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Abstract

A novel technique is proposed for improving
the standard Vapnik-Chervonenkis (VC) di-
mension estimate for the Support Vector Ma-
chine (SVM) framework. The improved VC
estimates are based on geometric arguments.
By considering bounding ellipsoids instead of
the usual bounding hyperspheres and assum-
ing gap-tolerant classifiers, a linear classifier
with a given margin is shown to shatter fewer
points than previously estimated. This im-
proved VC estimation method directly mo-
tivates a different estimator for the parame-
ters of a linear classifier. Surprisingly, only
VC-based arguments are needed to justify
this modification to the SVM. The resulting
technique is implemented using Semidefinite
Programming (SDP) and is solvable in poly-
nomial time. The new linear classifier also
ensures certain invariances to affine transfor-
mations on the data which a standard SVM
does not provide. We demonstrate that the
technique can be kernelized via extensions
to Hilbert spaces. Promising experimental
results are shown on several standardized
datasets.

1 INTRODUCTION

Binary classification plays a central role in machine
learning and is relevant to many applied domains.
Given a training set (xi, yi)

n
i=1 ∈ R

m × {±1}, the
objective of binary classification is to learn a func-
tion f : R

m → {±1}. The Support Vector Machine
(SVM) (Vapnik, 1995) has obtained considerable inter-
est in the machine learning community over the past
decade for solving such classification problems well.
In its simplest form, an SVM learns a linear function
f(x) = w⊤x+b with w ∈ R

m, b ∈ R whose sign agrees

with the labels of the training samples while maximiz-
ing the so-called margin (the distance between the hy-
perplanes w⊤x + b = 1 and w⊤x + b = −1 that also
agree with the labelling of the data). The success of
SVMs is frequently ascribed to their firm foundation
in learning theory. For example, Vapnik-Chervonenkis
(VC) theory (Vapnik, 1995) suggests two conditions
for the success of a learning machine: low error on
training data and small VC dimension (Burges, 1998).
The argument for small VC dimension is realized for
SVMs due to their maximization of margins. However,
this argument assumes that the data is constrained to
lie within a sphere since the margin is meaningful only
relative to the diameter of this sphere. This so-called
gap-tolerant classifier with a given margin frequently
has a lower VC dimension than unconstrained linear
classifiers. Gap-tolerant classifiers work by maximiz-
ing the margin for data lying in a sphere of diame-
ter at most D and have a VC dimension of at most
min{⌈ D2

M2 ⌉, m} + 1, where M is the minimum margin
of the class of classifiers. In this article, we show that
this bound on VC dimension can be further improved
by considering gap-tolerant classifiers within ellipsoids
instead of simple hyperspheres.

There have been several prior efforts to improve SVMs.
These methods sometimes modify the basic SVM lin-
ear classifier without making any other assumptions
about the learning problem. However, some methods
enrich the linear classifier with additional flexibility or
domain knowledge. Methods that only modify the ba-
sic linear classifier may use a different line of reasoning
as a surrogate to the standard VC dimension general-
ization arguments. For example, the Bayes Point Ma-
chine (Herbrich et al., 2001) approximates the Bayes-
optimal decision by the center of mass of the version
space and averages over the set of linear classifier pa-
rameters that agree with the training data. Similarly,
the Relevance Vector Machine (Tipping, 2001) follows
a Bayesian treatment of a generalized linear model of
the same functional form as an SVM. Different norms
and different penalties have also been explored; the l1



norm SVM (Zhu et al., 2004) minimizes the l1 norm of
w rather than the standard l2 norm. While the stan-
dard SVM uses a linear penalty, SVMs with quadratic
penalties have also been proposed. In addition to ba-
sic reformulations, there have been efforts to specialize
SVMs to particular situations. The Minimax Proba-
bility Machine extends the SVM to the cases where the
data is specified only in terms of a distribution (Lanck-
riet et al., 2002). There have also been several ef-
forts to make SVMs invariant and robust by explicitly
accounting for input uncertainty (Shivaswamy et al.,
2006), transduction (Vapnik, 1995), unknown trans-
formations on inputs (Shivaswamy & Jebara, 2006),
kernel selection and feature selection (Weston et al.,
2000).

