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Abstract

We propose dynamical systems trees (DSTs)
as a flexible class of models for describing
multiple processes that interact via a hier-
archy of aggregating parent chains. DSTs
extend Kalman filters, hidden Markov mod-
els and nonlinear dynamical systems to an
interactive group scenario. Various individ-
ual processes interact as communities and
sub-communities in a tree structure that is
unrolled in time. To accommodate nonlin-
ear temporal activity, each individual leaf
process is modeled as a dynamical system
containing discrete and/or continuous hidden
states with discrete and/or Gaussian emis-
sions. Subsequent higher level parent pro-
cesses act like hidden Markov models and me-
diate the interaction between leaf processes
or between other parent processes in the hi-
erarchy. Aggregator chains are parents of
child processes that they combine and me-
diate, yielding a compact overall parameter-
ization. We provide tractable inference and
learning algorithms for arbitrary DST topolo-
gies via an efficient structured mean-field al-
gorithm. The diverse applicability of DSTs is
demonstrated by experiments on gene expres-
sion data and by modeling group behavior in
the setting of an American football game.

1 INTRODUCTION

Dynamical Bayesian networks are popular instantia-
tions of graphical models that have shown promise
in many applied settings such as computational bi-
ology, speech, and vision. Recently, graphical mod-
els and approximate inference methods have extended
traditional dynamical systems, improving upon clas-
sical linear Kalman filters and hidden Markov mod-

els (HMMs) and exploring couplings and interactions
between multiple hidden Markov chains. Such ex-
tensions include factorial HMMs [2] which indirectly
link multiple Markov chains through a common out-
put emission stream (Figure 1(a)). Meanwhile, cou-
pled HMMs [8] directly link hidden states of multi-
ple interacting processes that have Markovian tempo-
ral dynamics which generate different output emission
streams (Figure 1(b)). Other extensions involve link-
ing discrete and continuous Markov chains through
so-called switching dynamical systems (SLDSs) that
combine Kalman filters and HMMs [9, 1, 7, 5] to ob-
tain nonlinear continuous dynamics (Figure 2). All
the above systems basically link (directly or indirectly)
hidden Markov chains together so they can influence
each other in time. But, unlike simpler models, these
variants involve hard inference and may require sam-
pling [7] or structured mean field approximations [11].

In this article we propose a novel variant of dynam-
ical systems for characterizing interacting processes
that form groups and sub-groups. For instance, con-
sider a football game where players are each modeled
as a switching dynamical system. Players could in-
teract with other members of their team through a
hidden parent team state which has its own Marko-
vian dynamics. The other team has its own Marko-
vian team state which couples its players. Finally, an
overall game state is a parent of and couples the two
team states mediating their interaction. We call this
model a dynamical systems tree (DST) since it per-
mits the interacting processes to couple to each other
by being mediated through an arbitrary tree hierar-
chy of aggregating hidden processes. The DST’s arbi-
trary hierarchical tree structure has high level aggre-
gating hidden states coupling groups of hidden Markov
states that are parents of sub-groups of leaf dynam-
ical systems (i.e. SLDSs or HMMs). Since higher
level Markov chains are parents of lower level chains,
a recursive structured mean field algorithm for infer-
ence is easy to derive for arbitrary tree structures
and group/sub-group arrangements for the interact-



1
1s 1

2s 1
3s

1
0y

1
0s

1
1y 1

2y 1
3y

2
1s 2

2s 2
3s2

0s

2
0y 2

1y 2
2y 2

3y

1
1s 1

2s 1
3s

0y

1
0s

1y 2y 3y

2
1s 2

2s 2
3s2

0s

3
1s 3

2s 3
3s3

0s

(a) Coupled HMM (b) Factorial HMM

Figure 1: Interacting Dynamical Systems.

ing processes. Thus, we are free to consider various
ways that the individual leaf dynamical systems in-
teract in a group scenario. This article describes and
motivates the generative model for DSTs. Parameter
estimation for DSTs is then derived via Expectation-
Maximization and a structured mean field inference
algorithm which can be applied recursively on any
DST topology. Our structured mean field algorithm
is more computationally efficient than those proposed
by related models [9, 2]. We then provide and discuss
promising experimental results with DSTs on gene ex-
pression data and on trajectories of players from real
football data.

