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Abstract

Concentration inequalities that incorporate
variance information (such as Bernstein’s
or Bennett’s inequality) are often signifi-
cantly tighter than counterparts (such as Ho-
effding’s inequality) that disregard variance.
Nevertheless, many state of the art machine
learning algorithms for classification prob-
lems like AdaBoost and support vector ma-
chines (SVMs) extensively use Hoeffding’s
inequalities to justify empirical risk mini-
mization and its variants. This article pro-
poses a novel boosting algorithm based on
a recently introduced principle—sample vari-
ance penalization—which is motivated from
an empirical version of Bernstein’s inequal-
ity. This framework leads to an efficient
algorithm that is as easy to implement as
AdaBoost while producing a strict general-
ization. Experiments on a large number of
datasets show significant performance gains
over AdaBoost. This paper shows that sam-
ple variance penalization could be a viable
alternative to empirical risk minimization.

1 INTRODUCTION

In classification problems, many machine learning al-
gorithms minimize a convex upper bound on the mis-
classification rate. For example, AdaBoost (Freund
& Schapire, 1997) minimizes the exponential loss and
support vector machines (Vapnik, 1995) minimize the
hinge loss. The convexity of such losses is helpful
for computational as well as generalization reasons
(Bartlett et al., 2006). In most problems, the aim is
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not to obtain a function that performs well on training
data but rather to estimate a function (using training
data) that performs well on future unseen test data.
This is accomplished by minimizing empirical risk on
the training set while choosing a function of small com-
plexity. The rationale behind this approach is that the
empirical risk converges (uniformly) to the true un-
known risk. Various concentration inequalities show
how fast the empirical risk converges to the true risk.

A key tool in obtaining such bounds is Hoeffding’s in-
equality which relates the empirical mean of a bounded
random variable to its true mean. Bernstein’s and
Bennett’s inequalities relate the true mean of a ran-
dom variable to the empirical mean but also incor-
porate the true variance of the random variable. If
the true variance of a random variable is small, these
bounds can be significantly tighter than Hoeffding’s
bound. Recently, there have been empirical counter-
parts of Bernstein’s inequality (Audibert et al., 2007;
Maurer & Pontil, 2009); these bounds incorporate the
empirical variance of a random variable rather than
its true variance. The advantage of these bounds is
that the quantities they involve are actually observ-
able. Previously, these bounds have been applied in
sampling procedures (Mnih et al., 2008). In this pa-
per, we motivate a new boosting algorithm that not
only minimizes the empirical misclassification rate but
also the empirical variance on the exponential loss. To
do so, we make an appeal to the “sample variance pe-
nalization” principle and the empirical Bernstein in-
equality.

In recent years, there has been surge of interest in
designing classification algorithms that incorporate
higher order information beyond empirical risk to im-
prove generalization. For instance, the classical per-
ceptron algorithm was extended to include variance
information in the second order perceptron approach
(Cesa-Bianchi et al., 2002). Probabilistic versions
of online algorithms (Crammer et al., 2009a) incor-
porating variance information have been successfully
applied to text classification problems. A batch al-
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gorithm, called the relative margin machine (Shiv-
aswamy & Jebara, 2010), which trades off between the
margin and the spread of the data has also been devel-
oped. Similarly, Gaussian margin machines (Crammer
et al., 2009b) have been proposed and are motivated
by minimizing a PAC Bayesian bound with a Gaussian
prior on the hyperplane.

2 HOEFFDING AND EMPIRICAL

BERNSTEIN BOUNDS

This section reviews some classical as well new concen-
tration inequalities. The purpose of this section is to
present sample variance penalization (Maurer & Pon-
til, 2009) as a motivation for the rest of the paper.
However, for the sake of clarity and completeness, we
review a few other classical results as well. First, recall
Hoeffding’s inequality.

Theorem 2.1 Let Z1, Z2, . . . , Zn be iid random vari-
ables with values in [0, 1]. Then, for any δ > 0,
with probability at least 1 − δ (over the draw of
Z1, Z2, . . . , Zn), the following inequality holds:

E[Z] ≤ 1

n

n
∑

i=1

Zi +

√

ln(1/δ)

2n
.