Unfortunately, relatively little work directly addresses
improving the base SVM classifier solely by optimiz-
ing the VC bounds that motivated it in the first
place. This article takes this approach and improves
SVMs without exploiting additional domain knowl-
edge, norms, and so forth. The article simply seeks
tighter bounds on the VC dimension to improve the
linear decision boundary of the SVM. Thus, this im-
provement in SVMs is a general one and should com-
plement other SVM extensions nicely. This article pro-
poses the Ellipsoidal Kernel Machine (EKM for short),
which is still a large margin linear classifier like the
SVM but instead estimates ellipsoidal bounds on the
data to properly optimize margin in the correct direc-
tion. This article shows that SVMs and VC dimen-
sion estimates based solely on a hypersphere model of
the data distribution can lead to suboptimal linear de-
cision boundaries from both an empirical and a VC
dimension perspective.

2 SVMS AND GENERALIZATION

2.1 SUPPORT VECTOR MACHINES

Recall the SVM classifier f(x) = sign(w⊤x + b) ∈
{±1} with parameters (w, b) estimated by the follow-
ing Quadratic Programming (QP) formulation:

min
w,b

1

2
‖w‖2 s.t. yi(w

⊤xi + b) ≥ 1, ∀1 ≤ i ≤ n. (1)

The margin is the distance between the two hyper-
planes w⊤x + b = 1 and w⊤x + b = −1 and is given
by M = 2

‖w‖ . The above formulation can be relaxed

to nonseparable problems via the QP below: 1:

min
w,b,ξi

1

2
‖w‖2 + C

n
∑

i=1

ξi

s.t. yi(w
⊤xi + b) ≥ 1 − ξi, ξi ≥ 0. (2)

1We drop 1 ≤ i ≤ n since it is clear from the context.

where ξi is the penalty for violating the constraints.
The parameter C is the trade off between the margin
and the penalties incurred. We next review the tra-
ditional structural risk minimization argument which
originally motivated the above SVM formulation and
show how some of its deficiencies can be improved.

2.2 STRUCTURAL RISK MINIMIZATION

Suppose that data (x, y) comes from a fixed but un-
known distribution P (x, y). Our aim is to learn a
mapping x → y. Consider the possibility of learn-
ing this mapping using a family of functions f(x, α) ∈
{−1, 1}, ∀x, α, where α parameterizes the family. For
any fixed α, the risk is defined as the expected test
error: R(α) =

∫

1

2
|y − f(x, α)|dP (x, y). Ideally, we

would select α to minimize this risk. However, R(α)
is not directly computable. Instead, consider the em-
pirical risk, another quantity of interest which can be
computed: Remp(α) = 1

2n

∑n

i=1
|yi−f(xi, α)|. For any

0 ≤ η ≤ 1, the following bound holds with probability
at least 1 − η (Vapnik, 1995):

R(α) ≤ Remp(α) +

√

h(ln(2n/h) + 1) − ln (η/4)

n

where h is the VC dimension of the family of classi-
fiers. Informally, the VC dimension is a measure of the
complexity or capacity of the family of classifiers. Note
that as the VC dimension becomes smaller, the bound
on risk becomes lower. Structural risk minimization
suggests selecting α to minimize the bound on the
right hand side hoping that the true risk R(α) will
also be lowered. The smaller the VC dimension, the
tighter the bound. Eventually R(α) should be lowered
and the generalization ability of the learning machine
will be good. Even if the bounds are loose or vacuous,
it is generally the case that any small improvements
in the VC dimension will typically improve generaliza-
tion. We next show how to estimate the VC dimension
of SVMs to implement structural risk minimization by
using gap-tolerant classifiers.

2.3 GAP-TOLERANT CLASSIFIERS

Traditionally, a gap-tolerant classifier is specified by
the location and the diameter of a ball in R

m that en-
closes all data, and by two parallel hyperplanes that
separate that data into two classes. The VC dimension
of this family of classifiers in R

m with minimum mar-
gin M and maximum diameter D is upper bounded

by min{⌈ D2

M2 ⌉, m} + 1 (Burges, 1998). Therefore, to
reduce risk, we must drive down the VC dimension
by maximizing M while keeping the empirical risk low
or zero. This is precisely what the separable SVM in
Equation (1) does as it minimizes 1

2
‖w‖2 = 2

M2 .



