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Recently, learning approaches have been brought to bear on nonlinear datasets by assuming samples lie on
a low-dimensional Riemannian manifold in the embedding space. One solution is to model local variations
linearly [1]. A fundamental difficulty with such solutions is they cannot extrapolate or generalize far
from the training data when the manifold is curved. Consequently, the manifold needs to be densely
sampled; particularly at high curvature regions. To deal with this serious problem, we consider manifolds
that emerge from group actions on the data as in [2]: the manifold is actually an orbit of unknown
transformations. For instance, images of a 3D object from varying viewpoints can be seen as the result
of multiple nonlinear operators that act upon a small set of prototype views. Although this may seem
like a non convex optimization problem, we propose a formulation that is convex and produces global
estimates of the group generators while faithfully approximating data with a low-dimensional orbit. This
approach allows us to generalize to new parts of the space and to extrapolate the manifolds nonlinearly
while still keeping a compact and regularized description of the data.

Consider a dataset of vectors ~x1 . . . ~xT on a low dimensional orbit manifold constructed by group actions.
Here, actions mean a matrix acting on a data vector xt′ to map it to another xt via the exponentiated
matrix product ~xt ≈ exp(At,t′)~xt′ . We may consider mappings n = 1 . . .N (where N = T 2) between
all pairs of points t = 1 . . . T and t′ = 1 . . . T . Or, we may consider a subset of the T 2 mappings, i.e.
choosing a single prototype by locking t′ = 1. Another choice is mapping points to their k nearest
neighbors. Ultimately, we seek At,t′ matrices that faithfully reconstruct the data by minimizing the sum
of reconstruction errors Et,t′(At,t′) ≡ En(An) for any choice of N such mappings. This is like a regression
where input data has to regenerate itself as output.

In addition to low reconstruction error, an important additional constraint on the transformation matrices
An is that they themselves form a low dimensional subspace. This means only a few axes of freedom are
present from the group actions or orbits. For instance, each An matrix could be a linear combination of a
few matrices as An =

∑J

j=1
cn,jVj . If we had the optimal An matrices, we could recover the Vj matrices

by vectorizing the An matrices and performing principal components analysis. Denote the vectorized An

matrices as ~an = vec(An). Also, denote the joint parameters of all An matrices as a. To obtain a small
subspace with few eigenmatrices, we require that the ~an vectors occupy a small volume. We use the deter-
minant of the covariance of ~an as a coarse estimator of volume. Therefore, in addition to reconstruction

error, we minimize the determinant of the covariance: |Cov(a)| =
∣

∣

∣N−1
∑

n ~an~aT
n −N−2

∑

n,m ~an~aT
m

∣

∣

∣ .

This determinant cost is not quite convex but, by regularizing the covariance and penalizing its trace,
we obtain the convexified cost C(a) = log |Cov(a) + ε1I |+ ε2tr(Cov(a)). Details are deferred for a later
paper [3]. In addition to having An matrices that live in a low-dimensional subspace, we want them to
also reconstruct the dataset. We could minimize the squared error reconstruction for each mapping via
‖~xt−exp(At,t′)~xt′‖

2 yet summing these terms with C(a) creates a non convex cost. Instead, we minimize
slightly different terms which are convex En(a) = log tr

(

exp(−At,t′)~xt~x
T
t + exp(At,t′)~xt′~x

T
t′

)

. For non-
negative data, this error’s minimum coincides with minima of squared error. Adding these surrogate error
terms gives our final convex cost function C(a) = log |Cov(a) + ε1I |+ ε2tr(Cov(a)) + λ

∑

n En(a). While
minimizing the orbit’s dimensionality, we minimize reconstruction error weighted by λ (like a Lagrange
multiplier enforcing an amount of tolerable reconstruction error). After finding the A1 . . . AN matrices
that minimize cost, we perform PCA on them to obtain coefficients cnj and eigenmatrices Vj spanning the



orbit compactly in J dimensions (where J < D, the original dataset’s dimensionality). More importantly,
we can extrapolate nonlinearly away from the manifold (i.e. complete a spherical manifold by only seeing
a small piece of it).

Given our final convex cost, we implemented an update rule via variational upper bounds. Consider
the following tangential upper bound on log-determinants log |S| ≤ tr(Ŝ−1S) + log |Ŝ| − tr(Ŝ−1Ŝ) which
achieves equality at S = Ŝ. Applying this to our cost and ignoring constant terms gives

C(a) ≤ N−1
∑

n

~aT
n M̃~aT

n −N−2
∑

n,m

~aT
nM̃~am + λ

∑

n

En(a).

where we define M̃ = (Cov(a) + ε1I)−1 + ε2I as our regularized inverse covariance. Similarly, we upper
bound reconstruction error terms En(a) with a quadratic that makes tangential contact at the old value
of each mapping matrix Ãn or ãn as follows (this holds for symmetric An and almost holds otherwise):

En(a) ≤
1

2
‖~an − ãn‖

2 + (~an − ãn)T ~dn + log tr
(

exp(−Ãn)~xt~x
T
t + exp(Ãn)~xt′~x

T
t′

)

where ~dn = vec





exp( 1

2
Ãn)~xt′~x

T
t′ exp( 1

2
Ãn)− exp(− 1

2
Ãn)~xt~x

T
t exp(− 1

2
Ãn)

tr
(

exp(−Ãn)~xt~x
T
t + exp(Ãn)~xt′~x

T
t′

)


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We obtain the update rule: ~an ←
(

(2N−1 − 2N−2)M̃ + λI
)−1 (

λãn − λ~dn + N−2
∑

m6=n M̃~am

)

by tak-

ing derivatives of the fully quadratic upper bound. This update is interleaved with periodic updates of
M̃ and monotonically reduces the original C(a) cost until its minimum. We can sparsify the An matrices
by zeroing out some entries or enforce some custom linear constraints on them, i.e. ~aT

n~qin ≥ cin∀i, n by
iterating quadratic programming instead of minimizing the quadratic bound analytically. We tested our
method on ≈ 200 wedged-shaped 3D samples in Figure (a). Matrices were found that reconstruct each
sample from a single arbitrary prototype point. Cost decreased monotonically converging in under 100
epochs. Figure (b) shows the resulting eigenvalues of the covariance of the matrices. We computed the
top 2 eigenmatrices and explored linear combinations of them to reconstruct the orbit (Figures (c) and
(d)). The orbit fits the data and extrapolates it nonlinearly while keeping it strictly positive.
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(a) Training Data
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(b) Eigenvalues
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(c) Learned Orbit (ε1 = ε2 = 1

2
, λ = 2) (d) Learned Orbit from Another View.

We are investigating more ambitious datasets (i.e. images, etc.) and considering using the above in
regression problems where An matrices map inputs xt to their outputs yt (instead of to other inputs).
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