by the physical system and they would need to be estimated beforehand.

4 Partially observable setting with estimation

More realistic than the model of co-adaptation where the decoder-side and encoder-side agents au-
tomatically know each other’s parameters, is one where the rate of updating is limited by the partial
knowledge each agent has about the other. In each timestep, each agent will update its estimate of
the other agent’s parameters, and then use the current estimates to re-optimize its own parameters.
In this work we use a recursive least squares (RLS) which is presented in the supplement section 3
for this estimation. RLS has a forgetting factor λ which regulates how quickly the routine expects
the parameters it estimates to change. This co-adaptation process is detailed in procedure 1. We
elect to use the same estimation routine for each agent and assume that the user performs ideal-
observer style optimal estimation. In general, if more knowledge is available about how a real BCI
user updates their estimates of the decoder parameters, such a model could easily be used. We could
also explore in simulation how various suboptimal estimation models employed by the user affect
co-adaptation.

As noted previously, we will assume the noise model is fixed and that the decoder side knows the
neural signal noise covarianceRC (eq. (6)). The encoder-side will use a scaled identity matrix as the
estimate of the electrodes-decoder noise model. To jointly estimate the decoder parameters and the
noise model, an EM-based scheme would be a natural approach (such estimation of the BCI user’s
internal model of the decoder has been treated explicitly in [20]).

Procedure 1 standard co-adaptation
for t = 1 to lengthT raining do
Encoder-side

Get xt and x̂t−1

Update encoder-side estimate of decoder F̂C, Ĝ (RLS)
Update optimal encoder A,B using current decoder estimate F̂C, Ĝ (LQR)
Encode current intention using A,B and send signal yt

Decoder-side
Get xt and yt
Update decoder-side estimate of encoder ĈA, ĈB (RLS)
Update optimal decoder F,G using current encoder estimate ĈA, ĈB (LQE)
Decode current signal using F,G and display as feedback x̂t

end for

Standard co-adaptation yields improvements in decoding performance over time as the encoder and
decoder agents estimate each others’ parameters and update based on those estimates. Appropriately,
that model will improve the encoder-decoder pair over time, as in the blue curves of figure 5 below.

5 Encoder-aware decoder updates

In this section, we present an approach to model the encoder updates from the decoder side. We
will use this to “take an extra step” towards optimizing the decoder for what the anticipated future
encoder ought to look like.

In the most general case, the encoder can update At and Bt in an unconstrained fashion at each
timestep t. From the decoder side, we do not know C and therefore we cannot know FC, an
estimate of which is needed by the user to update the encoder. However, the decoder sets F and can
predict updates to [CA CB] directly, instead of to [A B] as the actual encoder does (equation
15). We emphasize that this update is not actually how the user will update the encoder, rather it
captures how the encoder ought to change the signals observed by the decoder (from the decoder’s
perspective).

6



Figure 5: In each subplot, the blue line corresponds to decreasing error as a function of simulated
time from standard co-adaptation (procedure 1). The green line corresponds to the improved one-
step-ahead co-adaptation (procedure 2). Plots from left to right have decreasing RLS forgetting
factor used by the encoder-side to estimate the decoder parameters. Curves depict the median error
across 20 simulations with confidence intervals of 25% and 75% quantiles. Error at each timestep is
appropriately cross-validated, it corresponds to taking the encoder-decoder pair of that timestep and
computing error on “test” data.

We can find the update [CApred CBpred] by solving a modified version of the LQR problem
presented in section 2.3, eq. (15)

[CApred CBpred] = −(D̃′TV D̃′ + R̃′ + S̃′)−1(Ñ ′T + D̃′TV P̃ ), (16)
with terms defined similarly to section 2.3, except

D̃′ =

[
0
F

]
, S̃′ = FTF, Ñ ′ =

[
−F
GTF

]
. (17)

We also note that the quadratic penalty used in this approximation been transformed from a cost
on the responses of all of the neural units to a cost only on the observed ones. R̃′ serves as a
regularization parameter which now must be tuned so the decoder-side estimate of the encoding
update is reasonable. For simplicity we let R̃′ = γI for some constant coarsely tuned γ, though
in general this cost need not be a scaled identity matrix. Equations 16 & 17 only use information
available at the decoder side, with terms dependent on FC having been replaced by terms dependent
instead on F . These predictions will be used only to engineer decoder update schemes that can be
used to improve co-adaptation (as in procedure 2).