2 DYNAMICAL SYSTEMS TREES

Instead of modeling interaction by direct coupling (as
in coupled HMMs) or through shared outputs (as in
factorial HMMs), we propose that processes interact
through parent hidden Markov chains that act as me-
diators or aggregators of the sub-processes. These
parent chains have their own Markovian dynamics.
We also consider tree-like hierarchies of parent chains
with parents coupling multiple hidden lower-level par-
ent chains. We call this graphical model a dynamical
system tree (DST) (see Figure 3(a)).

For example, multiple agents can interact and be ag-
gregated by writing messages on some form of com-
mon bulletin board which evolves with hidden Marko-
vian dynamics. Alternatively, a mediator or aggrega-
tor state could represent a coach directing a team of
players or a script guiding multiple actors. One advan-
tage of such a topology is that it has few parameters
which reduces the chance of over-fitting. Conversely, a
full HMM (as well as coupled and factorial HMMs to a
certain extent) over all interacting agents must model
the cross-product of their individual states which leads
to an exponential number of parameters. Furthermore,
the DST’s mediated interaction approach lends itself
nicely to hierarchical extensions. DSTs can have ag-
gregators that themselves aggregate lower-level medi-
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Figure 2: A Switching Linear Dynamical System.

ating chains to allow multiple scales of influence or lay-
ers of interaction. For instance, when modeling a uni-
versity one may describe interacting people by mediat-
ing chains representing their research groups which are
in turn aggregated and mediated by various depart-
ments, then schools and then a single mediating hidden
state representing the evolution of the university as a
whole. Alternatively, one may model the dynamics of
a human, via a hierarchy over the individual limbs, fus-
ing into upper and lower torso, etc. Admittedly, medi-
ating variables could be reinterpreted as children (not
parents) of the individual dynamical systems, but we
prefer the DST’s mediating-parent style of establish-
ing interaction between processes. It avoids moraliz-
ing large cliques during inference, is nicely compatible
with structured mean field derivations, and permits
estimation of model parameters for an arbitrary tree
hierarchy of interaction.

To construct a DST’s probability distribution, we start
from the bottom up by first considering a collection
of simple independent dynamical systems we call leaf-
processes. These individual systems are either con-
tinuous linear dynamical systems, or discrete HMMs
or a hybrid as in a switching linear dynamical system
(SLDS). Without loss of generality, we will assume all
leaf-processes are SLDSs (as in [9] and in Figure 2)
since these basically subsume both HMMs and Kalman
filters. Furthermore, we assume that transitions be-
tween continuous hidden states are given by condi-
tioned Gaussians and that emissions are continuous
vectors from a Gaussian distribution given the contin-
uous hidden state. On their own, the individual SLDSs
do not capture the interactive nature of group dy-
namical behavior. To couple individual leaf-processes
and model complex interaction, we have a hierar-
chy of aggregating Markovian processes that couple
leaf-processes (or lower level aggregating-processes) as
their children. Each aggregating process a is denoted
by its discrete Markovian hidden variables sa and de-
fined as follows:

Definition 1 An aggregating-process is a Markov
chain of hidden discrete states with at most one
parent process and one or more children processes.
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Figure 3: Dynamical Systems Tree (unrolled in time).

Children processes may be either other aggregating-
processes themselves or leaf-processes. An aggregating-
process’ states are denoted by sa = {sa0 , . . . , s

a
T }.

