
Images as Bags of Pixels

Tony Jebara
Department of Computer Science, Columbia University

New York, NY 10027
jebara@cs.columbia.edu

Abstract

We propose modeling images and related visual ob-
jects as bags of pixels or sets of vectors. For instance,
gray scale images are modeled as a collection or bag of
(X,Y, I) pixel vectors. This representation implies a
permutational invariance over the bag of pixels which
is naturally handled by endowing each image with a
permutation matrix. Each matrix permits the image to
span a manifold of multiple configurations, capturing
the vector set’s invariance to orderings or permutation
transformations. Permutation configurations are op-
timized while jointly modeling many images via max-
imum likelihood. The solution is a uniquely solvable
convex program which computes correspondence simul-
taneously for all images (as opposed to traditional pair-
wise correspondence solutions). Maximum likelihood
performs a nonlinear dimensionality reduction, choos-
ing permutations that compact the permuted image vec-
tors into a volumetrically minimal subspace. This is
highly suitable for principal components analysis which,
when applied to the permutationally invariant bag of
pixels representation, outperforms PCA on appearance-
based vectorization by orders of magnitude. Further-
more, the bag of pixels subspace benefits from automatic
correspondence estimation, giving rise to meaningful
linear variations such as morphings, translations, and
jointly spatio-textural image transformations. Results
are shown for several datasets.

1. Introduction

A vital component of any computer vision system is
its choice of representation for images and visual data.
The way visual information is parameterized, features
are extracted, or images are mathematically described
remains an active area of research. The success of
subsequent vision modules for recognition, segmenta-
tion, tracking, and modeling often hinges on the ini-
tial representation we chose. For instance, if impor-
tant variations in our image data generate linear or
smooth changes under a given representation, a subse-

quent recognition module should perform significantly
better. In this article we propose a bag of pixels or vec-
tor set representation for images. For example, a gray
scale image can be considered as a collection of N pixels
each with spatial coordinates (X,Y ) and an intensity
coordinate (I). Thus, each image in our database is a
bag of (X,Y, I) 3-tuples. Similarly, an edge or point-
image can be seen as a bag of (X,Y ) tuples with no in-
tensity information. Even color video can be described
as a vector set of (X,Y,R,G,B, time) 6-tuples. Fig-
ure 1(a) depicts this bag of pixels or collection of tuples
representation. For comparison purposes, Figure 1(b)
shows a traditional appearance-based vectorized rep-
resentation where the tuples are rigidly concatenated
along a fixed ordering.
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Figure 1: A bag of pixels or vector set versus a direct
vectorization representation for a gray scale image.

In a bag of pixels, it is important to maintain that
there is no ordering on the pixels and these can be
permuted arbitrarily. Concatenating the pixels into a
single long vector would obscure this important source
of invariance in our representation. Instead of assum-
ing a single ordering or correspondence on the pixels
in a bag, we will maintain that each bag of pixels can
span a manifold of configurations in a vectorized Eu-
clidean space and treat the ordering as an unknown yet
estimable parameter in our modeling process. Figure 2
depicts a manifold representing a single image as a bag
or set of vectors of N pixels each of which is a D-
dimensional tuple. This manifold is embedded in a
<N×D-dimensional Euclidean vector space where each
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Figure 2: An image as a manifold of vector set config-
urations in an embedding Euclidean vector space.

