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Perfect Graphs

Background on Perfect Graphs

In 1960, Berge introduces perfect graphs and two conjectures

Perfect: every induced subgraph of G has clique# = coloring#
Weak conjecture: G is perfect iff its complement is perfect
Strong conjecture: a graph is perfect iff it is Berge

Weak perfect graph theorem (Lovász 1972)

Link between perfection and integral LPs (Lovász 1972)

Strong perfect graph theorem (SPGT) open for 4+ decades
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Perfect Graphs

Background on Perfect Graphs

SPGT Proof (Chudnovsky, Robertson, Seymour, Thomas 2003)

Berge passes away shortly after hearing of the proof

Many NP-hard and hard to approximate problems are P for
perfect graphs

Graph coloring
Maximum clique
Maximum independent set

Recognizing perfect graphs is O(n9) (Chudnovsky et al. 2006)
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Graphical Models

Graphical Models

x1 x2 x3 x4

x5

x6

Perfect graph theory for MAP and graphical models (J 2009)

Graphical model: a factor graph G = (V ,E ) representing a
distribution p(X ) where X = {x1, . . . , xn} and xi ∈ Z

Distribution factorizes as product of functions (squares) over
subsets of variables (adjacent nodes)

p(x1, . . . , xn) =
1

Z

∏

c∈C

ψc(Xc)

E.g.p(x1, . . . , x6)=ψ(x1, x2)ψ(x2, x3)ψ(x3, x4, x5)ψ(x4, x5, x6)
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Graphical Models

MAP Estimation

A canonical problem, find most probable configuration

X ∗ = argmax p(x1, . . . , xn)

Useful for image processing, protein folding, coding, etc.

Brute force requires
∏n

i=1 |xi |

Efficient for trees and singly linked graphs (Pearl 1988)

NP-hard for general graphs (Shimony 1994)

Approach A: relaxations and variational methods

First order LP relaxations (Wainwright et al. 2002)
TRW max-product (Kolmogorov & Wainwright 2006)
Higher order LP relaxations (Sontag et al. 2008)
Fractional and integral LP rounding (Ravikumar et al. 2008)
Open problem: when are LPs tight?

Approach B: max product and message passing
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Graphical Models

Max Product Message Passing

1. For each xi to each Xc : mt+1
i→c =

∏

d∈Ne(i)\c mt
d→i

2. For each Xc to each xi : mt+1
c→i = maxXc\xi

ψc(Xc)
∏

j∈c\i m
t
j→c

3. Set t = t + 1 and goto 1 until convergence
4. Output x∗

i = argmaxxi

∏

d∈Ne(i) mt
d→i

Simple and fast algorithm for MAP

Exact for trees (Pearl 1988)

Converges for single-loop graphs (Weiss & Freeman 2001)

Local optimality guarantees (Wainwright et al. 2003)

Performs well in practice for images, turbo codes, etc.

Similar to first order LP relaxation

Recent progress

Exact for matchings (Bayati et al. 2005)
Exact for generalized b matchings (Huang and J 2007)
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Bipartite Matching

Motorola Apple IBM

”laptop” 0$ 2$ 2$
”server” 0$ 2$ 3$
”phone” 2$ 3$ 0$

→ C =





0 1 0
0 0 1
1 0 0





GivenW , maxC∈Bn×n

∑

ij WijCij such that
∑

i Cij =
∑

j Cij = 1

Classical Hungarian marriage problem O(n3)

Creates a very loopy graphical model

Max product takes O(n3) for exact MAP (Bayati et al. 2005)
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Bipartite Matching

Bipartite Generalized Matching

Motorola Apple IBM

”laptop” 0$ 2$ 2$
”server” 0$ 2$ 3$
”phone” 2$ 3$ 0$

→ C =





0 1 1
1 0 1
1 1 0





GivenW , maxC∈Bn×n

∑

ij WijCij such that
∑

i Cij =
∑

j Cij = b

Combinatorial b-matching problem O(bn3), (Google Adwords)

Creates a very loopy graphical model

Max product takes O(bn3) for exact MAP (Huang & J 2007)
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Bipartite Matching

Bipartite Generalized Matching

u1 u2 u3 u4

v1 v2 v3 v4

Graph G = (U,V ,E ) with U = {u1, . . . , un} and
V = {v1, . . . , vn} and M(.), a set of neighbors of node ui or vj

Define xi ∈ X and yi ∈ Y where xi = M(ui ) and yi = M(vj)

Then p(X ,Y ) = 1
Z

∏

i

∏

j ψ(xi , yj )
∏

k φ(xk)φ(yk) where
φ(yj ) = exp(

∑

ui∈yj
Wij) and ψ(xi , yj ) = ¬(vj ∈ xi ⊕ ui ∈ yj)
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Bipartite Matching

Bipartite Generalized Matching

Theorem (Huang & J 2007)

Max product on G converges in O(bn3) time.