Given its (possibly null) parent process π(a) which has

discrete hidden states sπ(a) = {s
π(a)
0 , . . . , s

π(a)
T } the

aggregating-process has the following conditional dis-
tribution:

p
(

sa|sπ(a)
)

= p
(

sa0 |s
π(a)
0

)

T
∏

t=1

p
(

sat |s
a
t−1, s

π(a)
t

)

.

The hierarchy of aggregating-processes is terminated
by leaf-processes which contain both discrete and con-
tinuous hidden Markov dynamics as well as the actual
emission or observation variables which we specify as
follows:

Definition 2 A leaf-process is a switching linear dy-
namical system at the lowest level in the dynamical
systems tree hierarchy. A leaf-process has at most
one parent process and no children processes. The
i’th leaf-process has discrete Markovian hidden states
si = {si0, . . . , s

i
T } as parents of continuous Markovian

hidden states xi = {xi0, . . . , x
i
T } as parents of inde-

pendent emissions yi = {yi0, . . . , y
i
T }. Given its par-

ent process π(i) with discrete hidden states sπ(i) =

{s
π(i)
0 , . . . , s

π(i)
T } the leaf-process has the following con-

ditional distribution:

p(si, xi, yi|sπ(i)) = p(si0|s
π(i)
0 )p(xi0|s

i
0)p(y

i
0|x

i
0)

×
T
∏

t=1

p(sit|s
i
t−1, s

π(i)
t )p(xit|x

i
t−1, s

i
t)p(y

i
t|x

i
t).

Given A aggregating processes and L leaf-processes,
the joint distribution P(S,X ,Y) over all variables in
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Figure 4: Dynamical Systems Tree (with replicators).

the DST (namely {S,X ,Y} which correspond to dis-
crete hidden, continuous hidden and emission vari-
ables, respectively) is given by:

P(S,X ,Y) =

A
∏

a=1

p(sa|sπ(a))
L
∏

i=1

p(si, xi, yi|sπ(i)).

An example of a DST graphical model is shown
in Figure 3 (unrolled time steps t = 0 . . . 1). This
DST has 4 leaf-processes and 3 aggregating-processes.
The bottom aggregating processes s(1,2) and s(3,4) are
parents of the pair of leaf processes in their super-
scripts. The bottom aggregating processes are them-
selves aggregated through one final parent process
called s((1,2),(3,4)). To avoid drawing DSTs unrolled
in time, we represent them more compactly by only
showing a single time instance of the DST at time t
and drawing a replicator box that indicates the network
is repeated t = 1 . . . T times. Traditionally, replicator
boxes show independent (iid) nodes (possibly linked to
parent parameter nodes which we omit for clarity). We
indicate Markovian dynamics between nodes in box
t− 1 to nodes in box t by drawing extra replicator cir-
cles around all the nodes who inherit a link from their
instantiation at the previous time step t − 1. Nodes
without the extra replicator circle (such as emission
nodes) only have parents in the current replicator box
t. Figure 4 depicts the DST in this compact replicator
notation.

We now specify parameters for the aforementioned
DST conditional distributions. The discrete distribu-
tions are multinomials while the continuous distribu-
tions are conditioned Gaussians. The parameters for
the DST are:

p(sa0 = j|s
π(a)
0 = k) = φa(j, k)

p(sat = j|sat−1 = k, s
π(a)
t = l) = Φa(j, k, l)

p(si0 = j|s
π(i)
0 = k) = ψi(j, k)



p(sit = j|sit−1 = k, s
π(i)
t = l) = Ψi(j, k, l)

p(xi0|s
i
0 = j) = N (xi0|µ

i
j , q

i
j)

p(xit|x
i
t−1, s

i
t = j) = N (xit|A

i
jx
i
t−1, Q

i
j)

p(yi0|x
i
0) = N (yi0|Cx

i
0, R)

p(yit|x
i
t) = N (yit|Cx

i
t, R).