Estimating the hypersphere that contains data is also
solvable as a quadratic program. However, it is typ-
ically not a necessary step when learning an SVM.
This computation only plays a role in evaluating the
VC dimension of SVM. The hypersphere itself is some-
times necessary to compute in certain generalizations
of SVMs where the data itself and its bounding hyper-
sphere become variable (Burges, 1998; Vapnik, 1995;
Weston et al., 2000). This is the case, for instance,
during feature selection (Weston et al., 2000). An-
other theorem in (Weston et al., 2000) also relates the

ratio D2

M2 to the generalization error:

Theorem 2.1 If training data of size n belonging to
a hyper-sphere of size R are separable with a corre-
sponding margin M, then the expectation of the error

probability has the bound E Prerr ≤ 1

n
E

{

R2

M2

}

, where

the expectation is over sets of training data of size n.

Thus, the SVM generalization arguments depend not
only on the margin but also on the diameter of the
data. This leads to the question: can we leverage
a richer family of gap-tolerant classifiers to improve
generalization?

2.4 ELLIPSOIDAL GAP-TOLERANT

CLASSIFIERS

We now extend the traditional hypersphere-bounded
gap-tolerant classifier by considering ellipsoid-bounded
gap-tolerant classifiers. It will be straightforward to
show that the VC dimension hE of the ellipsoid-
bounded gap-tolerant classifiers is upper bounded
by the previous estimate of VC dimension (hE ≤

min{⌈ D2

M2 ⌉, m} + 1) and this will eventually lead to
an interesting variant of the SVM.

An ellipsoid in R
m is defined by E = {x : (x −

µ)⊤Σ−1(x − µ) ≤ 1} where µ ∈ R
m and Σ ∈ R

m×m

and Σ � 02 (positive semi-definite). This ellipsoid
along with two parallel hyperplanes defines an ellip-
soidal gap-tolerant classifier. In contrast, a spherical
gap-tolerant classifier is the same except that it has a
sphere instead of an ellipsoid. Since input dimensions
in real datasets are rarely independent or isotropic, it
is more likely for data to lie in an ellipsoid than in
a sphere. Furthermore, the hypersphere only summa-
rizes the data by a single scalar radius while the ellip-
soid models several axes and magnitudes of variation.
In addition, one can immediately reconstruct a bound-
ing hypersphere from a bounding ellipsoid by setting
the magnitudes of variation for each axis equal to the
maximum magnitude. The most useful property of el-
lipsoidal gap-tolerant classifiers, though, is that their

2We assume that Σ is of full rank, it is possible to handle
the non-full rank Σ with simple modifications.

Figure 1: The maximum margin configuration of three
points.

VC dimension is lower than the VC dimension of tra-
ditional gap-tolerant classifier.

Theorem 2.2 Consider a gap-tolerant classifier with
a bounding hypersphere of radius R. Consider an el-
lipsoidal gap-tolerant classifier with the length of the
semi-major axis (the axis along the highest eigenvalue
direction ) R. The VC dimension of the latter is at
most the VC dimension of the former.

Proof Without loss of generality, assume that the
centroids of the sphere and the ellipsoid coincide. Sup-
pose that for a given margin, the two hyperplanes can
shatter p points in the ellipsoid, then the same p points
within the sphere can also be shattered by the same
margin within the hypersphere.

Thus we see that the VC dimension of the ellipsoidal
gap-tolerant classifier is at most the VC dimension of
the spherical gap-tolerant classifier. It is also possible
for the VC dimension of the ellipsoidal gap-tolerant
classifier to be strictly lower than that of the spherical
gap-tolerant classifier. We demonstrate this reduction
in VC dimension for a 2D configuration and then pro-
vide arguments for higher dimensions as well.

Consider an axis parallel ellipse in R
2. Let the length

of the semi-major axis (along the x-axis) be a and the
semi-minor axis (along the y-axis) be b, i.e., consider

the ellipse defined by E = {(x, y) : x2

a2 + y2

b2
≤ 1}.