point on the manifold is given by concatenating the
pixel tuples according to an arbitrary ordering. Ad-
mittedly, hard permutations of a vector do not form
a continuous manifold. Instead, we approximate per-
mutation with soft doubly-stochastic matrices which
do in fact create a smooth and continuous manifold
of configurations. In this toy example, we show four
configurations of the same image under four different
vector orderings. Each vector on the manifold is an
arbitrarily ordered concatenation of the 4 pixel tuples.
These configurations are invariant since all points on
the manifold correspond to the same bag of pixels and
render the same identical image. To parametrically
consider arbitrary re-orderings, we endow each image
or bag of pixels with its own unknown soft block-wise
permutation matrix. Movement along each vector set
or image’s manifold can be represented by varying the
unspecified permutation matrix to explore the arbi-
trary possible re-orderings of the vector set. Instead
of proposing a fixed scheme (flow-based, appearance-
based, physical deformation , etc.) for establishing the
best correspondence or optimal setting of the permuta-
tion matrix, we fold this permutation estimation into
our overall learning algorithm which jointly computes
the permutations while fitting a statistical model to a
dataset of many images (e.g. faces, hand-drawn digits,
and so forth). Thus, while learning a model of multi-
ple images (for instance a Gaussian or subspace model),
we simultaneously estimate the optimal setting for the
permutation matrices for each image such that we max-
imize the likelihood of the model fitting to the dataset.
Essentially, the correspondence problem is simultane-
ously solved for each image in the whole dataset via
a global criterion. Potential criteria we will consider
include a Gaussian model fit or subspace model fit to
a given database of images.

We show that the above estimation problem is solv-
able as a convex program which yields a unique solution
for the joint estimation of the model and representation.
In other words, we jointly estimate a subspace model
and the correspondence or permutation matrices for
all images. The permutation matrices are described

via a convex hull of constraints and we propose two
convex cost functions for estimating them. The first
is the maximum likelihood Gaussian mean estimator
which gives rise to an estimate of permutation matri-
ces that clusters images towards a common mean. The
second is the maximum likelihood Gaussian covariance
estimator which gives rise to an estimate of permuta-
tion matrices (or correspondences) that aligns images
into a minimally low-dimensional subspace, which is
an almost ideal pre-processing step for principal com-
ponents analysis. We show update equations for solv-
ing the convex problem for the permutation matrices
as an iterative quadratic program. Treating images
in this manner provides a general method for solving
correspondence and gives rise to more meaningful sub-
spaces of variation for a given dataset. We show inter-
esting experimental results on image datasets including
faces and hand-drawn digit images. We note improved
modeling, reconstruction, correspondence and repre-
sentation of images as bags of pixels. For instance,
subspace methods such as principal components show
improved reconstruction accuracy (by orders of mag-
nitude) when the optimal permutations are estimated
instead of being assumed (or heuristically computed).
Furthermore, we show various spatio-textural morph-
ing bases emerging automatically after learning from
image data. We then conclude with extensions and
a summary. Optimized implementation code, addi-
tional results and further details are provided online
at: www.cs.columbia.edu/∼ jebara.

2. Background

Other efforts in visual representations have explored
similar treatments of images as a collection of (X,Y, I)
points or (X,Y ) points [15, 5]. However, one central is-
sue plaguing this type of representation is the so-called
correspondence problem [18, 1, 5]. For instance, it is
not clear which tuple in bag A (representing image A)
should match with an given tuple in bag B (represent-
ing image B). A variety of methods exist for estab-
lishing such correspondence, for example physics-based
models [15, 18]. Another way to improve appearance
models that directly vectorize images is to estimate and
apply spatial alignment [14, 13, 4, 12]. Optical flow
and variants similarly compute small local correspon-
dences to recover jointly spatial and illumination sub-
space models [1, 8, 16, 2]. An interesting alternative
that is similar to our approach is to consider direct opti-
mization criteria for establishing correspondence such
as minimizing the covariance of the data [11] or its
description length [3]. However, in most frameworks,
correspondence is established a priori through some in-
termediate criterion, pre-specified physical constraints,



pairwise matching or alignment optimization instead of
emerging automatically from invariances in the overall
model learning process. We propose the latter scheme,
estimating correspondences to agree with our modeling
paradigm without resorting to prior or side constraints.

3. Bags of Pixels vs. Vectors

In this section we further motivate and compare the
bag of pixels or vector set representation versus vector-
ization or appearance-based models. Correspondence
issues and the topology of an image are discarded under
direct lexigraphic vectorization of the image. Vector-
ization merely scans the image in a fixed spatial pat-
tern, concatenating each scalar intensity entry into a
long vector and ignoring the spatial relationship be-
tween adjacent pixels. In this representation, natu-
ral variations in the image such as translation appear
highly nonlinear. For example, translating a rasterized
image vector x0 by t pixels would involve multiply-
ing it by a shifting matrix M taken to a power of t,
i.e. xt = M tx0. This is a highly nonlinear operation.
In Figure 1(b), direct appearance-based vectorization
naively organizes pixels into a fixed vector by assuming
a fixed ordering and sacrifices our ability to see varia-
tion in spatial coordinates, if for example, we were to
form an eigenspace over a database of such images. If,
we instead represent the image as a bag of pixels with-
out specifying the ordering, we can maintain properties
of the data such as spatial proximity between adjacent
pixels and see variations in X and Y as well as I.
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Figure 3: Morph properties of bag of pixels or vector
sets.