Basic operations needed for DSTs include computing
the likelihood of observations, inferring hidden states
from an observation and estimating parameters from
data. Essentially, EM learning and computing the like-
lihood hinge on performing inference over the hidden
states. It is immediately evident that DST inference
involves an intractable network since even the sub-
component SLDSs are intractable. Therefore we ap-
peal to structured mean field for inference and perform
approximate E-steps.

3 A STRUCTURED MEAN FIELD

ALGORITHM

To avoid the intractabilities in the DST, we perform
inference with a surrogate variational distribution that
approximates our posterior P(S,X|Y) over the hidden
variables given the observed data. We denote the sim-
pler optimized surrogate distribution Q(S,X ) and dis-
play its conditional independence graph in Figure 5(a)
unrolled in time for 3 time steps or in Figure 5(b) us-
ing replicator notation. This distribution resembles
P except that all Markov chains are unlinked from
each other which allows for efficient computation of
marginal distributions and expected sufficient statis-
tics.

Given a current setting of all our model parameters Θ
and observation sequences, Y, we can update a vari-
ational distribution on our DST by using the elegant
formalisms outlined by [6, 1, 4]. More specifically, we
have the following inequality on the incomplete log-
likelihood:

logP(Y|Θ) ≥
∑

S

∫

X

Q(S,X ) log
P(S,X ,Y|Θ)

Q(S,X )
dX

where the right hand side is denoted by B(Q,Θ)
for short and is a variational bound that makes
contact with the left hand side when Q(S,X ) =
P(S,X|Y,Θ). Since Q is a simpler and more factor-
ized distribution than P(S,X|Y,Θ), the bound will
be lowered and in general can no longer make tan-
gential contact. We instead find the optimal distri-
bution, Q, that is as close as possible to the pos-
terior distribution in terms of Kullback-Leibler di-
vergence KL(Q(S,X )‖P(S,X|Y)). Taking the func-
tional derivative of B(Q,Θ) and setting it equal to
zero, we arrive at the general structured mean field
update equation for an independent chain[4]:
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Figure 5: A Variational Distribution for DSTs.

Qi(Si) =
1

Zi
eEQ{logP(S,X ,Y)|Si}

where EQ{·|Si} is the conditional expectation with re-
spect to all variables in Q except Si, Zi is a normaliz-
ing factor and substituting a for i and X for S where
appropriate when updating each chain.

If we explicitly write the variational parameters of Q
as:

Q (sa0 = j) = φ̂a(j)

Q
(

sat = j|sat−1 = k
)

= Φ̂at (j, k)

Q(si0 = j) = ψ̂i(j)

Q(sit = j|sit−1 = k) = Ψ̂it(j, k)

Q(xi0) = N (xi0|µ̂
i, q̂i)

Q(xit|x
i
t−1) = N (xit|Â

i
tx
i
t−1 + B̂

i
t, Q̂

i
t)

we get the following update rules:

Φ̂at (j,k) ∝ exp
(
∑

l
〈s
π(a)
t (l)〉 log Φa(j,k,l)

+
∑

c∈Child(a)

∑

h,i
〈sct(h)s

c
t−1(i)〉 log Φ

c(h,i,j)

)

φ̂a(j) ∝ exp
(
∑

l
〈s
π(a)
t (l)〉 log φa(j,l)

+
∑

c∈Child(a)

∑

h
〈sc0(h)〉 log Φ

c(h,j)

)

Ψ̂it(j,k) ∝ exp
(
∑

l
〈s
π(i)
t (l)〉 log Ψi(j,k,l)− 1

2 log |Q
i
j |



− 1
2 〈(x

i
t−A

i
jx
i
t−1)

′(Qij)
−1(xit−A

i
jx
i
t−1)〉)

ψ̂i(j) ∝ exp
(
∑

l
〈s
π(i)
t (l)〉 logψi(j,l)− 1

2 log |q
i
j |

− 1
2 〈(x

i
0−µ

i
j)
′(qij)

−1(xi0−µ
i
j)〉)