In machine learning settings, samples (Xi, yi)
n
i=1 are

drawn iid from a distribution D where (Xi, yi) ∈ X ×
Y. From this data, a learning algorithm outputs a
function f : X → R (typically from a fixed set of
functions) that should predict well on future samples.
In other words, the function should minimize a fixed
loss l : R× Y → [0, 1] on unseen test examples drawn
from the same distribution.

Empirical risk minimization (ERM) is a popular ap-
proach to minimizing loss on unseen test examples.
Suppose the learning algorithm is to choose a func-
tion from a finite set of candidate functions F . Con-
sider the extension of Hoeffding’s inequality such that
it holds uniformly over all functions in F .

Corollary 2.2 Let (Xi, yi)
n
i=1 be drawn iid from a

distribution D. Let F be a finite class of functions
f : X → R. Then, given a loss function l : R × Y →
[0, 1], for any δ > 0, with probability at least 1 − δ,
∀f ∈ F ,

E[l(f(X), y)] ≤ 1

n

n
∑

i=1

l(f(Xi), yi) +

√

ln(|F|)/δ

2n
(1)

where |F| is the cardinality of F .

In fact, the above corollary can be extended to infinite
function classes F by replacing the term |F| with a
suitable complexity measure.

The empirical risk minimization principle selects a
function from a class to minimize empirical loss on
the training data, i.e.,

arg min
f∈F

1

n

n
∑

i=1

l(f(Xi), yi).

Since (1) holds uniformly over all the functions in the
class F , minimizing the empirical risk minimizes an
upper bound on the future loss.

As an alternative to Hoeffding’s bound, consider Bern-
stein’s inequality.

Theorem 2.3 Under the same conditions as Theorem
2.1, for any δ > 0, with probability at least 1− δ,

E[Z] ≤ 1

n

n
∑

i=1

Zi +

√

2V[Z] ln(1/δ)

n
+

ln(1/δ)

3n
,

where V[Z] = E (Z −E[Z])2.

When the variance V[Z] of the random variable Z is
small, the above bound can be significantly tighter
than Hoeffding’s bound. To get an idea of why the
bound in Theorem 2.3 can be better than the one in
Theorem 2.1, consider a situation in which V[Z] = 0.
In this scenario, 1

n

∑n

i=1 Zi converges to E[Z] at the
rate O(1/n) according to Bernstein’s inequality. How-
ever, in the case of Hoeffding’s inequality, the conver-
gence is at a much slower O(1/

√
n) rate. However,

one limitation of the above bound is that the true
value V[Z] is often an unknown quantity and only an
empirical estimate is available. To address this limita-
tion, recall the following result from (Maurer & Pontil,
2009) which is similar to Theorem 2.3 but holds for an
empirical estimate of the variance as opposed to the
true value V[Z].

Theorem 2.4 Under the same conditions as Theorem
2.1, for any δ > 0, with probability at least 1− δ,

E[Z] ≤ 1

n

n
∑

i=1

Zi +

√

2V̂[Z] ln(2/δ)

n
+

7 ln(2/δ)

3(n− 1)
,

where V̂[Z] is the empirical variance given by:1

V̂[Z] =
1

n(n− 1)

∑

n≥i>j≥1

(Zi − Zj)
2.

The above theorem has the advantage that all the
quantities involved are empirical quantities that can
be obtained from data. We finally state the following
uniform convergence result that can be used to moti-
vate sample variance penalization.

