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ABSTRACT

Abstract

Automatic face recognition has been a di�cult problem in the �eld of computer vision for

many years. Robust face recognition requires the ability to recognize identity despite many

variations in appearance the face can have in a scene. We propose preceding recognition with

a hierarchical detection system capable of searching images for human faces e�ciently and

with invariance to position, deformation, illumination, scale, and 3D pose. The detection

and localization of a face are used to perform 3D normalization to the face prior to 2D

linear recognition.

Biologically motivated, low-level attentional mechanisms are applied at multiple scales

to identify possible face regions. The facial contour is then estimated by computing symmet-

ric enclosure and is used to guide the search for feature points within the face. Symmetric

blob detection, limb extraction and signature analysis are used to locate the eyes, mouth

and nose of each individual. A database of 3D range data of human heads allows us to

align a 3D model to the coordinates of the detected feature points in the input image. The

intensity image's textural representation of the face is mapped onto the 3D range data,

thereby segmenting the face from the image. The 3D model is then rotated into a frontal

view to synthesize a frontal \mug-shot" of the individual. Lighting and shading variations

are corrected by histogram �tting. Once fully normalized, the image is projected into a

low-dimensional subspace via Karhunen-Loeve Decomposition to compress the data and

to verify detection. The resulting low-dimensional vector description is matched against a

database using simple distance measures to determine the face's identity as one of the pre-

viously identi�ed training examples. Due to the computational e�ciency of the hierarchical

detection scheme and the initial step of applying simple attentional mechanisms, tracking

faces from a video source could be achieved.
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1. FUNDAMENTAL ISSUES IN FACE RECOGNITION

CHAPTER 1

Introduction

Automatic face detection and recognition has been a di�cult problem in the �eld of com-

puter vision for several years. Although humans perform the task in an e�ortless manner,

the underlying computations within the human visual system are of tremendous complex-

ity. The seemingly trivial task of �nding and recognizing faces is the result of millions

of years of evolution and we are far from fully understanding how the brain performs it.

Furthermore, the ability to �nd faces visually in a scene and recognize them is critical for

humans in their everyday activities. Consequently, the automation of this task would be

useful for many applications including security, surveillance, gaze-based control, a�ective

computing, speech recognition assistance, video compression and animation. However, to

date, no complete solution has been proposed that allows the automatic recognition of faces

in real (un-contrived) images. We wish to develop a vision system which would permit au-

tomatic machine-based face detection and recognition in uncontrolled environments. This

thesis describes the theoretical foundations of such a system, its implementation and its

evaluation.

This introduction begins with an outline of the main issues and constraints that need

to be addressed in face recognition. Subsequently, a survey is presented which outlines the

face recognition research that has been performed to-date and the strengths and weaknesses

of a variety of machine-based systems. We then describe our proposed approach for the

face recognition problem. Finally, an overview of the structure of this thesis is presented.

1. Fundamental Issues in Face Recognition

Robust face recognition requires the ability to recognize identity despite many variations

in appearance that the face can have in a scene. The face is a 3D object which is illuminated

from a variety of light sources and surrounded by arbitrary background data (including

other faces). Therefore, the appearance a face has when projected onto a 2D image can
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vary tremendously. If we wish to develop a system capable of performing non-contrived

recognition, we need to �nd and recognize faces despite these variations. In fact, 3D pose,

illumination and foreground-background segmentation have been pertinent issues in the

�eld of computer vision as a whole.

Additionally, our detection and recognition scheme must also be capable of tolerating

variations in the faces themselves. The human face is not a unique rigid object. There are

billions of di�erent faces and each of them can assume a variety of deformations. Inter-

personal variations can be due to race, identity, or genetics while intra-personal variations

can be due to deformations, expression, aging, facial hair, cosmetics and facial parapherna-

lia.

Furthermore, the output of the detection and recognition system has to be accurate.

A recognition system has to associate an identity or name for each face it comes across by

matching it to a large database of individuals. Simultaneously, the system must be robust

to typical image-acquisition problems such as noise, video-camera distortion and image

resolution.

Thus, we are dealing with a multi-dimensional detection and recognition problem. One

�nal constraint is the need to maintain the usability of the system on contemporary com-

putational devices (�100 MIPS). In other words, the processing involved should be e�cient

with respect to run-time and storage space.

2. Current Vision Systems for Face Recognition

Research in intensity image face recognition generally falls into two categories [7]:

holistic (global) methods and feature-based methods. Feature-based methods rely on the

identi�cation of certain �ducial points on the face such as the eyes, the nose, the mouth,

etc. The location of those points can be determined and used to compute geometrical

relationships between the points as well to analyze the surrounding region locally. Thus,

independent processing of the eyes, the nose, and other �ducial points is performed and then

combined to produce recognition of the face. Since detection of feature points precedes the

analysis, such a system is robust to position variations in the image. Holistic methods

treat the image data simultaneously without attempting to localize individual points. The

face is recognized as one entity without explicitly isolating di�erent regions in the face.

Holistic techniques utilize statistical analysis, neural networks and transformations. They

also usually require large samples of training data. The advantage of holistic methods is that

they utilize the face as a whole and do not destroy any information by exclusively processing
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only certain �ducial points. Thus, they generally provide more accurate recognition results.

However, such techniques are sensitive to variations in position, scale and so on which

restricts their use to standard, frontal mug-shot images [7].

Early attempts at face recognition were mostly feature-based. These include Kanade's

[19] work where a series of �ducial points are detected using relatively simple image pro-

cessing techniques (edge maps, signatures, etc.) and their Euclidean distances are then

used as a feature vector to perform recognition. More sophisticated feature extraction algo-

rithm were proposed by Yuille, Cohen and Hallinan [45]. These use deformable templates

that translate, rotate and deform in search of a best �t in the image. Often, these search

techniques use a knowledge-based system or heuristics to restrict the search space with ge-

ometrical constraints (i.e. the mouth must be between the eyes) [10]. Unfortunately, such

energy minimization methods are extremely computationally expensive and can get trapped

in local minima. Furthermore, a certain tolerance must be given to the models since they

can never perfectly �t the structures in the image. However, the use of a large tolerance

value tends to destroy the precision required to recognize individuals on the basis of the

model's �nal best-�t parameters. Nixon proposes the use of Hough transform techniques to

detect structures more e�ciently [31]. However, the problem remains that these detection-

based algorithms need to be tolerant and robust and this often makes them insensitive to

the minute variations needed for recognition. Recent research in geometrical, feature-based

recognition [9] reported 95% recognition. However, the 30 features points used for each face

were manually extracted from each image. Had some form of automatic localization been

used, it would have generated poorer results due to lower precision. In fact, even the most

precise deformable template matching algorithms such as Roeder's [40] and Colombo's [8]

feature detectors generally have signi�cant errors in detection. This is also true for other

feature detection schemes such as Reisfeld's symmetry operator [37] and Graf's �ltering

and morphological operations [15]. Essentially, current systems for automatic detection of

�ducial points are not accurate enough to obtain high recognition rates exclusively on the

basis of simple geometrical statistics of the localization.

Holistic techniques have recently been popularized and generally involve the use of

transforms to make the recognition robust to slight variations in the image. Rao [36] de-

velops an iconic representation of faces by transforming them into a linear combination of

natural basis functions. Manjunath [28] uses a wavelet transform to simultaneously extract

feature points and to perform recognition on the basis of their Gabor wavelet jets. Such
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techniques perform well since they do not exclusively compute geometric relationships be-

tween �ducial points. Rather, they compare the jets or some other transform vector response

around each �ducial point. Alternate transform techniques have been based on statistical

training. For example, Pentland [44] uses the Karhunen-Loeve decomposition to generate

the optimal basis for spanning mug-shot images of human faces and then uses the subse-

quent transform to map the faces into a lower-dimensional representation for recognition.

This technique has also been applied by Akamatsu [1] on the Fourier-transformed images

instead of the original intensity images. Recent work by Pentland [32] involves modular

eigenspaces where the optimal intensity decomposition is performed around feature points

independently (eyes, nose and mouth). Pentland [29] has also investigated the application

of Karhunen-Loeve decomposition to statistically recognize individuals on the basis of the

spectra of their dynamic Lagrangian warping into a standard template. These transform

techniques have yielded very high recognition rates and have quickly gained popularity.

However, these non-feature based techniques do not fare well under pose changes and have

di�culty with natural, un-contrived face images.

In most holistic face recognition algorithms, the face needs to be either segmented or

surrounded by a simple background. Furthermore, the faces presented to the algorithms

need to be roughly frontal and well-illuminated for recognition to remain accurate. This

is due to the algorithms' dependence on fundamentally linear or quasi-linear analysis tech-

niques (Fourier, wavelet, Karhunen-Loeve decompositions, etc. are linear transformations).

Thus, performance degrades rapidly under 3D orientation changes, non-linear illumination

variation and background clutter (i.e. large, non-linear e�ects).

3. The Proposed Approach

We propose a hybrid system that combines the robust detection of feature points with

a holistic and precise linear transform analysis of the face data. The detection of feature

points uses a robust model capable of detecting individual features despite a wide range

of translations, scale changes, 3D-pose changes and background clutter. This allows us to

locate faces in an arbitrary, un-contrived image. Since we wish to utilize linear transform

techniques, however, a consistent, normalized frontal mug-shot view of the face is needed.

Thus, we propose synthesizing the required mug-shot view from the one detected in the

original image. This is performed by inverting the 3D projection of the original face in

the image and re-mapping it into frontal view via a deformable 3D model. Then, we

perform illumination correction and segmentation to obtain an ideal mug-shot view of the
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individual in question. At this stage, we can safely apply holistic linear transform techniques

(namely, the Karhunen-Loeve decomposition) and use the vector-representation of the face

to recognize its identity.

Thus, our 3D normalization technique acts as a bridge between feature-detection and

holistic face recognition. When guided with the results of the feature-detection, normaliza-

tion removes the non-linear variations in the image and generates a face that is aligned and

ready for recognition. Thus, the holistic face recognition stage is preceded by feature-based

detection and normalization for increased robustness. In fact, the bridge is bidirectional

since the feature-detection can also be complemented by the holistic face recognition stage.

The Karhunen Loeve decomposition has demonstrated the ability provide a statistical mea-

sure of how face-like an image vector seems [44]. This measure can be fed back to the

feature-detection algorithm to inform it if it has poorly localized the face to begin with.

This will force the feature-detection to keep searching for the face and improve its detection

results. Thus, holistic face recognition can also be used to assist the feature-detection stage

and, ultimately, improve its precision.

Figure 1.1 depicts the interaction between the two stages: feature detection and holistic

recognition. Although feature localization is robust, when used alone it is too insensitive for

recognition. Although holistic face recognition is precise, its use of linear transformation is

not robust to large non-linear face variations. Thus, combining the two approaches provides

a superior overall system.

4. Structure of the Thesis

In Chapter 2, the thesis presents an overview of three important elements of vision:

perceptual contrast, symmetry and scale. The signi�cance of these concepts in human vision

is described and their usefulness in image understanding is introduced. A palette of basic,

biologically-motivated image processing tools that rely on these concepts is then de�ned for

later use. These low level tools include edge detectors, symmetry operators and attentional

mechanisms.

Chapter 3 describes a detection algorithm that utilizes biologically motivated low-

level operations to �nd feature points on the face. A hierarchical, coarse-to-�ne search is

described for localizing the face. A method for the coarse detection of possible face regions

in the image is outlined. We then propose a technique for the estimation of facial contour.

Subsequently, we describe techniques for �nding the eyes, the mouth and the nose in the

face. We then describe the localization of the iris in the eye if it is visible in the image.
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3D NORMALIZATION

FEATURE DETECTION

LOCALIZATION

ARBITRARY IMAGE

FEEDBACK

MUG-SHOT IMAGE

HOLISTIC RECOGNITION

Figure 1.1. 3D Normalization as a Bridge Between Feature Detection and Face Recognition

Chapter 4 describes the normalization procedure used to generate high-quality mug-

shot images. It also discusses the linear transformations used to recognize them and to

optimize their localization. We de�ne the 3D deformable model used for normalization and

the pose estimation computations that generate frontal, mug-shot images. The illumination

correction algorithm is also presented. We then describe the Karhunen-Loeve decomposition

and its use to measure the \faceness" of an image. We then describe how we improve the

localization of detected feature points by maximizing the \faceness" value. Finally, we

describe the use of the Karhunen-Loeve decomposition to recognize the identity of the

subject in the image.

The details of the implementation and the output of the algorithm are covered in

Chapter 5. Performance analysis and sensitivity analysis is performed to test the algorithm.

Finally, Chapter 6 concludes the thesis with a summary of the work, its contributions

and the direction of future research and improvements.
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CHAPTER 2

Perceptual Contrast, Symmetry and Scale

For a computer based face recognition system to succeed, it must detect faces and the

features that compose them despite variations each face has in the current scene [30]. Faces

can be anywhere in an image, at a variety of sizes, at a variety of poses and at a variety of

illuminations. Although humans quickly detect the presence and location of faces and facial

features from a photograph, automatic machine detection of such objects involves a complex

set of operations and tests. It is uncertain exactly how humans detect faces in an image,

however we can attempt to imitate the perceptual mechanisms humans seem to employ.

We begin by de�ning and discussing the signi�cance of contrast, symmetry and scale in

human vision. This will serve as a basis for the biologically motivated computational tools

that we will be using. We then discuss our technique for the computational extraction of

contrast information. The implementation of multi-scale analysis structure is then de�ned.

Finally, two computational tools for obtaining information on symmetry are introduced:

the symmetry transform and the selective symmetry detector.

1. Biological and Psychological Motivation

Some psychological research has proposed that certain parts of an image attract our

attention more than others [27]. Through visuo-motor experiments, research has demon-

strated that �xation time and attentional resources are generally allocated to portions in

a given scene which are visually interesting. This \degree of perceptual signi�cance" of

regions in a given image allows a human observer to almost automatically discriminate

between insigni�cant regions in a scene and interesting ones which warrant further investi-

gation. The ability to rapidly evaluate the level of interest in parts of a scene could bene�t

a face recognition system in a similar way: by reducing its search space for possible human

faces. Instead of exhaustively examining each region in an image for a face-like structure,

the system would only focus computational resources upon perceptually signi�cant objects.
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It has been shown that three of the important factors in evaluating perceptual signi�cance

are contrast, symmetry and scale [20].

Neurophysiological experiments demonstrate that the retina performs �ltering which

identi�es contrast spatially and temporally. For instance, center surround cells at the reti-

nal processing stage are triggered by local spatial changes in intensity (contrast) [39]. In

psychological tests, humans detect high contrast objects more readily than, say, objects

with a similar colour to their background. A signi�cant change in spatial intensity is re-

ferred to as an edge, boundary or a contour. Further research has shown that response to

spatial contrast also varies with time [24]. A moving edge, for example, triggers a strong

response at the retinal level [24]. Thus, contrast or intensity changes over space and time

are important in vision and this has lead to the development of edge detectors and motion

detectors.

Another property in estimating perceptual importance is symmetry [37]. The precise

de�nition of symmetry in the context of attentional mechanisms is di�erent from the in-

tuitive concept of symmetry. Symmetry, here, represents the symmetric enclosure or the

approximate encirclement of a region by contours. The appropriate arrangement of edges

which face each other to surround a region attracts the human eye to that region. Further-

more, the concept of enclosure is di�erent from the mathematical sense of perfect closure

since humans will still perceive a sense of enclosure despite gaps in boundaries that surround

the region [20].

Scale is also a feature which determines a region's relative importance in a scene [4]. It

is progressively easier to detect a foreground object if it occupies a greater and greater area

in our �eld of view. Generally, as an object is enlarged, it increases in relative importance.