Âit = Q̂it

∑

j
〈sit(j)〉(Q

i
j)
−1Aij

B̂it = Q̂it(C
′R−1yit+(Â

i
t+1)

′(Q̂it+1)
−1
B̂it+1)

(Q̂it)
−1 =

∑

j
〈sit(j)〉(Q

i
j)
−1
+
∑

j
〈sit+1(j)〉(A

i
j)
′(Qij)

−1
Aij

−(Âit+1)
′(Q̂it+1)

−1
Âit+1+C

′R−1C

µ̂i = q̂i
∑

j
〈si0(j)〉(q

i
j)
−1µij

+q̂i(C′R−1yi1+(Â
i
2)
′(Q̂i2)

−1
B̂i2)

q̂i =
∑

j
〈si0(j)〉(q

i
j)
−1
+
∑

j
〈si1(j)〉(A

i
j)
′(Qij)

−1
Aij

−(Âi1)
′(Q̂i1)

−1
Âi1+C

′R−1C

where 〈·〉 denotes the expectation with respect to Q.

We use these variational parameters to compute the
marginal distributions and expectations over the hid-
den variables. Because Q is a set of disconnected
chains, we need only the following expected sufficient
statistics: 〈xt〉, 〈xt, xt〉, 〈xt, xt−1〉, 〈st〉 and 〈st, st−1〉
for parameter estimation in the M-step. The terms
for the discrete chains, 〈st〉 and 〈st, st−1〉, can be
computed efficiently from the unnormalized Φ̂at (j, k),

φ̂a(j), Ψ̂it(j, k) and ψ̂i(j) with a simple forward-
backward inference algorithm. The terms for the con-
tinuous chains, 〈xt〉, 〈xt, xt〉, 〈xt, xt−1〉 can be com-
puted directly from the fully specified distributions
N (xit|Â

i
tx
i
t−1+ B̂

i
t, Q̂

i
t) and N (x

i
0|µ̂

i, q̂i) using a recur-
sion based on identities for conditioned Gaussians:

〈xi1〉 = µ̂i

〈xi1, x
i
1〉 = q̂i + 〈xi1〉〈(x

i
1)
′〉

〈xit〉 = Âit〈x
i
t−1〉+ B̂

i
t

〈xit, x
i
t〉 = Âit〈x

i
t−1, x

i
t−1〉(Â

i
t)
′ + Q̂it

〈xit, x
i
t−1〉 = Âit〈x

i
t−1, x

i
t−1〉

where, again, 〈·〉 denotes the expectation with respect
to Q. If covariance matrices are needed, they can eas-
ily be computed from the sufficient statistics.

Previous algorithms for performing variational infer-
ence in related hybrid dynamic Bayes nets such as the
switching state space model [2] and the switching lin-
ear dynamical system [9] propose forming a Kalman
filter for the hidden Gaussian chains and using RTS
smoothing to perform inference. This requires both
a forward and backward recursion after the initial
structured mean field recursion for a total of three
recursions. Our method, which is also applicable to
these models, only requires two recursions: a back-
ward recursion to form the variational distribution and
a forward recursion to compute the expected sufficient
statistics. This is more efficient and more numeri-
cally stable. Numerical stability becomes important

init variational parameters 
forward-backward inference on all chains
compute
while
{  recurse through tree hierarchy

for each chain in recursion
iterate updates of variationals
do forward-backward inference

update            for all chains }
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Figure 6: Pseudo Code for Updating Variational Q.

as the number of time steps increases. Kalman filters
(and similar covariance based recursions) can suffer
from numerical errors where covariances can become
no longer symmetric positive definite. So, by reducing
the number of covariance recursions, we reduce the
propagation of numerical errors.

After the above approximate E-step, an M-step up-
date of the parameters Θ is trivial via expectations of
the complete likelihood using the current Q distribu-
tion. The update rules for the model parameters for
a Kalman filter (with continuous dynamics and con-
tinuous emission models) are shown in [1]. Similarly,
updating the discrete Markov chain’s transition table
is immediate.