Procedure 2 r-step-ahead co-adaptation
for t = 1 to lengthT raining do
Encoder-side

As in section 5
Decoder-side

Get xt and yt
Update decoder-side estimate of encoder ĈA, ĈB (RLS)
Update optimal decoder F,G using current encoder estimate ĈA, ĈB (LQE)
for r = 1 to numStepsAhead do

Anticipate encoder update CApred, CBpred to updated decoder F,G (modified LQR)
Update r-step-ahead optimal decoder F,G using CApred, CBpred (LQE)

end for
Decode current signal using r-step-ahead F,G and display as feedback x̂t

end for

The ability to compute decoder-side approximate encoder updates opens the opportunity to improve
encoder-decoder update dynamics by anticipating encoder-side adaptation to guide the process to-
wards faster convergence, and possibly to better solutions. For the current estimate of the encoder,
we update the optimal decoder, anticipate the encoder update by the method of section above, and
then update the decoder in response to the anticipated encoder update. This procedure allows r-
step-ahead updating as presented in procedure 2. Figure 5 demonstrates how the one-step-ahead

7



scheme can improve the co-adaptation dynamics. It is not a priori obvious that this method would
help - the decoder-side estimate of the encoder update is not identical to the actual update. An
encoder-side agent more permissive of rapid changes in the decoder may better handle r-step-ahead
co-adaptation. We have also tried r-step-ahead updates for r > 1. However, this did not outperform
the one-step-ahead method, and in some cases yields a decline relative to standard co-adaptation.
These simulations are susceptible to the setting of the forgetting factor used by each agent in the
RLS estimation, the initial uncertainty of the parameters, and the quadratic cost used in the one-
step-ahead approximation R̃′. The encoder-side RLS parameters in a real setting will be determined
by the BCI user and R̃′ should be tuned (as a regularization parameter).

The encoder-side forgetting factor would correspond roughly to the plasticity of the BCI user with
respect to the task. A high forgetting factor permits the user to tolerate very large changes in the
decoder, and a low forgetting factor corresponds to the user assuming more decoder stability. From
left to right in the subplots of figure 5, encoder-side forgetting factor decreases - the regime where
augmenting co-adaptation may offer the most benefit corresponds to a user that is most uncertain
about the decoder and willing to tolerate decoder changes. Whether or not co-adaptation gains
are possible in our model depend upon parameters of the system. Nevertheless, for appropriately
selected parameters, attempting to augment the co-adaptation should not hurt performance even
if the user were outside of the regime where the most benefit is possible. A real user will likely
perform their half of co-adaptation sub-optimally relative to our idealized BCI user and the structure
of such suboptimalities will likely increase the opportunity for co-adaptation to be augmented. The
timescale of these simulation results are unspecified, but would correspond to the timescale on which
the biological neural encoding can change. This varies by task and implicated brain-region, ranging
from a few training sessions [21, 22] to days [23].

6 Conclusion

Our work represents a step in the direction of exploiting co-adaptation to jointly optimize the neural
encoding and the decoder parameters, rather than simply optimizing the decoder parameters without
taking the encoder parameter adaptation into account. We model the process of co-adaptation that
occurs in closed-loop BCI use between the user and decoding algorithm. Moreover, the results using
our modified decoding update demonstrate a proof of concept that reliable improvement can be
obtained relative to naive adaptive decoders by encoder-aware updates to the decoder in a simulated
system. It is still open how well methods based on this approach will extend to experimental data.

BCI is a two-agent system, and we may view co-adaptation as we have formulated it within multi-
agent control theory. As both agents adapt to reduce the error of the decoded intention given their
respective estimates of the other agent, a fixed point of this co-adaptation process is a Nash equilib-
rium. This equilibrium is only known to be unique in the case where the intention at each timestep is
independent [24]. In our more general setting, there may be more than one encoder-decoder pair for
which each is optimal given the other. Moreover, there may exist non-linear encoders with which
non-linear decoders can be in equilibrium. These connections will be explored in future work.

Obviously our model of the neural encoding and the process by which the neural encoding model
is updated are idealizations. Future experimental work will determine how well our co-adaptive
model can be applied to the real neuroprosthetic context. For rapid, low-cost experiments it might
be best to begin with a human, closed-loop experiments intended to simulate a BCI [25]. As the
Kalman filter is a standard decoder, it will be useful to begin experimental investigations with this
choice (as analyzed in this work). More complicated decoding schemes also appear to improve
decoding performance [22] by better accounting for the non-linearities in the real neural encoding,
and such methods scale to BCI contexts with many output degrees of freedom [26]. An important
extension of the co-adaptation model presented in this work is to non-linear encoding and decoding
schemes. Even in more complicated, realistic settings, we hope the framework presented here will
offer similar practical benefits for improving BCI control.

Acknowledgments

This project is supported in part by the Gatsby Charitable Foundation. Liam Paninski receives
support from a NSF CAREER award.

8



References
[1] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Instant neural control

of a movement signal.,” Nature, vol. 416, no. 6877, pp. 141–142, 2002.
[2] K. J. Miller et al., “Cortical activity during motor execution, motor imagery, and imagery-based online

feedback.,” PNAS, vol. 107, no. 9, pp. 4430–4435, 2010.
[3] D. J. McFarland, W. A. Sarnacki, and J. R. Wolpaw, “Electroencephalographic (eeg) control of three-

dimensional movement.,” Journal of Neural Engineering, vol. 7, no. 3, p. 036007, 2010.
[4] V. Gilja et al., “A high-performance neural prosthesis enabled by control algorithm design.,” Nat Neurosci,

2012.
[5] L. R. Hochberg et al., “Reach and grasp by people with tetraplegia using a neurally controlled robotic

arm,” Nature, vol. 485, no. 7398, pp. 372–375, 2012.
[6] D. Putrino, Y. T. Wong, M. Vigeral, and B. Pesaran, “Development of a closed-loop feedback system for

real-time control of a high-dimensional brain machine interface,” Conf Proc IEEE Eng Med Biol Soc,
vol. 2012, pp. 4567–4570, 2012.