2. Low Level Filtering for Perceptually Interesting Objects

A computational technique is needed which can combine the e�ects of contrast, sym-

metry and scale to �nd the set of the interesting regions in an image. An example of the

possible output of such an algorithm would be a collection of points de�ning circular re-

gions of a certain radius (or scale) which exhibit perceptual importance. A mask or �lter

is needed which can be quickly applied locally (topographically) over the whole image at

multiple scales. The output of the mask would be a perceptual signi�cance map which

measures the level of contrast and symmetric enclosure of the image region overlapped by

the �lter. To detect large perceptually signi�cant objects �rst, this mask would be applied

�rst at large scales (i.e., with a relatively large mask) and then at progressively smaller
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ones. Such a �lter would provide us with an e�cient attentional mechanism for quickly

�xating further face-recognition computational resources only on interesting regions.

3. Edge Detection

The extraction of edges or contours from a two dimensional array of pixels (a gray-scale

image) is a critical step in many image processing techniques. A variety of computations

are available which determine the magnitude of contrast changes and their orientation.

Extensive literature exists documenting the available operators and the post-processing

methods to modify their output. A trade-o� exists, though, between e�ciency and quality

of the edge detection. Fast and simple edge detection can be performed by �lters such as

the popular Sobel operator [25] which requires the mere convolution of a small kernel (3 �
3 pixels) over the image. Alternatively, more computationally intensive contour detection

techniques are available such as the Deriche [11] or Canny [6] method. These detectors

require that a set of parameters be varied to detect the desired scale and curvature of

edges in the image. It is necessary to compare the simple Sobel detector and the complex

Deriche-type detectors before selecting the edge detection scheme of preference.

3.1. The Sobel Operator The 3 � 3 Sobel operator acts locally on the image and

only detects edges at small scales. If an object with a jagged boundary is present, as

shown in Figure 2.1(a), the Sobel operator will �nd the edges at each spike and twist of

the perimeter as in Figure 2.1(b). The operator is sensitive to high frequency noise in the

image and will generate only local edge data instead of recovering the global structure of a

boundary. Furthermore, smooth transitions in contrast that occur over too large a spatial

scale to �t in the 3 � 3 window of the Sobel operator will not be detected.

3.2. Deriche Edge Detection The Deriche output, on the other hand, can be

adjusted with the � scale parameter to �lter out high frequency noise and pixelization from

the image by linking adjacent edges into long, smooth, continuous contours. This allows

the edge map to reect the dominant structures in the image. The e�ect of small and large

� (the scale parameter) is shown in Figure 2.2(a) and Figure 2.2(b). Furthermore, the

computation is not limited to a small window and can �nd edges which change gradually.

Thus, the outline of the trees as separate whole objects is found instead of the outline of

the leaves.

Despite its complexity, the Deriche technique, as with all other edge detectors, has its

limits. While a human is capable of isolating objects and uses contextual knowledge of

the scene to determine boundaries, the Deriche operator sometimes confuses the edges of
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(a) (b)

Figure 2.1. Sobel edge detection. (a) The original intensity image. (b) The Sobel
edge map.

(a) (b)

Figure 2.2. Deriche edge detection at multiple scales (a) Deriche edge map at a
small scale. (b) Deriche edge map at a large scale.

nearby objects and links them into a single contour. The detection of erroneous phantom

edges is also another problem as pointed out by Kelly and Levine [21].

The most signi�cant disadvantage in using the Deriche operator and other complex edge

detection schemes is in their computational cost. The Deriche extraction of edges from an

image can take orders of magnitude more time when compared to the Sobel operator. If a

real-time system is desired, image processing must be performed in fractions of a second.

Deriche edge detection would simply be too time consuming on contemporary workstations.
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(a) (b) (c)

Figure 2.3. Typical output from Sobel edge detection. (a) Input intensity image.
(b) Sobel gradient magnitude map. (c) Sobel phase map.

3.3. Edge Data Enhancement Edge detection can be followed by further process-

ing to enhance the output or to modify it. The techniques described below will be used

on the output of the Sobel edge detection operation. The Sobel operation begins with an

intensity image (Figure 2.3(a)) and produces a gradient magnitude map (Figure 2.3(b)) and

an edge phase map (Figure 2.3(c)).

Thresholding: If a binary (i.e., black and white) version of the gradient map is de-

sired, it can be obtained by thresholding [14]. All gradient values whose magnitudes

are less than a threshold will be set to 0 and all gradient magnitudes greater than a

threshold will be set to the maximum edge value (255). Thus, the maximum image

contrast is compressed to 1 bit. One strategy for selecting the threshold in question

is to �rst search for the strongest edge magnitude in the image region of interest.

Once the peak edge magnitude is found, the threshold is computed as a percentage

of this peak (e.g, 10%). A thresholded version of Figure 2.3(a) is Figure 2.4(a).

Non-Maximal Suppression: Non-maximal suppression nulli�es the gradient value

at a pixel if its gradient magnitude is non-maximal vis-a-vis neighbouring gradient

magnitudes along the perpendicular to the pixel's gradient orientation. The result

is a thinned edge map, as shown in Figure 2.4(b) where only the dominant edges are

present.

Square Root of Edge Magnitude: It may be necessary to adjust the edge mag-

nitudes returned by the Sobel operation to change the signi�cance of the contrast

in a computation. In other words, we may want to re-map the contrast levels to

emphasize the weak edges in an image. In some subsequent processing steps, the

11



4. MULTI-SCALE ANALYSIS

(a) (b)

Figure 2.4. Post-Processing Sobel edge detection. (a) Thresholded gradient mag-
nitude map with threshold at 10% of peak edge magnitude. (b) Gradient map after
non-maximal suppression.

magnitude of the edge at each point is replaced by the square-root of the magnitude

to attenuate the e�ect of contrast.

4. Multi-Scale Analysis

We note at this point the signi�cance of scale and the scalability of certain types of

edge detection. Since structures and objects in an input image can have di�erent sizes and

resolutions, most spatial operators (for edge extraction or further processing) will require

scalability.

As demonstrated previously, the scalability of the Deriche edge detection operation

makes it more exible than the highly local Sobel operator. The objects in an input image

and the image itself can have di�erent sizes and resolutions so a scalable operator is nec-

essary to search for edges at di�erent scales. Kelly and Levine [21] have approached edge

detection by applying a Deriche-like operator over many scales. By changing the operator's

size, several edge maps (one for each scale) are obtained and subsequently processed in

parallel. Elder [12] proposes yet another technique wherein a single edge map is produced

by computing the optimal scale of edge detection for each position of the input image and

then performing scale-adaptive edge detection. In other words, the scale of the operator is

varied appropriately at each position in the image.

However, scalable edge detection is too complex to be performed rapidly. Additionally,

subsequent operators (i.e., for computing symmetric enclosure) might also be computation-

ally ine�cient when they are scaled. One \solution" to this issue is to scale the input image

instead of enlarging the operators themselves. Thus, a pyramid is formed from a single
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input image by reducing it by various scale factors. The resulting set of scaled images can

then be processed by an operator of �xed size (such as the Sobel operator).

Given an image I(i,j) of dimensions M �N , a scaled version, Is(i; j), of the image at a

scale factor of s can be obtained with dimensions [M=s]� [N=s] by either subsampling the

image or subaveraging it. The following describes the operations required for scaling by an

integer factor s (although non-integer scaling is possible as well).

Subsampling: Subsampling involves selecting a sample from each neighbourhood of

pixels of size s � s. Each sample will be used as a pixel value in the scaled image.

Subsampling assumes that the sample appropriately represents its neighbourhood

and that the image is not dominated by high-frequency data. This process only

requires [M=s]� [N=s] computations.

Subaveraging: Subaveraging is similar to subsampling except that the sample taken

from each neighbourhood of pixels has an intensity that is the average intensity in

the neighbourhood. Thus, the original image undergoes low-pass �ltering before be-

ing sampled so that the scaled image approximates the original optimally even if it

has high frequency data. To avoid possible errors when scaling high frequency com-

ponents in the image, we choose to implement subaveraging instead of subsampling.

This process requires M �N computations.

To form the pyramid, a set of values of s are selected covering the desired scale space

range. The ratio of s between adjacent scales (i.e., how �nely we sample scale-space) depends

on the exibility of the subsequent operators with respect to scale. Figure 2.5 illustrates the

formation of an image pyramid via subaveraging and the corresponding sampling of scale

space. Note, as well, that the Sobel operator that will be applied to the image pyramid

is of �xed size. Figure 2.6 demonstrates the resulting multi-scale edge detection which is

subsequently performed. Note the labelling at the side of the images which indicates large

and small scales. The scale indicates the relative size of the operators, not the image. Thus,

the smaller the intensity image, the larger the relative size of the operators acting upon it.

The image at a scale value of 1� is analyzed at a small scale since the operators are small

relative to it and will detect tiny, local features in the image.

Thus, instead of resizing operators acting on the input image, the input is scaled and

the operators are kept to a �xed size. This permits the use of simpler, faster, non-scalable

operators such as the Sobel operator. Such a process is also more straightforward than

painstakingly resizing a set of operators.
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Figure 2.5. An input image pyramid for multi-scale edge extraction

Scaling input images is also computationally e�cient. For example, convolution with

a mask of size m � m with an image of size M � N requires O(MNm2) operations.

However, if the image and the operator are scaled by s, the convolution would require

O(MNm2s�4)ffor convolutiong + O(MN)fto scale imageg + O(m2)fto scale maskg. Large opera-

tors can thus be reduced to encourage computational e�ciency as long as the input image

is scaled appropriately.

Note, however, that the reduction in resolution brought about by scaling the image and

the corresponding reduction in operator size gradually reduces the quality of the computa-

tion. Thus, it is necessary to select an operator size which acts on enough image pixels to

perform the computation reliably.

5. Real-Time Symmetry Transform

To detect the centers of interesting regions from the multi-scale edge maps described

previously, it is necessary to compute the degree of symmetric enclosure at each point in

the image for each scale. Sela [42] proposes that symmetric enclosure can be computed

from the axes of symmetry of the contours in an edge map. An interest map (or level
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Figure 2.6. Multi-Scalar edge extraction with the Sobel operator

of perceptual enclosure) can be determined from the intersection of lines of symmetry.

Other methods exist for determining the level of perceptual enclosure such as Reisfeld's

Symmetry Transform [37]. However, Sela's technique [42] is particularly computationally

e�cient. The algorithm is described below and its discrete implementation is then outlined

to demonstrate its e�ciency.

5.1. Lines of Symmetry The computation of lines of symmetry begins with the

concept of cocircular edges. A pair of edges is cocircular if a circle can be constructed with

each edge as a tangent. Furthermore, if a line is drawn connecting the centers of the edges,

the angle formed between this line and each edge's tangent is the same. We de�ne the

point of cocircularity as the center of the circle (xc; yc) and its radius rc is the radius of

cocircularity, as indicated in Figure 2.7. Note that �1 = �2 in the �gure.

Furthermore, the center of cocircularity has an orientation associated with it. This

orientation is determined by the phase of the cocircular edges contributing to this center

of cocircularity. The phase value of an edge is the orientation of the normal of the edge.

This normal points along the direction of the change of intensity from dark to bright. As
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Figure 2.7. Cocircularity of edges

displayed in Figure 2.7, the edges have phases �1 and �2 which are computed from the Sobel

edge detection. The symmetry orientation at the center of cocircularity,  , is the line that

bisects the normals of the two edges. Equation 2.1 returns the value of  .

 (�i; �j) =
�i + �j

2
(2.1)

The lines of symmetry are formed by linking all centres of circularity found in the image. In

other words, circles are constructed from all pairs of cocircular edges and their centers (the

centers of cocircularity) are used to trace out lines of symmetry. For each point p = (xc; yc)

in the image, we consider the surrounding neighbourhood of radius r��r < r < r+�r. The

range of r forms a ring shaped, circular annular region. Within that region, we consider all

pairs of edges which have a center of cocircularity at p. We shall denote this set of cocircular

edges as �r(p). We further constrain this set of cocircular edges such that only cocircular

edges with a symmetry orientation of  � � <  <  + � are considered. Thus, this

subset of edges in the neighbourhood of p is denoted as �r; (p). �r; (p) will be used to refer

to the set of all pairs of cocircular edges �i; �j with center of circularity at p with radius of

cocircularity r � �r < r < r + �r and with orientation of symmetry  � � <  <  + � .
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Furthermore, the centers of cocircularity can be assigned di�erent strengths depending

upon the orientation of the edges and the intensity of the edges that contribute to forming

them. For each point in the image p, at each scale or radius r and for each symmetry

orientation  we �nd the set of cocircular pairs of edges �r; (p). Sela de�nes the magnitude

of symmetry in the (p, r,  ) space as follows:

Sr; (p) =
X

�i;�j��r; (p)

k�i k k�j k (sin�=2)w1(2.2)

where k�i k and k�j k are the edge intensities of the two circular edges and � is the angle

separating their normals:

� = j�i � �j j(2.3)

Cocircular edges with a larger value of (sin�=2), increasingly face and oppose each other and

a stronger sense of symmetry is perceived at the point of cocircularity, p. The parameter w1

is used to attenuate or boost the e�ect of (sin�=2). Selecting a large w1 will diminish the

contribution of non-facing edges so that only opposing cocircular edges will trigger Sr; (p).

A value of w1 = 5 is proposed by Sela [42].

Thus, the magnitude of the symmetry Sr; (p) at each point p, at each radius r and at

each orientation  is obtained and represents the desired \lines of symmetry". It is possible

to combine the lines of symmetry from multiple radii so that an overall, r-independent value

of S (p) is found as follows:

S (p) =
rmax
max
r=0

Sr; (p)(2.4)

Note that these lines of symmetry are not really lines. Rather, we compute a symmetry

magnitude at each combination of p, r and  so the result is a set of points with an

orientation value. If true connected lines are required, these discrete points must be linked

into curves using their orientation and scale value (see Chapter 3).

5.2. Intersection of Lines of Symmetry Sela proposes that the intersection of the

lines of symmetry in S (p) generates an interest point. This interest point has a magnitude

depending on the con�guration and strength of the lines of symmetry that generated it. We

utilize the magnitude of the interest point as a measure of the level of symmetric enclosure at

that point. Since perpendicular lines of symmetry generate the strongest sense of enclosure

[42], the greater the level of orthogonality between two lines of symmetry, the stronger their

contribution to the interest magnitude at point p. The contribution of each pair of lines of
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symmetry intersecting point p is summed to generate an interest value I(p) which is de�ned

as

I(p) =
X
 i; j

S i(p)S j(p)(sin( i �  j))
w2(2.5)

where ( i;  j) are the orientation values of a pair of symmetry lines intersecting point p

whose symmetry magnitudes are (S i(p)S j(p)). The e�ect of orthogonality is included in

the sin( i� j) term which is maximal when the lines of symmetry are perpendicular. The

weight w2 is used to tune the sensitivity of the computation to the orthogonality of the

intersecting lines of symmetry. A value of w2 = 5 is typically used so that orthogonal lines

of symmetry dominate the response of the interest operator.

5.3. Real-Time Implementation A particular strength of the interest algorithm

proposed above is its e�ciency when implemented computationally. The relevant details

and limitations of the real-time implementations will be discussed below. For a thorough

analysis of the implementation, refer to Sela [42].

An important limitation to Sela's real-time implementation is its use of binary edge

magnitudes. Thus, the gradient map must be thresholded. This process reduces the sensi-

tivity of the computations since the values of � (contrast) are limited to 1 bit of dynamic

range.