One crucial property of the vector set or collection
of tuples (i.e. pixels) is that the correspondence be-
tween images in the dataset is no longer specified and
becomes implicit in the learning process. For example,
the aforementioned naive ordering used in vectorization
would make the X and Y components of the large vec-
tor redundant since these are constant from image to
image. The only sources of variation are the I-intensity
components. Meanwhile, the collection of pixels rep-
resentation does not assume an ordering and, if we

were to properly estimate correspondence, variations in
the X and Y spatial coordinates could emerge. Con-
sider applying a principal component analysis method
to vectorized images as in the eigenfaces method [13].
Therein, a basis over the rasterized or vectorized repre-
sentation would only involve additions and deletions of
intensity components in the image. Therefore, a sim-
ple change like translation in the image appears highly
non-linear. Alternatively, a basis over a collection of
tuples where correspondence is optimally estimated al-
lows variations in X and Y coordinates just as easily as
variations in intensity. Thus, an image can morph or
translate via a linear transformation in this represen-
tation. This process is depicted in Figure 3. In (a) we
see a regular gray-scale image, which we can consider
as a 3D surface with X-coordinates, Y -coordinates and
I-intensity values. If vectorized in lexicographic order,
the only basis of variation will be a vertical change
in intensities as shown, for instance, in (b). In (c),
however, we see that a basis of morphings in X and
Y coordinates could also emerge if the vectorization is
handled more elegantly. In this final figure, the vec-
tors of flow indicate that we can translate the image
equally well in X, Y or I merely via linear variations.
Thus we note that it is suboptimal to assume an arbi-
trary ordering. We will instead compute the optimal
correspondence or permutation matrix for each image
while we perform our model estimation (i.e. estimating
a PCA subspace or Gaussian model). One confound-
ing aspect remains in our modeling problem however:
each permutation matrix is an unknown transforma-
tion parameter which moves the image along a path of
invariance.

4. Modeling while Permuting

We can view the unusual vector set representation as
a problem of learning a model under permutational in-
variances of each image (here, each image is a data
point in a given database we are attempting to model).
A representation often implies invariance properties in
an object. In the bag of pixel vectors, ordering of the
objects in the bag should be invariant. So, transforma-
tions that permute the order of the tuples should not
change the representation.

Consider estimating of the optimal permutation or
correspondence by using a simple example of a sub-
space learning problem, such as principal components
analysis (PCA). In Figure 4(a) we see a data set in <3

which needs to be modeled by a lower dimensional man-
ifold. Clearly, no appropriate manifold is apparent and
PCA will not provide a useful result. This is because
we have assumed a fixed ordering for each image (each
data point) instead of maintaining the images as a man-
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Figure 4: Invariant manifold learning.

ifold of possible vectorized configurations. However, if
we generalize PCA and add invariants to the data, this
is no longer the case (see Figure 4(b)). For instance,
the permutational invariance property of each image
provides us with not only a single point for each image
but a path or manifold 1 along which each image may
move invariantly prior to applying PCA (i.e. a corre-
sponded principal components analysis). If points can
be moved along their permutation paths invariantly,
they can more clearly form a compact two-dimensional
subspace. Therefore, we will approach invariant model
learning as estimation of permutation transformations
on the data (i.e. paths for each datum) while simulta-
neously forming a model.