Proof.

Form unwrapped tree T of depth Ω(n), maximizing belief at root
of T is equivalent to maximizing belief at corresponding node in G

u1

v1 v2 v3 v4

u2 u2 u2 u2u3 u3 u3 u3u4 u4 u4 u4

Theorem (Salez & Shah 2009)

Under mild assumptions, max product 1-matching is O(n2).
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Bipartite Matching

Bipartite Generalized Matching

Code at http://www.cs.columbia.edu/∼jebara/code
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Generalized Matching

Generalized Matching
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Applications:
unipartite matching
clustering (J & S 2006)
classification (H & J 2007)
collaborative filtering (H & J 2009)
semisupervised (J et al. 2009)
visualization (S & J 2009)

Max product is O(n2), beats other solvers (Salez & Shah 2009)
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Generalized Matching

Unipartite Generalized Matching

Above is k-nearest neighbors with k = 2
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Generalized Matching

Unipartite Generalized Matching

Above is unipartite b-matching with b = 2
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Generalized Matching

Unipartite Generalized Matching

Left is k-nearest neighbors, right is unipartite b-matching.
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Generalized Matching

Unipartite Generalized Matching

p1 p2 p3 p4

p1 0 2 1 2
P2 2 0 2 1
p3 1 2 0 2
p4 2 1 2 0

→ C =









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









maxC∈Bn×n,Cii=0

∑

ij WijCij such that
∑

i Cij = b,Cij = Cji

Combinatorial unipartite matching is efficient (Edmonds 1965)

Makes an LP with exponentially many blossom inequalities

Max product exact if LP is integral (Sanghavi et al. 2008)

p(X ) =
∏

i∈V δ
[

∑

j∈Ne(i) xij ≤ 1
]

∏

ij∈E exp(Wijxij)
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Back to Perfect Graphs

Max product and exact MAP depend on the LP’s integrality

Matchings have special integral LPs (Edmonds 1965)

How to generalize beyond matchings?

Perfect graphs imply LP integrality (Lovász 1972)

Lemma (Lovász 1972)

For every non-negative vector ~f ∈ R
N , the linear program

β = max
~x∈RN

~f ⊤~x subject to ~x ≥ 0 and A~x ≤ ~1

recovers a vector ~x which is integral if and only if the
(undominated) rows of A form the vertex versus maximal cliques
incidence matrix of some perfect graph.
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Back to Perfect Graphs

Lemma (Lovász 1972)

β = max
~x∈RN

~f ⊤~x subject to ~x ≥ 0 and A~x ≤ ~1

x1 x2 x3 x4

x5 x6

A =









1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 1 0
0 0 0 1 1 1
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nand Markov Random Fields

nand Markov Random Fields

Lovász’s lemma is not solving max p(X ) on G

We have p(x1, . . . , xn) = 1
Z

∏

c∈C ψc(Xc)

How to apply the lemma to any model G and space X?

Without loss of generality assume ψc(Xc)←
ψc (Xc )

minXc ψc (Xc )
+ ǫ

Consider procedure to convert G to G in NMRF form

NMRF is a nand Markov random field over space X

all variables are binary X = {x1, . . . , xN}
all potential functions are pairwise nand gates
Φ(xi , xj) = δ[xi + xj ≤ 1]
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nand Markov Random Fields

nand Markov Random Fields

A B C
AB

00

AB

01

AB

10

AB

11

BC

00

BC

01

BC

10

BC

11

Figure: Binary graphical model G (left) and nand MRF G (right).