In Equation 2.2, the symmetry lines are computed by considering the set of edges in

�r; (p). The latter can be visualized as a set of annular regions or rings centered around

point p (see Figure 2.8). Only pairs of edges �i; �j from the edge map falling within

the ring will be used to compute the symmetry lines at that point. Furthermore, edge

magnitudes must be attenuated if their normals are misaligned with the normals of the

annular sampling region. The normals of the annular sampling region are merely the normals

of its contour as shown in Figure 2.9. The contribution of a cocircular edge is proportional

to its magnitude projected onto the normals of the annular sampling region [37]. However,

Sela deals exclusively with binary values for edge magnitude. Thus, he totally discards the

contribution of edges whose phase angle is not within a range of the normal of the annular

sampling region they fall into. His computation only considers edges whose phase is �!
degrees from the normal of the annular sampling region instead of gradually attenuating

the contribution of misaligned edges. A value of !=6 degrees is typical. Thus, only edges

somewhat parallel or anti-parallel with the normal of the annular sampling region they
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8 POSSIBLE RING SHAPED ANNULAR SAMPLING REGIONS (r=1 to 8)

8 POSSIBLE SYMMETRY ORIENTATIONS8 POSSIBLE COCIRCULAR EDGE ORIENTATIONS

Figure 2.8. The set of circular sampling regions, the set of symmetry orientations
and the set of cocircular edge orientations
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Figure 2.9. Discarding edges misaligned with the annulus normals

fall into are used in computing cocircularity. Figure 2.9 depicts the �ltering performed to

discard (instead of attenuate) the misaligned edges.

In Sela [42], the dynamic range of r is limited to 3 bits as is the dynamic range of  .

In other words, only 8 di�erent symmetry orientations at 8 di�erent scales (sampling rings)

are computed (see Figure 2.8). Furthermore, the phase description of the cocircular edges

is also limited to one of 8 possible values. The reduction of dynamic range enables Sela to

utilize pre-computed lookup tables to obtain the symmetry and interest maps instead of

performing detailed calculations during the execution of the transform.

5.4. Dark and Bright Symmetry As mentioned previously, cocircular edges need

to be parallel or anti-parallel with the normals of the boundary of the annular sampling
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region to contribute to the symmetry. The resulting output will be referred to as \general

symmetry". It is possible to restrict this de�nition further and perform the computations

only on edges that are parallel to the normals of the sampling region; this yields \dark

symmetry" and includes those edges which are oriented away from the center of cocircularity.

Typically, dark symmetry will detect interest points and lines of symmetry in dark objects

treating bright regions in the image as the background. \Bright symmetry", on the other

hand, usually detects only bright objects by considering edges oriented towards the point

of cocircularity.

5.5. Application An algorithm very similar to Sela's proposed attentional mecha-

nism is utilized to produce interest maps. These interest maps peak at the intersections

of lines of symmetry which occur at the loci of symmetrically enclosed regions or \blobs".

Certain modi�cations to Sela's implementation were made. These include the ability to

change the range of the values of r of the annular sampling regions, as well as the ability

to select between dark, bright and general symmetry. Furthermore, the symmetry lines are

kept as an output of the algorithm since they will be utilized to identify \limbs". Limbs

are symmetric structures with a single salient line of symmetry. Since this single axis is not

intersected by other lines of symmetry, limbs do not generally trigger a strong response in

the interest map. However, Kelly [20] claims that limbs can have signi�cant perceptual sig-

ni�cance despite this. Consequently, the intermediate data are very useful in the extraction

of elongated limb-like structures, as proposed by Kelly. Limb extraction will be illustrated

in the Chapter 3 as a technique for extracting the mouth from a face.

The following illustrates a typical application of the algorithm to compute the general

symmetry transform of an image. Figure 2.10 displays the input to the algorithm. The lines

of symmetry are computed over all 8 scales (i.e. at all 8 values of r) using Equation 2.2.

Figure 2.11 shows the resulting line segments or points of symmetry which must be linked

to form continuous lines of symmetry. The scales used for these symmetry maps are r=1,

r=2 and r=8. Figure 2.12 shows the e�ect of Equation 2.4 which combines the 8 separate

maps by selecting the maximum response from r = 1 to 8. The desired interest map

I(p) is also shown in Figure 2.12. The points in I(p) undergo Gaussian smoothing and local

maximum detection [42] to generate a set of discrete interest points at the centers of clusters

of response found in I(p). The resulting interest points are �nally displayed superimposed

upon the input image.
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(a) (b) (c)

Figure 2.10. Input to the attentional mechanism. (a) Original intensity image.
(b) Non maximally suppressed, thresholded, Sobel edge map. (c) Phase map.

(a) (b) (c)

Figure 2.11. Lines of general symmetry at multiple scales. (a) General symmetry
lines at r=1. (b) General symmetry lines at r=2. (c) General symmetry lines at

r=8.

(a) (b) (c)

Figure 2.12. Combining lines of symmetry (a) Maximum symmetry lines over
all scales. (b) Resulting interest map, I(p). (c) Smoothed peaks of interest map
superimposed as + signs on the original image.

6. Selective Symmetry Detection for Precise Blob Identi�cation

The points generated by the interest map I(p) su�er from reduced accuracy due to

the simpli�cations Sela proposes. Furthermore, these points return the center of regions of
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interest and not the contours or structure of the regions. We have investigated the use of

the symmetry line data to reconstruct the \blob" detected at p. The lines of symmetry at

multiple scales and orientation do contain information about the structure of the region of

symmetric enclosure. However, due to the many simpli�cations imposed upon the calcu-

lation, the data involved are compressed and the computation of this \inverse symmetry

transformation" does not possess the accuracy needed to properly segment the \blob" for

our purposes. A more accurate description of the \blob" would require a higher quality

version of the symmetry transform.

Consequently, we propose the use of a high quality, but slower, symmetry transform as a

post-processing stage to the previously described real-time interest operator. The signi�cant

points generated by the interest map I(p) serve as points of attention for this higher quality

analysis. However, we do not attempt to actually invert the symmetry lines generated by

this calculation to approximate the blob's contour. Instead, the annular sampling regions

used to detect symmetry are deformed to function as templates for the speci�c shapes to

be identi�ed. This technique is similar to template matching. However, it utilizes the

principles of symmetric enclosure to detect the desired blob and not merely the intersection

of a template with edge data. This restricts the false alarms that might trigger simple

template matching (as shown later in Figure 2.18). The following derivations outline the

development of a symmetric enclosure measure for deformable annular sampling regions.

6.1. Semi-Elliptical Sampling Regions The sampling regions for the real-time

symmetry transform are circular concentric rings of varying size and thickness (see Fig-

ure 2.8). The use of circular rings is ideal for detecting rotational invariance. However, we

wish to develop an operator which will detects blobs of a certain form. This requires speci�c

annular sampling regions to detect the contours of interest in the image. In other words,

the sampling region should approximate the shapes we are searching for in the image. We

proceed by de�ning a parameterized mathematical model of the templates to approximate

facial contours. Figure 2.13 depicts the geometry of this so-called semi-elliptical model. It

is a superset of the class of elliptical annuli which is itself a superset of the class of circular

annuli. Such a model lends itself quite well to detecting human face and head contours

which are not well-approximated by simple ellipses or circles. The model can be viewed

as two half ellipses spliced together along a shared axis of length b. The model has the

following parameters:
a: Length of one elliptical axis
b: Length of shared elliptical axis
c: Length of another elliptical axis
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Figure 2.13. The semi-elliptical model

�: Orientation of model with respect to vertical
t: Thickness as a scale factor of the model

If a = c the model becomes an elliptical sampling region; if a = b = c the template

models a circular sampling region.

By varying the parameters of the model, we can generate the desired blob templates.

The orientations of the normals at the boundary of the template are also pre-computed by

a template generation process. Note that the orientation of the normals varies not only as a

function of the angular position on the sampling region but also as a function of the radius

from the center. The center of the model is a well de�ned point: it is the intersection of

the shared elliptical axis and the meeting point of the other two axes (a and c).

The equations for an for an ellipse's boundary and its contour's normals are used to

construct the templates [43]:

r =
abp

a2 cos(�)2 + b2 sin(�)2
(2.6)

� = arctan(
2r(b2 sin(�)2 + a2 cos(�)2)

3
2

ab(a2 � b2) sin(2�)
)� �

2
(2.7)
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Figure 2.14. A sample template for face or head-like blob detection with template
normals represented with intensity

a: length of major axis (a1 < a < a2)
b: length of minor axis (b1 < b < b2)
�: angle of ellipse minor axis with respect to vertical
r: radius
�: angle between radius vector and boundary normal

Figure 2.14 depicts a typical template consisting of a semi-circular annulus on top

of a semi-elliptical annulus. The orientation values of the normals of the template are

represented by intensity. Note the similarity of this template to the shape of a human head

or face.

6.2. Projecting Edges onto the Template To �nd a head or face like contour

around a point p in an image, we begin by generating the appropriate template. The

template is then centered at point p on the edge map. Any edges which fall into the sampling

region of the template (the darkened region in Figure 2.13) are then considered as possible

contributors to a template match. The magnitude of each edge determines the extent of its

contribution. Furthermore, the orientation of the edge will also vary the contribution. If

an edge is parallel to the boundary of the template, it is well aligned with the template's

contour and it is a component of a boundary that is part of the overall shape we are seeking.

However, if an edge is perpendicular to the boundary of the template, it is probably part of

an external contour that crosses through the template. Such an edge's contribution should

therefore be attenuated. In other words, edges which are not perpendicular to the normals

at the template's boundary are misaligned and their magnitude should be weakened to

reect this. The normals of the template in Figure 2.13 are displayed.

Observe Figure 2.15. On the left is an annular sampling region which is triggered by

4 edge segments: �1; �2; �3; and �4. However, the edge labelled �3 is not aligned with

the shape of the template. Its normal is not pointing radially inward/outward from the
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Figure 2.15. Projecting onto template normals to attenuate misaligned edges

center of cocircularity as is the case for the other edges. Thus, it is misaligned with the

radial normals typical of this circularly shaped region. It's contribution is thus weakened

by scaling down its magnitude so that it is equivalent to a weaker yet properly aligned edge.

Turning our attention to the ring on the right of Figure 2.15 we can see �3 now in a lighter

shade of gray, depicting the attenuation its magnitude has undergone. Its contribution to

the template matching algorithm is weakened yet not totally discarded.

Equation 2.8 is used to scale the magnitude of each edge by a scaling factor smagnitude

to vary its degree of contribution to the template's overall response.

smagnitude = j cos(%� ')jv1(2.8)

%: angle of template normal
': edge orientation
v1: degree if attenuation of misaligned edges

The value of v1 determines the degree of attenuation for misaligned edges. A higher v1

completely attenuates misaligned edges thereby approximating Sela's method of discarding

the edges. However, when the Sobel operator is used to compute edge maps, the phase

values are not reliable enough to have such a severe attenuation. Thus, a value of v1=2 was

selected in our implementation.

6.3. Symmetric Enclosure After noting the edges intersecting the template and

attenuating them appropriately, the edges are sorted into 32 angular bins depending on the

region of the template they fall under. Figure 2.16 displays the division of the model by a

25



6. SELECTIVE SYMMETRY DETECTION FOR PRECISE BLOB IDENTIFICATION

Center of Model

32 Angular Bins

Figure 2.16. Splitting templates into angular bins

ray emanating from its center at 32 angular intervals to form these bins. Within each bin

i, the strongest projected edge magnitude is stored as �i . In this way, we form an angular

pro�le of the edge data as shown in Figure 2.17. Symmetric enclosure is then computed

by summing the contribution to symmetry of each pair of bins as in Equation 2.9 which is

derived from Equation 2.2 [20]:

SE =
32X
i=1

32X
j=1

�i�j sin(
#i � #j

2
)(2.9)

#i: Angular position of ith bin
�i: Peak projected edge magnitude in ith bin

Due to the pixelization of the edge data, smaller templates will not overlap enough

pixels in the edge map to trigger each of their 32 angular bins. Thus, small templates will

yield consistently lower values of SE. Therefore each template's output is normalized and

presented as a percentage of the possible peak output of the template. For each template,

we compute the maximum possible value of SE. The �nal output is a value from 0 to 100%

allowing the implementation of a template-independent threshold on SE. Thus, resolution

variations in the image due to scaling and discretization will not a�ect the response of our

template-based symmetry detection.

6.4. Application: Symmetric Enclosure versus Template Matching While

the selective symmetry operation resembles template matching in the way it intersects
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Figure 2.17. Computing the angular pro�le of a contour

the edge map with its semi-elliptical deformable model, it also utilizes the principles of

symmetric enclosure. Concepts derived from Reisfeld [37], Sela [42] and Kelly [20] seem

to enhance the template matching process. Symmetric enclosure is used to weight the

response to the contours being detected by template intersection. The measurement of

symmetric enclosure and the projection of edges along the template normals �lter out a

variety of inappropriate edge con�gurations which do not form adequate contours. These

also amplify desired contours that would fail to trigger template matching. Figure 2.18

demonstrates the advantages of the selective symmetry operation.

Thus, the selective symmetry operation reliably detects the desired contours in a man-

ner similar to template matching, with the added bene�ts of wide non-circular annular

sampling regions, non-circular phase orientation weighting, and symmetric enclosure calcu-

lations. Furthermore, the selective symmetry operation is a higher resolution blob detector

than Sela's symmetry transform since it keeps track of edge magnitude and gradually at-

tenuates misaligned edges instead of discarding them. Furthermore the use of more bits

to describe angular bins, edge orientation and edge magnitude provides a more reliable

response.

However, the selective symmetry operation is not tuned for speed and does not use

pre-calculated lookup tables. The symmetry calculations must be repeatedly evaluated.

Thus, it is computationally slower than the symmetry transform.
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(a) (b) (c)

Figure 2.18. Symmetric enclosure versus traditional template matching. (a) Al-
though these edges trigger many of the template's angular bins by intersection, they
are severely misaligned with the template's normals and would yield very weak mag-
nitudes when attenuated via Equation 2.8 under the selective symmetry operation.
Traditional matching would erroneously register a strong response. (b) This contour
would erroneously trigger a strong template match but not the selective symmetry
operation due to a low measure of perceptual enclosure. (c) The contour here would
erroneously fail to trigger template matching but will properly register under the
selective symmetry operation due to a strong sense of enclosure around the model's
center.

The selective symmetry detector is not intended to replace the symmetry transform

but to be used in conjunction with it. By applying the selective symmetry operation in

a neighbourhood around peaks in the interest map, we can re�ne the output and localize

interest peaks more precisely. Furthermore, by varying the templates used by the operation,

we can detect the speci�c shape that triggered the interest map around the interest point.

Thus, the selective symmetry operation is applied as a post-processing step after applying

the symmetry transform to improve the location of the peaks of the interest map and to

estimate the contours that generated them.
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CHAPTER 3

Face Detection and Localization

The detection of faces and facial features from an arbitrary uncontrived image is a critical

precursor to recognition. A robust scheme is needed to detect the face as well as determine

its precise placement to extract the relevant data from an input image. This is necessary to

properly prepare the image's 2D intensity description of the face for input to a recognition

system. This detection scheme must operate exibly and reliably regardless of lighting

conditions, background clutter in the image, multiple faces in the image, as well as variations

in face position, scale, pose and expression. The geometrical information about each face in

the image that we gather at this stage will be used to apply geometrical transformations that

will map the data in the image into an invariant form. By isolating each face, transforming

it into a standard frontal mug shot pose and correcting lighting e�ects, we limit the variance

in its intensity image description to the true physical shape and texture of the face itself.

The set of input images in Figure 3.1 illustrates some of the variations in the intensity

image that detection must be capable of overcoming to properly localize the face. These

variations need appropriate compensation to isolate only the relevant data necessary for

recognition. Furthermore, note that these variations can occur in any combination and are

not mutually exclusive.

We propose a hierarchical detection method which can quickly and reliably converge to

a localization of the face amidst a wide range of external visual stimuli and variation. It is

necessary to precede expensive computations with simple and e�cient ones in this hierarchy

to maximize e�ciency. The results of the initial, di�use and large search space computa-

tions narrow the search space for the more localized, higher precision operations that will

follow. In other words, the results of preliminary detections guide the use of subsequent

operations in a feed-forward manner to restrict their application to only signi�cant parts of

the image. This reduces the probability of error since the subsequent detection steps will
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.1. Variations in faces that require appropriate compensation. (a) Change
in position. (b) Change in size or scale. (c) In-plane rotation of the face. (d) Shading
and illumination e�ects. (e) Variation in image quality or resolution. (f) Clutter
in the image background. (g) Multiple faces in the image. (h) Changes in facial
expression. (i) Out-of-plane rotation.

not be distracted by irrelevant image data. Furthermore, more robust operations precede

more sensitive ones in our hierarchy since the sensitive operations in the hierarchy need to

have adequate initialization from previous stages to prevent failure.