[7] S. Koyama et al., “Comparison of brain-computer interface decoding algorithms in open-loop and closed-
loop control.,” Journal of Computational Neuroscience, vol. 29, no. 1-2, pp. 73–87, 2010.

[8] J. M. Carmena et al., “Learning to control a brainmachine interface for reaching and grasping by pri-
mates,” PLoS Biology, vol. 1, no. 2, p. E42, 2003.

[9] V. Gilja et al., “A brain machine interface control algorithm designed from a feedback control perspec-
tive.,” Conf Proc IEEE Eng Med Biol Soc, vol. 2012, pp. 1318–22, 2012.

[10] Z. Li, J. E. ODoherty, M. A. Lebedev, and M. A. L. Nicolelis, “Adaptive decoding for brain-machine
interfaces through bayesian parameter updates.,” Neural Comput., vol. 23, no. 12, pp. 3162–204, 2011.

[11] C. Vidaurre, C. Sannelli, K.-R. Muller, and B. Blankertz, “Machine-learning based co-adaptive calibration
for brain-computer interfaces,” Neural Computation, vol. 816, no. 3, pp. 791–816, 2011.

[12] M. Lagang and L. Srinivasan, “Stochastic optimal control as a theory of brain-machine interface opera-
tion,” Neural Comput., vol. 25, pp. 374–417, Feb. 2013.

[13] R. Heliot, K. Ganguly, J. Jimenez, and J. M. Carmena, “Learning in closed-loop brain-machine inter-
faces: Modeling and experimental validation,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 40, no. 5, pp. 1387–1397, 2010.

[14] S. Dangi, A. L. Orsborn, H. G. Moorman, and J. M. Carmena, “Design and Analysis of Closed-Loop De-
coder Adaptation Algorithms for Brain-Machine Interfaces,” Neural Computation, pp. 1–39, Apr. 2013.

[15] Y. Zhang, A. B. Schwartz, S. M. Chase, and R. E. Kass, “Bayesian learning in assisted brain-computer
interface tasks.,” Conf Proc IEEE Eng Med Biol Soc, vol. 2012, pp. 2740–3, 2012.

[16] S. Waldert et al., “A review on directional information in neural signals for brain-machine interfaces.,”
Journal Of Physiology Paris, vol. 103, no. 3-5, pp. 244–254, 2009.

[17] G. P. Papavassilopoulos, “Solution of some stochastic quadratic Nash and leader-follower games,” SIAM
J. Control Optim., vol. 19, pp. 651–666, Sept. 1981.

[18] E. Doi and M. S. Lewicki, “Characterization of minimum error linear coding with sensory and neural
noise.,” Neural Computation, vol. 23, no. 10, pp. 2498–2510, 2011.

[19] M. Athans, “The discrete time linear-quadratic-Gaussian stochastic control problem,” Annals of Economic
and Social Measurement, vol. 1, pp. 446–488, September 1972.

[20] M. D. Golub, S. M. Chase, and B. M. Yu, “Learning an internal dynamics model from control demonstra-
tion.,” 30th International Conference on Machine Learning, 2013.

[21] R. Shadmehr, M. A. Smith, and J. W. Krakauer, “Error correction, sensory prediction, and adaptation in
motor control.,” Annual Review of Neuroscience, vol. 33, no. March, pp. 89–108, 2010.

[22] L. Shpigelman, H. Lalazar, and E. Vaadia, “Kernel-arma for hand tracking and brain-machine interfacing
during 3d motor control,” in NIPS, pp. 1489–1496, 2008.

[23] A. C. Koralek, X. Jin, J. D. Long II, R. M. Costa, and J. M. Carmena, “Corticostriatal plasticity is neces-
sary for learning intentional neuroprosthetic skills.,” Nature, vol. 483, no. 7389, pp. 331–335, 2012.

[24] T. Basar, “On the uniqueness of the Nash solution in linear-quadratic differential games,” International
Journal of Game Theory, vol. 5, no. 2-3, pp. 65–90, 1976.

[25] J. P. Cunningham et al., “A closed-loop human simulator for investigating the role of feedback control in
brain-machine interfaces.,” Journal of Neurophysiology, vol. 105, no. 4, pp. 1932–1949, 2010.

[26] Y. T. Wong et al., “Decoding arm and hand movements across layers of the macaque frontal cortices.,”
Conf Proc IEEE Eng Med Biol Soc, vol. 2012, pp. 1757–60, 2012.

9


