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Abstract

Online tracking is evolving from browser- and device-
tracking to people-tracking. As users are increasingly access-
ing the Internet from multiple devices this new paradigm
of tracking—in most cases for purposes of advertising—is
aimed at crossing the boundary between a user’s individual
devices and browsers. It establishes a person-centric view
of a user across devices and seeks to combine the input from
various data sources into an individual and comprehensive
user profile. By its very nature such cross-device tracking can
principally reveal a complete picture of a person and, thus,
become more privacy-invasive than the siloed tracking via
HTTP cookies or other traditional and more limited tracking
mechanisms. In this study we are exploring cross-device
tracking techniques as well as their privacy implications.

Particularly, we demonstrate a method to detect the occur-
rence of cross-device tracking, and, based on a cross-device
tracking dataset that we collected from 126 Internet users,
we explore the prevalence of cross-device trackers on mobile
and desktop devices. We show that the similarity of IP
addresses and Internet history for a user’s devices gives rise
to a matching rate of F-1 = 0.91 for connecting a mobile to
a desktop device in our dataset. This finding is especially
noteworthy in light of the increase in learning power that
cross-device companies may achieve by leveraging user data
from more than one device. Given these privacy implications
of cross-device tracking we also examine compliance with
applicable self-regulation for 40 cross-device companies and
find that some are not transparent about their practices.

1 Introduction

A recent study by Google showed that 98% of surveyed Inter-
net users in the U.S. use multiple devices on a daily basis, and
90% switch devices sequentially to accomplish a task over

∗Most of the work on which we are reporting was done when Sebastian
Zimmeck and Hyungtae Kim were at Columbia University.

Figure 1: Identifying and correlating Sally’s phone and desktop
among all devices on the Internet allows cross-device companies
to target ads on both of her devices.

time [37]. From an ad network’s1 perspective these develop-
ments create a challenging environment as they increase the
complexity of targeting advertising to specific users. Attribut-
ing conversions of ads to actual purchases and frequency
capping to avoid showing a user the same ad over and over
again becomes more difficult as well. However, there is a
solution to these challenges: cross-device tracking. This tech-
nique presents a fundamental shift from device tracking to
people tracking. As shown in Figure 1, it principally allows
ad networks to follow a user on his or her online journey
through all devices. However, at the same time, cross-device
tracking of users is potentially more privacy-invasive than
the tracking of individual devices without connecting them.

In this study we are exploring the emerging cross-device
tracking ecosystem from a privacy perspective. Particularly,
we are interested in studying the tracking techniques used
by cross-device companies,2 understanding the extent to

1We are using the term ad network broadly encompassing ad exchanges,
demand/supply side platforms, and other companies in the online ad space.

2The term cross-device company encompasses ad networks, analytics ser-
vices, and other companies that are using cross-device tracking techniques.



which cross-device tracking occurs on desktop and mobile
devices, and evaluating the privacy implications of machine
learning applications to cross-device data. We understand
cross-device tracking to mean the tracing of an individual’s
usage of the Internet on multiple devices and combining all
resulting information into one comprehensive user profile.

Cross-device tracking exists in a deterministic and
probabilistic variant. The former is based on a first-party
relationship that often permits user identification with
certainty, for example, when a user logs into a social network
account from multiple devices. For the majority of our study
we focus on probabilistic cross-device tracking, which is
used by services that are limited to a third-party relationship
with users. To that end, ad networks and analytics services
oftentimes cooperate with web and app publishers that
have a first-party user relationship and deploy tracking
mechanisms on their properties. Applying machine learning
they then correlate the various data streams to identify those
belonging to the same users. Probabilistic and deterministic
cross-device tracking approaches are often combined as
companies of different provenance collaborate and exchange
data [32]. While we examine cross-device tracking via
HTTP cookies, pixel tags, and other traditional mechanisms,
such tracking can also occur via ultrasound signals [7,31,59]
or other side channels, which we do not examine here.

As some cross-device companies match billions of
devices [22] and social networks have cross-device function-
ality naturally built into their systems lawmakers began to
take notice. In particular, the U.S. Federal Trade Commission
(FTC) hosted a cross-device workshop [29] facilitating
an initial public discussion on the privacy implications of
this form of Internet tracking. The regulators discussed
with industry representatives, academics, and various other
stakeholders privacy risks, consumer transparency, and
effective industry self-regulation. They followed up with
privacy recommendations for cross-device companies [32].
As evidenced by a recent case on cross-device tracking via
ultrasound signals and the withdrawal of the service from the
U.S. market, the FTC is determined to enforce the existing
laws and regulations [31, 32], however, is hampered by
insufficient insight into the used technologies [30].

In this study we are exploring cross-device tracking
through the lens of privacy contributing the following:

1. By means of a brief case study we introduce a method
for detecting cross-device trackers. We find statistical
significance for various ad networks’ capabilities of
targeting mobile users on their desktop. (§ 3.)

2. We make publicly available a cross-device tracking
dataset as well as software that we used for collecting
the data.3 We give a statistical overview of cross-device
usage patterns for the users in our dataset. (§ 4.)

3The dataset and software can be found at https://github.com/

SebastianZimmeck/Cross_Device_Tracking.

3. We design a basic algorithm and evaluate features
and parameters for probabilistic cross-device tracking
based on relevant patent and other industry documents.
Using IP addresses, web domains, and app domains
our techniques achieve an F-1 score of 0.91 on the
collected data. (§ 5.)

4. Leveraging our dataset we analyze how the availability
of both mobile and desktop data may impact the
prediction of users’ demographics and interests.
Specifically, we examine predictions for gender and
interest in finance. (§ 6.)

5. Based on our dataset we calculate the penetration of
cross-device tracking on the Internet and conclude
that some cross-device companies seem to have broad
insight into Internet users’ cross-device usage. (§ 7.)

6. Finally, we explore the efficacy of the industry’s self-
regulation and find that some cross-device companies
do not transparently disclose their practices. (§ 8.)

2 Related Work

Our study is based on work in online tracking (§ 2.1), human-
computer interaction (§ 2.2), and machine learning (§ 2.3).

2.1 Online Tracking
Much research was published on online tracking. Notably,
Roesner et al. [72] developed a tracker taxonomy and exam-
ined how tracking occurs in the wild. Lerner et al. [56] pro-
vided a historical perspective of tracker evolution over time.
However, few existing efforts discuss tracking across devices.
Similar to traditional tracking such cross-device tracking
requires the identification of individual users’ browser
instances. In this regard, Englehardt et al. [27] point out that
cookies allow for linking a user’s visits to different websites
even if his or her device IP address varies. They conducted
a large-scale measurement of traditional online tracking
using their OpenWPM platform [26]. Cross-device tracking
further requires the correlation of users’ different devices.
As Olejnik et al. [67] remarked, browsing histories could
potentially identify the same user across multiple devices.

In the closest work to ours Brookman and his co-authors
from the FTC [11] examine the potential for device
correlation by surveying the occurrence of cross-device
trackers on 100 popular websites. They also evaluate the
extent to which cross-device companies notify users of their
practices. While this inquiry into privacy transparency is
part of our study as well (§ 8), we extend their work. In
particular, we provide statistical support for the occurrence
of cross-device tracking (§ 3), evaluate cross-device tracking
techniques (§ 5), analyze the potential increase in learning
power from cross-device data (§ 6), and examine the
penetration of cross-device trackers (§ 7); all on real user
data (§ 4). Our study is also complementary to the work of



Mavroudis et al. [59] and Arp et al. [7], who present analyses,
attacks, and defenses for ultrasound-based cross-device
tracking. We are exploring cross-device tracking based on
cookies and other traditional tracking mechanisms.

If a browser does not accept cookies, it still can be tracked
via device fingerprinting as initially shown by Kohno et
al. [51], Eckersley et al. [25], and extensively surveyed by
Lerner et al. [56]. Kurtz et al. [52] and Gulyás et al. [39]
showed that mobile device fingerprints are often unique, dis-
tinguishable, and re-identifiable. Fingerprinting can be based
on sensors [19] and, notably for our purposes, can be em-
ployed across browsers [15]. With their FPDetective Acar et
al. [2] conducted a large-scale study of device fingerprinting.
Nikiforakis et al. [66] provided insight into the practices of
three popular browser-fingerprinting libraries and introduced
PriVaricator [65], which is a defense against browser finger-
printing based on randomization. Three advanced tracking
mechanisms—canvas fingerprinting, evercookies, and use of
cookie syncing—were investigated by Acar et al. [1]. In our
study we are now exploring the extent to which fingerprinting
can play a role in cross-device tracking (§§ 5.1, 7.1). Various
works on website fingerprinting [12,13,17,41,44,69] inform
our study in this regard as well.