Computing the model’s true log-likelihood, however,
remains intractable. We instead evaluate the bound,
B(Q,Θ). During learning, the bound increases mono-
tonically as we iterate variational inferences in Q and
model parameter updates in Θ to achieve a local maxi-
mum. We compute the bound using expectations with
respect to Q : B(Q,Θ) = EQ(S,X ){logP(S,X ,Y) −
logQ(S,X )}. These expectations are easy to com-
pute and only involve expectations over (at most pair-
wise) cliques of Q. In all the above computations, it
is easy to recurse through the DST to compute the
B(Q,Θ) terms for each leaf-process and aggregator-
process. Furthermore, variational parameter updates
are nicely decoupled and M-steps for Θ parameters
are independent given the inferred expectations un-
der the Q distribution. In Figure 6 we show pseudo-
code for recursing through the hierarchy tree to up-
date variational parameters. This is interleaved with
re-estimation of the model parameters.

4 EXPERIMENTS

To demonstrate their diverse applicability, we evalu-
ated DSTs and compared them with other dynami-
cal models on gene expression levels for cancerous hu-



Figure 7: Gene expression data and clustering.

man cells [12], and on real-world trajectory data from
American football plays [3]. Models were trained us-
ing our variational EM algorithm. We used the over-
relaxed bound optimization technique [10] to speed up
convergence. In practice this required three to four
times fewer EM steps to converge than our standard
algorithm implemented without this technique.

4.1 GENE EXPRESSION LEVELS

Genes active in cancerous cells are identified in [12].
We look at a subset of 384 that were studied in the
paper. Each gene expression level is a 1 dimensional
time series, depicted in Figure 7, representing the
gene’s deviation from the baseline. In these exper-
iments we wish to compare genes modeled indepen-
dently to genes modeled as a group with various DST
topologies. We train our models on the time series
identified as Thy-Thy 3 (named for the method of syn-
chronization used). This series is the most thoroughly
measured data set available from these sets of exper-
iments. There are 45 time steps separated by 1 hour
which span 3 cell cycles. We then test our learned
models on the first 2 cell cycles of the Thy-Thy 2 data
set that was obtained under similar experimental con-
ditions. Model goodness is evaluated based on testing
log likelihood (evaluated as a bound). This testing
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data is more sparsely sampled with gaps of 2 hours to-
ward the end. In order to maintain synchronicity with
the models, we infer the missing data along with the
other hidden variables.

We first considered modeling the genes with 384 in-
dividual SLDSs. The hidden continuous state dimen-
sionality was chosen to be 1 and both 2 and 4 discrete
switching states were considered. The second model
considered was a naive DST with one parent aggre-
gating process and 384 child leaf SLDSs. Again, the
continuous state dimensionality was chosen to be 1
and the discrete states for both the aggregating pro-
cess and leaf processes were evaluated for both 2 and
4 states. The final model considered is a complicated
DST based on the hierarchical clustering reported in
[12] and depicted in Figure 7. The DST has 383 aggre-
gating processes and 384 leaf SLDSs. The parameter
dimensionality was chosen to be the same as the previ-
ous models. Because parameter learning using EM is
plagued with local maxima, good initialization is quite
important. To initialize the continuous variables, we
trained a linear dynamic system for each state in the
SLDS leaf process using contiguous non-overlapping
subsets of the data. All discrete variables were ini-
tialized to a slight random perturbation away from
the maximum entropy distribution. In practice, this
yielded good results and allowed for symmetry break-
ing without overly biasing the switching states a priori.
Results are reported in Figure 8. From left to right,
the graph shows SLDSs, naive DST and clustered DST
each with 2 and 4 switching states. Note that larger
bars are worse (more negative). DSTs demonstrate su-
perior ability to fit data in this domain. More impor-
tantly, the complicated DST, although having many
more parameters to fit, does not over-fit and performs
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Figure 9: Player Trajectory Data Gathered from
Video.

best. This intuitively suggests that good knowledge of
the domain encoded in the structure of the DST will
improve the model.