Initialize G as the empty graph
For each clique c in graph G do

For each configuration k ∈ Xc do
add a corresponding binary node xc,k to G
for each xd,l ∈ G which is incompatible with xc,k

connect xc,k and xd,l with an edge
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nand Markov Random Fields

nand Markov Random Fields

NMRF G yields the following distribution ρ(X)=
∏

c∈C

∏|Xc |
k=1ψc(k)xc,k

∏

d∈C

∏|Xd |
l=1 Φ(xc,k , xd,l )

E(xc,k ,xd,l ).

Cardinality of G is |X| =
∑

c∈C

(
∏

i∈c |xi |
)

= N

If node xc,k = 1 then clique c is in configuration k ∈ Xc .

Clearly surjective, more configurations X than X

Nand relationship prevents inconsistent settings
∑

k xc,k ≤ 1

Theorem (J 2009)

For ψc(k) > 1, the MAP estimate X∗ of ρ(X) yields
∑

k x∗c,k = 1
for all cliques c ∈ C.



Background Matchings Perfect Graphs MAP Estimation

Packing Linear Programs

Packing Linear Programs

Lemma (J 2009)

The MAP estimate for ρ(X) on G recovers MAP for p(X )

Relaxed MAP on log ρ(X) ≡ set packing linear program

If graph G is perfect, LP efficiently solves MAP

Lemma (Lovász 1972)

For every non-negative vector ~f ∈ R
N , the linear program

β = max
~x∈RN

~f ⊤~x subject to ~x ≥ 0 and A~x ≤ ~1

recovers a vector ~x which is integral if and only if the
(undominated) rows of A form the vertex versus maximal cliques
incidence matrix of some perfect graph.
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Packing Linear Programs

Packing Linear Programs

For general graph G , MAP is NP-hard (Shimony 1994)

Convert G to G (polynomial time)

If graph G is perfect

Find maximal cliques (polynomial time)
Solve MAP via packing linear program (polynomial time)

Theorem (J 2009)

MAP estimation of any graphical model G with cliques c ∈ C over
variables {x1, . . . , xn} producing a nand Markov random with a
perfect graph G is in P and requires no more than

O
(

(
∑

c∈C

(
∏

i∈c |xi |
))3

)

.
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Packing Linear Programs

Packing Linear Programs

For general graph G , MAP is NP-hard (Shimony 1994)

Convert G to G (polynomial time)

If graph G is perfect (? time)

Find maximal cliques (polynomial time)
Solve MAP via packing linear program (polynomial time)

Theorem (J 2009)

MAP estimation of any graphical model G with cliques c ∈ C over
variables {x1, . . . , xn} producing a nand Markov random with a
perfect graph G is in P and requires no more than

O
(

(
∑

c∈C

(
∏

i∈c |xi |
))3

)

.
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Packing Linear Programs

Packing Linear Programs

For general graph G , MAP is NP-hard (Shimony 1994)

Convert G to G (polynomial time)

If graph G is perfect (polynomial time!!!)

Find maximal cliques (polynomial time)
Solve MAP via packing linear program (polynomial time)

Theorem (J 2009)

MAP estimation of any graphical model G with cliques c ∈ C over
variables {x1, . . . , xn} producing a nand Markov random with a
perfect graph G is in P and requires no more than

O
(

(
∑

c∈C

(
∏

i∈c |xi |
))3

)

.
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Recognizing Perfect Graphs

Perfect Graphs

To determine if G is perfect
Run algorithm on G in O(N9) (Chudnovsky et al. 2005)
or use tools from perfect graph theory to prove perfection

Clique number of a graph ω(G): size of its maximum clique

Chromatic number of a graph χ(G): minimum number of
colors such that no two adjacent vertices have the same color

A perfect graph G is a graph where every induced subgraph
H ⊆ G has ω(H) = χ(H)

x1

x2

x3

x4x5

x1 x2 x3

x4x5

x1 x2 x3

x4x5x6

Perfect Not Perfect Perfect
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Recognizing Perfect Graphs

Strong Perfect Graph Theorem

A graph is perfect iff it is Berge (Chudnovsky et al. 2003)

Berge graph: a graph that contains no odd hole and whose
complement also contains no odd hole

Hole: an induced subgraph of G which is a chordless cycle of
length at least 5. An odd hole has odd cycle length.