As we conduct a first cross-device tracking data flow
experiment our work also relates to similar experiments and
methodologies in other areas of online tracking. Particularly,
our work relates to the study of Meng et al. [60], who
showed that there is a correlation between Google ads and
users’ profiles and evaluated the likelihood of learning users’
sensitive information. Focusing on Google as well, Lécuyer
et al. [54, 55] were able to show a correlation between
users’ e-mail content and ads served to them. Further, Book
and Wallach [10] collected a set of about 225K ads on 32
simulated devices and analyzed how the ads were targeted
by correlating them to targeting profiles. In addition, Zarras
et al. [85] performed a large-scale study on the security
of ad serving, and Meng et al. [61] presented an ad fraud
attack that enables publishers to increase their ad revenue.
In our experiment we follow the recommendations given
for information flow experiments by Tschantz et al [81].

2.2 Human-Computer Interaction

While there are only few online tracking studies investigating
how users are tracked across devices, various efforts on
human-computer interaction are informative for our purposes.
The goal of these studies is to improve website navigation,
browser prediction of user destinations, and search result
relevance for search engines [3]. To that end, we leverage the
insight of some studies focusing on website revisit patterns
and highlighting the identifying potential of such revisits. In
this regard, Tauscher and Greenberg [78] found that 58%
of a user’s visits to websites constitute revisits. People tend
to access only a few pages frequently and browse in small

clusters of related pages. Adar et al’s [3] analysis reveals
various patterns of revisits, each with unique behavioral,
content, and structural characteristics.

Some studies took a closer look at website revisits across
devices. Tossell et al. [79] were able to detect that revisits
occurred very infrequently with approximately 25% of
URLs revisited by each user. They further found that,
compared to desktops, mobile browsers are accessed less
frequently, for shorter durations, and to visit fewer pages.
Users seem to rely on apps instead. Different from websites,
apps have a revisit rate of 97.1% driven by a high number
of visits to the five most frequently accessed apps. It appears
that mobile web use is more concentrated and narrow than
its desktop counterpart. Indeed, Kamvar et al.’s work [46]
confirms this conjecture for the use of web search.

In their quest for improving the sharing of bookmarks and
other information across devices Kane et al. [47] found that
users tend to visit many of the same domains on both their
mobile phones and desktops. Specifically, they found that a
median of 75.4% of the domains viewed on the phone were
also viewed on the desktop, and a median of 13.1% of the do-
mains viewed on the desktop were also viewed on the phone.
Despite the differing browsing habits across devices, partic-
ularly, the higher number of websites visited on desktops,
they conclude that users’ web browsing activities are similar
across devices. However, users do not use all of their devices
in the same way but rather assign them different roles, as
Dearman and Pierce [20] found. As we will explore further
(§ 6), these different roles could be a reason for why learning
about users’ interests can be more comprehensive with data
from more than one device. While the sharing of devices
can also principally impact cross-device companies’ ability
to track users across those, Matthew et al.’s study [58] found
that phones were never shared among multiple individuals
for mutual use, and computers were shared moderately.

2.3 Machine Learning

Different from traditional types of online tracking cross-
device tracking is often based on machine learning. In 2015,
Drawbridge [22], an ad network specialized on cross-device
tracking, hosted the ICDM 2015: Drawbridge Cross-Device
Connections competition asking competition participants to
leverage machine learning techniques to correlate devices to
users [23]. The competition participants were given access
to an anonymized proprietary dataset with mostly hidden fea-
tures. The competition generated various short papers [14,48,
50,53,62,71,75,82] that take the perspective of an ad network.
They focus on improving machine learning performance for
a narrow set of features; essentially, only exploiting similarity
of IP addresses. Our evaluation of tracking techniques broad-
ens this research and is centered on privacy implications.

The first place solution of Walthers [82], which reached
an F-0.5 score of 0.9, is in some ways representative for the



1. google.com
2. google.com; buy pet food - Google Search
3. m.petsmart.com; PetSmart
4. m.petsmart.com; Food
5. m.petsmart.com; Fancy Feast Classic Adult Cat
6. google.com; petco - Google Search
7. m.petco.com; Pet Supplies, Pet Food, and Pet P.
8. m.petco.com; Cat Furniture: Cat Trees, Towers
9. m.petco.com; Cat Food
10. m.petco.com; Browse & Buy Hill’s Science Diet
11. m.petco.com; Hills Science Diet Adult Perfect W.
12. instinctpetfood.com; Instinct Pet Food
13. instinctpetfood.com; Instinct Pet Food For Your Cat
14. instinctpetfood.com; Instinct Raw for Cats
15. google.com; beneful cat food - Google Search
16. google.com; instacart
17. google.com
18. google.com; buy watch - Google Search
19. brilliantearth.com; Beyond Conflict Free Diamonds
20. google.com; buy refrigerator - Google Search
21. offers.geappliances.com; Drimmers - Offers GE A.
22. m.homedepot.com; Top Freezer Refrigerators - Re.
23. m.homedepot.com; Refrigerators
24. searshometownstores.com; Refrigerators & Freez.
25. searsoutlet.com; Refrigerators & Freezers for Sale
26. amazon.com
27. amazon.com; search for refrigerator
28. amazon.com; LG LSXS26366S 35-Inch Side
29. shoppermart.net; ShopperMart.net: Find the best
30. samsung.com; Galaxy TabPro S - 2-in-1 Tablet

Figure 2: The mobile browser history (without visits to the
Alexa-ranked homepages in the first two months of the experiment).
The list shows the domains and the titles of the webpages, if any.

A. PetSmart

nytimes.com

adsense.com

Google AdSense

Google Display Network

B. Miele/Abt

latimes.com

as.chango.com

Rubicon Project 

Tapad

C. Kate Spade

aol.com

redirectingat.com

Skimlinks 

Lotame

Figure 3: Selected ads served to the desktop browser after visiting
the sites in Figure 2 on the mobile browser. We had not seen any
of these ads in our desktop browser session two months before.

approaches taken in the competition. Comparable to other
participants’ solutions [14,50,53], it identified IP addresses
that devices of the same user were connected to as the most
important feature. Intuitively, as conjectured by Cao et
al. [14], devices with similar IP footprints are more likely
to be used by the same individual. Thus, the simple reliance
on IP address history can already lead to an F-0.5 score of
0.86 [14]. However, various studies found that not all IP
addresses are equally meaningful, in particular, because the
same public or cellular IP address can be assigned to many
different users at different times [48,82].

Participants in the Drawbridge competition [23] did not
find online history particularly useful for their task. They re-
ported that correlating online history across devices provided
only minimal gain [50, 53]. This seemingly contradictory
result to the previously discussed usability studies, which
hinted at cross-device website revisit patterns as an impor-
tant feature, could be due to the fact that the Drawbridge
dataset [45] provided only app history for mobile devices.
Thus, the absence of mobile web history could be a reason
for participants’ inability to reach Drawbridge’s precision of
0.97 [22]. While the Drawbridge competition was about the
correlation of different user devices, it did not address the pur-
pose of the correlation: the prediction of users’ demographics
and interests, which we will discuss in our study (§ 6).

3 Detecting Cross-device Trackers

In order to evaluate the occurrence of cross-device tracking
in the wild we conducted an exploratory case study.
Purpose. It could be argued that our case study is aimed at
the obvious: detecting the existence of cross-device tracking.
However, we emphasize that it is our intention to show a
procedure for identifying unknown cross-device companies.
The procedure is also intended to be used for determining
whether known companies are adhering to the limits that
(self-)regulation imposes on them, in particular, as users are
given the right to opt out from cross-device tracking [21].
Our case study provides an initial information flow
experiment in the cross-device space. However, we caution
that we leave a comprehensive analysis, which was done in
other areas of online tracking [54,55], for further research.
Establishing an IP Address Connection. We began our
experiment by connecting two devices—a desktop and a
mobile device—to the same router and modem. Using a
fresh desktop browser without any user data we visited the
homepages of five randomly selected news websites from
the Alexa rankings [4]—aol.com, latimes.com, nytimes.com,
wsj.com, and washingtonpost.com (the test homepages). We
refreshed each test homepage ten times, as recommended
for these type of information flow experiments [81], and
observed the ads that were served. We also set up a desktop
device with a fresh browser connected to a different router
and modem as control instance. In the following two months
we occasionally and randomly visited 100 highly ranked
homepages [4] on our fresh mobile browser.
Observing Cross-device Ads. After two months we used
the mobile browser to visit the websites shown in Figure 2.
We searched Google for various consumer products and
clicked on ads served for those on the search results pages.
After a few hours we switched to our desktop browser and
accessed the test homepages. We refreshed each ten times.
Some of the served ads, which we had not seen before, were
for products we had searched for on the mobile device. Fig-
ure 3 shows the ads and associated information, that is, the



name of the ad (e.g., PetSmart), the domain on which it was
served (e.g., nytimes.com), the domain of the ad server (e.g.,
adsense.com), the ad network serving the ad (e.g., Google Ad-
Sense), and the involved cross-device tracking provider (e.g.,
Google Display Network).4 Our results suggest that the ad
networks serving the ads had learned that the user who did the
search on the phone was the same as the user on the desktop.