1For brevity, unless we specify extra constraints on i

and j, i > j in future summations must be read as n ≥ i >

j ≥ 1.
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Theorem 2.5 Let (Xi, yi)
n
i=1 be drawn iid from a dis-

tribution D. Let F be a class of functions f : X → R.
Then, given a loss function l : R× Y → [0, 1], for any
δ > 0, with probability at least 1− δ, ∀f ∈ F ,

E[l(f(X), y)] ≤ 1

n

n
∑

i=1

l(f(Xi), yi) +
15 ln(M(n)/δ)

(n− 1)

+

√

18V̂[l(f(X), y)] ln(M(n)/δ)

n
, (2)

whereM(n) is a complexity measure (Maurer & Pon-
til, 2009). Unlike the empirical risk in (2), the em-

pirical variance V̂[l(f(X), y)] has a multiplicative fac-
tor involving M(n) (which is typically difficult to es-
timate), δ (the required confidence at which we want
the bound to hold) and n. Thus, for a given problem,
it is difficult to specify the trade-off between empirical
risk and empirical variance a priori. Hence, the algo-
rithm we propose in this paper will involve a scalar
parameter which trades off between these two criteria.
As is often the case in practice, this trade-off parame-
ter has to be tuned using a validation set. Minimizing
this uniform convergence bound leads to the so-called
sample variance penalization principle:

arg min
f∈F

1

n

n
∑

i=1

l(f(Xi), yi) + λ

√

V̂[l(f(X), y)]

n
,

where λ ≥ 0 explores the trade-off between the empir-
ical risk and the empirical variance. The aim of the
rest of this paper is to derive an efficient, AdaBoost
style algorithm for sample variance penalization.

3 LOSS FUNCTIONS

In this section, we first explore the possibility of apply-
ing the results from the previous section on the 0− 1
loss function. We show that sample variance penaliza-
tion with 0 − 1 loss merely corresponds to empirical
risk minimization. Subsequently, we apply the sample
variance penalization principle to the exponential loss
where it produces a qualitatively different criterion.

In the previous section, we dealt with a generic loss
function without making any assumptions on the prob-
lem type. However, from now on, we restrict our-
selves to binary classification problems. In classifica-
tion problems, we have, Y = {±1}. Define the classi-
fication loss function l1(f(X), y) as:

l1(f(X), y) := Iyf(X)≤0 =

{

0 if yf(X) > 0,
1 if yf(X) ≤ 0.

(3)

Given an iid set of examples (Xi, yi)
n
i=1, our aim is

to minimize the future probability of error, i.e., to
minimize PD[yf(X) ≤ 0].

Lemma 3.1 Let (Xi, yi)
n
i=1 be drawn iid from a dis-

tribution D. Let F be a class of functions f : X →
Y. Then, for any δ > 0, with probability at least
1− δ, ∀f ∈ F ,

PD[yf(X) ≤ 0] ≤ p̂ +

√

18p̂(1− p̂) ln(M(n)/δ)

n− 1

+
15 ln(M(n)/δ)

(n− 1)
, (4)

where p̂ = P̂[l1(f(X), y)] = 1
n

∑n

i=1 Iyif(Xi)≤0 is the
empirical error.

Proof The proof is straightforward; it is a direct ap-
plication of Theorem (2.5) on the 0-1 loss (3). First
observe that,

ED[Iyf(X)≤0] = PD[yf(X) ≤ 0].

Moreover, denoting Iyif(Xi)≤0 by si for brevity,

V̂[l1(f(X), y)] =
1

n(n− 1)

∑

i>j

(si − sj)
2

=
1

n(n− 1)



(n− 1)

n
∑

i=1

s2
i − 2

∑

i>j

sisj





=
n

n− 1





1

n

n
∑

i=1

s2
i −

(

1

n

n
∑

i=1

si

)2




=
n

n− 1
p̂(1− p̂).

Going from line three to four we used the fact that,
for an indicator random variable, s2

i = si.

Thus, to minimize future classification error, sam-
ple variance penalization suggests minimizing p̂ +
λ
√

p̂(1− p̂). Consider p̂ ∈ [0, 1/2) which is clearly
the regime of interest in classification problems. It
is easy to see that, for p̂ ∈ [0, 1/2), the quantity
p̂ + λ

√

p̂(1− p̂) is a monotonically increasing function
of the empirical error p̂. Therefore, sample variance
penalization is equivalent to minimizing the empirical
error p̂. Thus, for any finite non-negative value of λ,
sample variance penalization merely reduces to empir-
ical risk minimization with the 0− 1 loss.

