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Outline

-Motivation
Learning Tasks and Paradigms

-Discriminative / Conditional Learning
Maximum Entropy Discrimination

-Latent Variables and Reversing Jensen’s Inequality
CEM and Dual of EM

-Action-Reaction Learning
Behavior Analysis / Synthesis via Time Series Prediction

-Wearable Platforms
Personal Enhanced Reality System
Wearable Interaction Learning

-Conversational Context Learning

Learning Applications for A & V

Classification: Regression / Prediction:

Detection / Clustering: Transduction:

Feature Selection:
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Learning Paradigms

New Competitors for Maximum Likelihood:
Discriminative Learning & SVMs (NIPS, COLT, UAI, ICML)

-Time Series Prediction (Muller)

-Digit Recognition (Vapnik)

-Speech Recognition (Deng)

-Face Gender Classification (Moghaddam)

-Gene-Sequence Classification (Jaakkola)

-Text Classification (Joachims)



1) Generative Approach:
Probabilistic Models
Maximum Likelihood

2) Discriminative Approach:
Support Vector Machines
VC Dimension
Maximum Margin
Task is Explicit
Discriminant Surface

Learning Paradigms

2) Discrimination & SVMs

+Model & Data Mismatch

+Support Vectors

+Good Generalization

-Linear Model

-Kernels

-No Priors

-No Missing Data

1) ML & PDFs

+Natural Models (HMMs)

+Priors

+Missing Data

+Flexible

-Poor Performance

-Objective not Task Related

Complementary Pros & Cons

How to combine both? MED...

Maximum Entropy
Discrimination

Tony Jebara
Tommi Jaakkola
Marina Meila

Overview & Motivation

Maximum Entropy Discrimination:
Combines probabilistic methods (and
extensions) in discriminative framework

-Add task-related Objective to PDFs.
-Satisfy task constraints
-Support Vectors -> Generalization
-Convex, No Local Minima

(vs. Min Class Error)

Feasible MED Extensions & Applications:

Latent variables, various priors, missing labels,
structure estimation, anomaly detection.
Feature selection, regression, latent transformations,
multi-class classification, exponential family.



Classification - Regularization Approach

Given:training examples:
binary (+/- 1) labels:
discriminant function:
non-increasing margin loss:

Minimize: regularization penalty:
subject to classification constraints:

Example: SVM
 minimizes:  

with discriminant:
decision rule:
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Maximum Entropy Discrimination Approach

Many solutions may be valid.
Use coarser description of sol’n instead of a single optimum.
Solve for distribution P(4) over all good 4 (instead of 4 *).
Find                 that mins                       subject to constraints:

                = prior over models & margins (favors large margins).

Decision Rule:

Information Transfer / Projection:
      *Information transferred to
       prior after observations 

      *Entropic Regularization and Margin
       Penalties are on the Same Scale
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Maximum Entropy Discrimination Solution

Analytic, Unique, Sparse, Parametric & Structural Models:

*               normalization constant (partition function)
*                                 non-negative Lagrange multipliers
* O solved via unique max of concave objective function:

Example: SVM

Example: Generative Models (e-family)
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Maximum Entropy Discrimination for Regression

Find                 that mins                       subject to constraints:

Decision Rule:

Solution: 

Margin Priors: (epsilon-tube)

Example: SVM
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Classification and Regression Examples
Generative Model Classification:

SVM Regression:

Sinc Fn.
(Clean)

SVM
Linear
Kernel

SVM
3rd Order

Polynomial

Sinc Fn.
With

Gaussian
Noise

Maximum
Likelihood

Full Covariance
Gaussians

MED
Full Covariance

Gaussians

Maximum Entropy Discrimination - Cancer

Maximum Entropy Discrimination - Crabs Feature Selection (Extension)

*Isolates interesting dimensions of the data for the given task
*Typically needs exponential search:

consider all possible subsets of dimensions
*Reduces complexity of data
*Also Improves Generalization
*Augments Sparse Vectors (SVMs) with Sparse Dimensions
*Is possible jointly with parameter estimation.
*Can be done discriminatively and efficiently with MED.



Feature Selection

Modify parameters to include a binary ON / OFF Switch

The model                                                  contains structural
parameters                  to aggressively prune features.