To assess the similarity of ads we categorized each ad
according to Google ad categories [35]. Then, based on an
exact one-tailed permutation test, as recommended [81], we
compared the ad distribution served on the desktop browser
to the ad distribution served on the desktop control browser.
We evaluated the null hypothesis that both distributions do
not differ from each other at the 0.05 significance level.
However, the result of p = 0.02 indicates that the null
hypothesis should be rejected and that the deviation of both
distributions is statistically significant at the 0.05 level. This
finding suggests that we successfully identified instances of
cross-device tracking. We also found mobile cookie syncing
between Rubicon Project and Tapad. However, confirming
earlier observations [11], we did not detect any cookie
syncing across devices.
Direction of Ad Serving and App-Web Correlation. In
addition to cross-device tracking from mobile to desktop
we were further interested in the reverse direction. However,
searching Google on our desktop for buying products did not
seem to lead to ads for these products on our mobile browser.
One explanation might be that the ad serving was limited
to one direction—from mobile to desktop— as users tend to
move from a smaller to a larger screen [33,37]. Another ex-
planation could be that ad networks attached more weight to
the history on the device to which an ad was served and less
to other connected devices. Further, we might simply have
missed all cross-device campaigns at the time for the prod-
ucts we searched for. Finally, we were not able to notice any
correlation in ad serving in either direction when repeating
our experiment with mobile apps instead of websites.

4 The Cross-device Tracking Dataset

A major reason for the scarcity of academic research in
cross-device tracking is the unavailability of data. Generally,
only proprietary industry data exists.5 Thus, we collected
our own cross-device tracking dataset (the CDT dataset).
Here we describe how we collected the data and highlight
cross-device usage patterns of the users in the dataset.

4We assume that the Google Display Network covers sites using
AdSense, DoubleClick, Blogger, YouTube, and AdMob. On one side, this
is likely an overestimation as not all sites using these trackers are part of
the Google Display Network. On the other side, it is an underestimation
as there are sites that are part of it, however, not using any of the trackers.
In total, the Google Display Network covers over two million sites [34].

5The Drawbridge dataset [45] was only accessible to participants of the
Drawbridge competition [23] and limited in its use for that purpose.

Desktop Web Mobile Web Mobile Apps
Users 125 102 104
IPs 1,994 5,784
Domains 23,517 3,876 845

Table 1: Summary statistics showing the total number of unique
users, IP addresses, and domains in the CDT dataset.

Desktop Web Mobile Web Mobile Apps
25th, 50th, 75th 25th, 50th, 75th 25th, 50th, 75th

Days 19, 22, 26 9, 17, 23 19, 22, 24
IPs 6, 17, 24 25, 63, 92
Domains 149, 251, 374 9, 31, 70 19, 30, 44

Table 2: Summary statistics for the CDT dataset per user showing
the unique values at the 25th, 50th, 75th percentiles. The data
was collected for the same continuous time period for every user.
However, not every user made use of his or her devices every day.

Data Collection Procedure. Before we began the data col-
lection we obtained approval from Columbia University’s In-
stitutional Review Board (IRB). We built our data collection
system such that interested users could sign up on our project
website, at which point we also took a device fingerprint for
each signed up device. We asked users to supply basic infor-
mation on their demographics (e.g., age and gender), interests
(e.g., finance, games, shopping) [36], and personas (e.g., avid
runners, bookworms, pet owners) [84]. In order to capture
users’ mobile and desktop history we provided them with
browser extensions and an Android app that we developed
for automatically collecting such information.6 Details on the
types of information that we collected are contained in Ap-
pendix A. We do not have any indication that users behaved
differently in our study than under real-world conditions.

We only signed up users of Android phones with
Android’s native browser, Google Chrome, or the Samsung
S-Browser. We did not support iOS or other operating
systems. Our app requires Android 4.0.3 and runs without
root access. Every minute it checks for a new foreground app
running on the device as well as new entries in the browsing
history database of the phones’ browsers. If new apps or
URLs are detected, a new history datapoint is transmitted
to our server.7 On the desktop side we provided users of all
operating systems with data collection browser extensions
for Google Chrome, Mozilla Firefox, and Opera. At the
conclusion of the study we rewarded each user with an
Amazon gift card for $15 to $50 depending on the amount
of data we received from them.
Dataset Characteristics. We collected data from 126 users.
Tables 1 and 2 show further details. We signed up 125
desktop and 108 mobile users with an intersection of 107

6When we refer to desktops, we include laptops but exclude tablets.
7For some users with Google Chrome and Android 6.0 or higher we

did not receive the full browsing history due to browser restrictions. We
asked affected users to send us their history manually.



users from whom we obtained both mobile and desktop data.
While our data faithfully represents that not every Internet
user has multiple devices, it does not reflect that users in the
real world can have more than two devices. However, despite
this limitation we believe that our dataset is generally an
accurate reflection of real multi-device usage on the Internet
because the vast majority of mobile devices is associated with
only one desktop browser [71]. Therefore, it seems plausible
to adopt this understanding of the problem here as well.
Further, only 3/108 (3%) of mobile users and 4/125 (3%)
of desktop users in our study reported that they are sharing
their devices. As this result seems in line with findings that
phones are never shared for mutual use and that computers
are only shared for a moderate amount [58], it appears that
our data is a realistic representation in this regard.

118 users in our study were affiliates of Columbia Uni-
versity, mostly students. Based on this population we believe
that our data is more homogeneous than a data from, say, the
general population of New York City. However, we also note
that our users are less likely to encounter typical restrictions
of device use that many employees face in the workplace,
e.g., corporate networks blocking certain websites. For the
median user we collected about three weeks of data of which
IP addresses and domains are of particular importance for
probabilistic cross-device tracking because they can be used
to measure the similarity between devices (§ 5.2).

It is noteworthy that the total unique mobile IP count
(5,784) is nearly three times the total unique desktop IP
count (1,994), which reflects mobile usage on the go. It
should be noted, though, that the real unique mobile IP
count is likely even higher as our method did not allow us
to collect mobile IPs with every datapoint. However, the
high number of unique desktop domains (23,517), compared
to the homogeneous usage of apps (845), underscores the
diversity of desktop browsing. While it is much more diverse
in terms of domains (3,876), mobile web usage pales in
comparison to app usage. As shown by the 25th, 50th, and
75th percentiles, the median user accessed the mobile web
only for 17 days visiting only 31 unique domains.8 While
app usage is more popular with a median of 22 days, the
median usage of 30 unique apps is comparable to that of the
mobile web. However, the median number of unique mobile
IP addresses (63) more than triples desktop IP addresses (17).

Figure 4 shows that many users visit a relatively large
number of unique mobile device IP addresses and desktop
web domains. However, there does not seem to be a
correlation between desktop and mobile devices to the effect
that lower usage of one would imply more usage of the other
or that both are used to an equal degree.

8A day was counted if a user’s device had at least one desktop
web, mobile web, or app access on a given day. Also, uniqueness of
a domain is dependent on its top and second level. Thus, for example,
we treat facebook.com and linkedin.com as different domains, however,
linkedin.com and blog.linkedin.com as the same domain.
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Figure 4: Unique IP address (top) and web domain (bottom) count
for each user in our dataset for whom we had both mobile and
desktop data. For example, Peggy has 82 unique mobile and 35
unique desktop IP addresses (top). To the right of Peggy about two
thirds of users visited fewer than 56 unique mobile domains and
to the right of Don about a fourth visited fewer than ten (bottom).

5 Methods for Cross-device Tracking

How cross-device companies operate is not known in
detail [49]. In order to get an understanding of their
capabilities we designed an algorithm and evaluated features
and parameters informed by a review of public materials,
particularly, Adelphic’s cross-device patent [83] and Tapad’s
patent application for managing associations between device
identifiers [80]. Essentially, cross-device tracking is based
on resolving two tasks: first, uniquely identifying users’
devices (§ 5.1), and, second, correlating those that belong
to the same user (§ 5.2).