5. A Convex Program

For the above estimation problem to have a unique
globally optimal solution, we cast it as a jointly con-
vex optimization over permutation matrices and model
parameters. In fact, we will implicitly compute the op-
timal model parameters and fold them into a single cost
function exclusively over permutation matrices. This
process will be explicated in the next section, but for
now, assume we have the following general scenario.
We are given an input dataset of T vectors, X1, . . . , XT .
Each of these T vectors is of size N × D and results
from the concatenation of the tuples in the bag of pix-
els according to some initial random ordering. We then
endow each vector with an affine transformation matrix
At that interacts linearly with it as follows:

∑
j Aij

t Xj
t .

These matrices then act to permute the entries in the
given vector [7].

For our invariance, these At matrices are not just
affine matrices but rather block-wise permutation ma-
trices. However, optimizing over hard permutation set-
tings is intractable (max-cut or integer programming
methods might help resolve this). Instead, we relax the
matrices such that they are soft permutation matrices.

1A path is simply a 1-dimensional manifold

Also, the matrices can only permute the D-dimensional
tuples and not individual scalar entries in the Xt vec-
tors. Therefore, each At matrix is a grid of many D×D
identity matrices scaled by an unknown non-negative
scalar Aij

t . For example, a matrix permuting two dif-
ferent tuples has the following structure:

At =
[

A11
t I A12

t I
A21

t I A22
t I

]

To relax the hard permutation matrices which only
have binary entries, we only constrain each At matrix
to be doubly-stochastic, in other words:∑

i

Aij
t = 1

∑
j

Aij
t = 1 Aij

t ≥ 0

Thus, we can re-sort the tuples in each Xt vector as
well as take convex combinations of them. In fact, the
At matrices need not be square, but can be of size
ND × NtD where Nt is the number of tuples in each
Xt image vector. This is useful if we want the corre-
spondence estimation to combine or mix two or more
pixels in differently sized images so that all images map
into a common <ND embedding space for PCA or our
Gaussian model. We denote these many constrained
transformation matrices as A = A1, . . . , AT and note
that they satisfy a set of linear equality and inequality
constraints. Thus, our solution space over the set of
matrices is a convex hull. The convex hull is a require-
ment of any convex programming framework, as shown
below:

min
A

C(A) subject to
∑
ij

Aij
t Qij

td + btd ≥ 0 ∀t, d (1)

Here, C(A) is a convex cost function to be mini-
mized and the Qtd and btd constants specify a hull
of constraints (such as our doubly-stochastic con-
straints). Once we specify C(A), the above formulation
is solvable via convex programming techniques, includ-
ing dual and axis-parallel methods which all yield a
global solution. The general optimization picture that
emerges is shown in Figure 5.

C(A)

A1

A2

Figure 5: Convex program over doubly-stochastic ma-
trices.



We now propose possible choices for the convex cost
function over the C(A) matrices. These emerge auto-
matically from traditional maximum likelihood mod-
eling criteria (such as Gaussian modeling or subspace
modeling).

6. Maximum Likelihood Criteria

We now consider two model estimation criteria (al-
though others are possible) and see how they give
rise to a convex cost function over the permuta-
tion matrices. For jointly performing model esti-
mation while learning invariances, consider the sim-
plest case of estimating a Gaussian mean by maxi-
mizing likelihood of the data while we explore dif-
ferent permutation settings. The log-likelihood is
l(A,µ) =

∑
t logN (AtXt;µ, I). The optimal mean is

µ̂ = 1/T
∑

t AtXt which we can plug back into the
log-likelihood expression to get:

l(A, µ̂) = −TD

2
log(2π) − 1

2

∑
t

‖AtXt − µ̂‖2

The above likelihood can now be further maximized
over permutations. By negating, we convert likelihood
into a cost function to minimize over A. With fur-
ther manipulations, the cost function that emerges es-
sentially minimizes the trace of the covariance of the
permuted image data:

C(A) = tr(Cov(A X))

The trace of the covariance is a convex quadratic func-
tion over the At matrices. Combined with linear con-
straints that make each At doubly-stochastic, this cost
is minimizable via quadratic programming or iterative
methods. This Gaussian mean criterion thus tends to
select permutation matrices that cluster data spher-
ically, by moving images along their paths to center
data towards a common mean.