Prior:

Switch Prior: Bernoulli distribution
p0 parameter smoothly selects no pruning to aggressive pruning

	 

�

�

�
N

I I I

I

, 8 S 8
�

2 � R �R�
\ ^� �

����� � �����
N N
S S2 � R R

\ ^���
I
S �

	 
 	 
 	 
 	 
 	 
 	 
 	 

� �

� � �� ��� �� �� �
\ ��

S II
0 0 0 0 S 0 . ) 0 S

R R R
2 � R R � R R �

	 
 	 

�

�� � �
� I

I

SS

S I
0 S P P

�
� �

Aggressive attenuation
of linear coefficients
at low values (p0=.01).

Prior on
I I

S R

Feature Selection in SVM Classification & Results
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ROC of DNA Splice Site
100 Features
Original 25xGATC

ROC DNA Splice Site
~5000 Features
Quadratic Kernel

CDF of Linear Coeffs 
DNA Splice Site
100 Features

Dashed line: p0 = 0.99999
Solid line: p0 = 0.00001

DNA Data:      2-class, 100 element binary vectors. Training Set 500, Testing 4724

O constrained to [0,c] hyper-cube with constraint  �
T TT
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Feature Selection in SVM Regression & Results
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Linear Model Estimator Epsilon-Sensitive Linear Loss 
Least-Squares 1.7584 
MED p0 = 0.99999 1.7529 
MED p0 = 0.1 1.6894 
MED p0 = 0.001 1.5377 
MED p0 = 0.00001 1.4808 

 

Linear Model Estimator Epsilon-Sensitive Linear Loss 
Least-Squares 3.609e+03 
MED p0 = 0.00001 1.6734e+03 

 

Boston Housing Data:      13 scalar features. Training Set 481, Testing 25
Explicit Quadratic Kernel Expansion Used

D. Ross Cancer Data:  67 scalar features. Training Set 50, Testing 3951

Dashed line: p0 = 0.99999
Dotted line: p0 = 0.001
Solid line: p0 = 0.00001

Feature Selection in Generative Models

Feature selection is not limited to SVMs.
Applies to discriminative Generative Model Estimation as well.
But, tractable computation sometimes needs approximations.

Example: 2-class Gaussian distributions
variable means, identity covariance

Parameters:           Prior:
Switches: Prior:

Discriminant Function (tractable in this case):
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Latent Transformations (Extension) 

Each input example has additional unobservable properties
Only have a prior distribution over the unobservable
I.e. category, affine transform, latent variable, alignment

Given: training examples:

binary (+/- 1) labels:

hidden transformations:

transformation function:

prior on transforms:

Solution:
Transductive and Iterative. Solve iteratively by alternating solution of P(T) and P(U).

Example: 
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Optimization & Bounded QP (Extension) 

MED maximizes concave objective with convex constraints.
Axis-parallel, Newton, gradient descent will converge.

Lower Bound the concave objective with quadratic
Can then use SMO, QP, and other SVM optimizers.

Example: SVM Feature Selection

Iterate bound (contact at     ) and QP
Each QP is seeded at previous sol’n
Converges in about 10 fast iterations
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MED for the Exponential Family (Extension) 

Proof: MED with generative models spans members of the
exponential family (where Gaussians generate SVMs):

exponential family form:
conjugate prior:

Analytic Partition Function for Classification:
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Using Non-
Informative
Prior on b

Concluding Ideas on MED and Feature Selection 

Maximum Entropy Discrimination is a flexible Bayesian
regularization approach. It provides a geometric view of
learning as constrained minimization to prior distributions over
margins, parameters, latent variables. It simultaneously combines:

probabilistic methods
large margin discrimination and SVMs
feature selection
classification, regression, etc.
parameter and structure estimation
exponential family generative models
transduction and detection

Feature Selection is a particularly advantageous extension
which provides increased sparsity (support vectors & support
dimensions) and improves generalization.



Limitation of MED 

Applies to Exponential Family
Yet many models are MIXTURES of E-family:

Latent Models
HMMs
Mixture Models
Incomplete Data
Hidden Variable Bayesian Networks

Intractable models in discriminative & conditional settings
Thus use Variational Bounds to Perform Calculations
Invoke EM and derive its Discriminative DUAL
by Reversing Jensen

Reversing Jensen’s
Inequality

The Dual of EM for
Discriminative Latent Learning

Tony Jebara
Alex Pentland

Jensen’s Inequality

-Inequalities allow us to Integrate, Maximize,
Evaluate and Derive Intractable Expressions

-Convexity: 1905-1906 by J. Jensen (Dutch Mathematician & Engineer)
-See “Convex Functions, Partial Ordering and Statistical Applications”

by J. Pecaric, F. Proschan and Y. Tong.