Complement: a graph Ḡ with the same vertex set V(G) as G,
where distinct vertices u, v ∈ V(G) are adjacent in Ḡ just
when they are not adjacent in G

x1 x2 x3

x4x5

x1 x2 x3

x4x5x6

x1 x2 x3 x4

x5x6x7

odd hole even hole odd hole
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Recognizing Perfect Graphs

Recognition using Perfect Graphs Algorithm

Could use slow O(N9) algorithm (Chudnovsky et al. 2005)

Runs on G and then on complement Ḡ

Detect if the graph contains a pyramid structure by computing
shortest paths between all nonuples of vertices. This is O(N9)
Detect if the graph contains a jewel structure or other
easily-detectable configuration
Perform a cleaning procedure. A vertex in the graph is
C -major if its set of neighbors in C is not a subset of the
vertex set of any 3-vertex path of C . C is clean if there are no
C -major vertices in the graph
Search for the shortest odd hole in the graph by computing the
shortest paths between all triples of vertices

Faster methods find all holes (Nikolopolous & Palios 2004)

Less conclusive than Chudnovsky but can run on N ≥ 300
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Recognizing Perfect Graphs

Recognition using Strong Perfect Graph Theorem

SPGT implies that a Berge graph is one of these primitives

bipartite graphs
complements of bipartite graphs
line graphs of bipartite graphs
complements of line graphs of bipartite graphs
double split graphs

or decomposes structurally (into graph primitives)

via a 2-join
via a 2-join in the complement
via an M-join
via a balanced skew partition

Line graph: L(G) a graph which contains a vertex for each
edge of G and where two vertices of L(G) are adjacent iff they
correspond to two edges of G with a common end vertex
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Recognizing Perfect Graphs

Recognition using Strong Perfect Graph Theorem

SPGT and theory give tools to analyze graph

Decompose using replication, 2-join, M-joins, skew partition...

May help diagnose perfection when algorithm is too slow

Lemma (Replication, Lovász 1972)

Let G be a perfect graph and let v ∈ V(G). Define a graph G′ by
adding a new vertex v ′ and joining it to v and all the neighbors of
v . Then G′ is perfect.

x1 x2 x3

x4x5x6

x1 x2 x3

x4x5x6

x7 x1 x2 x3

x4x5x6

x7
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Recognizing Perfect Graphs

Recognition using Strong Perfect Graph Theorem

SPGT and theory give tools to analyze graph

Decompose using replication, 2-join, M-joins, skew partition...

May help diagnose perfection when algorithm is too slow

Lemma (Gluing on Cliques, Skew Partition, Berge & Chvátal 1984)

Let G be a perfect graph and let G′ be a perfect graph. If G ∩ G′ is
a clique (clique cutset), then G ∪ G′ is a perfect graph.

x1 x2 x3

x4x5x6

∪

x3 x7 x8

x9x0x4

=

x1 x2 x3

x4x5x6

x7 x8

x9x0
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Proving Exact MAP

Proving Exact MAP for Tree Graphs

Theorem (J 2009)

Let G be a tree, the NMRF G obtained from G is a perfect graph.

Proof.

First prove perfection for a star graph with internal node v with |v |
configurations. First obtain G for the star graph by only creating
one configuration for non internal nodes. The resulting graph is a
complete |v |-partite graph which is perfect. Introduce additional
configurations for non-internal nodes one at a time using the
replication lemma. The resulting Gstar is perfect. Obtain a tree by
induction. Add two stars Gstar and Gstar ′ . The intersection is a
fully connected clique (clique cutset) so by (Berge & Chvátal
1984), the resulting graph is perfect. Continue gluing stars until
full tree G is formed.
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Proving Exact MAP

Proving Exact MAP for Bipartite Matchings

Theorem (J 2009)

The maximum weight bipartite matching graphical model

p(X ) =

n
∏

i=1

δ





n
∑

j=1

xij ≤ 1



 δ





n
∑

j=1

xji ≤ 1





n
∏

k=1

efikxik

with fij ≥ 0 has integral LP and yields exact MAP estimates.

Proof.

The graphical model is in NMRF form so G and G are equivalent.
G is the line graph of a (complete) bipartite graph (Rook’s graph).
Therefore, G is perfect, the LP is integral and recovers MAP.
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Proving Exact MAP

Proving Exact MAP for Unipartite Matchings

Theorem (J 2009)

The unipartite matching graphical model G = (V ,E ) with fij ≥ 0

p(X ) =
∏

i∈V

δ





n
∑

j∈Ne(i)

xij ≤ 1





∏

ij∈E

efijxij

has integral LP and produces the exact MAP estimate if G is a
perfect graph.