3.1 MINIMIZING A CONVEX UPPER

BOUND ON THE 0− 1 LOSS

It is important to note that empirical risk minimiza-
tion with the 0 − 1 loss is a hard problem; this prob-
lem is often circumvented by minimizing convex upper
bounds on this empirical risk. In this paper, we con-
sider the following exponential loss:

l2(f(X), y) := e−yf(X). (5)
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Algorithm 1 AdaBoost

Require: (Xi, yi)
n
i=1, weak learners H

Initialize the weights: wi ← 1
n
; initialize f to predict zero on all inputs.

for s← 1 to S do

Get a weak learner Gs(·) that minimizes
∑

i:yi 6=Gs(Xi)
wi

αs = 1
2 log

(
P

yi=Gs(Xi)
wi

P

yi 6=Gs(Xi)
wi

)

if αs < 0 then break end if

f(·)← f(·) + αsG
s(·)

wi ← wi exp(−yiG
s(Xi)αs)/Zs where Zs is such that

∑n

i=1 wi = 1.
end for

Here, we assume f : X → [−1, 1]. Our aim is to still
minimize the future 0 − 1 loss yet only through the
surrogate exponential loss function. A computational
advantage of this convex loss function is that it is easy
to minimize. First, we relate the future probability of
error to the exponential loss:

PD[yf(X) ≤ 0] = ED[Iyf(X)≤0] ≤ ED[e−yf(X)].

It is now possible to relate the future probability of
error to the empirical mean and the empirical variance
of the exponential loss. By applying the result from
Theorem 2.5, we have:

ED[e−yf(X)] ≤ 1

n

n
∑

i=1

e−yif(Xi) +
15e ln(M(n)/δ)

(n− 1)

+

√

∑

i>j(e
−yif(Xi) − e−yjf(Xj))2

n(n− 1)

√

18 ln(M(n)/δ)

n
,

where an extra e appears in the second term to nor-
malize the exponential loss so that it has the range
[0, 1] (such that Theorem 2.5 applies directly).

Thus, the sample variance penalization principle, ap-
plied to the exponential loss suggests minimizing the
following quantity for some scalar τ > 0:

n
∑

i=1

e−yif(Xi) + τ

√

∑

i>j

(

e−yif(Xi) − e−yjf(Xj)
)2

. (6)

4 A BOOSTING ALGORITHM

In this section, a boosting style algorithm to minimize
(6) is derived. Assume the function class H of interest
is composed of so-called weak learners Gs : X → {±1}
for s = 1, . . . , S. The function to be output consists of
the following additive model over weak learners:

f(X) =

S
∑

s=1

αsG
s(X). (7)

where αs ∈ R
+ for s = 1, . . . , S.

One minor technicality is that the analysis in the pre-
vious section assumed that the function f had a range
[−1, 1]. However, while building an additive model (7)
this does not hold. Thus the range of the function ob-
tained both by AdaBoost and the proposed algorithm

will be [e−
PS

s=1 αs , e
PS

s=1 αs ].

AdaBoost AdaBoost is described in Algorithm 1.
Since it is a well studied algorithm, we do not provide
further details. We merely point out that it minimizes
an exponential loss, i.e., it minimizes

∑n

i=1 e−yif(Xi)

in a stage-wise manner to build an additive model (7).

4.1 DERIVING AN UPDATE RULE

The update of our boosting algorithm is based on the
stage-wise greedy interpretation of AdaBoost (Hastie
et al., 2001). Our aim is to minimize the sample vari-
ance cost (6) while building an additive model (7).
As in most boosting methods, we minimize a convex
cost in each stage of the boosting algorithm. Effec-
tively, we consider the same class of weak learners as
AdaBoost (i.e., a conic combination of weak learners)
while performing sample variance penalization instead
of empirical risk minimization.

Since there is an unknown trade-off between the two
terms in (6), one way to minimize that cost is by the
following minimization:

min
f∈F

n
∑

i=1

e−yif(Xi)

s.t.