Recall that in R
2, no more than three points can be

shattered by a linear classifier. Consider placing three
points on the ellipse so as to maximize the margin. In
this two dimensional case, the margin over all possible
binary labellings of the three points is maximized when
the points are placed at vertices of the largest equilat-
eral triangle inscribed in the ellipse. More specifically,
the maximum margin setting of the three points is at

(0, b), (
√

12a2b
b2+3a2 , b2−3a2

b2+3a2 b), (−
√

12a2b
b2+3a2 , b2−3a2

b2+3a2 b). The mar-

gin at that setting is 6a2b
b2+3a2 which is found by project-



ing one of the points on the line segment connecting
the other two points. The situation is depicted in Fig-
ure 1.

Now consider the sphere x2 + y2 ≤ a2. The three
points that maximize the margin can simply be found
by setting b = a for the vertices of the above equi-
lateral triangle. Thus, the three points are placed at

(0, a), (
√

3

2
a,− 1

2
a), (−

√
3

2
a,− 1

2
a). The maximum pos-

sible margin to shatter three points in this case is
3

2
a. It is obvious that 3

2
a > 6a2b

b2+3a2 for a > b. In
this scenario, if the margin M allowed is such that
3

2
a > M > 6a2b

b2+3a2 , then only two points can be
shattered with the ellipsoidal gap-tolerant classifier
whereas the spherical one can shatter three points.
Thus, we have shown a scenario in which the VC
dimension of the ellipsoidal gap-tolerant classifier is
strictly less than the VC dimension of the spherical
gap-tolerant classifier. Unfortunately, extending the
2D analysis above to higher dimensions is not as sim-
ple since the simplex for the highest margin is tilted
and several asymmetries emerge.

The above arguments show that there is an advan-
tage to considering the ellipsoid around the data rather
than hyper sphere around that data to reduce the VC
dimension of the classifiers being considered. In prac-
tice, leveraging this ellipsoid to improve our estimate
of a linear classifier is straightforward. By transform-
ing the data using the structure of the the bounding
ellipsoid, we apply an affine transformation to it and
stretch it such that the bounding ellipsoid has equal
axis lengths in all direction. We can then estimate the
large margin linear decision boundary using the SVM
in this transformed space and obtain a linear classifier
that minimizes our improved estimate of VC dimen-
sion. This procedure is detailed in the next Section.

3 ELLIPSOIDAL MACHINES

To make use of the ellipsoidal structure of the data, we
propose estimating a bounding ellipsoid via semidefi-
nite programming. Suppose the ellipsoid around the
data (xi)

n
i=1 is characterized by (x−µ)⊤Σ−1(x−µ) ≤

1, the expression for points within the ellipsoid can be
written as follows:

(x − µ)⊤Σ−1(x − µ) = (x − µ)⊤Σ− 1

2 Σ− 1

2 (x − µ)

= (Ax − b)⊤(Ax − b) ≤ 1

where A = Σ− 1

2 and b = Σ− 1

2 µ. Thus, the problem of
finding the minimum volume ellipsoid around (xi)

n
i=1

can be expressed as

min
A,b

− ln |A| s.t. ‖Axi − b‖2 ≤ 1, A � 0 (3)

where, |A| denotes the determinant of the matrix A.
The smallest enclosing ellipsoid is the one that has the
smallest volume yet encloses all the given points. We
measure the volume of an ellipsoid via the determinant
of Σ. Instead of explicitly minimizing the determinant
of Σ, we equivalently maximize the determinant of the
inversely-related matrix A since A = Σ− 1

2 . After solv-
ing (3) both µ and Σ can be recovered using matrix
inversion and simple algebra.

