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Semidefinite programming is widely used in machine learning and yields improve-
ments for sparse PCA, robust SVMs, kernel selection, maximum margin matrix
factorization, and nonlinear dimensionality reduction. In most formulations, the
trace of a matrix (the sum of its eigenvalues) is maximized or minimized. The trace
is convenient to implement but is usually only loosely related to the learning task at
hand. We show how SDPs can readily accomodate more general spectral functions
of the eigenvalues beyond the sum. For instance, one can optimize the eigengap
of a matrix such that it has a few large eigenvalues while the bottom eigenvalues
are aggressively driven towards zero. We revisit SDP learning formulations and ex-
tend solvers beyond the trace to novel spectral cost functions such as monotonic
and eigengap spectral functions. These are easily solvable by interleaving SDP and
SVD computations. These new costs improve machine learning SDP approaches
producing lower dimensionality embeddings, lower rank matrix factorizations and
improved VC-dimension estimates for SVMs.

First note that most SDP solvers (SeDuMi, CSDP and YALMIP) set up an op-
timization over matrices K ∈ <D×D that are positive semidefinite K � 0. The
user further tailors the problem with extra linear inequalities tr(BT

i K) ≥ βi for
i = 1 . . .N to restrict the solution to a subset of the PSD cone, denoted K for
short. Finally, the user selects a cost to minimize which is either minK∈K tr(K),
minK∈K tr(BT K) or minK∈K− log |K|. While many machine learning problems can
be squeezed into such a formula, it is restrictive and may lead us away from our

desired cost function. Instead, consider the cost minK∈K

∑D

d=1
αdλd(K) where λd

are the eigenvalues of K such that λd ≥ λd+1. Clearly, if αd is constant for all d we
get back the regular minK∈K tr(K) problem. However, if αd varies, the following
holds:

min
K∈K

D∑

d=1

αdλd(K) = min
K∈K

min
v1, . . . , vD

vT
i vj = δij

αdtr(KvdvT
d )

In other words, the eigenvalues of the matrix K can be rewritten as an inner mini-
mization over orthonormal vectors. This variatonal optimization now permits us to
iteratively optimize the cost by solving for the eigenvectors v1, . . . , vD using SVD
and then updating K using SDP. Convergence is monotonic and requires about a
dozen outer loop iterations. Furthermore, when αd ≥ αd+1 this is a convex optimiza-
tion with a single global optimum. In experiments we see direct improvements over
maximum variance unfolding (MVU) and maximum margin matrix factorization
(MMMF) as well as other max trace problems.