Figure 3.2 displays the sequence of search steps for the face detection. We begin by

searching for possible face or head-like blobs in the image. The detected blob candidates

are examined to obtain an approximation of their contours. If these exhibit a face-like

contour, their interior is scanned for the presence of eyes. Each of the possible pairs of eyes

detected in the face are examined one at a time to see if they are in an appropriate position

with respect to the facial contour. If they are, then we search for a mouth isolated by

the facial contour and the position of the detected eyes. Once a mouth has been detected,

the region to be searched for a nose is better isolated and we determine the nose position.

Lastly, these facial coordinates are used to more accurately locate the iris within the eye

region, if they are visible. The �nal result is a set of geometrical coordinates that specify

the position, scale and pose of all possible faces in the image. The last few stages will be

discussed in Chapter 4 which utilizes the facial coordinates to normalize the image and

perform recognition. Note the many feedback loops which propagate data upwards in the
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Figure 3.2. The hierarchical search sequence for faces and facial features

hierarchy. These are used by the later stages to report failure to the preliminary stages so

that appropriate action can be taken. For instance, if we fail to �nd a mouth, the pair of

possible eyes that was used to guide the search for the mouth was not a valid one and we

should consider the use of another possible pair of eyes.

Note the qualitative comparison of the di�erent stages on the right of Figure 3.2. This

is a �gurative description of the coarse-to-�ne approach of the algorithm. The initial stages

of the search are very fast and coarse since they use low resolution operators. Furthermore,

these operators are used to search relatively large regions in the image. Additionally, the

early stages are robust to noise and do not need to have constrained data to function. Later

stages yield more precise localization information and use high resolution, slow operators.

However, they are sensitive to distracting external data or noise and therefore need to be

applied in a small, constrained window for a local analysis. In other words, they need to be

guided by the previous, robust stages of the search. This �gurative description of the stages

is merely intended to reect the spirit with which detection is to be approached. In short,

it begins with a 'quick and dirty' estimate of where the face is and then slowly re�nes its

localization around that neighbourhood by searching for more precise albeit elusive targets

(such as the iris). This concept (coarseness to �neness) will become clearer as the individual

stages of the algorithm and their interdependencies are explained later.
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We implement this hierarchical search as a control structure which utilizes a palette

of tools that includes the biologically and perceptually motived computations developed in

Chapter 2. These are used to extract low-level geometrical descriptions of image data which

will be processed to generate a robust and accurate localization of the face.

Note that the detection algorithm is based on a variety of heuristics that vaguely de-

scribe a model for the human face. The multitude of thresholds and geometric relationships

that we introduce at each stage of the localization de�ne our model of the human face

cumulatively. Furthermore, the thresholds and constraints on this face model have been

kept relatively lax to allow for a wide range of face imaging situations. Consequently, the

numerical parameters that are utilized are not critical, nor are they optimal or unnecessar-

ily sensitive. Rather, the parameters allow for large margins of safety and are forgiving,

allowing face detection to proceed despite noise, variations, etc. Thus, a exible, forgiving

model gives the system greater robustness and fewer misdetections. In fact, a face is such a

multi-dimensional, highly deformable object that an explicit, precisely parametrized model

would be very di�cult to derive and manipulate.

1. Face Localization

The human face is a highly correlated object due to the lack of variation in skin com-

plexion. Even though facial features (i.e. mouths and eyes) di�er in color from the skin

tone, the hairless skin regions dominate facial surface area allowing it stand out against most

backgrounds. Thus we expect a boundary around the face to be present. The foreshortening

of the 3D face structure under most lighting conditions also accentuates the contour of the

face. We propose that the face be considered as a blob or a region with a certain amount of

contour enclosure. Furthermore, the scalp and the hair also usually triggers edge contours

that extend the face blob. Consequently, we can expect both the face and head structures

to behave as blobs or symmetric enclosures about a center point.

1.1. Face Blob Localization Having formally described a blob-detector, the sym-

metry transform, we elect to use it to initially detect all blobs in the image. Some detected

blobs will correspond to non-facial structures however all faces and heads should trigger

the interest map. Recall that the transform operates on edge maps so it should locate

blobs despite the blob's intensity values or shading and illumination. Furthermore, the

blob detector is rotation invariant.

We begin with an arbitrary image of a natural uncontrived scene containing people.

We then generate an intensity image pyramid as in Figure 2.5 and a corresponding edge
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Annular Region Number Range of Radii

1 0:75 < r < 2:25 pixels

2 1:75 < r < 3:25 pixels

3 2:75 < r < 4:25 pixels

4 3:75 < r < 5:25 pixels

5 4:75 < r < 7:25 pixels

6 6:75 < r < 9:25 pixels

Table 3.1. The annular sampling regions to be used for face detection

map pyramid as shown in Figure 2.6. We use the edge map pyramid to apply the symmetry

transform at various scales. This allows us to detect blobs of arbitrary size in the image.

The blob detector uses only the 6 annular sampling regions described in Table 3.1. We

can a�ord to limit the number of annular sampling regions to six at this stage since the

subaveraging involved in the pyramid obviates the need for more scale invariance in the

operator. We apply the general symmetry transform to each of the edge maps and mark

the centers of the detected blobs on the intensity pyramid. The general transform (not the

dark or bright symmetry transform) was utilized since heads and faces do not consistently

appear either brighter or darker than the background of a scene. This multi-scale interest

detection operation provides us with the blob detection pyramid displayed in Figure 3.3.

We thresholded the output of the interest map so that only attentional peaks exhibiting

a certain minimal level of interest will appear in the output. The threshold on the interest

map is very tolerant and allows many extremely weak blobs to register. Thus, the precise

selection of an interest map threshold is not critical. Furthermore, we only consider the

�ve (5) strongest peaks of interest or the �ve most signi�cant blobs for each scale in the

multi-scalar analysis. This is to prevent the system from spending too much time at each

scale investigating blobs. We expect the face to be somewhat dominant in the image so

that it will be one of the strongest �ve blobs in the image (at the scale it resides in). If we

expect many faces or other blobs in the image at the same scale, this value can be increased

beyond 5. This would be advantageous, for example, when analyzing group photos. Both

a threshold on interest value and the limitation on the number of peaks are required since

we do not wish to ever process more than 5 blobs per scale for e�ciency and we require

the blobs to exhibit a minimal level of signi�cance to warrant any investigation whatsoever.

Furthermore, we stop applying the interest operator for scales smaller than 4x. The interest
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Figure 3.3. The multi-scalar interest map pyramid

operator is limited in size to r=9 pixels and consequently, the blobs detected at scales lower

than 4x would be too small and would have insu�cient resolution for subsequent facial

feature localization and recognition. For example, the blobs detected at scale 3x would be

less than 54 � 54 pixel objects and the representation of a face at such a resolution would

prevent accurate facial feature detection.

The peaks in Figure 3.3 are shown before we threshold the interest response, threshold

the number of blobs per scale (maximum of 5) and before we limit the scale of the search.

Once these three limits are introduced, the number of peaks generated by the face blob

detection stage will drop as shown on the right hand side of Figure 3.4. Only a total of 5

peaks are valid after this �ltering (as seen by the 5 square grids that remain for processing

by the next stages).

There is some redundancy as some blobs are detected more than once at adjacent scales.

This is due to overlap in scale-space of our symmetry transform operator. However, this

redundancy or multiple-hit phenomenon is not problematic since we will use later stages to

select only one 'hit' or one face out of several redundant blob responses. Additionally, the

detection of non-facial blobs is not problematic at this stage. Since each blob is to undergo

further processing to determine if it is truly a face, we can allow false alarms during blob

detection. Finally, lack of accuracy in our blob detector is also acceptable at this stage since

we will re�ne the localization of faces in subsequent stages. What is most dangerous at this
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early stage of the algorithm is a total miss of a face or head blob in the image. Fortunately,

a clear miss of the face in our multi-scalar blob detection is extremely unlikely since heads

and faces have consistently strong responses in the perceptual interest map.

1.2. Face Contour Estimation After having applied the symmetry transform over

the whole image at multiple scales we have a set of loci for the perceptually signi�cant blobs.

Consequently, we have restricted the search space for faces and can a�ord to utilize the more

computationally expensive selective symmetry detector. The selective symmetry operator

is applied over a 5 � 5 neighbourhood around all loci generated by the multi-scalar interest

maps. This is done to re�ne the coarse initial localization of interest peaks. The selective

symmetry detector provides higher precision as demonstrated in Chapter 2. We also boost

resolution at each scale by a factor of 2 to use large templates with the selective symmetry

operator. This permits the detector to utilize more image data in the computation.

Also, note that the selective symmetry operator is applied over the gradient map (not

the binary edge map) generated from these higher resolution images. However, the gradient

map magnitudes are replaced by the square-root of the magnitude. This attenuates the e�ect

of contrast in the calculation of symmetric enclosure. The facial contour is not necessarily

of high contrast against the background and this is especially true of the chin area. The

chin and the neck are composed of the same skin tone and thus the contrast generated from

this contour between the two is only due to the foreshortening of the chin and the shading

below it. Thus, a reduced sensitivity to contrast allows the selective symmetry detector to

detect the strong sense of symmetric enclosure the chin contour brings to the facial structure

despite its rather weak edge content.

Figure 3.4 depicts the use of the local maxima in the interest map to de�ne the search

space for the selective symmetry detector. The interest map peaks at scales 28, 20 ,14 and

10 are shown on the left side of the Figure. Note the 5 � 5 window of dots forming a

neighbourhood around these peaks in the images on the right. These images on the right

side are higher resolution versions of the ones on the left (double the resolution) and will

be operated upon by the selective symmetry detector at each of the 25 white points within

them. This process is performed �rst at large scales (at scale 28 in the example). This agrees

with the notion that large scales are usually more perceptually signi�cant. Subsequently,

we use the selective symmetry operator to compute the structure of the blob more exactly.

Recall that the selective symmetry detector requires the creation of templates as ex-

plained in Chapter 2. We wish to detect facial contours at a variety of orientations to detect

tilted heads as well as vertical ones. It is necessary to expect di�erent aspect ratios as some
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Figure 3.4. The search space for the selective symmetry detector

individuals have wide faces/heads while others have slim, elongated ones. Furthermore, re-

call the discrete sampling of scale-space that generated the multi-scalar interest maps. The

intervals between scales require a certain scale exibility of the operators. For instance,

in Figure 3.4 we note that the image is scaled down by 28� and 20�. Thus, an operator

acting on these two images must span the intermediate scales to assure full coverage in scale

space. Thus, the operator must be a thick annulus that overlaps itself when it is scaled by

a ratio of 28
20 to assure that there are no gaps in the sampling of scale-space. The symmetry

transform had 6 rings of di�erent radii. Similarly, the selective symmetry detector should

have multiple template sizes as well so that the operator overlaps in scale-space. Thus we

need to create templates with various orientations, aspect ratios and sizes.

We also need to guarantee a certain level of overlap between templates. For example,

observe Figure 3.5 which displays 3 templates of a head with the following orientations:

along the vertical, at +60 degrees from the vertical and at -60 degrees from the vertical. If

a face is encountered at -30 degrees from the vertical, we will probably not detect it. What

is needed is a certain amount of overlap between one template and the next so that inter-

mediate face contours will be detected. Thus, we must �nely sample the orientation, aspect
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Figure 3.5. Insu�cient operator overlap problems

ratio and size ranges in our template creation process to ensure overlap. We seek roughly

50% area overlap between neighbouring templates. Furthermore, when we proposed the

search space for the selective symmetry operator as a 25-point neighbourhood we sampled

the search space appropriately to ensure proper coverage as well. In other words, we do

not have gaps in the spatial domain. The thick annular operator overlaps the search area

well since the (x; y) points at which we apply the selective symmetry operation are densely

arranged.

Figure 3.6 displays all the required templates once we have sampled the semi-elliptical

model's scale-space, orientation space and aspect ratio space, appropriately. In total, we

consider 5 possible orientations: -30, -15, 0, 15 and 30 degrees from the vertical, 3 scales

and 2 aspect ratios for a total of 30 templates. The model described in Chapter 2 is utilized

with a = b and c = AspectRatio � b. The � parameter of the model is the orientation.

Finally, the t parameter is set to 2
3 so that the annular sampling regions overlap adequately.

Each of the templates is applied with its center aligned to each of the 25 points forming

the search space of the selective symmetry detector. For each template at each of the

25 positions, we compute a value of SE, as shown in Equation 2.9. The template which

generates the highest value of SE will be the estimate for the facial contour for the given

peak in the interest map.

For each blob, we exhaustively attempt each template matching and the strongest

template is our �nal estimate for the facial contour. It must generate a certain minimal

value of SE for it to be a legitimate facial contour. We select a threshold on the value of

SE at 25%. Recall that the value of SE is expressed as a percentage of the peak value

that can trigger the template in question. If the best template at the given peak is weaker

than 25%, it will be rejected, indicating that the interest map peak was generated by

another structure which does not �t the shape of the face templates. Thus, certain points
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Figure 3.6. The face templates used by the selective symmetry detector

in the interest map will be rejected as non-faces at this stage if they fail to trigger the face

templates adequately. The threshold value of 25% on the facial contour detection is a very

tolerant one. All faces tested generated values of SE signi�cantly above 25%. However,

other non-facial yet symmetric structures will be discarded. The estimates for the facial

contours resulting from the local peaks in the interest maps in Figure 3.4 are displayed

as darkened annular regions superimposed upon the input intensity images as shown in

Figure 3.7.

There is successful and precise detection of both face contours in cases (d) and (e) de-

spite the variation in scale, focus, pose and illumination. Unfortunately, non-face structures

also triggered the face contour detector as seen in cases (a), (b) and (c). The larger contours

are triggered in part by the high contrast in the clothing of the individuals. Furthermore,

the close proximity of the heads of the two individuals causes the selective symmetry detec-

tor to utilize contours from both faces in the image simultaneously. However, had a single

face been the dominant object in the image, the contour detection would have triggered

fewer false alarms. Once again, false alarms are permissible at this stage since further test-

ing and elimination will subsequently �ne-tune the output. It is critical, though, that there
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(a) (b) (c) (d) (e)

Figure 3.7. The collection of detected possible facial contours

(a) (b)

Figure 3.8. Face contour detection in a single face image. (a) Original intensity
image. (b) Only face contour detected.

are no misses at this stage since we only propagate the data that generated adequate facial

contours to the subsequent testing stages in our hierarchy. Figure 3.8 depicts a situation

where the face is dominant in an image and hence the only detected facial contour is the

one corresponding to the actual face in the image.

Figures 3.4 and 3.7 do not show the search space (25 white points) or the facial contour

estimate for the two weakest peaks in the interest map at the 10x scale. This is because

these points failed to generate values greater than 25% for any of the face/head templates.

This is understandable since they are triggered by the clothing of the individuals in the scene

(not faces). Thus, this selective symmetry detector stage not only re�nes the localization of

the face's center, it detects facial contour structure and also �lters out non-face-like blobs

from the output of the interest map. The �nal output is a collection of possible facial

contours whose interior must now be processed to determine the existence of appropriate

facial features.
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Figure 3.9. Generating eye search region from the facial contour

2. Eye Localization

Having found a set of possible facial contours in the image, we proceed with the detec-

tion of the eyes within the face. When we refer to the eyes in this section, we are referring

not only to the iris but rather the collection of contours forming the pupil, iris, eyelids, eye-

lashes, eyebrows and the shading around the eye orbit. This general eye region is a larger

and more dominant structure as a whole than its individual subcomponents. Therefore, it

is more stable and easier to detect as a whole. Reisfeld utilizes large operators that span

regions larger than the eyelashes, iris and pupils to improve reliability in the eye detec-

tion [38]. Although the process of including the surrounding region improves robustness,

it reduces accuracy since the contours of the eyebrows and eye orbit shading may have a

center that does not coincide with the pupil's center. Some high quality, deformable model

methods for detecting the iris and eyelids have been proposed by Yuille and others [45].