In practice, however, real world data has measurement
noise and outliers so the bounding ellipsoid above is
not necessarily the most reliable way to estimate the
ellipsoidal gap-tolerant classifier. Just like a relaxation
was used in Equation (2) to handle outliers when learn-
ing a linear classifier, we will relax the above algo-
rithm to find an ellipsoid around data that is robust
to noise and outliers. The following relaxed version of
the above formulation is thus used in practice:

min
A,b,τ

− ln |A| + E

n
∑

i=1

τi (4)

s.t. ‖Axi − b‖2 ≤ 1 + τi, τi ≥ 0 A � 0

where τi is a penalty on the samples that remain out-
side the ellipsoid, E is a parameter that trades off the
volume of the ellipsoid with the penalty on the out-
liers. The formulation (4) is an instance of a semidef-
inite program (SDP) (Boyd & Vandenberghe, 2003)
which can be efficiently solved in polynomial time.

Once the bounding ellipsoid is found, each pattern
is transformed using µ and Σ obtained using, ti =
Σ− 1

2 (xi − µ), where ti ∈ R
m. Thus the points ti are

now within a (relaxed) unit hypersphere centered at
the origin. The modified training patterns (ti, yi) are
now used for training the SVM. To test a pattern x,
compute the same transformation (t = Σ− 1

2 (x − µ))
and then test by predicting the sign of w⊤t + b as
the label. Table 1 summarizes the EKM training algo-
rithm which has two regularization parameters E and
C corresponding to finding an ellipsoid and finding a
separating hyperplane respectively.

We now note some interesting properties of the learned
EKM. Consider points on the hyperplane decision
boundary w⊤x+b = 0 which we obtain by solving the
standard SVM formulation (2). Since x = µ + Σ

1

2 t,
the following transformed points t also lie on the
SVM decision boundary if they satisfy the equation,
w⊤(µ + Σ

1

2 t) + b = w⊤Σ
1

2 t + w⊤µ + b = 0. Thus,
the hyperplane parameterized by (w, b) in the original
space corresponds to the hyperplane parameterized by
(w⊤Σ

1

2 ,w⊤µ+b) in the transformed space. The mar-
gin of the SVM in the original space is 2

‖w‖ . Thus the

margin for the decision boundary under transformed
data in terms of the parameters of the hyperplane



Input : (xi, yi)
n
i=1, Parameters: C, E.

Step 1 Solve formulation (4) using (xi)
n
i=1 with parameter E.

Step 2 Compute µ and Σ using Σ = A− 1

2 and µ = Σ
1

2 b.

Step 3 Transform the data using ti = Σ− 1

2 (xi − µ) for all i.
Step 4 Train SVM formulation (2) with (ti, yi)

n
i=1, parameter C, output (w, b)

Table 1: The EKM Training Algorithm.

for the original data is given by 2√
w⊤Σw

. Hence we

can directly maximize the margin for the transformed
data without explicitly transforming each data point
xi → ti. Instead, we merely solve:

min
w,b,ξ

1

2
w⊤Σw + C

n
∑

i=1

ξi (5)

s.t. yi(w
⊤(xi − µ) + b) ≥ 1 − ξi ξi ≥ 0.

The advantage of the above formulation is that when
the ellipsoid is flat (that is, Σ is not of full rank3) we
avoid inverting it to transform the data. We use the
above formulation when kernelizing the EKM method
as well. When learning an SVM without considering
the ellipsoidal structure, we simply minimize w⊤w.
However, this is not what is minimized when the data
is transformed to a sphere using the ellipsoidal struc-
ture. As shown from the analysis above, what we
should minimize is w⊤Σw. By using w⊤w in the ob-
jective in the original space, we only get a sub-optimal
margin on the transformed data. This is another sim-
ple and intuitive motivation to use the proposed for-
mulations independent of any learning theory argu-
ments. Section 5.1 demonstrates this happening on a
toy data set where an SVM obtains a suboptimal so-
lution relative to transformed data even though it is
linearly separable.

An important property of the EKM is that it is nat-
urally rotation, translation and scale-invariant. The
estimation of the bounding ellipsoid effectively com-
pensates for any rotation, translation or scaling of the
entire data prior to learning.In short, the EKM is affine
invariant while the SVM is only rotation and transla-
tion invariant.