We generalize to Gaussians of variable covariance
as in N (AX;µ,Σ) and also plug in the maximum
likelihood covariance estimate Σ̂ = 1/T

∑
t(AtXt −

µ̂)(AtXt − µ̂)T into the likelihood function to obtain:

l(A, µ̂, Σ̂) = −TD

2
log(2π) − T

2
log |Σ̂|

−1
2

∑
t

(AtXt − µ̂)T Σ̂−1(AtXt − µ̂)

After simplifications, the maximum likelihood solu-
tion of A is equivalent to minimizing the cost function
|Cov(A X)| 2. We will instead minimize the logarithm

2Both the trace and determinant were discussed by [11] yet
were not derived via maximum likelihood or convexified into a
uniquely solvable program over doubly-stochastic matrices.

of the above cost, i.e. C(A) = log |Cov(A X)| since it
shares the same optima. We also regularize the cost
function by adding a small identity matrix to the co-
variance and adding a small tr(Cov(A X)) term (as
in the Gaussian mean case), we can avoid rank de-
generacies and guarantee the cost stays convex. More
specifically, we have:

C(A) = log |Cov(A X) + ε1I| + ε2tr(Cov(A X))

Both ε1 and ε2 are kept small (≈ 1.0). We prove con-
vexity in the Appendix. Therefore our new C(A) is
again convex and Equation 1 results in a convex pro-
gram. However, it is not a quadratic program. We
can instead minimize C(A) by iteratively upper bound-
ing using a quadratic function in A. This permits
us to sequentially solve multiple quadratic programs
interleaved with variational bounding steps until we
converge to the global solution. First consider log |S|
where we have defined S = Cov(A X) + ε1I. The log-
arithm of the determinant is concave over covariance
matrices [6]. Since log |S| is concave, we can upper
bound it with a tangential linear function in S that
is equal and has the same gradient R = S−1

0 at the
current setting of S = S0 which is computed from our
current setting of our permutation matrices, A = A0.
The upper bound is then:

log |S| ≤ trace(RS) + log |S0| − tr(RS0)

Adding our additional regularizer term with ε2 to the
above, we obtain the following upper bound on C(A):

C(A) ≤ trace(R(Cov(A X) + ε1I)) + log |S0|
−tr(RS0) + ε2tr(Cov(A X))

Simplifying the bound by removing terms that are con-
stant over A, we have the following surrogate cost to
minimize:

C̃(A) = tr(MCov(A X))
where M = (Cov(A X) + ε1I)−1 + ε2I

We thus update M for the current setting of the At

matrices (by computing the covariance of the data af-
ter each At is applied to each Xt), then lock it for a
few iterations while we minimize the trace to update
the A permutation parameters. Updates of M are in-
terleaved with updates of the A matrices until conver-
gence. The above criterion attempts to cluster data
ellipsoidally such that it forms a low-dimensional sub-
manifold. It is well known that the determinant of a
covariance matrix behaves like a volumetric estimator
and approximates the volume of the data. Minimizing
volume by varying the permutation matrices (i.e. com-
puting the correspondence) is a valuable preprocessing



step for PCA since it concentrates signal energy into
a smaller number of eigenvalues, improving the effec-
tiveness and reconstruction accuracy in the PCA sub-
space. Therefore, this criterion attempts to flatten the
data via permutation such that it forms as flat and
low-dimensional a subspace as possible.

7. Implementation

The cost functions so far both involve minimizing the
trace of a matrix in the following general form (M =
I for the Gaussian mean case, while in the Gaussian
covariance case, M is periodically recomputed from the
covariance of the data as it is being transformed):

tr(MCov(A X)) =
1
T

∑
mpnqi

Amn
i Apq

i Xq
i MpmXn

i

− 1
T 2

∑
mpnqij

Amn
i Apq

j Xq
j MpmXn

i

Degeneracies may arise since we approximate permu-
tations using doubly-stochastic matrices. For instance,
At’s entries might all become a constant c = 1/N ,
average out all tuples. To discourage this, we add a
quadratic penalty to the cost as −λ

∑
imn(Amn

i − c)2.
This penalizes matrix entries close to the mean and fa-
vors entries near 0 or 1. The λ is chosen adaptively to
maintain convexity3.

