Orbit Learning using Convex Optimization
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Recently, learning approaches have been brought to bear on nonlinear datasets by assuming samples lie on
a low-dimensional Riemannian manifold in the embedding space. One solution is to model local variations
linearly [1]. A fundamental difficulty with such solutions is they cannot extrapolate or generalize far
from the training data when the manifold is curved. Consequently, the manifold needs to be densely
sampled; particularly at high curvature regions. To deal with this serious problem, we consider manifolds
that emerge from group actions on the data as in [2]: the manifold is actually an orbit of unknown
transformations. For instance, images of a 3D object from varying viewpoints can be seen as the result
of multiple nonlinear operators that act upon a small set of prototype views. Although this may seem
like a non convex optimization problem, we propose a formulation that is convex and produces global
estimates of the group generators while faithfully approximating data with a low-dimensional orbit. This
approach allows us to generalize to new parts of the space and to extrapolate the manifolds nonlinearly
while still keeping a compact and regularized description of the data.

Consider a dataset of vectors &5 ... Z7 on a low dimensional orbit manifold constructed by group actions.
Here, actions mean a matrix acting on a data vector zy to map it to another x; via the exponentiated
matrix product #; = exp(A¢w)Ty. We may consider mappings n = 1...N (where N = T?) between
all pairs of points t = 1...T and ¢/ = 1...T. Or, we may consider a subset of the T2 mappings, i.e.
choosing a single prototype by locking ¢’ = 1. Another choice is mapping points to their k nearest
neighbors. Ultimately, we seek A;, matrices that faithfully reconstruct the data by minimizing the sum
of reconstruction errors Ey p (A v) = En(Ay) for any choice of N such mappings. This is like a regression
where input data has to regenerate itself as output.

In addition to low reconstruction error, an important additional constraint on the transformation matrices
A, is that they themselves form a low dimensional subspace. This means only a few axes of freedom are
present from the group actions or orbits. For instance, each A,, matrix could be a linear combination of a
few matrices as A,, = ijl ¢cn,;Vj. If we had the optimal A,, matrices, we could recover the V; matrices
by vectorizing the A, matrices and performing principal components analysis. Denote the vectorized A,
matrices as @, = vec(A,). Also, denote the joint parameters of all A,, matrices as a. To obtain a small
subspace with few eigenmatrices, we require that the @,, vectors occupy a small volume. We use the deter-
minant of the covariance of @,, as a coarse estimator of volume. Therefore, in addition to reconstruction
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error, we minimize the determinant of the covariance: |Cov(a)| = ’N’l M, @@l — N723 d,d
:

This determinant cost is not quite convex but, by regularizing the covariance and penalizing its trace,
we obtain the convexified cost C(a) = log|Cov(a) + €11] + eatr(Cov(a)). Details are deferred for a later
paper [3]. In addition to having A, matrices that live in a low-dimensional subspace, we want them to
also reconstruct the dataset. We could minimize the squared error reconstruction for each mapping via
|#; — exp(A; )T ||? yet summing these terms with C'(a) creates a non convex cost. Instead, we minimize
slightly different terms which are convex E,(a) = logtr (exp(—A )@ + exp(Ayy )Ty }) . For non-
negative data, this error’s minimum coincides with minima of squared error. Adding these surrogate error
terms gives our final convex cost function C'(a) = log |Cov(a) + €1I| + eatr(Cov(a)) + A", En(a). While
minimizing the orbit’s dimensionality, we minimize reconstruction error weighted by A (like a Lagrange
multiplier enforcing an amount of tolerable reconstruction error). After finding the A; ... Ay matrices
that minimize cost, we perform PCA on them to obtain coefficients c,; and eigenmatrices V; spanning the



orbit compactly in J dimensions (where J < D, the original dataset’s dimensionality). More importantly,
we can extrapolate nonlinearly away from the manifold (i.e. complete a spherical manifold by only seeing
a small piece of it).

Given our final convex cost, we implemented an update rule via variational upper bounds. Consider
the following tangential upper bound on log-determinants log |S| < tr(S~1S) +log|S| — tr(S~'S) which
achieves equality at S = S. Applying this to our cost and ignoring constant terms gives
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where we define M = (Cov(a) 4 €11)~" + o1 as our regularized inverse covariance. Similarly, we upper
bound reconstruction error terms Ej,(a) with a quadratic that makes tangential contact at the old value
of each mapping matrix A4,, or a, as follows (this holds for symmetric A, and almost holds otherwise):
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where d,, = vec
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We obtain the update rule: @, «— ((2]\7*1 —ON“2)M + )\I) ' (Aan M, + N2 Mam) by tak-
ing derivatives of the fully quadratic upper bound. This update is interleaved with periodic updates of
M and monotonically reduces the original C(a) cost until its minimum. We can sparsify the A,, matrices
by zeroing out some entries or enforce some custom linear constraints on them, i.e. @. g, > cinVi,n by
iterating quadratic programming instead of minimizing the quadratic bound analytically. We tested our
method on ~ 200 wedged-shaped 3D samples in Figure (a). Matrices were found that reconstruct each
sample from a single arbitrary prototype point. Cost decreased monotonically converging in under 100
epochs. Figure (b) shows the resulting eigenvalues of the covariance of the matrices. We computed the
top 2 eigenmatrices and explored linear combinations of them to reconstruct the orbit (Figures (c) and
(d)). The orbit fits the data and extrapolates it nonlinearly while keeping it strictly positive.
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(a) Training Data

(b) Eigenvalues

(c) Learned Orbit (e; = €3 = 3,A =2) (d) Learned Orbit from Another View.

We are investigating more ambitious datasets (i.e. images, etc.) and considering using the above in
regression problems where A,, matrices map inputs z; to their outputs y; (instead of to other inputs).
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