4 KERNELIZATION

Another reason for the success of SVMs is that they
can be kernelized. Input data can be mapped using
a function φ : R

m → H, where H is a Hilbert space.
However, H could be of very high dimension (possi-
bly infinite), so it becomes very difficult to perform
the mappings xi → ti explicitly. The solution to this

3We later show how Σ can be estimated when it is not
of full rank.

problem is to express all computations in the previous
section solely in terms of dot products (the so-called
kernel trick) . A kernel function k : R

m×R
m → R im-

plicitly (and more efficiently) computes the dot prod-
uct of two vectors in Hilbert space. In other words,
k(xi,xj) = φ(xi)

⊤φ(xj). The matrix K ∈ R
n×n

whose entries Kij = k(xi,xj) for all pairs of training
data points is called the Gram matrix.

For simplicity, in this section we assume that the cen-
troid of the data is at the origin (i.e., µ = 0) and show
how we can kernelize the problem of finding the min-
imum volume ellipsoid. For details on finding both
the centroid and the covariance and ways to deal with
rank deficcient kernel matrices, consult a forthcoming
longer version of this paper. The steps in the following
derivations closely resemble those in kPCA (Schölkopf
et al., 1998).

We once again solve for the smallest bounding ellipsoid
to obtain µ and Σ but replace any explicit evaluations
of feature vectors with implicit kernel computations.
We start with the following primal problem:

min
Σ−1,τ

− ln |Σ−1| + E

n
∑

i=1

τi (6)

s.t. x⊤
i Σ−1xi ≤ 1 + τi, τi ≥ 0 Σ−1 � 0.

Rewriting the constrained optimization as a La-
grangian, we have, L(Σ−1, τ, γ, α) = ln |Σ| +
E

∑n

i=1
τi +

∑n

i=1
γi(x

⊤
i Σ−1xi − 1 − τi) −

∑n

i=1
αiτi,

where αi, γi ≥ 0 are Lagrange multipliers. Setting
the partial derivative of L with respect to Σ−1 equal
to zero, gives an expression for Σ at the optimum:
Σ =

∑n

i=1
γixix

⊤
i . The dual of (6) can be shown to

be equivalent to (Kumar & Yıldırım, 2005):

max
γ

ln |
n

∑

i=1

γixix
⊤
i | −

n
∑

i=1

γi s.t 0 ≤ γi ≤ E. (7)

Since Σ =
∑n

i=1
γixix

⊤
i , the dual avoids the prob-

lem of low rank. Even if Σ is of low rank, by
adding an ǫI to Σ in the objective, we can still es-
timate a low rank Σ using the dual. Primal (6)
would have had problems in this situation as it es-
timates Σ−1. Now suppose that C is the equivalent
matrix of Σ in the Hilbert space, we can express C



(a) (b) (c) (d)

Figure 2: (a) Classical SVM solution on the data, (b) EKM solution on the data, (c) Classical SVM solution
from the first plot after making the data spherical and (d) EKM solution from the second plot after making the
data spherical.

as C =
∑n

i=1
γiφ(xi)φ(xi)

⊤. In higher dimensions,
this matrix typically corresponds to a flat ellipsoid
as the dimensionality of the Hilbert space could be
much higher than the number of training samples. To
find the minimum enclosing ellipsoid, the product of
nonzero eigenvalues of C is to be maximized in the
dual (7) although the primal (6) does the exact oppo-
site. Consider the eigenvalue equation,

CV = λV (8)

in the Hilbert space where V denotes an eigenvector of
C with corresponding eigenvalue λ. Eigenvectors can
be represented as V =

∑n
i=1

νiφ(xi) since the eigen-
vectors of C are in the span of the data (Schölkopf
et al., 1998). Plugging this formula into (8) gives,

n
∑

i=1

γiφ(xi)φ(xi)
⊤

n
∑

j=1

νjφ(xj) = λ

n
∑

j=1

νjφ(xj).