4.2 FOOTBALL TRAJECTORIES

In [3], players are tracked using computer vision to
obtain spatial coordinates on the football field (with
some normalization). Each human generates a contin-
uous time series of two dimensional coordinates. We
wish to compare DSTs for model accuracy and classi-
fication. Our training data consists of 7 examples of
a passing play called dig and 7 examples of a running
play called wham recorded from a real football game.
Testing was performed using leave one out cross val-
idation. Figure 9 shows the trajectories for multiple
players during a play. In order to ensure that classifi-
cation is based on player’s dynamics and not on their
starting position, the data was translated so that each
players’ trajectory is their offset from the origin.

A naive approach to modeling our data is to stack or
concatenate each player’s time series into a single mul-
tivariate series. We start with a simple SLDS modeling
all of the players with 4 dimensions for the continuous
hidden states and 4 discrete switching states. To in-

stead model players as separate temporal processes,
we then trained multiple independent SLDSs for each
player in isolation. Each has 2 dimensional continu-
ous xt state and 2 states for the switches st. Yet such
SLDSs completely ignore interactions between players.
A DST, however, can couple many separate temporal
interactions by fusing SLDS structures. We consider
two topologies. The first consists of a single binary-
state game-chain aggregating all of the players in one
group. The second consists of two additional binary-
state team-chains aggregating the two teams of play-
ers and a top level binary-state game-chain aggregat-
ing the two teams. Parameters were initialized in the
same manner that is described in the previous exper-
iment. Results for classification and average (bound
on) testing log likelihood are reported in the table be-
low. Testing results show that treating the players as
individual time series, as opposed to a concatenation,
yields better models based on likelihood. The more
complicated DST slightly outperforms the individual
SLDS in classification and on the average (bound on)
testing likelihood for wham plays. However the less
complicated DST performed far worse than the more
complicated one. This again provides evidence to our
intuition that DSTs built on sound domain knowledge
will perform well. Better results for a DST model
could possibly be obtained if more domain knowledge
is encoded in the structure. For example, players may
be grouped based on their role on the field, such as
offensive line and defensive line, before being grouped
as a team.

Model LL Test Dig LL Test Wham Errors
Single SLDS -3.1143e+5 -1.1826e+5 4
Multi SLDSs -6.4109e+3 -5.3838e+3 1

DST1 -8.4900e+3 -5.5048e+3 5
DST2 -6.6841e+3 -5.1342e+3 0

5 Discussion

We presented dynamical systems trees as an alterna-
tive dynamical Bayesian network model specifically for
coupling multiple interacting processes (i.e. individual
switched linear dynamical systems) via a tree struc-
tured hierarchy of influence. The hidden states of in-
dividual dynamical systems are modeled as children of
an aggregating process and further aggregating process
parents continue the grouping at increasingly looser
and higher levels of interaction. Restricting mediator
or aggregator chains to be parents of lower-level inter-
acting chains helps maintain a compact model with a
small number of parameters. Furthermore, due to the
tree hierarchy of the aggregating processes, structured
mean field computations become formulaic and recur-
sive and can be easily implemented for an arbitrary
topology of the DST. Experiments demonstrated their



ability to model two difficult real world problems. The
importance of properly encoding domain knowledge in
the DST topology was demonstrated. This is to be ex-
pected of any Bayes net, but the ease of adjusting the
topology without needing to re-derive or re-code new
algorithms makes it simple to explore different DST
structures. Future work will attempt to automatically
group time series to determine the best DST topol-
ogy. Simple clustering had good results with the gene
expression data, but a more well motivated method
based on likelihood is desirable. Overall, dynamical
systems trees provide an easily reconfigurable and in-
tuitive architecture for modeling temporal interaction
data.
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