Jensen in Statistics and EM:
-Subsumes many information theoretic bounds (Cover  & Thomas)
-Subsumes the EM Algorithm (Demspter, Laird & Rubin, Baum-Welch)
-EM casts latent variable problems as complete data by solving

for a lower bound on likelihood.

Reversals of Jensen:
-Constrained reversals and converses have been explored and are active

areas in mathematics (S.S. Dragomir).
-Reversals have yet to be applied to discriminative learning.

The EM Algorithm

x

f(x)

234x x 1x

Makes intractable maximization
of likelihood and integration of
Bayesian inference tractable via
variational bounds.

E-step: Replace unknowns with
their expected values under
current model.
(i.e. solving for a lower
bound on likelihood using Jensen!)

M-step: Optimize current model
with the complete data
(maximizing the Jensen lower bound!)

Applies and converges for Exponential
Family Mixtures. I.e. a very large space
of models that covers most of
contemporary machine learning.
HMMs, Gaussian Mixture Models, etc.



The Exponential Family
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E-family: K() is a convex function, X in its gradient space
Special Properties: conjugates, linearity, convexity, etc.

Mixtures of E-family: Gaussian mixture models, HMMs, Sigmoidal Belief
Nets, Latent Bayes Nets,etc. Most machine learning models!

Includes Poisson, Gaussian, Trees, Multinomial, Exponential

TRACTABLE

INTRACTABLE

Conditional & Discriminative Classification

L = - 8.0
L_c = - 1.7

L = - 54.7
L_c = + 0.4

TWO WHITE
GAUSSIANS
PER CLASS
FOR MODEL.

DATA REALLY
COMES FROM
FOUR WHITE
GAUSSIANS

C
E

M
E

M

PROBLEMATIC
MAXIMUM
LIKELIHOOD
SITUATIONS
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CONDITIONAL
MAXIMUM
LIKELIHOOD
SOLUTIONS

p(y|x)

Conditional & Discriminative Regression

L = - 4.2
L_c = - 2.4

L = - 5.2
L_c = - 1.8

Discriminative Criteria and Negated Log-Sums
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Maximum Likelihood: Clusters towards all data

Maximum Conditional Likelihood: Emphasizes classification task
      Repels models away from incorrect data

Maximum Margin Discrimination (MED): Emphasizes sparsity and
discriminant boundary for task

The above log-sums make integration, maximization, etc. intractable.
Need to simplify via overall lower and upper bounds...



Jensen
Uses Concavity of log()
Reweights data with responsibilties
Variational Lower Bound at Current Model  (T�)

makes tangential contact with true objective function log-sum
Local Computations to get a Global Lower Bound

\ ^	 
 	 
\ ^F % % Fp, ,
DANGER: IF WE HAVE
NEGATED LOG- SUM GET
UPPER BOUND INSTEAD!

Reverse-Jensen \ ^	 
 	 
\ ^F % % Fb, ,

Uses convexity of E-family
Reweights and Translates data
Variational Upper Bound at Current Model  (T�)

makes tangential contact with true objective function log-sum
Local Computations to get a Global Upper Bound

OR (tighter...)

Reverse-Jensen Bounds

Gaussian Case      Multinomial Case

Log-sum (gray)
Jensen (black)
Rev-Jensen (white)

Short
Proof

map bowl
to bowl



CEM Regression Results

Estimate p(y|x) regression
model with 2 Gaussians
(Gaussian gates with linear
experts).

Algorithm Regression Accuracy
Cascade-Correlation (0 hidden) 24.86%
Cascade-Correlation (5 hidden) 26.25%
C4.5 21.5%
Linear Discriminant 0.0%
k=5 Nearest Neighbor 3.57%
EM 2 Gaussians 22.32%
EM&CEM 1 Gaussian 20.79%
CEM 2 Gaussians 26.63%

CEM monotonically increases
conditional likelihood unlike
EM. Result: better p(y|x) which
captures the multimodality in y
without wasting resources in x.
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CEM Regression Results
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Abalone age data set (UCI).

CEM Classification Results

Gaussian mixture model
shown earlier for classification.
Monotonic convergence.
Double computation of EM per
epoch.

CEM accuracy = 93%
EM accuracy = 59%

Multinomial mixture model.
3-class multinomials for 60
base-pair protein chains.
CEM monotonically increases
conditional likelihood.