√

∑

i>j

(

e−yif(Xi) − e−yjf(Xj)
)2 ≤ B,

where the trade-off parameter is now parametrized by
B. For every value of τ there is a B that obtains the
same optimal function; in particular, B =∞ is equiv-
alent to τ = 0. The above problem can be equivalently
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Algorithm 2 EBBoost

Require: (Xi, yi)
n
i=1, scalar parameter λ ≥ 0, weak learners H

Initialize the weights: wi ← 1
n
; initialize f to predict 0 on all inputs.

for s← 1 to S do

Get a weak learner Gs(·) that minimizes (9) with the following choice of αs:

αs = 1
4 log

(

(1−λ)(
P

i∈I wi)
2+λn

P

i∈I w2
i

(1−λ)(
P

i∈J
wi)2+λn

P

i∈J
w2

i

)

if αs < 0 then break end if

f(·)← f(·) + αsG
s(·)

wi ← wi exp(−yiG
s(Xi)αs)/Zs where Zs is such that

∑n

i=1 wi = 1.
end for

posed as:

min
f∈F

(

n
∑

i=1

e−yif(Xi)

)2

s.t.
∑

i>j

(

e−yif(Xi) − e−yjf(Xj)
)2

≤ B2.

We now write the above optimization problem intro-
ducing a non-negative Lagrange multiplier λ:

(

n
∑

i=1

e−yif(Xi)

)2

+λ
∑

i>j

(

e−yif(Xi) − e−yjf(Xj)
)2

−λB2.

One way to implement the above optimization is to
minimize it under different settings of λ. Since the
last term does not involve the function f , we merely
optimize the following objective:

min
f∈F

(

n
∑

i=1

e−yif(Xi)

)2

+λ
∑

i>j

(

e−yif(Xi) − e−yjf(Xj)
)2

.

(8)

Since we are interested in building an additive model,
we assume that we already have a function h(·). We
will then derive a greedy algorithm to obtain a weak
learner G(·) and a positive scalar α such that f(·) =
h(·) + αG(·) minimizes the above objective the most.

Denoting e−yih(Xi) by wi, (8) can be written as:2

(

n
∑

i=1

wie
−yiαG(Xi)

)2

+ λ
∑

i>j

(

wie
−yiαG(Xi) − wje

−yjαG(Xj)
)2

=(1 + (n− 1)λ)
n
∑

i=1

w2
i e−2yiαG(Xi)

+ (2− 2λ)
∑

i>j

wiwje
−yiαG(Xi)−yjαG(Xj). (9)

2In the final algorithm there will be a normalization
factor dividing wi.

For brevity, we define the following sets of indices:

I = {i : yiG(Xi) = +1} , J = {i : yiG(Xi) = −1} .
Here, I denotes the set of examples that are correctly
classified by G(·) and J is the set of misclassified ex-
amples. Equation (9) can now be rewritten as:

λ1

(

∑

i∈I

w2
i e−2α +

∑

i∈J

w2
i e2α

)

+ λ2

∑

i>j:i,j∈I

wiwje
−2α

+ λ2

∑

i>j:i,j∈J

wiwje
+2α + λ2

∑

i>j:i∈I,j∈J or i∈J,j∈I

wiwj ,

where we have defined λ1 = (1 + (n − 1)λ) and λ2 =
2− 2λ. The above expression is convex in α; it is easy
to see this by taking the second derivative with respect
to α. We can now minimize the above expression in α;
differentiating with respect to α and equating to zero,
we get:

α =
1

4
log

(

λ1

∑

i∈I w2
i + λ2

∑

i>j:i,j∈I wiwj

λ1

∑

i∈J w2
i + λ2

∑

i>j:i,j∈J wiwj

)

.