However, we only have n data points from which we
can solve the above eigensystem. Multiply both sides
of the above equality from the left with φ(xl)

⊤ to ob-
tain

n
∑

i=1

γik(xl,xi)

n
∑

j=1

νjk(xi,xj) = λ

n
∑

j=1

νjk(xl,xj)

for all 1 ≤ l ≤ n. The above system can be expressed
in matrix form with Γ as a diagonal matrix with γi as
the diagonal entries:

KΓKν = λKν. (9)

The system (9) is an instance of the generalized eigen-
value problem. The above system can be solved via
the following eigenvalue problem if K is invertible:

K
1

2 ΓK
1

2 u = λu. (10)

The dual (7) tries to maximize the determinant of the
covariance matrix. Since the above eigensystem (10)

has the same eigenvalues as C, the determinant of
K

1

2 ΓK
1

2 can as well be maximized in Hilbert space
to achieve the same objective. This motivates us to
solve the following problem:

max
τ,γ

ln |K
1

2 ΓK
1

2 | −
n

∑

i=1

γi s.t. 0 ≤ γi ≤ E (11)

We can now express the term w⊤Cw (the term in the
objective function in Equation (5)) purely in terms
of kernel functions by using C =

∑n

i=1
γiφ(xi)φ(xi)

T

and w =
∑n

i=1
κiφ(xi) due to the fact the w is in

the span of the data. The constraints in (5) are also
straightforward to kernelize yielding a fully kernelized
EKM algorithm. By directly solving (5) with the Σ

estimated in the dual optimization of Equation (7), we
also avoid ever having to invert the matrix.

5 EXPERIMENTS

5.1 ILLUSTRATION WITH A TOY

DATASET

Fifty points were sampled from Gaussians N (µ1,Σ)
and Gaussian N (µ2,Σ) as the patterns of each class,
where the means and the covariances were set to:

µ1 =

[

1
1

]

, µ2 =

[

50
25

]

,Σ =

[

17 15
15 17

]

.

The data was then scaled so that each feature ranged
between [0, 1]. This is the the so-called unit box con-
straint which is the standard way of normalizing data
prior to SVM learning. The classical separable SVM
was solved for this dataset and is shown in Figure 2(a).
The bounding ellipsoid is shown as well but note that
the data is not transformed in any manner. Figure



Setup 1 Setup 2
Classical Gaussian Ellipsoidal Classical Gaussian Ellipsoidal

Heart 0.833 ± 0.008 0.762 ± 0.004 0.833 ± 0.006 0.841 ± 0.009 0.829 ± 0.010 0.851± 0.007

Pima 0.801 ± 0.001 0.741 ± 0.001 0.802± 0.001 0.745 ± 0.002 0.749± 0.003 0.746 ± 0.002
Ion 0.842 ± 0.001 0.838 ± 0.007 0.857± 0.004 0.842 ± 0.004 0.854 ± 0.004 0.862± 0.002

Pen 0.997 ± 0.000 0.998 ± 0.000 1.000± 0.000 1.000± 0.000 0.998 ± 0.000 1.000± 0.000

Iris 0.953± 0.005 0.927 ± 0.009 0.953± 0.005 0.946 ± 0.001 0.973± 0.004 0.973± 0.004

Bupa 0.702 ± 0.004 0.664 ± 0.005 0.705± 0.003 0.688 ± 0.003 0.691 ± 0.005 0.702± 0.005

Seg 0.824 ± 0.002 0.810 ± 0.005 0.828± 0.003 0.852 ± 0.009 0.857 ± 0.007 0.861± 0.004

Sonar 0.738± 0.004 0.723 ± 0.007 0.733 ± 0.006

Table 2: Test accuracies under Setup 1 and Setup 2 on several datasets.

2(b) shows the solution obtained by the EKM , by
first transforming the data to a zero centroid unit ra-
dius circle, solving an SVM and then mapping back
the decision boundary obtained in the transformed
space back to the original data space. Across Figure
2(a) and (b), it appears that the classical SVM has a
higher margin than the EKM. However, when the data
is scaled evenly by using the estimated ellipsoid to map
to a unit sphere, the solution obtained by the classical
SVM in the Figure 2(c) is clearly worse in terms of
margin when compared to the EKM in Figure 2(d).

This toy example clearly shows that individually scal-
ing features so that they are all on the same scale
(the so-called box constraint) and then solving with
an SVM does not necessarily give the best solution in
terms of margin. This example shows that even when
the data is linearly separable, unless the features are
independent, the covariance structure of a bounding
ellipsoid on the data must be exploited to get the op-
timal linear classifier. When the features are indepen-
dent, the EKM gives the same solution as the SVM,
since transforming according to the structure of the
ellipsoid in this case corresponds to scaling individual
features independently.