To minimize the cost with constraints, we use an
SMO approach [17], although an SVD-like updated rule
for each At is also possible. As in SMO, we vary a sin-
gle At matrix for the t’th image at a time and only
update 4 of its entries (Amn

t , Amq
t , Apn

t , Apq
t ) while all

others are locked. Iterating randomly, we ultimately
update all scalar entries in each At matrix. However
only 4 scalars are updated at a time in a given it-
eration. Double-stochasticity gives the equality con-
straints: Amn

t +Amq
t = a, Apn

t +Apq
t = b, Amn

t +Apn
t = c

and Amq
t + Apq

t = d. So only one degree of freedom
is left to compute per iteration and is updated as in
Figure 6. The operations involve computing all pos-
sible inner products between the X-tuples Xn and Xq

weighted by all relevant Mmm, Mmp, Mpp and Mpm

sub-matrices4. We compute the H1,H2,H3,H4 and
NUM,DEN terms. The ratio of NUM over 2DEN
gives the optimal update value for the matrix entry
Amn

t . We then limit Amn
t to satisfy the inequalities

3Other simplifications are possible. For instance, when min-
imizing in the determinant, we can force the Gaussian mean to
be equal to a single random image in our dataset, i.e. µ = Xi

for the i’th image and also lock its corresponding permutation
matrix to identity, i.e. Ai = I.

4For clarity, here the matrices and vectors are indexed with
subscripts instead of superscripts and all entries where the datum
index does not appear refer to the datum at the t’th index.

Amn
t ∈ [max(0, a− d, c− 1),min(a, c, 1 + a− d)]. After

updating Amn
t , we can update the other 3 entries via

their linear dependence on Amn
t . Iterating the update

rule randomly over different entries and matrices while
intermittently recomputing bounds (via the inverse of
M) converges monotonically to the global minimum of
C(A).

If a new test image XT+1 is observed after training
and we wish to compute its AT+1 matrix, we could re-
optimize the full cost C(A1 . . . AT+1) again. A more
efficient approach is to fix previous estimates of ma-
trices At for t = 1..T and just optimize C(A) for the
new AT+1. A further simplification is to apply PCA
to the covariance matrix since the training data is now
flattened into a subspace. We maintain a reasonable
number of k eigenvectors and align a new image to this
eigenspace by choosing its permutation matrix AT+1

to minimize its squared error of the reconstruction in
the subspace. If the eigenvectors are V1, . . . , Vk, we
thus minimize the following quadratic cost subject to
double-stochasticity constraints on AT+1:

AT+1 = arg min
A

‖
∑

k

(V T
k AXT+1)Vk − AXT+1‖2

8. Experimental Results

We evaluated the framework on three datasets: (X,Y )
point images of digits, (X,Y, I) intensity images of a
single faces and (X,Y, I) intensity images of multiple
individuals. In the first dataset, we obtained 28 × 28
gray scale images of the digits 3 and 9 which were then
represented as a collection of 70 (X,Y ) pixels by sam-
pling the region of high intensity. This generates clouds
of 2D points in the shape of 3’s or 9’s. A total of 20
such point images was collected with 70 (X,Y ) pixels
each. We then estimated the At permutation matri-
ces by minimizing the covariance’s determinant. Fig-
ure 7(a) depicts 6 exemplars of the original image data
as point clouds. In Figure 7(b), standard PCA with

(a) Original Data

(b) Direct PCA

(c) Permuted PCA

Figure 7: Reconstruction of digit images via PCA with
and without permutation estimation.