5.1 Identifying Devices

Traditionally, HTTP cookies are used to identify desktop
devices. Indeed, many cross-device companies are employ-
ing cookies for their tracking purposes as well. For mobile
devices the use of advertising identifiers, such as Google’s
Advertising ID (AdID), is common and often combined
with cookie tracking. Thus, if users are allowing cookies
and do not opt out from being tracked, both their mobile
and desktop devices can be easily identified. However,
with the surge of tracking- and ad-blocking software, which
some consider a mainstream technology on mobile by
now [68], unconventional identification technologies, such
as device fingerprinting, are becoming more prevalent.
While it does not appear that they will generally replace
cookies and advertising identifiers any time soon, various
cross-device companies—for example, BlueCava [9] and
AdTruth [28]—are making use of device fingerprinting.



Desk Devices Mob Devices
H, Hn, Ĥ H, Hn, Ĥ

User Agent 4.46, 0.64, 4.96 6.43, 0.95, 8.5
Display Size/Colors 5.34, 0.77, 6.08 1.72, 0.25, 2.08
Fonts 6.11, 0.88, 7.33 1.21, 0.18, 1.33
Accept Headers 2.86, 0.41, 3.29 2.34, 0.35, 3
System Language 0.41, 0.06, 0.51 0.81, 0.12, 1
Time Zone 0.25, 0.04, 0.35 0.53, 0.07, 0.74
Mobile Carrier N/A 1.39, 0.21, 1.45
Do Not Track Enabled 0.67, 0.1, 0.67 0.18, 0.03, 0.19
Geolocation Enabled 0.45, 0.07, 0.45 1, 0.15, 1
Touch Enabled 0.72, 0.1, 0.72 N/A
Total per Device Type 6.96, 1, 12.95 6.69, 0.99, 10.87
Total 7.84, 1, 13.37

Table 3: Entropy (H), normalized entropy (Hn), and estimated
entropy (Ĥ) for various browser features in our CDT dataset. The
normalized entropy ranges from 0 (all features are the same) to
1 (all features are different). We calculated the estimated entropy
according to Chao and Shen [16]. For the totals we considered
all listed features. Overall, our dataset contains 3 duplicate mobile
fingerprints and 1 duplicate desktop fingerprint.

Cross-device companies that are solely relying on device
fingerprinting must be able to identify both desktop and
mobile devices using this technique. While it was reported
that device fingerprints generally do not work well on
mobile devices [25], our results do not support such broad
conclusion. Particularly, mobile user agents often contain
distinctive features and are far more diverse (6.43 bits) than
user agents on desktops (4.46 bits). Also, the entropy in
our dataset only represents a lower bound as we imposed
substantial limitations for users’ participation in our study;
most notably, requiring them to have an Android phone with
Android 4.0.3 or higher and use the native browser, Chrome,
or S-Browser. We also did not consider, for instance, canvas
fingerprinting [1], sensor data [19], or the order in which
fonts and plugins were detected [25]. However, most mobile
devices in our dataset were still identifiable. The detailed
findings for the 107 mobile and 126 desktop devices in our
CDT dataset are shown in Table 3.9 Due to the small size
of our dataset we caution to interpret our results as indicative
for the reliability of mobile device fingerprinting, though.

5.2 Correlating Devices
After uniquely identifying each device cross-device com-
panies must match those that appear similar. Successfully
matching devices at scale is the core challenge for cross-
device companies. Devices are represented in graphs known
as Device Graphs [76], Connected Consumer Graphs [22], or
under similar proprietary monikers. From a graph-theoretical
perspective a device graph can be built from connected

9One user did not submit a mobile fingerprint and another user
submitted two different desktop fingerprints.

Figure 5: Our cross-device tracking approach. A. First, a mobile de-
vice is identified. B. Its similarity to each identified desktop device,
s, is calculated. C. The mobile-desktop pair with the maximum
similarity, max, that is above a similarity threshold, t, is determined,
if any. D. If such pair exists, it is added to the device graph and
the next iteration starts with a new mobile device. This routine is
repeated in three consecutive stages each evaluating similarities
between mobile and desktop IP addresses, mobile and desktop
URLs, and mobile apps and desktop URLs, respectively. If a mobile
device cannot be matched in one stage due to not overcoming the
similarity threshold, a match is attempted in the next.

components (each of which represents a user) with a
maximum number of vertices (devices) and edges (device
connections) [18]. Matching every mobile with exactly one
desktop device will result in a bipartite graph. The goal is
to achieve a perfect matching of similar devices.
Algorithm, Features, and Parameters. While determin-
istic cross-device companies can simply match a user’s
devices based on his or her login information, which may
also extend towards third party properties through single
sign-on functionality, achieving a high match rate is more
difficult for probabilistic cross-device tracking companies.
In the Drawbridge competition [23] many participants
applied gradient boosting [48, 50, 53, 62, 71]. However,
some participants also combined support vector machines
and factorization models into field-aware factorization
machines [75] or employed pairwise ranking and ensemble
learning techniques [14]. Interestingly, the best performing
solution relied on learning-to-rank models instead of using
the more conventional binary classification models [82].

In our approach, as outlined in Figure 5, we determine the
similarity between devices based on distance metrics, most
notably, the Bhattacharyya coefficient, which is defined for
the distributions p and q as Bhatta(p,q)=∑x∈X

√
p(x)q(x).

The use of distance metrics for device correlation was
described in Adelphic’s cross-device patent [83]. Our
cross-device tracking algorithm works in multiple stages.
Using a key insight from the patent, for each feature a



Sim Feature Mapping Distance Metric Sim Thresh Mean Sim nq Acc Prec Rec F-1
Stage 1 Mob IPs to Desk IPs Bhatta 0.07 0.33 44 0.61 1 0.63 0.77
Stage 2 Mob URLs to Desk URLs Bhatta’ 0.13 0.18 44 0.52 0.85 0.59 0.7
Stage 3 Mob Apps to Desk URLs Bhatta* 0.02 0.11 44 0.16 0.19 0.5 0.27
Stages 1–3 Same as in Individual Stages above 0.33, 0.16, 0.03 44 0.84 0.88 0.95 0.91

Table 4: Test set results. The first three rows show the results for running each stage individually. The fourth row shows the results for
running the three stages consecutively. We normalized the Bhattacharyya coefficient (Bhatta) to a range between 0 (low similarity) and
1 (high similarity). Bhatta’ denotes the exclusion of URLs in the Alexa Top 50 [4] and all columbia.edu URLs. Further, Bhatta* excludes
the most used 100 apps according to our training set. We selected the best similarity threshold (Sim Thresh) for each stage according
to observations in our training runs. Mean Sim is the mean similarity across all 44 device pairs in the test set, and nq is the size of the test set.

similarity threshold is set. If a threshold is reached at one
stage, a match is declared for the mobile-desktop device pair
with the highest similarity score. Otherwise, the algorithm
continues to evaluate whether the similarity threshold for
a different feature is reached in the next stage. To evaluate
the similarity between a mobile and a desktop device it
compares mobile to desktop IP addresses, mobile to desktop
web URLs, and mobile apps to desktop web URLs.
Test Set Results. To test our approach we randomly sepa-
rated the set of device pairs in our dataset into a training (nt =
63) and a test set (nq=44). We used the former to tune our
algorithm and features and held out the latter for performance
evaluation. As shown in Table 4, running all three stages of
the algorithm consecutively on our test set leads to precision,
recall, and F-1 scores of 0.88, 0.95, and 0.91, respectively.
The F-0.5 score [50], which emphasizes precision over recall,
reaches 0.91. In detail, we obtained 37 true positives (TP), 5
false positives (FP), 0 true negatives (TN), and 2 false neg-
atives (FN). These results are based on the usual definitions,
i.e., accuracy, Acc=(TP+TN)/(TP+TN+FP+FN), pre-
cision, Prec=TP/(TP+FP), recall, Rec=TP/(TP+FN),
and F-1 score, F-1 =(2·Prec·Rec)/(Prec+Rec).

To make the matching more difficult we included in
each run of our algorithm in every stage data from users for
which we only had data from one device type: data from
one user who only submitted mobile data and from 18 users
who only submitted desktop data. Further, our results are
based on modeling device correlation as binary classification.
Specifically, for each correct match between a user’s mobile
and desktop device we counted a true positive. For each
incorrect match we noted a false positive. If a mobile device
would have no corresponding desktop device it would have
been counted as a true negative if it remained unmatched.
However, as there was only one such instance in our test set
and that mobile device was actually matched, we counted
it as false positive. A false negative means that an instance
should have been matched, however, remained unmatched.

Running the three stages of our algorithm consecutively
leads to approximately balanced results for precision (0.88)
and recall (0.95), as shown in Table 4. However, when
running the stages individually, we obtain relatively higher
precision and lower recall in the first two stages and lower
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Figure 6: Precision and recall for matching devices based on various
distance metrics and thresholds. The table shows the best F-1 scores
and their corresponding similarity thresholds. The features are the
same as described in the respective stages in Table 4. However,
the evaluation is performed here on the full dataset. For higher
thresholds recall scores tend to decrease while precision scores
tend to increase (except when they exclude too many true positives).
Overall, the Bhattacharyya coefficient returns the best results.

precision and higher recall in the third stage. This difference
highlights the tradeoff between achieving correct matches
(precision) and broad user coverage (recall). While it is
challenging to improve one without adversely affecting the
other [49,73], the similarity thresholds provide the controls
for adjustment. Figure 6 shows changes in precision and
recall for different similarity thresholds and distance metrics.