Y

T Xc

X Y

T

   joint         conditional

* Each assumes different independencies in data

= Data Structure (like Model Structure which is

useful for learning)

* Exponential number of conditional models

-> Use a handful for frequent task and joint for rare task

-> Use marginal for unreliable covariates

Bayesian Inference: Conditional vs. Joint
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Bayesian Approach

x: covariate
y: response
X: covariate dataset
Y: response dataset

Of course,Bayesian integration
is impractical so we must consider
conditional MAP and ML...

Data: p(y|x) from 4 points to
fit with 2 Gaussians

CONDITIONAL DENSITY ESTIMATE

CONDITIONED JOINT DENSITY ESTIMATE

jo
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t
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nd
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*

*

*

*

X

Y

An Exact Bayesian Example

Annealing 
Bound can accommodate a Gibbs
temperature for global optimum.

Latent Bayesian Networks

Hidden Markov Models

MED - Large Margin Latent Discrimination

Variational Bayesian Inference

Generic Optimization

check http://www.media.mit.edu/~jebara

Extensions
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Action-Reaction Learning

Automatic Visual Analysis
and Synthesis of Interactive
Behaviour

Tony Jebara
Alex Pentland



 Motivation & Background
IDEA
Computer Vision, Face & Gesture at Killington, Behaviourists...

BEHAVIOUR PERCEPTION
Static Imagery -> Simple Temporal Models -> Learned Temporal
Dynamics, Higher Order Control, Multiple Hypothesis, HMMs, NNs
(Blake, Bregler, Pentland, Bobick, Hogg)

BEHAVIOUR SYNTHESIS
Competing Behaviours, Control, Reinforcement, Ethology, Cog-Sci
(Brooks, Terzopolous, Blumberg, Uchibe, Mataric, Large)

ARL (ACTION REACTION LEARNING)
-Machine Learning of Correlations between Stimulus & Response
via Perceptual Measurements of Human Interactions
-Imitation Based Learning (Mataric)
-Behaviourism (Thorndike, Watson, Skinnerian, Gibsonian) -> Reactionary
-Watch Humans Interacting to Learn how to React to Stimulus

Scenario
AUTOMATIC
UNSUPERVISED
OBSERVATION
OF 2 AGENT
INTERACTION

TRACK LIP
MOTIONS

DISCOVER
CORRELATIONS
BETWEEN PAST
ACTION &
CONSEQUENT
REACTION

ESTIMATE p(y|x)

System Architecture

OFFLINE: LEARNING
FROM HUMAN
INTERACTION, SPYING
ON TWO USERS TO
LEARN p(y|x)

ONLINE: INTERACTION
WITH SINGLE USER
WITH LEARNED p(y|x)

Perception
PROBABILISTIC
HEAD & HAND
TRACKING

EXPECTATION
MAXIMIZATION (EM)
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Perception...
TEMPORAL REPRESENTATION

5 Parameters per Blob =
  2 Centroid    +
  3 Square Root Covariance

GRAPHICAL
OUTPUT

(Seen by
 both users)
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 Temporal Modeling
TIME SERIES PREDICTION    (Gershenfeld, Weigund, Mozer, Wan)

Santa Fe: NNs, RNNs, HMMs, Diff Eqns, etc.
Sun Spot, Bach, Physiological, Chaotic Laser

SHORT TERM MEMORY PRE-PROCESSING   (Wan, Elliot-Anderson)
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y Features (Blobs Concatenated)
Prediction Mapping
Short Term Memory (T=120)

Temporal Modeling...
PRINCIPAL COMPONENTS ANALYSIS

(linear, FFT, Wavelets…)

Gaussian Distribution of STM (roughly 6.5 seconds)
Dims = T x Feats = 120x30     ���!    40 (95% Energy of Submanifold)
Low dimensional (i.e. smoothed) characterization of past interaction

        eigenvalues                   eigenvectors                     eigenspace

LEARN MAPPING PROBABILISTICALLY
p(y|x) = p(future | STM)    versus deterministic y=g(x)

Learning & The CEM Algorithm
EXPECTATION MAXIMIZATION (EM)

Learns p(x,y) by maximizing                              (joint model of phenomenon)

Powerful convergence    --    Clean statistical Framework
More global than gradient solutions    --    Can be deterministically annealed

For conditional problems (input/output regression, classification)
Joint models are outperformed (I.e. NNs and RNNs versus HMMs)
Since they don’t optimize output error (I.e. testing criterion is not like training) 

CONDITIONAL EXPECTATION MAXIMIZATION (CEM) NIPS11,1998

Learns p(y|x) by maximizing                               (conditional model of task)

Convergence properties like EM but for Conditional Likelihood
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Variational Bound Maximization
Monotonic
Skips Local Minima
Deterministically Annealable

Model: Mixture of Experts
Soft Piece-Wise Linear
Gaussian Gates with Conditioned Gaussian Regressors
CEM Applies to other models: HMM, Multinomial Mixtures, etc.