At this point, it appears that all pairwise interactions
between weights are needed to find α which would
make the computation of α (given a weak learner
G) cumbersome because of the O(n2) pairwise terms.
Consider the numerator in the update rule for α and
substitute the values of λ1 and λ2, to get

(1 + (n− 1)λ)
∑

i∈I

w2
i + (2 − 2λ)

∑

i>j:i,j∈I

wiwj

=
∑

i∈I

w2
i + 2

∑

i>j:i,j∈I

wiwj + λn
∑

i∈I

w2
i

− λ





∑

i∈I

w2
i + 2

∑

i>j:i,j∈I

wiwj





= (1− λ)(
∑

i∈I

wi)
2 + λn

∑

i∈I

w2
i .

Applying a similar simplification to the denominator
yields the following O(n) rule

α =
1

4
log

(

(1 − λ)(
∑

i∈I wi)
2 + λn

∑

i∈I w2
i

(1− λ)(
∑

i∈J wi)2 + λn
∑

i∈J w2
i

)

.
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Table 1: For each dataset, the algorithm with the best percentage test error is represented by a shaded cell. All
the bold entries in a row denote results that are not significantly different from the minimum error (by a paired
t-test at 5% significance level). EBBoost outperforms AdaBoost on all datasets.

Dataset AdaBoost EBBoost RLP-Boost RQP-Boost ABR
a5a 18.07 ± 0.60 17.82 ± 0.65 17.90 ± 0.84 18.06 ± 0.86 17.80 ± 0.52

abalone 22.53 ± 0.77 22.38 ± 0.94 23.68 ± 1.34 23.01 ± 1.28 22.40 ± 0.68

image 4.28 ± 0.78 4.04 ± 0.78 4.19 ± 0.80 3.79 ± 0.68 4.27 ± 0.82
nist09 1.28 ± 0.22 1.17 ± 0.13 1.43 ± 0.24 1.25 ± 0.25 1.18 ± 0.18

nist14 0.80 ± 0.18 0.70 ± 0.11 0.89 ± 0.16 0.78 ± 0.16 0.74 ± 0.13

nist27 2.56 ± 0.31 2.41 ± 0.34 2.72 ± 0.30 2.49 ± 0.30 2.32 ± 0.35

nist38 5.68 ± 0.56 5.34 ± 0.44 6.04 ± 0.42 5.48 ± 0.48 5.24 ± 0.47

nist56 3.64 ± 0.45 3.38 ± 0.37 3.97 ± 0.47 3.61 ± 0.43 3.42 ± 0.35

mushrooms 0.35 ± 0.35 0.28 ± 0.30 0.30 ± 0.34 0.30 ± 0.34 0.29 ± 0.37

musklarge 7.80 ± 0.99 6.89 ± 0.58 7.83 ± 1.00 7.29 ± 0.96 7.22 ± 0.71
ringnorm 15.05 ± 3.14 13.45 ± 2.37 15.25 ± 4.15 14.55 ± 2.98 14.35 ± 3.13

spambase 7.74 ± 0.74 7.18 ± 0.79 7.45 ± 0.60 7.25 ± 0.69 6.99 ± 0.62

splice 10.57 ± 1.13 10.27 ± 0.85 10.28 ± 0.85 10.18 ± 0.99 10.02 ± 0.86

twonorm 4.30 ± 0.40 4.00 ± 0.21 4.87 ± 0.47 4.19 ± 0.39 4.16 ± 0.45
w4a 2.80 ± 0.23 2.75 ± 0.23 2.76 ± 0.14 2.77 ± 0.23 2.75 ± 0.19

waveform 12.96 ± 0.75 12.90 ± 0.81 12.75 ± 0.86 12.22 ± 0.90 12.47 ± 0.71

wine 26.03 ± 1.18 25.66 ± 1.00 25.00 ± 1.16 25.20 ± 0.96 25.09 ± 1.17

wisconsin 5.00 ± 1.50 4.00 ± 1.34 4.14 ± 1.50 4.71 ± 1.54 4.46 ± 1.58

We now state the algorithm based on sample variance
penalization (6) in Algorithm 2. It merely requires
the sum of weights on examples and the sum of squared
weights on appropriate partitions defined by the weak
learner. Further, given a weak learner, we note that
(9) only requires O(n) time to evaluate.