However, they can be computationally expensive and are not as robust as the large opera-

tors acting on the whole eye region. For example, if an individual in the image is squinting

or if the image quality is poor, the iris will not be clearly visible and such high precision

methods which search exclusively for an iris or eyelids might fail.

We shall use the knowledge acquired about the facial contour structure from the pre-

vious stage to constrain the search for eyes. The spatial search space will be restricted by

a wide band perpendicular to the principal axis of the facial contour. Figure 3.9 shows the

semi-elliptical model is composed of two axes intersecting at the model's center. Beginning
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(a) (b) (c) (d) (e)

Figure 3.10. Isolating the eye search regions

from the center of the model, we move up the principal axis a distance dy1 and down the

principal axis a distance dy2, where we form two parallel lines that contain the band of in-

terest. The lengths dy1 and dy2 can be selected by analyzing several faces from a database

and noting the relative placement of eyes with respect to the detected facial contour. The

setting dy1 = 0:15 � b and dy2 = 0:45 � b generates a band that more than adequately

covers the eyes. Although this setting seems rather conservative, a wide margin of error is

needed since the facial contour might surround the face or the whole head. Either the inner

hair-line or the top of the head could be traced by the boundary of our facial contour, so

a narrow eye-band might be unsafe. Figure 3.10 shows the eye bands or eye spatial search

space as brightened strips superimposed upon the original intensity images.

2.1. Detecting Eye Regions The search space for the eye detection is now de�ned

so we proceed to de�ne the nature of the eye detection operation. In light of the highly

symmetric, blob-like nature of the eye, we elect to use the symmetry transform to detect it

as a peak in the interest map. Reisfeld proposes the use of a similar �xed size symmetry

operator on the image [38]. Similarly, we employ our more e�cient symmetry transform

(which also has a �xed size with its pre-speci�ed annular sampling regions). Observe Ta-

ble 3.2 for the parameters of the annular regions for the symmetry transform at this stage.

The usage of 8 di�erent annular sampling regions with a wide range of radii is necessary

due to the variety of sizes of the contours in the eye region. Large contours from the eye

brows as well as small contours from the pupil are to be considered.

Note that the symmetry transform has a �xed set of annular sampling regions. If the

face is very large in the image and the eye region has a large pixel area, the annuli (which

are at most 14 pixels in radius) will not overlap the whole eye region. However, since we

know the approximate dimensions of the facial contour from the preceding stage, we know

41



2. EYE LOCALIZATION

Annular Region Number Range of Radii

1 0:75 < r < 2:25 pixels

2 1:75 < r < 3:25 pixels

3 2:75 < r < 4:25 pixels

4 3:75 < r < 5:25 pixels

5 4:75 < r < 7:25 pixels

6 6:75 < r < 9:25 pixels

7 8:75 < r < 11:25 pixels

8 10:75 < r < 14:25 pixels

Table 3.2. The annular sampling regions to be used for eye detection

0.4 x b

b

Figure 3.11. Eye operator size versus face size

roughly what size the eye region must be. Figure 3.11 shows a facial contour. The width

of the facial contour is known (b) and thus, we expect the eye region to be at most 0:4� b

in diameter. If 0:4 � b is larger than 2 � 14 pixels, then the eye region is larger than the

symmetry operator (who has a maximum annular region radius of 14 pixels). Thus, the

input image is scaled by a factor seyes so that
0:4�b
seyes

< 2� 14. Unlike Reisfeld, we scale the

image to accommodate the limited range of our �xed symmetry operator.

Furthermore, the eye region, eyebrow, and eyelashes are surrounded by skin, and the

iris is surrounded by the bright white sclera. Thus, we expect the eye region objects to
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(a) (b) (c) (d) (e)

Figure 3.12. Isolating the eye search regions

be darker with respect to their immediate background and can restrict the computation of

symmetry to dark symmetry only.

Figure 3.12 displays the resulting peaks in the interest maps once the dark symmetry

transform has been computed. Usually, the strongest peaks correspond to the eye regions.

Thus we can limit the number of peaks to be processed further to the 5 strongest interest

peaks1.

The set of interest peaks (approximately 5) representing the possible eyes has been

acquired. However, of these 5 peaks, which ones are the true eyes of the individual? It

is possible to merely select the top two peaks in the eye band. Since eyes are such strong

interest points, this is satisfactory in the majority of cases. However, it is sometimes

possible that the top interest points are generated by other structures. For example, a loop

of hair from the head could fall into the eye band and generate a strong interest peak (see

Figure 3.13. Thus, we maintain the collection of possible eyes, accepting these false alarms

for now. Further testing will isolate the true eyes from this set more reliably than the mere

selection of the top two peaks.

We need to consider each pair of eyes in the set of detected peaks in the eye band. If

5 peaks are present, the total number of possible pairs is (52) = 10. However, we proceed

by testing the strongest pairs �rst in a sequential manner until we �nd a pair that passes

all tests. We can then stop testing any weaker pairs since we have converged to the two

true eyes. Usually, the top two peaks will be the true eyes so we quickly converge without

exhaustively testing all 10 pairs of possible eyes.

1It is possible to have more than 5 peaks if there is a tie for 5th place.
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Figure 3.13. Strong symmetry responses from structures other than eyes

2.2. Geometrical Tests We test a pair of symmetry peaks to see if their position on

the face is geometrically valid. If these peaks are not horizontally aligned or have insu�cient

intra-ocular distance, they could not be eyes and are to be discarded.

Horizontal Alignment of Eyes: The �rst test computes the line formed by the pair

of symmetry peaks. This line should be roughly perpendicular to the axis of the face

as detected by the face contour estimation. Symmetry peaks that form a line that is

not perpendicular to within �30 degrees from the face's axis could not be eyes and

are discarded.

Su�cient Intra-Ocular Distance: A pair of interest peaks within the eye band

must have a certain intra-ocular distance separating them. If they are too close

together, they cannot be eyes. Since the dimensions of the face contour are already

known, we can estimate a minimum threshold distance between the eyes. However,

the intra-ocular distance varies as the facial pose changes. For example, out of plane

rotation induced when the subject is not looking straight into the camera will cause

a reduction of the intra-ocular distance. Additionally, as the person rotates to the

left or the right, the eyes do not seem centered within the facial contour in a 2D

sense. Eyes travel to either side of the face as it is rotated severely. Thus, a thresh-

old on the intra-ocular distance should be a function of the position of the center

point between the two eyes relative to the face. In a near pro�le shot, as depicted in

Figure 3.14 the center point between the two eyes is near the left side of the facial

contour (note that 'left' and 'right' are de�ned with respect to the image viewer, not

the photographed subject). The axis of the facial contour is marked with a vertical
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Figure 3.14. Eye midpoint not centered in facial contour
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Figure 3.15. Minimum intra-ocular distance

line while the midpoint between the two eyes is marked with a cross. We propose to

compute the threshold on the intra-ocular distance as follows (refer to Figure 3.15).

We compute the midpoint between the two symmetry peaks under test which is

shown in Figure 3.15. The eyes are shown in the Figure within the eye-band (of

width b). The horizontal distances from the midpoint to the sides of the eye-band

are cm and b� cm where cm < b� cm. A variable threshold on dintra�ocular is then

computed using Equation 3.1. The constant kintra�ocular is typically set to 0.2. This

is a very conservative setting which can be tweaked if desired.

dintra�ocular > kintra�ocular � cm(3.1)
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(a) (b) (c) (d)

Figure 3.16. Rotation normalization for horizontal eyes. (a) Original intensity
image. (b) Result of the facial contour and eye detection. (c) Rotating the face into
vertical view using the top two geometrically correct local interest peaks. (d) The
image in (b) under the same rotation into vertical view.

2.3. Rotation Transformation for Mouth and Nose Detection Once a pair of

interest peaks has a legal geometrical arrangement, we wish to test for the presence of a

mouth and nose. If these structures are not present, then the detected pair of interest peaks

was not a pair of eyes. Thus, we proceed by considering the next possible pair of eyes.

However, before we test for the presence of a mouth or nose, we rotate the face such

that the two current possible eyes being evaluated lie on the horizontal. This simpli�es the

subsequent steps of detecting a mouth or a nose. We also rotate a mask representing the

facial contour in a similar fashion to keep track of the interior of the facial contour. The

rotated images of the face and the mask are displayed in Figure 3.16.

3. Mouth Localization

After having found a pair of possible eyes which satis�es the geometrical constraints

imposed by the face, it is necessary to test for the presence of the mouth. This will be used

not only to check the validity of the eyes but will more importantly localize the face further

so that a more precise de�nition of its coordinates is obtained. We choose to locate the

mouth after having located the eyes because it has a non-skin tone texture and stands out

more clearly than the skin-covered nose. Furthermore, its position is more stable than the

nose since it lies consistently between the two eyes despite rotations of the face. Thus, the

next most reliable step in the hierarchy is mouth detection.

Unlike the eye region, the mouth does not have a blob-like, circular outline. When it

is closed or slightly open, the mouth is a thin, elongated structure or a limb. Thus, it may

not be detected by the symmetry transform's interest map. We propose the use of a limb
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extraction stage as outlined by Kelly [20] to detect the mouth. The limb extraction process

begins with the computation of the points of symmetry as displayed in Equation 2.2. This

is an intermediate computation that was used to compute the interest map. Furthermore,

only annuli of radius r=1 to r=6 are used, since the mouth's vertical thickness is slightly

smaller than the vertical thickness of the eye region (from the top of the eyebrows to the

bottom of the eye orbit). We only compute dark symmetry since the lips and the interior

of the mouth are darker than the surrounding skin.

The result of the symmetry computation is an image at each value of r (r=1 to r=6)

with each point containing 8 magnitudes for each symmetry orientation. Thus, a symmetry

magnitude is computed for each point p for each r from r=1 to r=6 and for each  from

 =1 to  =8 (8 symmetry orientations as in Figure 2.8). The resulting symmetry points

are output as in Figure 2.11.

3.1. Horizontal Symmetry Projection Once the symmetry points have been

computed for dark symmetry at the appropriate scale, we project the symmetry points

along the horizontal. There is no need to consider non-horizontal symmetry points since

the mouth is mainly a horizontally oriented limb. The symmetry maps derived by Equa-

tion 2.2 are projected using Equation 3.2. Recall that we compute only 8 values of

 2 f0�; 22:5�; 45�; 67:5�; 90�; 112:5�; 135�; 157:5�g (where 0� is aligned with the horizon-

tal).

Srhorizontal(p) = 2� Sr;0� + Sr;22:5� + Sr;157:5�(3.2)

Thus, the 4 dimensional symmetry data Sr; (p) is reduced to 3 dimensions in

Srhorizontal(p). The projected symmetry (or axial symmetry) maps for r=1 to r=6 are

displayed in Figure 3.17. These maps are derived from the rotated intensity image in Fig-

ure 3.16 (c).

The 6 scales (r=1 to r=6) form our axial symmetry scale-space. The scale or r rep-

resents the vertical thickness of the horizontal symmetries detected in the image. A thin,

closed mouth usually would generate a line of symmetry points at r=1. An open mouth,

on the other hand, will generate a cloud of points at a larger r within its center. An open

mouth's extremities taper o� (since it is closed on both ends) regardless of its size. Thus,

the mouth's extremities will appear as clouds at small r.

Note that the symmetry points in Figure 3.17 are also blurred horizontally with a

5 � 1 Gaussian window to improve connectivity and reduce small gaps. This allows us to
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(r=1) (r=2) (r=3) (r=4) (r=5) (r=6)

Figure 3.17. Horizontal Projection of Symmetry Points

use a linking procedure that connects the discrete points in the maps to form connected

structures.

3.2. Limb Extraction Kelly proposes the linking of adjacent points in the axial

symmetry maps as a means of recovering complete limb structures from symmetry data [20].

This process is simpli�ed when only horizontally aligned symmetry lines are to be considered

since limb extraction is reduced to a 3 dimensional linking process. Limb extraction involves

grouping points that are adjacent in the (x; y; r;  ) space into continuous lines. However,

since we are only considering the horizontally projected symmetry lines, we only need

to connect points in a (x; y; r) space. Adjacent points in the axial symmetry maps are

linked using connected components analysis. Note that adjacent not only refers to spatial

adjacency but also adjacency in scale-space (i.e, neighbouring values of r).

Since we are searching speci�cally for mouths, the connected component analysis can be

further constrained. Not only is the symmetry data projected onto the horizontal, it is to be

linked horizontally as well. We are searching speci�cally for connected horizontal limbs and

not an arbitrary cloud of adjacent points from the images in Figure 3.17. The extraction will

produce a set of 3D curves that ow through the symmetry data in Figure 3.17. Figure 3.18

displays the limb axes (shown with dashed lines) that should approximate the clouds (or

manifolds) of symmetry points (enclosed with continuous lines) in the search space.

Furthermore, these 3D curves are to be as horizontal as possible and should not me-

ander excessively. The mouth is a smooth limb so its axis should be a simple straight line

or a slight curve. Furthermore, axial symmetry curves should not undulate excessively in

scale-space, r (the third dimension). This prevents the vertical thickness of the mouth limb
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Figure 3.18. Limb extraction

r=2
r=6

(a) (b)

Figure 3.19. Excessive limb undulation. (a) Excessive spatial meandering. (b)
Excessive meandering in scale space.

from varying wildly. Thus, mouth limbs which are maximally straight will be favored. Fig-

ure 3.19 displays limb extractions which do not satisfy these criteria and hence are probably

not mouths. Such limbs should be attenuated during extraction so that they will not inter-

fere with mouth detection. This attenuation agrees with the Gestalt psychology notion of

\Pragnanz" which identi�es a correspondence between simplicity in image structures and

their perceptual signi�cance [3].

Connected component analysis begins at a given point (p; r) in the 3D search space.

This 3D search space covers values r=1 to r=6 and the (x; y) region depicted in Figure 3.21.

This starting point ((p; r) or (x; y; r)) will be called the \seed". One of the requirements

we impose is that the seed has a signi�cant horizontal symmetry magnitude (25% of the

maximum possible magnitude). From this starting point, we form a limb or 3D curve by

propagating along two trajectories: to the left and to the right.

By left propagation, we seek a path towards the left of the current pixel (p; r) which

ows through the strongest horizontal symmetry points in our 3D search space. Along the
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Figure 3.20. Left limb trajectory propagation kernel. The trajectory must ow
along the arrows from the current cell to one of the 9 cells in the kernel to its left.

left propagation, we utilize a kernel that covers all the adjacent neighbours of the current

point (p; r) = (x; y; r) to the left of the current pixel. This kernel is depicted in Figure 3.20.

This kernel contains 9 cells of which we must pick one. This new cell becomes the new

\current cell" and we repeat the process, tracing out the next step in the path from the

9 possible choices in the kernel. This propagation is continued and the trajectory ows

through the 3D space as it repeatedly selects from the 9 possible cells in the kernel.