Output: Expectation or Arg Max (Regression)

Computationally very efficient, simple matrix operations

Learning and the CEM Algorithm...
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CEM
Integration

D

D
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y(t)x(t)y(t−1)

A

B
y(t)

y(t−1)

y(t−1)

y(t)

A

B

TRAINING MODE

System accumulates
action / reaction pairs
(x,y) and uses CEM
to optimize a
conditioned Gaussian
mixture model for
p(y|x)

INTERACTIVE MODE

System completes
missing time series and
synthesizes reaction in
graphical form for user
using the p(y|x)



Integration...
FEEDBACK MODE

Predicted measurement
on user can be fed back
as a non-linear learned
EKF to aid vision. Can
also use p(x) to filter
vision and find
correspondence.

SIMULATION MODE

Fully synthesize both
components of the time
series (user A and user B).
Some instabilities / bugs
(no grounding) -> future work.
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Training & Results
Training Data: 5 minutes,  15 Hz, approx. 5 repetitions of gestures
Model: T=120, Dims=22, M=25    (to maintain real-time)
Convergence: 2 hours

Nearest Neighbor:  1.57% RMS
Constant Velocity:   0.85% RMS
ARL:                        0.64% RMS

Results...

SCARE INTERACTION

Results...

WAVE INTERACTION



Results...

CLAP INTERACTION

Alternate Perceptual Modalities

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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1
Rotation Quaternion (q0, q1, q2, q3)FACE MODELING

3D Translation
3D Pose
Focal Length
7 DOFs

3D Eigen Model
Deformations
Texture 
40 DOFs

Real-Time
(…+ speech +…)

Conclusions

1 - Unsupervised Discovery of Simple Interactive Behaviour by
      Perceptual Observations and Statistical Time Series
      Prediction of Future Given Past or Reaction Given Action

2 - Imitation Based Learning of Behaviour

3 - Real-Time Behaviour Acquisition and Interactive Synthesis

4 - Small Amounts of Training Data and Non-Intrusive Training

5 - Non-Linear Predictive Model for Feedback Perception

6 - Monotonically Convergent Maximum Conditional Likelihood
      i.e. Discriminant Probabilistic Learning (CEM)

7 - No A Priori Segmentation or Classification of Gestures

Wearable Platform:
Dynamic Personal
Enhanced Reality System

Tony Jebara
Bernt Schiele
Nuria Oliver
Alex Pentland



DyPERS Architecture
* 3 Button interface: Record, Associated and Discard
* User records live A/V Clips with wearable
* Associates them with a visual trigger object(s)
* Audio-Video is replayed when computer vision sees trigger object

DyPERS Visual Recognition
* Multidimensional filter-response histograms

from differences of Gaussian linear convolutions
(magnitude of 1st deriv. and Laplace operator)

* Compute probability of object from k iid measurements
* Kalman filter on probabilities of objects to smooth classifier

Video

Wearable Platform:
Interactive Behavior
Acquisition

Tony Jebara
Alex Pentland



Hardware
-Sony Picturebook Laptop
-2 Cameras 
-2 Microphones

Action-Reaction Learning
-Audio-Visual processing
-Time Series Prediction
-Discriminative Learning
-DyPERS associative memory

Wearable Long-term Behavior Acquisition

Tracking Conversational
Context (Audio)

Tony Jebara
Yuri Ivanov
Ali Rahimi
Alex Pentland

System Architecture

Tracking Conversational Context for Machine Mediation
Speech rec. on multiple speakers with real-time topic-spotting

Bag-of-words (multinomials)

Short Term Memory w/ Decay

Probability of Topic

Coarse descriptor of mood,
topic, etc. Used to select
prompt to stimulate conversation

Conversation Trace

?
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? ?
?

O
?

?
?

? ?
?

?
?

X ?
?

?
?

?
?

? ?
?

Clutering & MED
Transductive
approach for
few labeled.

Text data from 12 Newsgroups

Wearable Platform

Real-time probabilities of topics
(politics, health, religion, etc.)
Could also detect emotions & situations...
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