It is easy to see that AdaBoost is a specific instance
of EBBoost algorithm. If we substitute λ = 0, (6) be-

comes
(
∑n

i=1 e−yif(Xi)
)2

. Even though this cost func-
tion is the AdaBoost cost squared, the optimal choice
of α remains the same since the AdaBoost cost is non-
negative. Substituting, λ = 0 in the expression for α
above, we have,

α =
1

4
log

(

(
∑

i∈I wi)
2

(
∑

i∈J wi)2

)

=
1

2
log

(
∑

i∈I wi
∑

i∈J wi

)

,

which coincides with the choice of α in AdaBoost.

5 EXPERIMENTS

In this section, we evaluate the empirical performance
of EBBoost and AdaBoost. This is our primary com-
parison as the goal of this article is to compare between
empirical risk minimization (AdaBoost) and sample
variance penalization (EBBoost). There are numer-
ous variants of boosting algorithms; many of these
variants are exploring other intricacies of the classi-
fication problems (sparsity, robustness to outliers and
so forth). While performance is reported for three vari-
ants, the goal is not to find a method that outperforms

every variant of boosting under every possible choice of
weak learners. In fact, many of these boosting variants
could also be modified to incorporate sample variance
penalization. The emphasis, rather, is on comparing
AdaBoost with EBBoost with a simple family of weak
learners such as decision stumps. Experiments with
three other boosting variants are included simply to
give broader perspective. In our experiments, we con-
sider the following boosting variants:

Regularized LP and QP Boost Given a dataset,
first AdaBoost is run to obtain training predictions
from weak learners. LP and QP Boost algorithms
(Raetsch et al., 2001) then optimize the weights on
weak learners obtained by AdaBoost to maximize the
margin (along with regularization on the weights).
Once the optimizations are solved, predictions are ob-
tained based on the outputs of the same weak learners
on the test set.

Boosting with Soft Margin AdaBoostREG (ABR)
(Raetsch et al., 2001) optimizes a “soft margin” by
allowing slacks on examples; this is better suited to
handle noisy situations.

We performed experiments on a number of pub-
licly available datasets. We did experiments only on
datasets that had at least 400 examples so that both
validation and test sets had at least 100 examples. For
each dataset, we took the minimum of half of the ex-
amples (or 500 examples) as training. This was done
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Figure 1: Cumulative margin distributions on three different datasets (wisconsin, mnist27, mushrooms). ABR
obtains a long tail indicating its “slackness”. EBBoost’s margins are characterized by a smaller variance.

since solving an LP or QP with a large number of ex-
amples can be quite expensive compared to boosting.
Moreover, ABR requires a line search which can also
be much slower than AdaBoost. The remaining exam-
ples in each dataset were divided equally into valida-
tion and test sets by a random split. For AdaBoost,
EBBoost, and ABR, we considered 500 randomly gen-
erated decision stumps as the weak learners. Each
algorithm was run until there was no drop in the val-
idation error rate in 50 iterations; the corresponding
test error rate was then noted. The set of weak learn-
ers recovered by AdaBoost was given to regularized LP
and QP boosting procedures. For all methods (other
than AdaBoost) there is an extra parameter to tune.
We found the value of the parameter that resulted in
the minimum error on the validation set and then re-
port the corresponding test error. The experiment was
repeated 20 times over random splits of training, test,
and validation sets. Results are reported in Table 1.

EBBoost shows significant improvement over Ad-
aBoost on most of the datasets; in fact, it shows an
improvement over every single dataset. ABR’s per-
formance comes closest to EBBoost even though the
methods are qualitatively quite different. In fact,
it is straightforward to obtain a soft margin version
of EBBoost by replacing our choice of loss function.
Moreover, in the following section, it will be shown
that the performance gains of EBBoost and ABR
emerge for completely different reasons and the intu-
itions underlying the two may be complementary.

5.1 DISCUSSION

Since EBBoost and ABR showed similar performance
overall, it is interesting to see how the solutions dif-

Table 2: Mean and standard deviation of margins.
Some dataset names have been abbreviated due to
space constraints.