The symmetry magnitudes are scaled by the weights depicted in the kernel in Fig-

ure 3.20. We thus measure a weighted symmetry value from the horizontal projection data

for each cell in the kernel. The pixel location to the immediate left is favored most and its

symmetry magnitude is consequently scaled by 1�. We simultaneously disfavor diagonally

positioned pixels by scaling their magnitude by 0:5�. We begin by only considering the

spatial neighbourhood at scale r. The peak weighted response from the three cells at r

is determined. If it is greater than the threshold (25%) then we move (propagate) to the

strongest cell's position and re-compute the kernel from there. If on the other hand, the

scale at r has only weak symmetry, we repeat the analysis at r+1 and r� 1 and propagate

to the strongest of those 6 cells. Thus, we seek a path towards the left of the current pixel

which ows through the strongest horizontal symmetry. However, we favor paths that are

horizontal (limiting spatial meandering) and paths that are at the same scale (limiting me-

andering in scale). Equation 3.3 illustrates the weighted computation of the peak-response

of the strongest cell in the kernel. The cell generating the peak-response, peak is the one
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Figure 3.21. Search space for seeding mouth limb extraction

we move to next. It becomes the \current cell" and we repeat the kernel computation from

there. The process stops when a dead end is reached and none of the 9 possible cells con-

tain an output greater than the threshold (25%). In Equation 3.3, the horizontal symmetry

values are labelled S where S(x;y;r) = Srhorizontal(x; y).

peak =

�
M1 =max( 1

2S(x�1;y�1;r) ; S(x�1;y;r) ;
1
2S(x�1;y+1;r)) : M1 > 25%

M2 = max( 12S(x�1;y�1;r�1) ; S(x�1;y;r�1) ;
1
2S(x�1;y+1;r�1) ) :M1 � 25%

�
(3.3)

A similar propagation is performed to the right of the seed (or starting cell) and the

two trajectories are merged into one. This single trajectory in the spatial and scale domain

represents the extracted limb as a whole.

Figure 3.21 shows (in black) the (x; y) region in the image where the mouth limb

starting points will be selected. The dimensions of this triangular search region are de�ned

in the �gure. Note that the triangle does not extend beyond the face mask so that the

mouth search is performed exclusively within the face contour. Any part of the mouth that

intersects this triangular search space will trigger limb extraction. Thus, the mouth does

not have to be perfectly centered upon the face's mid-line. This can happen if the face has

an unusual pose or the eye detection is slightly inaccurate. The triangular search space is

superimposed upon the rotated intensity image in Figure 3.22. Observe how the mouth is

not perfectly aligned with the face's mid-line in Figure 3.22. However, it still falls within

the generous triangular search region and is thus detectable.
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3. MOUTH LOCALIZATION

Figure 3.22. Search space for mouth superimposed on face

y

x

scale (r)

Figure 3.23. Limb axes extracted as 3D trajectories

Note that this triangular search space is rather redundant. Say a horizontal limb is

detected at a seed position (x; y; r) on the image. A very similar limb will probably be

detected when we start the limb extraction at (x + 1; y; r). Thus, we do not need to

start the limb extraction process at every point in the triangle. We merely start the limb

extraction once for every value of y in the triangle. For each value of y we select the seeding

point (x; y; r) by varying x and r to maximize Srhorizontal(x; y). Then, we begin the limb

extraction and extract via propagation the trajectory of the limb towards the left and the

right. This is repeated for each value of y in the triangle resulting in a collection of limb

axes.

The resulting horizontal limb axes are stored as 3D curves (or trajectories) in the

spatial-scale domain as shown in Figure 3.23. The height in this graph represents the scale

or the dimension r of the trajectory. This value of r corresponds directly to the thickness
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3. MOUTH LOCALIZATION

Figure 3.24. Intensity variance

of the limb being extracted. Now, we must test these limbs to determine which of them is

the mouth. Some particularly short limbs are present in Figure 3.23 despite the Gaussian

�ltering. These limbs will be discarded later since they are too short.

3.3. Limb Length and Intensity Variance Having formed a set of extracted

limbs, we next determine the most perceptually signi�cant limb and return it as the mouth.

Another test might be to �nd the limb which most closely resembles the geometry of a

mouth. However, the geometry of the mouth is not �xed due to its extreme deformability.

Thus a simple geometric constraint might reduce the expression invariance of the detection.

We determine which of the limbs is most perceptually signi�cant using two measures: limb

length and intensity variance.

We propose the computation of limb length as opposed to limb area since a mouth can

be extremely thin when closed. However, the mouth usually has a signi�cant horizontal

length. Recall, now, the kernel used to perform the limb extraction. The kernel favored

horizontal displacement over diagonal displacement and scale change. Similarly, as we

compute limb length, we weight the computation of limb length depending on its degree of

undulation (in the spatial and scale domains). Thus, a set of limb lengths are computed

and attenuated by the degree of undulation of the limb axis, as shown in the kernel in

Figure 3.20. For each limb, limbi, we compute the weighted length of the limb, di. We

threshold this value so that limbs that are extremely short are discarded.

We also wish to determine the intensity variance of the isolated limb and compare it

to the tone of the face. The lips, the interior of the mouth and the teeth are either brighter

or darker than the surrounding skin. Thus, the intensity values enclosed by the mouth

limb should have a signi�cantly di�erent intensity from the average intensity of the face.

We compute the mean intensity of the skin, mface, by averaging the intensity values below

the eyes and within the facial contour. We then compute the variance in intensity at each
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3. MOUTH LOCALIZATION

Figure 3.25. Intensity variance with mouth locus

Figure 3.26. The segmented mouth limb

pixel as shown in Figure 3.24. The overall average intensity variance of the face within the

facial contour is �face. The intensity variance of the region de�ned by each limb, �i, is then

computed. If a limb has less variance than the average variance of the face then it does not

exhibit any signi�cant contrast or stand out strongly from the rest of the face. Such limbs

cannot be mouths and are discarded.

The mouth is selected as the limb with the highest product di� �i
�face

. The center point

of the strongest limb (the locus of the mouth) is displayed superimposed on the variance

image in Figure 3.25. Since we know the trajectory of the limb axis and the thickness of

the limb, we can directly compute the outline of the mouth, which is shown in Figure 3.26.

Instead of explicitly de�ning a geometric model of the mouth that is sensitive to multi-

dimensional deformability, we have used a simple \de�nition" to localize the object of

interest. Simply stated, we �nd the mouth as the longest horizontally symmetric limb, with

a simple axis and signi�cant intensity variance from the surrounding skin tone.

If we fail to �nd any limbs that are long enough or have a higher variance than the face

as a whole, then no mouth has been detected and we return to the eye stage to investigate

another pair of interest peaks.
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4. NOSE LOCALIZATION

A successful mouth point is found when the limb with the highest product di � �i
�face

passes a threshold on di and a threshold on �i
�face

. The locus of the mouth is then stored

and we can proceed to the nose localization stage.

4. Nose Localization

If a successful mouth point has been found, we can add this data to our knowledge

of the current face. It is then relatively easy to search for a nose at this stage due to the

well de�ned search space that can be cut out. The nose is a very useful feature since it

accurately gives us an estimate for the pose of the individual. This is due to the signi�cant

displacement the nose undergoes in a 2D sense as facial pose changes. The nose position

relative to the eyes tells us quite precisely if the subject is looking to the left, to the right or

is in frontal view. The mouth and the facial contour, on the other hand, are not as reliable

for estimating pose. Furthermore, the nose is mostly rigid, so its locus cannot change with

facial expression.

In most images, the nose is one of the brightest regions of the face. It protrudes from

the face and is thus better illuminated than other regions. Simultaneously, the nostrils

and its bottom surface are signi�cantly darker than the rest of the nose. Even if the black

nostrils are not present, a dark contour around the bottom of the nose is visible due to the

shading under the nose and the steep foreshortening at the bottom of the nose tip. Thus,

we can model the nose as a region of brightness with a dark boundary on the bottom.

We are interested in detecting this change of intensity from brightness to darkness as

we travel from the eyes to the mouth. From the gradient and phase maps derived by Sobel

edge detection, we can compute the projection of the gradient magnitude of each edge along

the vertical. Thus, we only consider vertical contrast changes. Actually, more speci�cally,

we consider contrast changes that occur from bright to dark as we move downwards along

the vertical. Figure 3.27(a) contains the original gradient map and Figure 3.27(b) shows

the e�ect of projecting the edges along the upward vertical. Equation 3.4 illustrates the

projection of an edge i with magnitude �i and phase �i (where � = 0 corresponds to

a vertical edge whose normal is along the horizontal). This generates the horizontally

projected magnitude value, �0i.

�0i = �i � j sin(�i)j(3.4)
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4. NOSE LOCALIZATION

(a) (b)

Figure 3.27. Nose edge data. (a) Sobel gradient map. (b) Gradient map projected
along vertical.

Nose bottom search region
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EM = Vertical distance between eyes and mouth
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0.3 x EM

Nose Edge Signature
Value

Vertical bin (y)

(a) (b)

Figure 3.28. Nose height. (a) Search space. (b) Gradient map projected along
upwards vertical with corresponding nose signature. Note that this is not quite a
conventional signature since a triangular summation region is used.

4.1. Vertical Signatures We now consider the use of vertical signatures of the

projected gradient map to isolate the nose. This technique is reminiscent of Kanade's [19]

signature analysis.

We de�ne the spatial search space using the previously localized eyes and mouth. This

will restrict the signature analysis so that no facial contours or external edges will a�ect edge

signature analysis. Figure 3.28 shows the region where signature analysis will be performed.

The edges contained by this triangle are summed into bins corresponding to their y value.
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Figure 3.29. Finding the nose tip from the nose bottom using the edge signature.

These bins form the vertical signature of the nose. The bin with the strongest edge content

is the one that corresponds to the vertical position of the nose's bottom. Figure 3.28 also

shows the projected gradient map and the signature that was computed in the search space.

The nose's bottom position corresponds to the peak value of the signature.

However, we are interested in the nose tip, not the nose bottom. The nose tip charac-

terizes 3D pose more clearly since it strongly protrudes from the ellipsoidal structure of the

head. Assume the nose bottom was detected at position noseBottomy at the peak signature

value of noseBottomvalue . We search a window of height of up to 0:2�EM above the nose

bottom for a weaker signature value. The nose tip is de�ned as the closest point in the

window with a signature value below 40% � noseBottomvalue . This simple adjustment is

depicted in Figure 3.29. The positions of the nose bottom and the nose tip are shown as

horizontal lines in Figure 3.30. Note the e�ect of this computation is quite minor and the

nose-tip is only 2 pixels above the nose-bottom. Although the de�nition of the nose-tip and

the use of the 40% threshold are somewhat arbitrary, we merely wish to move out of the

region corresponding to the nose bottom (nostrils and shading) by a marginal amount so

that the position detected has a 3D height. In other words, we wish to move upwards a

small distance so that we localize a point somewhere on the nose, taking advantage of its

3D protrusion on the face (which speci�es pose more exactly than non-protruding features

on the face). Furthermore, the small upwards adjustment from nose-bottom to nose-tip

does not have to be exact as long as we are somewhere on the nose and not on the junction

between the nose-bottom and the face (which is not a 3D protrusion). Usually, the nose tip

is brighter than the rest of the nose and the nose bottom is darker. However, the transition

from nose tip to nose bottom or bright to dark is somewhat gradual. By moving upwards

in search of a 40% signature value (rather than the maximum), we are searching for the

beginning of this transition and moving closer to the true nose position in the process.
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5. IRIS LOCALIZATION

Figure 3.30. The nose-bottom-line and the nose-tip-line.

Thus, we have roughly determined the height of the nose tip with respect to the eyes.

However, we are uncertain of the exact horizontal position of the nose. The required lo-

calization is di�cult to perform using simple signature analysis. This is mainly due to the

fact that noses have the same tone as the rest of the skin-covered face and hence have

low perceptual signi�cance. Thus, a more sensitive nose �nding technique will be utilized

to isolate the horizontal position of the nose. This technique requires the introduction of

normalization and recognition algorithms which will be detailed in Chapter 4. For now, the

nose-localization module merely outputs a height value at the nose-tip position so we do not

have a single locus for the nose but, rather, a line of possible loci for the nose. This nose-line

lies between the two eyes at a �xed perpendicular distance below them. Thus, the output

of the nose detection de�nes a nose-line (as opposed to a nose locus) along which the nose is

situated as depicted in Figure 3.32. The nose-line crosses the nose tip and is parallel to the

line formed by the two eyes. Additionally, its length is equal to the intra-ocular distance.

In other words, the nose-line starts below the left eye and ends below the right eye.

5. Iris Localization

The locations of the mouth and the two eye regions give a fairly stable measure of

the size of a face. We can use these feature points to compute EM , the distance from the

mid-point between the eyes to the mouth. From sample measurements, the value of EM

was found to be reliable enough to predict the radius of the iris of a subject's face. The iris

radius is typically expected to fall between 5% and 15% of the value of EM .

Consequently, the real-time symmetry transform is reset to use annular sampling re-

gions that cover a radius between 5% and 15% of the value of EM . The transform is then

utilized to compute two small interest maps around the previously located eye regions. The
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6. IMPROVING AND FILTERING LOCALIZATION

(a) (b)

Figure 3.31. Iris Localization. (a) Left iris as an interest map peak ('+'). (b)
Right iris as an interest map peak ('+').

peaks of these interest maps indicate possible positions of the left and right iris. Figure 3.31

shows the resulting iris loci.

The search space for the iris is centered around the old eye locus and is a square with

length 25% �EM on each side. Figure 3.31 shows the actual search space windows with

the best iris position represented with a + symbol. The strongest interest peak in that

window is used as the iris position. The interest map is thresholded to discard all peaks

which trigger symmetry values below 25% of the maximum possible output. This extra

threshold allows us to avoid triggering the iris �nder with other structures such as the

eye brows. These and other objects generate a weak response and the iris �nder might

erroneously converge to their loci if the iris is not clearly visible (i.e. subject is squinting).

Thus, the threshold allows us to report the absence of an iris in the search space if the peak

response is too weak. Consequently, no valid peaks in the interest maps are found, and

the iris localization function can merely default to the previously calculated position of the

eye region. Therefore, if the individual in the image is squinting or the eyes are not clearly

visible, we use the large, coarse eye-blob detection output instead of the iris �nder as the

position of the iris.

6. Improving and Filtering Localization

The localization procedure thus yields an output similar to the one found in Figure 3.32.

Note that the horizontal (i.e., parallel with intra-ocular axis) position of the nose is uncer-

tain. This is represented by a white line across the vertical position of the nose from the

left eye to the right eye. The nose tip is a point on this line segment and its exact locus is

found by the techniques described in Chapter 4. Furthermore, it is possible that the face

detection computation will be triggered by a non-face which happens to have a blob-like
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6. IMPROVING AND FILTERING LOCALIZATION

Figure 3.32. A typical output of the face detection stage.

structure with eye blobs and a mouth-limb. These 'false alarms' by the face detector will

be rejected using techniques described in Chapter 4.

Thus, we have given a procedure for localizing the face and facial features in an image.

We begin by �nding the face-blob and then estimating a facial contour. From there, we can

de�ne the eye-band, a region where the eyes might be present. Eye-blob detection is then

performed and the blobs are tested geometrically to see if an adequate pair can be found. If

two blobs are \eye-like" geometrically, we search for a mouth between them and then, �nally,

a nose-line. At this stage, however, the localization is not complete and requires further

development in Chapter 4. Consequently, we shall defer localization testing to Chapter

5. Several examples of the complete localization are given there. It is also important to

note that the exact location of the facial features in Figure 3.32 (and other faces that are

processed) is not critical. This is because this localization is to undergo further processing

before face recognition is performed. This post-processing will desensitize the recognition

to small localization errors.
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CHAPTER 4. FACE NORMALIZATION AND RECOGNITION

CHAPTER 4

Face Normalization and Recognition

The position of a rigid object can be speci�ed by 6 parameters: 3 rotations and 3 transla-

tions. The rigid motion of a face or any object is speci�ed by these 6 parameters. Rigid

motion of the face accounts for a great amount of variance in its appearance in a 2D image

array. Furthermore, the lighting changes caused by light sources at arbitrary positions and

intensities also account for a signi�cant amount of variance. Simultaneously, the non-rigid

deformations of the face (from muscular actuation and identity variation) cause more subtle

variations in the 2D image. An individual's identity, however, is captured by these small

variations alone and is not speci�ed by the variance due to the large rigid body motion

and illumination of the face. Thus, it is necessary to compensate or normalize a face for

position and illumination so that the variance due to these is minimized. Consequently, the

small variations in the image due to identity, muscle actuation and so on will become the

dominant source of intensity variance in an image and can thus be analyzed for recognition

purposes.