10 eigenvectors reconstructed the digits point clouds



Amn
t ← NUM

2DEN
NUM = cXT

n MmpXn+cXT
n MppXq+2aXT

q MpmXq+cXT
n MpmXn+aXT

n MmmXq−2aXT
q MmmXq−2cXT

n MppXn−
aXT

n MmpXq−cXT
n MpmXq−aXT

n MpmXq−XT
q MmpXqd−XT

n MppXqd+XT
n MppXqa+XT

n MmpXqd−XT
q MpmXqd+

2XT
q MppXqd−2XT

q MppXqa+2aXT
q MmpXq +H1−H3+H4−H2−cXT

q MmpXn−aXT
q MmpXn−aXT

q MpmXn +
aXT

q MmmXn + cXT
q MppXn + XT

q MpmXnd − XT
q MppXnd + XT

q MppXna + 4aλ + 2cλ − 2dλ

DEN = XT
q MmpXq − XT

n MmmXn − XT
q MmmXq − XT

n MppXn + XT
n MpmXn − XT

q MppXq + XT
n MmmXq −

XT
n MpmXq + XT

n MmpXn − XT
n MmpXq + XT

n MppXq + XT
q MpmXq − XT

q MpmXn − XT
q MmpXn + XT

q MppXn +
XT

q MmmXn + 4λ

H1 = (XT
n MT

um + XT
n Mmu)(

∑
u,v 6={mn,mq,pn,pq} AuvXv − 1

T−1

∑
u,v,τ 6=t Aτ,uvXτ,v)

H2 = (XT
n MT

up + XT
n Mpu)(

∑
u,v 6={mn,mq,pn,pq} AuvXv − 1

T−1

∑
u,v,τ 6=t Aτ,uvXτ,v)

H3 = (XT
q MT

um + XT
q Mmu)(

∑
u,v 6={mn,mq,pn,pq} AuvXv − 1

T−1

∑
u,v,τ 6=t Aτ,uvXτ,v)

H4 = (XT
q MT

up + XT
q Mpu)(

∑
u,v 6={mn,mq,pn,pq} AuvXv − 1

T−1

∑
u,v,τ 6=t Aτ,uvXτ,v)

Figure 6: Update rule for iteratively adjusting entries of the permutation matrices.

poorly. In Figure 7(c), PCA with 10 eigenvectors was
instead applied to the bag of pixels after estimation of
the permutation matrices. Note that the images are
reconstructed more faithfully in the latter case due to
the estimation of the permutation or correspondence.
Unlike the direct PCA eigenvectors which do not re-
solve correspondence, the eigenvectors after permuta-
tion seem to translate and morph the digits smoothly
as in Figure 8(a). Also, the first eigenvectors have more
interpretable modes of variation. When applied to the
number 9, the first eigenvectors seem to morph the
point cloud in interesting ways as in Figure 8(b) and
(c).

(a) Interpolation

(b) Eigenvector

(c) Eigenvector

Figure 8: Linear interpolation (morphing) and effect of
the first eigenvectors under a bag of pixels representa-
tion.

In a larger experiment, we obtained T = 300 gray
scale images of faces and sampled the pixels in skin-
colored regions to obtain a collection of N = 2000
(X,Y, I) pixels for each face. The face images were of
a single individual’s face as it spans many lighting, 3D
pose and expression configurations. Due to the larger
size of this dataset, we avoided explicitly storing the At

matrices which are of size O(N2). A more efficient stor-
age method for doubly-stochastic matrices can be use

where each is saved as 2N scalars and estimated with
the Invisible Hand algorithm [10]. On this dataset,
we estimated the permutation transformation matrices
and we found an eigenspace of 20 components. We then
reconstructed the images from 20 coefficients alone.
Figure 9 depicts the accuracy of the reconstructed faces

(a) Original Data (b) PCA (c) Permuted PCA

Figure 9: Reconstruction of (X,Y, I) facial images with
vectorized PCA or PCA on permutable bags of pixels.

when standard PCA (with 20 eigenvectors) was used
as well as when PCA for bags of pixels was used which
performs permutation estimation. The images show
much higher fidelity when permutation or correspon-
dence is optimized. The permuted (X,Y, I) vector-set
eigenvectors act smoothly, rotating and morphing the
face in 3D as well as changing its illumination. Tra-
ditional appearance-based PCA causes ghosting effects
where translated images do not move smoothly but,
instead, appear to fade in and out. More interestingly,
in terms of squared error, PCA had a reconstruction
error of 9e5 while permuted PCA had reconstruction
error of 5e3. The novel method reduces squared error
by approximately 2.5 orders of magnitude.