The high precision scores of Drawbridge (0.97 [22]) and
Tapad (0.91 [77]) seem to suggest that the industry favors
precision over recall.10 However, there is also an argument

10We interpret Tapad’s usage of the term accuracy to mean precision
(“[W]henever our Device Graph indicated a relationship between two or
more devices, it was accurate 91.2 percent of the time.”).



to be made against emphasizing precision: some device
mismatches may be irrelevant. Particularly, we believe that
mismatches might happen for people living in the same
household (in case of mobile IP to desktop IP similarity) or
individuals having the same interests (in case of web domain
and app to web domain similarity). In these situations a
mismatched device might still be a meaningful ad target [24].
The reason is that targeted purchase decisions might be
made at the household level or look-alike audiences might
be sufficiently valuable for an ad network [80].

Our results show that IP addresses are very meaningful
for matching devices, which is in line with Cao et al.’s
findings [14]. They reached an average F-0.5 score of 0.86
in the Drawbridge competition [23] using only features
from IP address data. However, beyond this finding our
results further suggest that visited web domains are a good
indicator for device similarity as well. In fact, there might
be situations in which they can be more revealing than IP
addresses. For example, if users of the same household share
an IP address, their devices can not be distinguished based
on this feature. Also, while the correlation between apps
and desktop domains does not contribute as much as the
IP address and domain correlations, it still provides some
meaningful signal as the results for the individual run of
the third stage in Table 4 demonstrate. Most importantly,
however, performance seems to increase if multiple features
are applied consecutively. Some users can be better matched
based on IP addresses and others on web domains or apps.

We note that we leveraged a manual mapping between
apps and desktop domains via company names or other
common identifiers thereby transforming a feature with
minimal effect in our dataset and the Drawbridge competi-
tion [14,48,50,53,62,71,75,82] to a useful feature. Similarly,
the domain mapping proved to be useful as well due to users’
visits to the same domains across devices. These results
highlight that cross-device matching is not completely reliant
on IP matching, as suggested by the results in the Drawbridge
competition. Our results seem to confirm the conjecture that
carefully hand-crafted similarity features are of paramount
importance while algorithms play a smaller role for the task
of correlating mobile and desktop devices [82].

We experimented with various other features that
ultimately did not prove useful. In particular, an algorithm
leveraging system language and time zone did not match
devices better than random. We also tried excluding sets of
frequently used public IP addresses. However, different from
excluding domains and apps, which, as described in Table 4,
proved to be beneficial, this measure did not lead to better
performance. We further tried different matching thresholds
and evaluated various distance metrics as shown in Figure 6.
In future work it would be interesting to examine the extent
to which the time, order, and duration of app and url access
play a role for device correlation. E-mail and other message
content is an obvious candidate for a useful feature as well.

Applicability to Larger Datasets. With a runtime of
O(n(n−1)/2) our algorithm is suitable for large scale anal-
ysis. However, it is obvious that our dataset is many orders
smaller than the data that cross-device companies are usually
working with. This difference in size begs the question to
which extent our findings are applicable to larger datasets.
For the similarity of IP addresses this question was already
reliably answered. The Drawbridge competition results, for
instance, by Landry et al. [53], are based on a set of about
62K mobile devices and confirm the meaningfulness of IP
features. For web domain features the situation is different
as the Drawbridge data did not contain those for mobile
devices. However, we can make an argument that lends some
supports for the applicability of our results to larger datasets.

Whether web data can be correlated across devices
rests on two premises: first, users visiting an intersecting
set of domains on both their mobile and desktop devices
and, second, domains being sufficiently distinct to allow
identification of users. To examine the first premise we
randomly selected 50 U.S. domains out of the top 5K sites
that were quantified by Quantcast [70] and found a mean of
17.1% users visiting a website both on a mobile and desktop
device (during a 30-day period and at the 95% confidence
level with a lower bound of 14.4% and an upper bound
of 19.5% using the bootstrap technique). As to the second
premise, it was shown for a set of about 368K desktop
and mobile Internet users that 97% of them were uniquely
identifiable if at least four visited websites were known.11

Limitations. It would be an interesting exercise to compare
our techniques against those currently in use in industry.
However, we are not aware of any publicly available
resources allowing us to do so. The same is true for
cross-device tracking datasets. To our knowledge, there
is no dataset publicly available beyond the CDT dataset
that we created. The only other cross-device tracking
dataset we know of was made available by Drawbridge
to participants of the Drawbridge competition solely for
competition purposes [23]. However, even if this dataset
would be available, it would only allow an incomplete
analysis, particularly, as features were generally anonymized
and mobile web history was not included in the dataset.
Consequently, at this point it does not seem possible to
compare our approach to others or evaluate its performance
on a different dataset. However, as we implemented key
design elements that we found in available industry materials,
we believe that our results provide a first approximation for
cross-device tracking approaches applied in practice.

There are various considerations of identifying and corre-
lating devices in practice that we cannot meaningfully test.
A first point concerns the time period for which users are
being tracked. We believe that the three weeks of data that
we have available for most users (Table 2)—the concrete

11All users in our dataset who visited at least one mobile and one desktop
website had unique web histories as well.



length depending on the number of days on which they used
their devices—are realistic. However, we lack the insight
for which duration cross-device tracking actually occurs in
practice. Also, despite some cross-device companies’ broad
coverage of websites and apps (§ 7), none of them has access
to complete IP, web, and app data of Internet users. However,
ultimately this limitation is one of reach and not of perfor-
mance. By setting similarity thresholds high even companies
with limited data can obtain precise results, albeit, at the cost
of low recall. Further, our dataset does not contain full IP his-
tories either. In addition, our data is probably more homoge-
nous than real data, and, thus, more difficult to assess. Users
in our study were mostly students located in a confined space
with many commonly shared web domains and IP addresses.

6 Learning from Cross-device Data

In this section we examine whether cross-device data enables
cross-device companies to make more accurate predictions
than they could make using data from individual devices
alone. We address this question for two inquiries: users’ inter-
est in finance—a randomly selected interest category—and
gender. Both are relevant ad targeting criteria. For interest in
finance we obtained the most accurate predictions by using
data from both mobile and desktop devices. Consequently,
this is a task in which predictions about a user from
cross-device data appear more privacy-invasive than those
from single device data sources. However, as we also found
a lack of performance increase for predicting a user’s gender,
it appears that some prediction tasks might not become more
accurate with the availability of cross-device data.
Predicting Interest in Finance. As a starting point for
our feature creation we used Alexa category rankings [5]
and Google Play store categories [38] to identify the top
25 finance domains that have both a website and an app.
Then, we used the Weka machine learning toolkit [40] to
explore the potential for predicting interest in finance. We
experimented with various features and all available standard
algorithms. We used a word-to-vector preprocessor and
found logistic regression to be the most effective technique.
Due to the class imbalance of only 23% users in our dataset
expressing an interest in finance we ran logistic regression
as a cost-sensitive classifier increasing the cost for a false
positive on average 1.5 times over the cost for a false
negative. Our results, which are shown in Figure 7 and
based on 10-fold cross validation, suggest that predicting an
interest in finance for users in our dataset is more accurate
if both desktop and mobile data are available.