5.2 REAL WORLD DATASETS

We compared the EKM with the classical SVM on a
large array of UCI datasets (D.J. Newman & Merz,
1998). The results that are presented here were pro-
duced by fully automatic testing procedures. Both the
EKM and the classical SVM used the same splits for
the training, cross validation and testing subsets in
each experiment. We present two kinds of experimen-
tal setups.

Setup 1 Each UCI data set is randomly split into
two parts with a 9:1 ratio. The smaller portion was
held out for testing purposes. The bigger portion of
the split was further randomly divided according to a
9:1 ratio ten times for cross validation. For the clas-
sical SVM, different values of C were attempted. The

SVM was trained on the cross validation training data
and evaluated on the cross validation test data. Simi-
larly, cross validation training data was used to learn
an ellipsoid for different values of the parameter E in
Equation (4). We varied E to explore ellipsoids that
enclosed from 65% of the training data to 100% of the
training data. For each estimated ellipsoid, data is
transformed into a sphere for subsequent linear deci-
sion learning. With different values of C, a classifier
was learned on the transformed data. The estimated
hyperplanes were evaluated using the cross validation
data after transformation. From the cross validation
accuracies average over ten iterations, the parameters
that gave the highest accuracies were chosen for the
EKM and the SVM. These parameters were used to
train on the original 90% partition and to test on the
originally held out test data. The entire process was
repeated ten times to get the average accuracy re-
ported here. Similarly, instead of estimating Σ from
the SDP we estimated the Gaussian mean for the data
and used that to transform the data. The goal was to
compare the Gaussian estimate of the transformation
with the SDP estimate. Test results are shown in Ta-
ble 2. Results reported are average test accuracy and
the variance over ten randomized iterations as men-
tioned above. Clearly, in most of the cases, the EKM
outperforms the other two methods.

Setup 2 Although SDPs are solvable in polynomial
time, in practice they are still much slower than the
QP required to solve an SVM. We therefore consider
a different experimental setup which avoids using the
SDP too frequently. In this setup, the entire dataset is
first used to learn different ellipsoids for different val-
ues of E. The µ and Σ values obtained were stored.
From then on, the experiment methodology remained
exactly the same as in Setup 1 except that for a given
parameter E we simply used the stored µ and Σ for the
entire dataset rather than recomputing the bounding
ellipsoid for each fold. The results in this case though,
are on different partitions of the data as the two ex-
periments were conducted independently. It can be



Figure 3: Kernelized SVM (left) and EKM (right) solutions.

noted that in Setup 1, we did not report results on the
Sonar dataset since it was too computationally expen-
sive to learn the bounding ellipsoid more than hundred
times for each cross validation. It is reasonable to ex-
pect that the structure of the ellipsoid would remain
almost the same as long as we take a significant por-
tion of the data. Table 2 also shows equally promising
results in this Setup.

Kernel Version On a small randomly generated
dataset, we estimated a classical SVM as well as an
EKM with a Gaussian kernel with a fixed sigma scale
parameter. The EKM was estimated to bound all the
training examples with an ellipsoid in Hilbert space.
The resulting decision boundaries are shown in Fig-
ure 3. It can be seen that the solution can be drasti-
cally different in the kernelized version even on small
datasets as the ellipsoid in very high dimensions can
be quite complex.

6 CONCLUSIONS

A new technique to exploit the ellispoidal structure of
the data was proposed which estimates the minimum
volume bounding ellipsoid using SDP and then uses it
to (implicitly) remap the data to a unit sphere prior to
running an SVM. All computations were also kernel-
ized to scale to general Hilbert spaces. Not only is this
a useful preprocessing step of the data, it helps pro-
duce better VC dimension generalization arguments
for the resulting linear classifier. Furthermore, exper-
imental evidence for this classifier are promising. It
is anticipated that the kernelized version of the tech-
nique would be even more successful. Future directions
include exploring clustering, transduction, feature se-
lection, and so on while exploiting the ellipsoidal struc-
ture of the data.

3This work was funded in part by NSF grant IIS-
0347499.
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