Finally, a large dataset of 3D synthesized faces of
many individuals was used. Permutations were esti-
mated in a semi-supervised way for efficiency and then



PCA was performed on the permuted pixels. We show
the first few eigenvectors as ± displacements from the
mean face in Figure 10. Each row is one eigenvector
(the top row is the top eigenvector) while columns show
varying degrees of additions and deletions of the eigen-
vector. Note how the eigenvectors correspond to natu-
ral out-of-plane and in-plane rotations, as well as joint
morphings and intensity variations. In current work,
we are building a bag of pixels face tracker based on
these eigenvectors.

Figure 10: Top 5 Bag of Pixels Eigenvectors applied to
the Mean from Multi-Person (X,Y, I) Face Images.

9. Summary and Conclusions

We explored permutation invariance for dealing with
images that are organized into collections of tuples, vec-
tor sets or bags of pixels. Statistical modeling (Gaus-
sian mean, covariance, appearance subspaces) was
shown to clearly benefit from the simultaneous estima-
tion of per-image permutation transformations as well
as model parameters. Image data points are effectively
permuted and aligned simultaneously during the mod-
eling process. They are also aligned as a whole dataset
instead of via pair-wise or ad hoc criteria. We note
drastically improved reconstruction accuracy as well as
more meaningful linear bases of variation (morphings,
spatio-textural change, etc.). Currently, we are explor-
ing a kernel or distance K(χ, χ) − 2K(χ, ν) + K(ν, ν)
between bags of pixels which corresponds to finding
the closest distance between two permutation mani-
folds. Surprisingly, this can be done implicitly and
efficiently without explicitly computing the optimal
permutations[9].
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Appendix

Theorem The function C(X ) = log |Cov(X ) + ε1I| +
ε2tr(Cov(X )) of the vector dataset X = {~x1, . . . , ~xN}
is convex in the data (and also in variables such as An

that linearly interact with the data) when ε1, ε2 ≥ 1.

Proof Without loss of generality, assume the vectors
in X are zero-mean which yields Cov(X ) =

∑
n ~xn~xT

n

when we ignore scaling by 1/N . The function then sim-
plifies to:

C(X ) = log

∣∣∣∣∣
∑

n

~xn~xT
n + ε1I

∣∣∣∣∣ + ε2tr

(∑
n

~xn~xT
n

)

Compute the Hessian of C(X ) over single large vec-
tor argument ~X formed by the concatenation of all the
~x1, . . . , ~xN . The desired 1

2C ′′( ~X) is then:
|Cov(X ) + ε1I|−1 I + ε2I − 2 |Cov(X ) + ε1I|−2 ~X ~XT

Here I is a large identity matrix the size of ~X ~XT .
For convexity, we show the Hessian or a lower bound
on it remains positive definite. Note − ~X ~XT is lower
bounded by − ~XT ~XI in the Loewner ordering sense.
Also, note ~X ~XT = tr(Cov(X )). Thus, the Hessian is
lower bounded by the following scalar times I:
|Cov(X ) + ε1I|−1 + ε2 − 2 |Cov(X ) + ε1I|−2

tr(Cov(X ))

Rearranging and writing traces and determinants in
terms of the (arbitrary yet non-negative) eigenvalues
λ1, . . . , λD of Cov(X ) we get following non-negativity
requirement:

1
2
ε2

∏
d

(λd + ε1)2 +
1
2

∏
d

(λd + ε1) −
∑

d

λd ≥ 0

In the unidimensional case, there is one eigenvalue λ1

and the above is a quadratic which remains positive
whenever ε1ε2 ≥ 1/8. In the multidimensional case,
observe the gradient ∂

∂λi
of the left hand side of the

above inequality:
1
2
ε2

∏
d6=i

(λd + ε1)2(λi + ε1) +
1
2

∏
d6=i

(λd + ε1) − 1

If ε1 ≥ 1 and ε2 ≥ 1 the gradient stays positive. Thus,
to minimize the left hand side of the bound, eigenval-
ues can move against the gradient and shrink to 0.
However, the inequality is still satisfied at their low-
est setting λ = ~0 where the left hand side attains its
non-negative minimum ensuring the function C(X ) is
convex for ε1 ≥ 1 and ε2 ≥ 1.
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