In particular, predicting from mobile data alone proved to
be the weakest option. One reason seems to be that we only
had 90 features from the mobile data compared to 106 and
107 for the desktop and combined data, respectively. Using
desktop data only we tried to increase the performance to
the level of the combined mobile and desktop data, which
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Acc 95% CI Prec Rec F-1 ROC
A. 0.64 0.55–0.73 0.26 0.22 0.24 0.5
B. 0.75 0.67–0.83 0.5 0.52 0.51 0.68
C. 0.79 0.71–0.87 0.57 0.59 0.58 0.75
D. 0.83 0.76–0.9 0.68 0.63 0.65 0.79

Figure 7: Logistic regression for predicting interest in finance from
mobile web domains and apps (Mob) and desktop web domains
(Desk). 95% CI designates the binomial proportion confidence
interval for the accuracy at the 95% level assuming a normal
distribution. The F-1 score based on features from both types of
data (Mob & Desk - 108 Features) is higher than the scores obtained
using mobile and desktop data individually (even with more
features as in Desk - 2,923 Features). We observed similar results
for value shoppers with F-1 scores of 0.17 (Mob - 85 Features),
0.25 (Desk - 99 Features), and 0.41 (Mob & Desk - 104 Features).

reached an F-1 score of 0.65. However, we were only able to
obtain an F-1 score of 0.58 by substantially increasing the fea-
ture space to 2,923 features, at which point we saw no further
improvement. Combining desktop and mobile data and lever-
aging 107 features outperformed all other approaches. The
ROC curves in Figure 7 visualize this finding. The predic-
tions that users have an interest in finance are shown in orange
while the negative predictions for not having an interest in
finance are displayed in blue. For the latter the F-1 scores are:
Mob - 91 Features: 0.77, Desk - 107 Features: 0.83, Desk -
2,923 Features: 0.86, and Mob & Desk - 108 Features: 0.89.
Predicting Gender. While the predictive performance of
a user’s interest in finance increased with the availability
of both desktop and mobile data, it appears that such
improvement does not necessarily hold for all classification
tasks. Particularly, classifier performance for the prediction
of gender from combined desktop and mobile data was
not better than the performance using desktop data alone.
Applying logistic regression with 10-fold cross validation we
obtained identical scores for precision, recall, and F-1 with
values of 0.82, 0.81, and 0.82, respectively. It did not make a
difference whether mobile data was added to the desktop data
or not. This result suggests that for some tasks the availability
of cross-device data does not lead to better predictions.
Impact of Device Usage Patterns. What could be the rea-
son for the differing utility of cross-device data in the two
prediction tasks? Subject to the results of further experiments
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Figure 8: Mobile and desktop device usage patterns. Some users in
our dataset access finance and value shopping domains only from
their desktop or mobile device (i.e., from a mobile website or app).

it seems that having both mobile and desktop data available
can be an advantage for predictions that rely on features ex-
hibited on one device type only. We did not only observe
such patterns for users with an interest in finance but also
for value shoppers—a randomly selected persona category.
For both interest in finance and the value shopper persona
we evaluated to which extent users respectively accessed the
top 25 finance and value shopping domains on their mobile
and desktop devices. Our results, illustrated in Figure 8,
support the conclusion that having data available from both
mobile and desktop devices increases the chances of captur-
ing (more) salient features for the aforementioned predictions.
For example, an ad network without access to desktop data
would have difficulty to make correct classifications for users
that only access respective domains on their desktop device.
We note that the observed patterns are based on a small
number of users. Thus, further investigation is warranted.
Absence of Device Usage During our study we realized the
possibility of making predictions about users who do not
make use of their devices. Predicting a user’s Jewish religion
serves as an illustrative example.12 Obviously, religious web
domains and apps can be meaningful features for predicting
adherence to a particular faith. However, such predictions are
also possible based on subtler user behaviors. Most notably,
as the data collection of our study covered the last two days of
the Jewish Passover holiday we noticed that a few users in our
study did not use either of their devices as the Jewish faith pre-
scribes abstinence from using electronics. Among all users in
our study the pattern of holiday observation became obvious.
This signal was especially clear from the insight into multiple
devices. While some users did not use one of their devices,
only those observant of Passover did not use both. This ex-
ample illustrates that device activity as such can be a useful
predictor that might be exploitable by cross-device tracking.

7 The Scope of Cross-device Tracking

The scope of cross-device tracking on the Internet is yet
to be explored. For example, through their integration into
many websites and apps Facebook and Google appear to
have vast reach into the various devices of their users as
well as the ability to deterministically match those [73].

12As we obtained this result by chance we confirmed that its publication
is covered by applicable IRB regulations of Columbia University.

However, the percentage to which a typical Internet user
is tracked across devices by those and other cross-device
companies is not known. We examine this question for the
users in our dataset based on a procedure for detecting the
presence of cross-device trackers in their browsing and app
histories (§ 7.1) and analyzing their occurrence accounting
for industry collaborations and consolidation (§ 7.2).

7.1 Detecting Cross-device Trackers

Procedure. We examined the trackers on the websites that
the users in our study visited by automating a Firefox browser
with Selenium [74]. The browser included Lightbeam [63]
and User Agent Switcher [64] browser extensions that al-
lowed us to record the trackers on each domain for both mo-
bile and desktop websites. Third party trackers that we found
in a subdomain were added to the domain, however, not vice
versa. Thus, for example, the domain linkedin.com contains
all trackers that we found on blog.linkedin.com but not the
other way around. To identify trackers inside of apps we
selected a total of 153 third party software development kits
(SDKs) listed on AppBrain [6] encompassing SDKs of ad
networks (e.g., Smaato), social networks (e.g., Twitter), and
analytics services (e.g., comScore). Leveraging AppBrain’s
statistics on the inclusion of SDKs in apps we then deter-
mined which SDKs are included in the apps of our dataset.

We qualify a company as cross-device company based on
our detection of their trackers on both mobile and desktop
domains, the former including apps, and their websites’
claims that they indeed perform cross-device tracking. We
identified cross-device trackers by using Whois domain
searches and tracker blocking lists, especially, the list of the
Better tracker blocker [42]. For some companies—Google
AdSense, Rubicon Project, Skimlinks, Tapad, and Lotame—
our information flow experiment (§ 3) provides empirical
support for qualifying them as cross-device companies. It
would be interesting to extend this or a similar information
flow experiment towards other companies.
Lower Bound. Our approach for detecting trackers should
be understood as a lower bound for various reasons.
First, trackers not identified in Lightbeam will remain
undetected. The same is true for SDKs not included in the
pre-defined set of 153 SDKs from AppBrain. Further, we
only detect app tracking via SDKs and do not account for
Android WebViews and app-internal browsers that could
contain tracking cookies or other traditional online tracking
mechanisms [18]. We believe that these technologies warrant
substantial further investigation as we suspect that a large
amount of trackers make use of them.
Limitations. It is a limitation of our crawl that some
websites in our dataset were not accessible (e.g., sites that
required a user login). In some cases our crawl was also
redirected or the requested page was not found. However,
these limitations only affected few URLs. Also, it should
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Figure 10: Total unique third party trackers in our dataset. We found
124 cross-device trackers that belong to 87 different companies.

be noted that we crawled the sites about a month after we
finished collecting data from the study participants. Thus, in
the meantime, some websites might have different trackers
than at the time they were actually visited. Ideally, it would
have been possible to capture the trackers live from our users’
devices during the study. However, such collection is difficult
due to the constraints of the Android environment, most
notably, the sandboxing of mobile browsers. In addition,
our mobile tracker count may be off as we did not use real
mobile devices but instead a spoofed desktop browser.

7.2 Cross-Device Tracking Analysis
As shown in Figure 10, websites accessed from desktop
and mobile devices contained a respective total of 9,732 and
3,243 unique third party trackers. 2,571 trackers were on both
desktop and mobile websites; Brookman et al. [11] found
861 such trackers. Out of the 153 SDKs from AppBrain
we found 81 in our dataset.13 From these sets of third party
trackers we identified 124 cross-device trackers; 118 trackers
that appeared on both mobile and desktop websites and 6
SDKs that are associated with a desktop tracker as well. We
found that the 124 cross-device trackers belong to 87 different
companies. It appears that 22 follow a deterministic approach,
39 use probabilistic techniques, and 26 leverage both.
Tracking of the Average User in our Dataset. On average
each user is tracked across devices on his or her desktop
in 67% of all desktop website visits. We measured a
similar average for mobile web visits with 64%. These

13The app tracker count includes affiliated company’s SDKs. Thus, for ex-
ample, the Facebook SDK inside the Instagram app is counted as one tracker.

Desk Mob Apps
Google Analytics (D) 58% 43.6% 5.1%
Google Display (D,P) 51.6% 41.7% 13.1%
Facebook (D) 27.8% 27.7% 20.3%
Atlas (Facebook) (D,P) 7.8% 2.4% N/A*
Facebook & Atlas (D,P) 27.9% 29.1% 20.3%
Twitter (D) 11.9% 6.6% 0.7%
comScore (D,P) 11.3% 15.1% 1.7%
LinkedIn (Microsoft) (D) 4.9% 1.9% N/A*
Rubicon Project (P) 4.6% 5.8% N/A*
Tapad (P) 1.1% 1.9% N/A
Rubicon & Tapad (P) 5.4% 6.7% N/A*
Advertising.com (AOL) (P) 4% 3.5% N/A
Lotame (D,P) 2.7% 3.8% N/A*
Skimlinks (D,P) 1.1% 1.6% N/A
Lotame & Skimlinks (D,P) 3.5% 5% N/A*
Drawbridge (P) 1.2% 1.7% N/A
BlueCava (P) 0.2% 0.5% N/A
Smaato (D,P) 0.2% 2% 0.1%

Table 5: Cross-device companies’ (D = deterministic and P =
probabilistic according to their websites’ claims) coverage of
websites and apps on average for the users in our dataset (n = 107).
Some of the companies either do not seem to offer an SDK for app
integration (N/A) or we did not analyze it as it was not contained
in our initial set of SDKs from AppBrain (N/A*). The full list,
including the tracking server domains, is attached in Appendix B.

high percentages illustrate that cross-device tracking is a
broadly occurring phenomenon. Table 5 shows the reach
of individual companies. Google Analytics, Google Display,
and Facebook can capture at least 20% of an average user’s
online traffic across devices. This percentage is about
the same that Roesner et al. [72] provided a few years
ago for tracking of individual devices. It is particularly
noteworthy that the companies with the broadest reach have a
deterministic approach, which means that their cross-device
tracking is also very accurate. Figure 9 shows the tracking
coverage for the 87 cross-device companies we identified.