AdaBoost EBBoost ABR
a5a 0.21 ± 0.20 0.19 ± 0.17 0.20 ± 0.19
abal 0.12 ± 0.12 0.12 ± 0.12 0.13 ± 0.13
image 0.14 ± 0.08 0.13 ± 0.06 0.14 ± 0.08
nist09 0.45 ± 0.13 0.44 ± 0.12 0.48 ± 0.13
nist14 0.47 ± 0.12 0.38 ± 0.07 0.51 ± 0.12
nist27 0.32 ± 0.12 0.29 ± 0.10 0.35 ± 0.13
nist38 0.22 ± 0.10 0.20 ± 0.08 0.24 ± 0.10
nist56 0.30 ± 0.12 0.29 ± 0.11 0.32 ± 0.13
mush 0.26 ± 0.06 0.26 ± 0.05 0.28 ± 0.07
musk 0.18 ± 0.09 0.15 ± 0.06 0.18 ± 0.09
ring 0.15 ± 0.07 0.14 ± 0.06 0.15 ± 0.07
spam 0.21 ± 0.13 0.19 ± 0.10 0.23 ± 0.13
splice 0.19 ± 0.12 0.18 ± 0.10 0.22 ± 0.14
twon 0.29 ± 0.14 0.26 ± 0.11 0.30 ± 0.14
w4a 0.27 ± 0.11 0.23 ± 0.07 0.38 ± 0.12
wave 0.25 ± 0.17 0.22 ± 0.14 0.28 ± 0.19
wine 0.13 ± 0.15 0.13 ± 0.14 0.12 ± 0.14
wisc 0.39 ± 0.15 0.35 ± 0.12 0.59 ± 0.21

fer. We looked at the margin distribution of the
training examples on all the datasets. The effec-
tiveness of boosting can be (to some extent), ex-
plained by the margin distribution (Schapire et al.,
1998; Koltchinskii & Panchenko, 2002). Recall the
definition of margin on an example Xi: γ(Xi, yi) =

yi

∑S

s=1 αsG
s(Xi)/

∑S

s=1 αs, based on the additive
model (7).

We visualized the training margin distributions of all
datasets. These plots show the average margin dis-
tribution over the experiments at the setting of the
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parameters selected by validation. We only present re-
sults for AdaBoost, EBBoost, and ABR due to space
constraints. Three typical cumulative margin distribu-
tion plots are shown in Figure 1. Even though ABR
and EBBoost showed similar test error rates, they have
fairly different margin distributions. Typically, ABR
has a long tail over incorrect predictions (due to its
use of slack on hard to classify examples) whereas
EBBoost is characterized by a small variance (not sur-
prisingly, since we are minimizing the variance with an
exponential loss). In addition, we obtained the mean
and standard deviation of all the margin values on
all datasets. Table 2 summarizes those results. ABR
obtains larger mean margin as well as large standard
deviations. EBBoost typically obtains slightly smaller
margins compared to AdaBoost but with much smaller
variances. However, both EBBoost and ABR show ac-
curacy improvements over AdaBoost. We believe, the
improvements of ABR are due to its ability to handle
noisy situations and outliers more gracefully. The per-
formance advantage of EBBoost is justified by the em-
pirical Bernstein bound (our initial motivation). Typi-
cally, the margin distribution bounds do not explicitly
account for variance information; an interesting direc-
tion for future research is to explore the relationship
between the empirical Bernstein bounds as well as pre-
vious analyses of the margin distribution.

6 CONCLUSIONS

We proposed a novel boosting algorithm based on the
empirical Bernstein inequality. The algorithm is as
easy to implement as AdaBoost and is as efficient
computationally (it does not require an expensive line
search). EBBoost showed significant empirical advan-
tages over AdaBoost. This paper demonstrates that it
is possible to design efficient algorithms based on sam-
ple variance penalization and to obtain improvements
in test error. In addition to additional theoretical work
to refine these generalization bounds, another direc-
tion of future research is to automatically estimate the
parameter λ without cross-validation in order to make
EBBoost free from additional parameters.
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