Recall the output of the face detection and localization stage. The eyes, the nose and

the mouth were identi�ed using direct image processing techniques. Assume for now that

the nose's horizontal position was also determined and an exact locus for the nose tip is

available. The detection of the loci of these feature points (eyes, nose and mouth) gives

an estimate of the pose of an individual's face. Once the pose or the 3D position and

orientation of the face is known, it is possible to invert the e�ect of translation and rotation

and synthesize a standardized, frontal view of the individual. Furthermore, the position of

the feature points allows us to roughly segment the contour of the face to discard distracting

background information. Once segmented, a histogram of the face alone can be computed

to compensate for lighting changes in the image.
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1. 3D FACE DATA FOR NORMALIZATION

(a) (b) (c)

Figure 4.1. In-plane rotation, scaling and translation.

We follow the scheme described above to generate a normalized mug-shot image. It is

then possible to analyze the variances left in the image using linear statistical techniques.

We use these techniques to classify and characterize the variances that remain in the image

since they are now constrained and limited. Statistical analysis of the Karhunen-Loeve

Decomposition (KL) allows us to verify face detection and to improve feature localization

by computing a \faceness" measure which quanti�es how face-like an image region is. This

\faceness" measure lets us try di�erent loci for the nose and select the position which

maximizes this statistical similarity to a fully frontal face. Finally, the KL-encoded faces

are matched to each other using a nearest-neighbour classi�er such as the Euclidean distance

in the KL-space for recognition.

1. 3D Face Data for Normalization

Several methods have been proposed to normalize a face's pose using a number of anchor

points. Akamatsu et al. use an a�ne transformation which maps the triangle formed by

three vertices (corresponding to the eyes and the mouth) into a standard view [1]. This

normalization technique treats the face and the rest of the image as a thin sheet which

can be scaled, rotated and sheared. This technique can account for translation, scaling

and in-plane rotations of the face since these are only 2D e�ects that are not dependent

on the 3D structure of the object. These in-plane rotations and translations are depicted

in Figure 4.1. However, a rigid object has two more degrees of rotational freedom which

change its 2D projection in a non-homogenous way, as shown in Figure 4.2. These can

not be compensated for by a mere a�ne transformation since they induce non-homogenous

warping and occlusion in the image and hence require a more sophisticated approach.

An alternate model for the face is an ellipsoid or other simple geometric structure such

as a cylinder as in Figure 4.3 [5]. Unlike the \thin sheet" model which cannot account
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1. 3D FACE DATA FOR NORMALIZATION

(a) (b)

Figure 4.2. Out-of-plane or depth rotations.

(a) (b) (c)

Figure 4.3. A cylinder as a geometric 3D model of a face. (a) The face, texture-
mapped upon a cylinder in an up-right position. (b) Rotating the cylinder on its
vertical axis (pitch). (c) Rotating the cylinder about its vertical axis (yaw). Note
that the face does seem to be turning to its left and looking upwards in (b) and (c)
but it is strangely warped by the geometry of the cylinder.

for yaw or pitch, the ellipsoid has the ability to roughly mimic the out-of-plane rotations

the face can undergo. This is due to the curvature of the ellipsoid which exhibits non-

homogenous warping in a 2D sense. Unfortunately, a simple ellipsoid cannot encompass all

the nuances of the face and fully normalize its 2D projection. For example, the nose can

cause occlusion by rotating in front of the cheek. In addition, the human head is not quite

ellipsoidal and is di�cult to approximate with standard 3D geometric models.

Clearly, the most accurate 3D model of a face would be the true 3D range data of the

individual obtained from laser range-�nder scanning. This cumbersome process is not only

time-consuming and non-automated, it requires the use of sophisticated equipment which is

not readily available1. Some sample data obtained from such devices is shown in Figure 4.4

as radial range and radial intensity images. The images are in a cylindrical coordinate

system and the axes are appropriately labelled.

1Devices capable of performing such data acquisition include Cyberware's laser range scanners and Magnetic
Resonance Imaging equipment.
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Figure 4.4. Radial range and intensity images. (a) Radial range data. (b) Radial
intensity data.

(a) (b)

Figure 4.5. Rendered 3D model from radial range and intensity data. (a) Shaded
3D model. (b) Texture-mapped 3D model.

From the radial range data, we compute a polygonal mesh by converting the cylin-

drical coordinates into Cartesian form. The Cartesian 3D data can then be rendered and

displayed as shown in Figure 4.5(a). Subsequently, we can \colorize" the 3D model with the

radial intensity data and obtain a texture-mapped 3D model of the individual as shown in

Figure 4.5(b). This 3D model can then be used to synthesize any view of the individual by

treating the head as a rigid object and rotating and translating it with 6 degrees of freedom

(see Figure 4.1 and 4.2).

Unfortunately, we do not and cannot have a 3D model for each individual that we will

photograph for our recognition system. Thus, we shall attempt to use another individual's

3D model to normalize the photograph under the assumption that the 3D structure of most

faces is somewhat constant. Therefore, we can use one 3D model of a face and texture-

map new photographed faces onto it. Unfortunately, some individuals will have thinner or
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2. GENERATING THE AVERAGE 3D FACE

(a) (b)

Figure 4.6. Deforming the 3D model along its vertical axis. (a) Stretched model.
(b) Squashed model.

wider faces and the model will not �t them as well as it did with the original texture. We

suggest deforming the model along its vertical axis to stretch or squash it to �t it to the

new face, as shown in Figure 4.6. Ideally, we would like to deform the model arbitrarily

with various small stretchings and warpings so that it can be locally adapted to each new

individual. However, such a process is quite computationally expensive. Nevertheless, the

single vertical stretch of the model and its six degrees of freedom gives us quite a good

approximation of the faces we will encounter and is, by far, more accurate than the planar

or ellipsoidal models used in previous experiments.

2. Generating the Average 3D Face

Although the sample face in Figure 4.4 is a typical human face, we choose to use an

average 3D face from a database of previously sampled faces to obtain a smooth, mean 3D

face. Figure 4.7 shows a few of the 3D range data models we used to obtain the average 3D

face.

In averaging the 3D faces in a database, we wish to see the mean 3D face converge to

a stable structure as we introduce more sample 3D faces. We also expect the mean 3D face

to be \face-like" in the sense that the averaging process will not smooth out its features

to the point where they are no longer distinguishable. In other words, the mean 3D face

should still have a nose, a mouth, eyes and so on. If we do not see this convergence and the

mean face is a mere blob or ellipsoid, then our hypothesis is incorrect: the 3D structure of

a human face is not regular enough to approximate multiple individuals. Another possible

source of divergence is inadequate normalization before the averaging process. If the 3D
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(a) (b) (c)

Figure 4.7. Some of the 3D faces used to form the average 3D face.

faces in our database are not fully normalized before being averaged, then the mean face

will not be face-like.

For each face in our 3D range data database, we manually select 4 points: the left

eye, the right eye, the nose and the mouth and note their 3D coordinates. Each model in

the database undergoes a 3D transformation with a vertical stretch to map its 4 anchor

points to the same destination set of anchor points. Mathematically, the four 3D anchor

points: (~n1; ~n2; ~n3; ~n4) for each model, are mapped to a destination set of 3D anchor points:

(~m1; ~m2; ~m3; ~m4). This mapping is given in Equation 4.1 where matrix T is de�ned as

follows:

T =

(
cos �y cos �z �sy cos �y sin �z sin �y tx

cos �z sin �x sin �y + cos �x sin �z sy(cos �x cos �z � sin �x sin �y sin �z) � cos �y sin �x ty

sin �x sin �z � cos �x cos �z sin �y sy(cos �z sin �x + cos �x sin �y sin �z) cos �x cos �y tz

)

(
xf
yf

zf

)
= T
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>:

xi
yi

zi

1

9>=
>;(4.1)

Using ten 3D models, the best transformation matrix was found by optimizing the 7 pa-

rameters (tx; ty ; tz; �x; �y; �z; sy) to minimize the �tting error, Efit as de�ned in Equation 4.2

below. There are 3 translation parameters (tx; ty; tz), 3 rotation parameters (�x; �y ; �z) and

one vertical stretch parameter (sy):

Efit =
X

i�f1;2;3;4g

q
(nix �mix)

2 + (niy �miy)
2 + (niz �miz)

2(4.2)
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Figure 4.8. The average 3D face

The �nal average 3D face range model is shown in Figure 4.8. This is the only model

that will be rotated, translated and deformed to approximate the structure of new faces

and the other 10 database models are now discarded. As can be seen, the 3D mean face is

a smooth, face-like structure with distinct features. The coordinates of the features (eyes,

nose and mouth) are stored with the 3D model as (~m1; ~m2; ~m3; ~m4) for later use.

3. Inverse 3D Projection

It is essential to �t the 3D range data of the mean face so that it models a face found

in a 2D image. Assume we have a 2D image with the coordinates of the eyes, the nose

and the mouth perfectly pinpointed, as in Figure 4.9. Denote the 2D positions of the eyes,

nose and mouth as (~i1;~i2;~i3;~i4). The parameters of the 3D model (tx; ty; tz; �x; �y; �z ; sy)

must be tuned to align its 3D anchor points (~m1; ~m2; ~m3; ~m4) so that their 2D projections

coincide with the set of 2D anchor points (~i1;~i2;~i3;~i4). Note that the alignment to the

destination points (~i1;~i2;~i3;~i4) involves minimizing 8 distances since each of these points

is a 2D position. We observe that Equation 4.1, which only has 7 degrees of freedom,

is over-speci�ed. Thus, there is usually no exact solution to the �tting problem, only

approximations.

3.1. P3P - Fitting the 3D Model to a 2D Image If the deformation variable,

sy is held constant, only 6 degrees of freedom remain in Equation 4.1 and an exact solution

which involves 6 distances can be found to the problem of �tting to three 2D points (~i1;~i2;~i3).

At this stage, we choose to use (~i1;~i2;~i3) which correspond to the eyes and the nose to

perform the �tting since we consider their loci to be more accurate and more stable than

the mouth's locus. The �tting then reduces to the well-known Perspective-3-Points (P3P)
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3. INVERSE 3D PROJECTION

Figure 4.9. Image of U.S. President Ford with eyes, nose and mouth located

problem [13]. A direct solution is possible due to the 1-to-1 nature of the problem. There

exist more complex solutions capable of �nding optimal �ts for over-constrained multi-point

problems [26], [18] and [16]; however, we shall defer the �tting to the 4th point (the mouth)

for now.

It is important at this stage to consider perspective. In 3D rendering, perspective

generally enhances the realism of a scene. Buildings and geometric objects appear to taper

o� or shrink as they move away from the user in distance. If, however, the size of the object

in depth is relatively small, the perspective e�ect is negligible. The e�ect of perspective

on face images is subtle to the human eye and it is thus possible to render 3D face data

without such perspective computations. We shall utilize this simpli�cation and approach the

solution of �tting to three points using the Weak-Perspective-3-Points (WP3P) technique

[2]. A brief summary of the computation of the solution to WP3P is presented here, but

for an in-depth analysis of the derivation the reader should consult [2].

Observe Figure 4.10 which depicts the desired, scaled orthographic projection of the

model upon the image plane. The intra-point distances in the �gure are (R01; R02; R12)

for the model and (d01; d02; d12) for the image object. The overall scaling the model needs

to undergo to �t the image is de�ned as s. The vertical heights from the image plane of

the aligned model's two vertices are (H1; H2) before scaling or (h1; h2) after scaling. The

parameters in Figure 4.10 are computed using Equations 4.3, 4.4 and 4.5:

s =

s
b+

p
b2 � ax

a
(4.3)
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Figure 4.10. The scaled orthographic projection of the model upon the image plane

(h1; h2) = �(
q
(sR01)2 � d201; �

q
(sR01)2 � d201)(4.4)

(H1; H2) =
1

s
(h1; h2)(4.5)

The intermediate variables are de�ned in Equations 4.6, 4.7, and 4.8 and 4.9:

a = (R01 +R02 + R12)(�R01 + R02 +R12)(R01� R02 +R12)(R01+ R02 �R12)(4.6)

b = d201(�R2
01 +R2

02 + R2
12) + d202(R

2
01� R2

02 +R2
12) + d212(R

2
01 + R2

02� R2
12)(4.7)

c = (d01 + d02 + d12)(�d01 + d02 + d12)(d01� d02 + d12)(d01 + d02 � d12)(4.8)

� =

(
1 if d201 + d022 � d122 � s2(R2

01 +R022 � R122)

�1 otherwise

)
(4.9)
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3. INVERSE 3D PROJECTION

We then solve for the rotation matrix using the intermediate matrices A and B using

Equation 4.10 and Equation 4.11:

A =
n
(~m1 � ~m0) (~m2 � ~m0) ((~m1 � ~m0)� (~m2 � ~m0))

o
(4.10)

B =

8>><
>>:

x01 x02 y01 �H2 � y02 �H1

y01 y02 �x01 �H2 + x02 �H1

h1 h2
x01�y02�x02�y01

s

9>>=
>>;(4.11)

where x01, x02, y01, y02 are 2D coordinates relative to a coordinate system centered at the

position of the left eye, ~i0:

x01 = i1x � i0x(4.12)

x02 = i2x � i0x(4.13)

y01 = i1y � i0y(4.14)

y02 = i2y � i0y(4.15)

The rotation matrix, R, can then be computed using Equation 4.16:

R = BA�1(4.16)

The translation vector, t, is computed simply by translating the centered coordinate

system to the position of ~i0. The translation in the depth dimension is irrelevant and can

be omitted since scaling is directly controlled by s (orthographic projection is not scaled by

depth):

t = fi0x i0y 0gT(4.17)

Once the values of R and t have been determined, any 3D model point can be trans-

formed and the points (~m0; ~m1; ~m2) will align with the image points (~i0;~i1;~i2). The trans-

formation from model point to image point is thus:

fix iy izgT = Rfmxmy mzgT + t(4.18)
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3. INVERSE 3D PROJECTION

Of course, the iz value is only a relative measurement of the depth of the model point. It

is useful, however, for keeping track of the relative depth of the model point with respect

to other model points.

Note that this is a direct solution of the WP3P problem save for one ambiguity: the

� value in the computation of (h1; h2) in Equation 4.4. This ambiguity allows two possible

alignments of the model to the image points. The 3D face can either line up by facing

towards or away from the viewer. Of course, we know that the face is projecting onto the

image from behind the image plane and is facing the viewer (or \camera-man"). Thus we

select either + or � in Equation 4.4 to assure that the 3D model is actually behind the

image plane and is facing towards the camera. This ambiguity is resolved by computing

the normal of the nose. In other words, a vector protruding from the nose on the model

is introduced and undergoes the transformation in Equation 4.18. We begin by calculating

Equation 4.4 with a '+'. We note the relative depth value of the vector iz . If the vector

is pointing away from the viewer (its tip is farther from the image plane than its base or,

equivalently, has a larger iz value) then the model is pointing away from the camera and

we repeat the computation with a '-' in Equation 4.4.

The end result is a mapping from the 3D model to the image which lines up the eyes

and the nose optimally.

3.2. Selecting the Optimal P3P for Deformation One more degree of freedom in

our 7 parameter set, sy has yet to be set. To determine the optimal value of this parameter,

we shall now consider the position of the mouth on our model m3 and on our image i3. The

other vertices (eyes and nose) have been exactly mapped to their destinations on the image

via the WP3P computation. However, the same is not true for the mouth whose locus in

the image has had no bearing so far on the calculation of our WP3P solution. In fact, we

expect an error, Emouth in the projected model mouth locus (mp3) and the image's mouth

locus (i3). Emouth is the distance between the model's mapped mouth and the image's

mouth as shown in Equation 4.19:

Emouth =
q
(i3x �mp3x)

2 + (i3y �mp3x)
2(4.19)

To minimize Emouth, we solve the WP3P for several iterations of sy . We try the

following values of sy in attempting to �nd the best �t to the face: sy = 0:5+0:05i; i�[0; 14].