Partnerships between various cross-device companies ex-
tend their reach. For example, Atlas receives user data from
Facebook [8] to track users deterministically. However, Atlas
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Figure 11: The ten domains with the highest number of cross-device companies on their desktop websites (out of 1,829 total domains).
It can be observed that they tend to have higher concentrations of cross-device companies on their mobile sites as well.

Desk Mob Rank-Country
ew.com 52 4 466-US
observer.com 39 8 1,191-US
latimes.com 35 19 133-US
bust.com 34 21 25,690-US
ft.com 31 22 166-UK
globo.com 30 9 5-BR
biography.com 29 12 1141-US
ted.com 26 13 635-US
uol.com.br 26 8 N/A
amny.com 25 15 N/A
gameofthrones.wikia.com 14 35 45-US
androidauthority.com 11 34 570-IN
food.com 26 31 600-US
sacbee.com 0 31 2,985-US
sfgate.com 19 30 310-US
philly.com 15 29 908-US
southcoasttoday.com 17 28 N/A
nypost.com 17 28 154-US
nytimes.com 18 28 48-US
jalopnik.com 15 27 782-US

Table 6: Domains with the highest cross-device company counts out
of 1,829 domains whose URL occurred in both mobile and desktop
data in our CDT dataset. With a total of 57 trackers (31 mobile
web and 26 desktop web) food.com had the highest count overall.

is intended to serve advertisements outside of Facebook’s
reach and shares the data it collects with Facebook as well [8].
Particularly, as shown in Table 5, Atlas’ cross-device trackers
extend Facebook’s mobile web reach from 27.7% to 29.1%.
As another example, the partnership between Lotame and
Skimlinks [57], which we actually observed in our initial
experiment (§ 3), also extends their respective reach. In
those cases the relationship between companies needs to be
accounted for to accurately determine their full coverage.
Domains with Cross-device Company Concentration.
It appears that media websites, in particular, websites of
newspapers, contain the largest concentration of trackers
from cross-device companies. Table 6 shows the top ten
domains—separated for desktop and mobile websites—on

which we found the highest number of trackers from the
87 identified cross-device companies. Coincidentally, it
turns out that the website of the LA Times was a good
selection for our case study (§ 3) as it had trackers from 35
cross-device companies on its desktop website.

Beyond the concentration of cross-device companies’
trackers in the media category it is also striking that many
websites that are hosting those trackers are fairly popular
sites. Table 6 shows the Quantcast country rank according
to the site’s traffic [70]. This placement of cross-device
trackers on popular sites exposes them to large audiences.
However, as it can be observed in Table 6 as well, the shown
domains contain a maximum number of trackers from
cross-device companies on either their mobile or desktop
sites but not on both. This finding holds in general. While
there is a tendency that domains that host many cross-device
companies on their desktop site also host many on their
mobile site, we could not find any statistically significant
correlation in this regard. Figure 11 shows the distribution.

8 Does Self-Regulation Work?

The FTC recommends that cross-device companies should
be transparent about their data practices [32]. While there are
no specific statutes or regulations for cross-device tracking in
the U.S., the field is subject to self-regulation, most notably
by the Digital Advertising Alliance (DAA) and the Network
Advertising Initiative. The DAA requires its member
cross-device companies to disclose “the fact that data
collected from a particular browser or device may be used
with another computer or device that is linked to the browser
or device on which such data was collected.” [21] In order
to examine the level of compliance with this transparency
requirement we randomly selected 40 DAA member ad
networks that advertised their cross-device capabilities on
their websites and analyzed their privacy policies.

We found that 23 disclosed their cross-device tracking
activities while 17 omitted those. After contacting the latter,
we received a response from seven. Two pointed us to docu-
ments that were linked from the policy that indeed contained



compliant descriptions. A representative from another cross-
device company wrote that their cross-device functionality is
not yet fully rolled out to clients, and three others announced
that they will change their policy (one of those still has to
follow through). Another representative simply claimed that
the company is “not violating anything.” Without contacting
us five further cross-device companies simply changed their
policies, of which four became compliant. Finally, there was
no reaction or policy change from five. As of June 9, 2017
we count a total of eight instances of non-compliance.

Overall, it appears that there is a lack of transparency
when it comes to the disclosure of cross-device tracking.
At this point, the DAA guidance does not seem to be
enforced rigorously. While it may be true that the majority of
consumers will not take the time to understand the tracking
practices described in privacy policies,14 we think that it is
still a worthwhile endeavor for cross-device companies to
properly disclose their practices, particularly, for audit and
enforcement purposes as well as for signaling trustworthiness
to the marketplace and to build an environment of rules and
norms in privacy disclosure.

9 Conclusion

Cross-device tracking is an emerging tracking paradigm that
challenges current notions of privacy. This study is intended
as a broad overview of selected privacy topics in mainstream
cross-device technologies. In a brief case study we have
demonstrated how cross-device tracking can be observed
with statistical confidence by means of an information flow
experiment. Using our own cross-device tracking dataset
we designed a cross-device tracking algorithm and evaluated
relevant features and parameter settings grounded in a
review of publicly available information on the practices of
cross-device companies. For some predictive tasks it appears
that those companies can learn more about users than from
individual device data. As the penetration of cross-device
tracking on the Internet already appears relatively high it is
even more important that companies active in this field are
transparent about their practices.

Going forward we hope that the various privacy implica-
tions of cross-device tracking technologies will be studied fur-
ther. In this regard, proprietary research is substantially ahead
of current efforts in academia. While a few major points are
known—for example, that IP addresses are a crucial fea-
ture for correlating devices—many important details on how
cross-device companies operate remain opaque. To shed
more light on the subject we publicized our dataset together
with the software that we developed for further exploration.

14Using tracking protection software and ad blockers is a much more effi-
cient approach from a user perspective. Thus, when evaluating cross-device
tracking in terms of a threat model, the most effective defense would be
to block tracking. In this regard, the defenses against cross-device tracking
are the same as the defenses against the tracking of individual devices.

As cross-device tracking continues to mature and become an
integral part of tracking on the Internet we believe that a com-
prehensive view including legal and business considerations
is helpful. Establishing an enforceable self-regulatory frame-
work for companies to be transparent about their practices
will help to protect consumer privacy and allow cross-device
companies to conduct their businesses responsibly.

Ultimately, cross-device tracking is part of a larger
trend: the Internet of Things (IoT). In this regard, we
see cross-device tracking as an early harbinger of the
increasing inter-connectivity of devices. Increasingly,
buildings, cars, appliances, and other things are connected
to the Internet and are interacting with other online devices.
However, the development and deployment of privacy
solutions has to keep pace with the emerging IoT landscape.
Ensuring transparency and practicable control mechanisms
for information that is traversing device boundaries and
permeates between the online and offline worlds is a critical
element. Given standardized interfaces [43], perhaps, an
intelligent personal privacy assistant that is connected to all
services and devices of person could be a solution.
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A Cross-device Tracking Dataset
Device Fingerprints (n=234)
User Agent 1st Party HTTP Cookies Enabled
Browser Vendor 3rd Party HTTP Cookies Enabled
Browser Engine Do Not Track Enabled
Plugins Installed Touchscreen
Operating System Internet Connection Type
Time Zone Latency
Screen (Color Depth, etc.) Fonts Installed
System Language Local Storage Enabled
Adobe Flash Version Session Storage Enabled
Microsoft Silverlight Version HTTP Accept Headers
JavaScript Enabled

App and Browsing Histories (n=233)
IP Address Browser Tab ID
Browser Vendor Referrer URL
Date URL/App Package ID
Time URL Title
Time Zone 3rd Party Trackers/SDKs

Interest Questionnaires (n=126)
Arts and Entertainment (68%) Beauty and Fitness (33%)
Food and Drink (64%) Internet and Telecom (33%)
Computers and Electronics (63%) Sports (29%)
Science (62%) Online Communities (24%)
News (60%) Finance (23%)
Books and Literature (55%) Pets and Animals (23%)
Jobs and Education (52%) Business and Industrial (21%)
Games (43%) World Localities (15%)
Travel (40%) Reference (13%)
Law and Government (37%) Autos and Vehicles (11%)
Shopping (36%) Home and Garden (11%)
Hobbies and Leisure (34%) Real Estate (4%)
People and Society (34%)