Proof.

The graphical model is in NMRF form and graphs G and G are
equivalent. The set packing LP relaxation is integral and recovers
the MAP estimate if G is a perfect graph.



Background Matchings Perfect Graphs MAP Estimation

Pruning NMRFs

Pruning NMRFs

Possible to prune G in search of perfection and efficiency

Two optional procedures: Disconnect and Merge

Disconnect: For each c ∈ C , denote the minimal
configurations of c as the set of nodes {xc,k} such that
fc,k = minκ fc,κ = log(1 + ǫ). Disconnect removes the edges
between these nodes and all other nodes in the clique Xc .

Merge: For any pair of unconnected nodes xc,k and xd,l in G
where Ne(xc,k) = Ne(xd,l ), combine them into a single
equivalent variable xc,k with the same connectivity and
updates its corresponding weight as fc,k ← fc,k + fd,l .

Easy to get MAP for G from Merge(Disconnect(G))
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Pruning NMRFs

Convergent Message Passing

Instead of LP solver, use convergent message passing
(Globerson & Jaakkola 2007) get faster solution

Input: Graph G = (V, E) and θij for ij ∈ E .
1. Initialize all messages to any value.
2. For each ij ∈ E , simultaneously update
λji(xi )← −

1
2

∑

k∈Ne(i)\j λki (xi )

+1
2 maxxj

[

∑

k∈Ne(j)\i λkj (xj) + θij(xi , xj )
]

λij(xj)← −
1
2

∑

k∈Ne(j)\i λkj (xj )

+1
2 maxxi

[

∑

k∈Ne(i)\j λki (xi ) + θij(xi , xj )
]

3. Repeat 2 until convergence.
4. Find b(xi ) =

∑

j∈Ne(i) λji(xi ) for all i ∈ V.

5. Output x̂i = argmaxxi
b(xi ) for all i ∈ V.



Background Matchings Perfect Graphs MAP Estimation

Pruning NMRFs

Convergent Message Passing

Theorem (Globerson & Jaakkola 2007)

With binary variables xi , fixed points of convergent message
passing recover the optimum of the LP.

Corollary (J 2009)

Convergent message passing on an NMRF with a perfect graph
finds the MAP estimate.
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MAP Experiments

MAP Experiments

Investigate LP and message passing for unipartite matching

Exact MAP estimate possible via Edmonds’ blossom algorithm

Consider graphical model G = (V ,E ) with fij ≥ 0

p(X ) =
∏

i∈V

δ





n
∑

j∈Ne(i)

xij ≤ 1





∏

ij∈E

efijxij

Compare solution found by message passing on the NMRF

Try various topologies for graph G , perfect or otherwise
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MAP Experiments

MAP Experiments
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(a) Perfect Graphs (b) Random Graphs

Figure: Scores for the exact MAP estimate (horizontal axis) and message
passing estimate (vertical axis) for random graphs and weights. Figure
(a) shows scores for four types of basic Berge graphs while (b) shows
scores for arbitrary graphs. Minor score discrepancies on Berge graphs
arose due to numerical issues and early stopping.
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Conclusions

Conclusions

Perfect graph theory is fascinating

It is a crucial tool for exploring LP integrality

Many recent theoretical and algorithmic breakthroughs

Integrality of LP is also crucial for exact MAP estimation

MAP for any graphical model is exact if G is perfect

Efficient tests for perfection, maximum clique and LP

Can use max product or message passing instead of LP

Perfect graphs extend previous results on MAP for

Trees and singly-linked graphs
Single loop graphs
Matchings
Generalized matchings
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Conclusions

Further Reading and Thanks

MAP Estimation, Message Passing, and Perfect Graphs,
T. Jebara. Uncertainty in Artificial Intelligence, June 2009.

Graphical Models, Exponential Families and Variational
Inference, M.J. Wainwright and M.I. Jordan. Foundations and
Trends in Machine Learning, Vol 1, Nos 1-2, 2008.

Loopy Belief Propagation for Bipartite Maximum Weight
b-Matching, B. Huang and T. Jebara. Artificial Intelligence
and Statistics, March 2007.

Thanks to Maria Chudnovsky, Delbert Dueck and Bert Huang.
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