Persona Questionnaires (n=126)
Music Lovers (47%) Hardcore Gamers (11%)
Movie Lovers (46%) Photo and Video Enthusiasts (11%)
Food and Dining Lovers (40%) Fashionistas (10%)
Singles (39%) Personal Finance Geeks (10%)
Bookworms (33%) Avid Runners (7%)
Entertainment Enthusiasts (31%) Flight Intenders (6%)
Tech and Gadget Enthusiasts (31%) Social Influencers (6%)
Casual and Social Gamers (30%) Catalog Shoppers (5%)
News and Magazine Readers (23%) Auto Enthusiasts (3%)
Leisure Travelers (21%) Business Travelers (3%)
Sports Fans (21%) Small Business Owners (3%)
Health and Fitness Enthusiasts (20%) Home Design Enthusiasts (2%)
Mobile Payment Makers (19%) Real Estate Followers (2%)
Value Shoppers (18%) High Net Individuals (1%)
Parenting and Education (15%) Mothers (1%)
Pet Owners (14%) Home and Garden Pros (0%)
Business Professionals (13%) New Mothers (0%)
American Football Fans (11%) Slots Players (0%)

Age Groups (n=126)
18–20 (18%) 31–35 (6%)
21–25 (51%) over 35 (3%)
26–30 (21%)

Gender (n=126)
Women (34%) Men (66%)

B Cross-device Trackers
Type Desk Web Mob Web Mob Apps

33Across P 0.1 0.4 N/A
- 33across.com
Adbrain P 0.4 1 N/A
- adbrn.com
AddThis (Oracle) P 3.4 1.6 N/A*
- addthis.com
- addthisedge.com
Adelphic D, P 0.1 0.7 N/A
- ipredictive.com
Adform D, P 0.4 1.3 N/A*
- adform.net
- adformdsp.net
Adobe Marketing Cloud D 5.4 3.9 N/A*
- 2o7.net
- adobetag.com
- omtrdc.net
AdRoll D 2 1.7 N/A
- adroll.com
Advertising.com (AOL) P 4 3.5 N/A
- advertising.com
Amobee D 0 0 N/A*
- amgdgt.com
AOL ONE P 3.7 4.6 N/A*
- adap.tv
- adtech.de
- adtechus.com
- aol.com
- atwola.com
- jumptap.com
AppNexus P 9.2 8.9 N/A*
- adnxs.com
Arbor D 0.1 0.4 N/A
- pippio.com
Atlas (Facebook) D, P 7.8 2.4 N/A*
- atdmt.com
AudienceScience D, P 0.9 2.4 N/A
- revsci.net
Baidu P 0.3 0 N/A
- baidu.com
Bidtellect P 0.1 0.5 N/A
- bttrack.com
Bing ads (Microsoft) D 3.2 1.6 N/A
- bing.com
- msn.com
BlueCava P 0.2 0.5 N/A
- bluecava.com
BlueKai (Oracle) D, P 3.8 4.8 N/A*
- bkrtx.com
- bluekai.com
BrightRoll (Yahoo) D, P 0.8 2.6 N/A
- btrll.com
Cardlytics P 0.2 0 N/A
- cardlytics.com
Casale Media P 3.8 4.3 N/A
- indexww.com
- casalemedia.com
ChoiceStream D, P 0.1 0 N/A
- choicestream.com
Clearstream TV P 0.1 0 N/A
- clrstm.com
comScore D, P 11.3 15.1 1.7
- comscore.com
- scorecardresearch.com
- zqtk.net
- comScore SDK
Connexity P 0.1 0.4 N/A
- connexity.net
Crimtan D, P 0 0.3 N/A
- ctnsnet.com
Criteo D 5.3 5.5 N/A



Type Desk Web Mob Web Mob Apps
- criteo.com
- criteo.net
Cross Pixel Media D 0.3 0.2 N/A
- crsspxl.com
Datalogix (Oracle) P 1.6 3.3 N/A
- nexac.com
DataXu D, P 1.1 2.5 N/A
- w55c.net
Datonics P 0.2 0.5 N/A
- pro-market.net
Deep Forest Media (Rakuten) P 0.3 0.4 N/A
- dpclk.com
Demandbase D 0.2 0 N/A
- company-target.com
DistroScale P 0.1 0 N/A
- jsrdn.com
DoubleClick (Google) D, P 50.2 41.1 13.1
- 2mdn.net
- dmtry.com
- doubleclick.net
- AdMob SDK
Drawbridge P 1.2 1.7 N/A
- adsymptotic.com
Dstillery P 0.3 1.3 N/A
- media6degrees.com
engage:BDR P 0 0.1 N/A
- bnmla.com
Ensighten D 1.3 1.2 N/A
- ensighten.com
eXelate (Nielsen) D, P 1.4 2.9 N/A*
- exelator.com
Eyereturn marketing D 0 0.3 N/A
- eyereturn.com
Eyeview P 0.1 0.4 N/A
- eyeviewads.com
Facebook D 27.8 27.7 20.3
- facebook.com
- facebook.net
- fb.me
- Facebook SDK
FreeWheel (Comcast) P 0.3 0.6 N/A
- fwmrm.net
Gigya D 0.6 0.8 N/A
- gigya.com
Google Analytics D 58 43.6 5.1
- google-analytics.com
- Google Analytics SDK
Google Display Network D, P 51.6 41.7 13.1
- 2mdn.net
- adsense.com
- blogger.com
- dmtry.com
- doubleclick.net
- googleadservices.com
- youtube.com
- AdMob SDK
IgnitionOne P 1 0.4 N/A
- netmng.com
Interstate D 0 0 N/A
- interstateanalytics.com
IXI Services (Equifax) D, P 1.6 3.7 N/A
- ixiaa.com
Kenshoo D, P 0.1 0.4 N/A
- xg4ken.com
Krux D, P 3.5 5.2 N/A
- krxd.net
LinkedIn D 4.9 1.9 N/A*
- bizographics.com
- linkedin.com
Lotame D, P 2.7 3.8 N/A*
- crwdcntrl.net
Magnetic P 0.6 0.6 N/A
- domdex.com

Type Desk Web Mob Web Mob Apps
MaxPoint D 0.1 0.6 N/A
- mxptint.net
MediaMath P 5 4.9 N/A
- mathtag.com
Moat D, P 6.8 6.7 N/A
- moatads.com
Neustar D, P 3.7 6.1 N/A
- adadvisor.net
- agkn.com
Nielsen D, P 5.5 5.3 N/A*
- imrworldwide.com
Optimizely D 3.4 3.6 N/A*
- optimizely.com
Perfect Audience P, D 0.3 0.4 N/A*
- prfct.co
PubMatic P 2.7 3.3 N/A*
- pubmatic.com
Quantcast P 9.7 8.5 N/A
- quantserve.com
RadiumOne D 0.4 0.9 N/A*
- gwallet.com
Resonate P 0 0.3 N/A
- reson8.com
Rocket Fuel P 1.8 3 N/A
- rfihub.com
Rubicon Project P 4.6 5.8 N/A*
- chango.com
- rubiconproject.com
RUN P 0.1 0.3 N/A
- rundsp.com
Signal D 1.1 0.8 N/A
- thebrighttag.com
Sizmek P 3.9 4 N/A
- peer39.com
- peer39.net
- serving-sys.com
Skimlinks D, P 1.1 1.6 N/A
- skimresources.com
- redirectingat.com
Smaato D, P 0.2 2 0.1
- smaato.net
- Smaato SDK
Smart AdServer P 0.4 1.1 N/A
- smartadserver.com
Sonobi P 1.3 2.4 N/A
- sonobi.com
SpotX D, P 0.9 3.1 N/A*
- spotxchange.com
Tapad P 1.1 1.9 N/A
- tapad.com
Tealium D 1.9 2 N/A
- tiqcdn.com
The Trade Desk P, D 4.4 6.6 N/A
- adsrvr.org
Turn P 1.1 2.7 N/A
- turn.com
Twitter D 11.9 6.6 0.7
- ads-twitter.com
- twitter.com
- Twitter SDK
Undertone P 0.2 0.4 N/A
- legolas-media.com
- undertone.com
Vindico (Time) D, P 0.2 0.4 N/A*
- vindicosuite.com
Weborama P 0 0 N/A*
- weborama.fr
- weborama.io
Yahoo D 5 6.5 N/A*
- yahoo.com
Yieldbot P 0.8 1.6 N/A
- yldbt.com