The model and its four anchor points are scaled iteratively in the y dimension by each value

of sy , and the WP3P is solved. The WP3P solution which generates the smallest error,
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3. INVERSE 3D PROJECTION

(a) (b) (c)

Figure 4.11. Stretching the model in search of the best mouth �t.

Emouth, is then found corresponding to the best sy parameter. We have thus solved the

problem of �tting to the mouth point by allowing our model to stretch along y to �t to

\squashed" and elongated faces. Incidentally, since only a simple vertical stretching is

involved in this minimization, it is evident that only the perpendicular distance of the

mouth from the eyes will a�ect the deformation and not the horizontal displacement of

the mouth. No matter where the mouth is horizontally, the model �tting will remain the

same. Figure 4.11 depicts a few sample stretches to �nd the best model to �t the image.

The texture on the face is a mesh representing the frontal face of the 3D model. The mesh

undergoes multiple stretches and is aligned to the eyes and nose each time with the WP3P

computation. The stretched mesh whose mouth point best aligns with the mouth point

in the image is then used as the 3D structure which will be coated with the face in the

intensity image.

Computing the above total 4-point �tting yields the rotation, deformation and trans-

lation to apply to the 3D model to �t it to the image. Our implementation is also highly

computationally e�cient, requiring less than 1 millisecond on an SGI Indy workstation.

3.3. Texture Mapping Once alignment of the 3D object's anchor points is com-

plete, the eyes, nose and mouth of the 3D model are aligned with the eyes, nose and mouth

of the face in the 2D image. The transformation, Equation 4.18, can then be computed.

Each point in the 3D object undergoes this transformation to determine its locus relative

to the 2D image. Essentially, the 3D object's range data points are rotated, translated and

stretched to superimpose the 2D face's intensity points. It is then possible to compute the

projection of the 3D range model onto the 2D plane and to associate each of its range data

points with a corresponding 2D plane point. Each projected 3D range point can then be
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3. INVERSE 3D PROJECTION

Figure 4.12. The 3D model coated with an intensity image's face.

\colorized" by the intensity value of the 2D plane point (or pixel) it intersects. The end

result is a 3D model which is \coated" with the textural data of the face in the 2D image

(see Figure 4.12).

3.4. Occlusion and Back Surfaces It is possible that certain points in the range

data correspond to surfaces patches whose normals point away from the 2D image. For

instance, the back of the head can be projected upon the 2D image yet it should not be

coated with the intensity values it intersects since its surface points away from the image

plane, not towards it. Furthermore, certain components of the range data may occlude

others. For example, if a face is slightly rotated, the nose will overlap part of the cheek.

Thus, it is necessary to avoid \colorizing" the range data points which are occluded since

these can never project onto the image plane.

To prevent the erroneous \colorization" of 3D surface patches that are occluded or

point away from the intensity image, it is necessary to compute the normals of each point

in the 3D range data image and to perform exhaustive polygon occlusion checks or polygon

rendering. However, real-time constraints prevent us from implementing such techniques in

a fast face-recognition system. Instead, we shall using the symmetry of the human face to

perform mirroring. This simple, e�cient, though suboptimal technique is described below.

Furthermore, we choose to crop the 3D model so that only the front of the face will

be utilized in texture mapping. The back of the head, the neck and the top of the head

will not be useful for recognition, so there is no need to compute their projections onto the

image or to worry about the validity of their colorization by tracking their surface normals.

3.5. Mirroring Along the Mid-Line In most scenarios, faces rotate along their

vertical axis. For example, as people walk around in a room, they are unlikely to look
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4. SYNTHESIZING 2D IMAGES WITH A TEXTURE MAPPED 3D MODEL

Figure 4.13. Mirroring intensity images from one side of the face to the other.

downwards at the oor or upwards at the ceiling. They walk erect and do not tilt their

heads excessively. The faces do, however, rotate along the vertical axis as people look left

or right and walk in di�erent directions. Thus, the most likely source of self-occlusion will

be due to the rotation around the vertical axis. This will cause parts of the cheek or a

side of the face to be occluded by the nose and the other side of the face. Luckily, the

human face is symmetric across its vertical axis and the occluded part of the face closely

resembles the visible part under vertical-axis rotations. Consequently, if the face is rotated

along its vertical axis and the left or right half are not visible, we can take advantage of

this symmetry to 'guess' what the hidden side of the face looks like. In situations where

one side is hidden from the camera, we implement mirroring by copying the pixel intensities

from the closer side of the face (the one most visible to the observer) onto the hidden side

of the face as shown in Figure 4.13. Thus, mirroring is only implemented if the individual

turns to the left or right and one side of the face is occluding the other. The arrows in

the �gure show which pixel intensities are mapped to which destinations to generate the

mirror-symmetry in the human face.

Mirroring is only used if the nose is not well centered between the eyes (indicating a

strong vertical axis rotation). Figure 4.14 displays the exact range in which the mirroring

process is triggered. If the nose falls within the central strip between the two eyes, we do

not rely on mirroring and simply assume no signi�cant self-occlusion has occurred.

4. Synthesizing 2D Images with a Texture Mapped 3D Model

Having fully coated the 3D model with the intensity image data, we can now rotate,

translate and stretch the model arbitrarily to synthesize new views of the individual in

question. By selecting a new set of parameters (tx; ty; tz ; �x; �y; �z ; sy) we can reposition our
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Figure 4.14. Range of nose positions where mirroring is necessary.

(a) (b) (c)

Figure 4.15. Some re-projections of the coated 3D model.

model and re-project a new 2D image of the original face. Sample re-projections of a 2D

face obtained from a single view image are shown in Figure 4.15.

4.1. Synthesizing Segmented Mug-Shot Images for Recognition For recog-

nition, we select a single pose or (tx; ty; tz; �x; �y; �z ; sy) value and use it exclusively to map

the faces detected into a consistent view. The view we select is a frontal, mug-shot view

which seems best for recognition purposes (although we could try synthesizing pro�le views,

for instance and checking how recognition results vary with such data).
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Figure 4.16. A synthesize mug-shot image of U.S. President Ford.

Since the faces will be projected into a standard, frontal view, using a pre-determined

pose, a �xed cropping or segmentation of the 2D projection can be performed and reapplied

to every new face undergoing the projection. Thus, we can automatically generate consistent

frontal, segmented mug-shot views of any individual as long as we specify the four 2D anchor

points corresponding to the eyes, the mouth and the nose. An example of a synthesized

mug-shot face is shown in Figure 4.16.

5. Shading and Lighting Normalization

Now that pose variation has been considered, we turn our attention to the next most

prominent source of variance in facial appearance that we wish to eliminate: lighting.

Lighting can cause radical changes in the intensities of an image by varying from severe

darkness to extreme brightness. Furthermore, lighting might be directional and cause one

side of the face to be brighter than the other. Varying and nonuniform lighting need to be

compensated for so that the large amount of variance they account for can be removed for

recognition. Illumination corrections will be applied via histogram �tting.

5.1. Histogram Fitting Let H(i) be the histogram function of an image, and let

G(i) be the desired histogram we wish to map to via a transfer function fH!G(i). First,

we compute a transfer function for both H(i) and G(i) that will map the histogram to a

uniform distribution histogram, U(i). The functions are fH!U (i) and fG!U (i) respectively.

Equation 4.20 and Equation 4.21 depict the mapping to a uniform distribution which is also

known as histogram equalization [14]:

fH!U (i) =

Pi
j=0H(i)Pn�1
j=0 H(i)

(4.20)
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fG!U (i) =

Pi
j=0G(i)Pn�1
j=0 G(i)

(4.21)

where n is the number of discrete intensity levels, for 8-bit images, n = 256.

To �nd the mapping function, fH!G(i), we invert the function fG!U (i) to obtain

fU!G(i). Since the domain and the range of the functions of this form are identical, the

inverse mapping is trivial and is found by cycling through all values of the function. How-

ever, due to the discrete nature of these functions, inverting can yield a function which is

unde�ned for certain values. Thus, we use linear interpolation and assume smoothness to

�ll unde�ned points of the inverse function according to the values of well-de�ned points

in the function. Thus, we generate a fully de�ned mapping fU!G(i) which transforms a

uniform histogram distribution to the distribution found in histogram G(i). The mapping

fH!G(i) can then be de�ned as in Equation 4.22:

fH!G(i) = fU!G(fH!U(i))(4.22)

5.2. Selecting a Target Histogram It is possible to merely apply histogram equal-

ization [14] to an image to correct lighting by imposing a uniform histogram distribution

on the image. However, well-lit faces do not have a uniform histogram distribution and this

process gives a surreal, unnatural illumination to the face. Recognition does not necessarily

require \natural" illumination to be e�ective. It requires normalized illumination. However,

a subtlety arises. The nature of the target histogram we wish to generate from our current

histogram (be it Gaussian, uniform or some other distribution) will cause a \weighting"

e�ect on the recognition. Regions which are extremely illuminated (very dark or bright)

will contain more variance than normally lit regions and hence a \variance" type of analy-

sis will tend to weight them more strongly during recognition. Since it is unknown which

histogram con�guration is optimal for recognition, we opt to normalize the histograms of

the faces by giving give them an aesthetically appealing illumination.

Texts such as [14] encourage the normalization of a poorly illuminated image via his-

togram �tting to a similar, well illuminated image. For example, a poorly illuminated road

map can be enhanced quite well by histogram �tting to a well-illuminated road map. Thus, a

well illuminated average human face2 is analyzed and its histogram is determined. This his-

togram will form our G(i) destination histogram in the �tting process. We \histogram-�t"

2This \mean" face is an average of over 300 human faces under good illumination conditions.
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Figure 4.17. Histogram of the mean face.
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Figure 4.18. Windowing to split face histogram correction for each side of the face.

new faces to this average well-lit face histogram and noted its strong e�ectiveness visually.

This technique was employed successfully by Phillips and Vardi [33]. However, they did not

utilize a \mean" face but rather a random \sample" face to generate G(i). The histogram

of the mean face (our target histogram) is depicted in Figure 4.17.

5.3. Windowing Histogram Analysis To correct for non-uniform lighting or un-

equal illumination on the left and right sides of the face, we perform histogram �tting

independently to both of these components of the image. Thus, a dark left side of the face

will be brightened while a bright right side is simultaneously darkened. we perform a split

or \windowed" histogram analysis on two components separately: the left side (l) and the

right side (r) of the face. Two histograms, Hl(i) and Hr(i), generate the two mapping

functions: fHl!G and fHr!G for the left window and the right window respectively. The

windowing is shown in Figure 4.18.
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Figure 4.19. Limiting histogram generation to avoid hair and beards.

5.4. Beards and Hair Phillips and Vardi's technique [33] produced particularly

poor results when the individual had a beard or other facial hair. The algorithm brightens

the dark hair regions unnaturally. Consequently, the regions of the face that were likely to

be obstructed with hair were omitted from the histogram generation process (both in the

mean face and in new faces). Thus the inverse histogram mapping does not over-brighten

the face to account for these extreme regions. The generation of Hl(i),Hr(i),fHl!G and

fHr!G was limited vertically to cover only the eyebrows down to the nose as shown in

Figure 4.19. However, we still apply the mappings in fHl!G and fHr!G to the whole face

as in Figure 4.18. Thus, the illumination is corrected for quite nicely in the case of bearded

individuals and other unusual cases.

5.5. Gradated Histogram Fitting Another artifact of the histogram �tting that

was not addressed by Phillips and Vardi [33] was the sudden discontinuity in illumination as

we switch from the left side of the face to the right side. This is induced by the switch from

mapping function fHl!G to fHr!G. We overcome this sudden transition by \averaging"

the e�ects of fHl!G and fHr!G with a linear weighting that slowly favors one for the other

as we move from the left side to the right side of the face. This \gradual" application of

the mappings is implemented with the mapping function fHtotal!G shown in Equation 4.23,

which uses a mixture of fHl!G and fHr!G and reduces discontinuities in histogram �tting:
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Figure 4.20. The mixture of histogram mappings from the left to the right side
of the face.

fHtotal!G(i) = leftness � fHl!G(i) + (1� leftness) � fHr!G(i)(4.23)

The parameter, leftness is varied as we travel across the image from left to right as

displayed in Figure 4.20.

6. Typical Normalization Results

In Figure 4.21, a gallery of fully normalized faces is presented with the initial source

image. The results demonstrate the strength of the proposed normalization technique.

One curious oddity is the indi�erence of the algorithm to skin tone or albedo. Since

the \mean" face is composed mostly of Caucasians, dark-skinned individuals lose their

distinctive skin colour. Whether this necessarily has a negative impact on recognition

algorithms is uncertain. It is evident, though, that the faces are still recognizable to a

human observer after illumination normalization.

Overall, we note the regularity with which the faces appear in the normalized image

gallery. The variance in appearance has been constrained to be a function of individual

identity and expression alone, since lighting and pose have been �ltered out of the image.

This allows recognition and classi�cation of identity to be performed on the basis of variance

which we assume is dominated by the identity (not facial expression) of the individual in
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.21. A gallery of face normalization results. (a) (b) (c) (d) (e) The original
faces. (f) (g) (h) (i) (j) The corresponding synthesized mug-shots.

the image. This statement is true most of the time since people display a neutral expression

in their daily activities (watching TV, walking, working, etc.)

On an SGI Indy workstation, the full normalization computation requires under 20 mil-

liseconds for each 7000 pixel mug-shot shown above. The time required for the computation

is almost proportional to the number of pixels in the output mug-shot being generated. For

an 800 pixel mug-shot, the time required drops to below 2 milliseconds on the SGI Indy.

Thus, the above normalization process is extremely e�cient.

7. Karhunen-Loeve Decomposition for Statistical Recognition and Detection

At this stage, we have synthesized a normalized mug-shot for each individual in a

scene. The large, nonlinear variance due to pose and illumination has been eliminated

and it is now possible to classify individuals by simple linear techniques. We consider the

use of Karhunen-Loeve Decomposition (KL), also known as Principal Component Analysis

(PCA) on the intensity images [17]. This technique is traditionally used in statistical signal

detection and estimation theory and has been adapted to compression and recognition.

Each intensity image is converted into a (raster) vector form. Note that this purely

intensity-based coding of the image is not necessarily ideal for the application of KL-

decomposition.3 The normalized mug-shots in a database are represented by an ensemble

3We are currently investigating alternate encodingswhich depend simultaneouslyon intensity and (x,y) position.
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Figure 4.22. The mean face.

of vectors, ~vx. Since the mug-shot images are 70� 100 pixels, these vectors are 7000-tuples

or 7000 element vectors. A total of 338 such mug-shot images are acquired and converted

into vector form. The ensemble of vectors ~vx is assumed to have a multi-variate Gaussian

distribution since faces form a dense cluster in the large 7000-dimensional image space. We

wish to produce an e�cient decomposition which takes advantage of the redundancies or

correlations in this data. Linear variance analysis makes it possible to generate a new basis

which spans a lower dimensional subspace than the original 7000-dimensional space and

simultaneously accounts optimally for the variance in the ensemble. PCA generates this

small set of basis vectors forming this subspace whose linear combination gives the ideal

approximation to the original vectors in the ensemble. Furthermore, the new basis exclu-

sively spans intra-face and inter-face variations, permitting Euclidean distance measures in

the sub-space to exclusively measure changes in identity and expression. Thus, we can use

simple distance measurements in the subspace as a classi�er for recognition.

We shall perform KL decomposition on an n = 7000 dimensional subspace with N =

338 training vectors. Some of these ~vx vectors are shown in Figure 4.21. We begin by

computing the mean, �v, of the 338 vectors using Equation 4.24 which generates Figure 4.22:

�v =
1

N

N�1X
x=0

~vx(4.24)

We then generate deviation vectors, ~ux, as in Equation 4.25 and arrange them in a

dataset matrix, D, as in Equation 4.26. The dimensions of D are n�N :

~ux = ~vx � �v(4.25)
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D =
n
~u0 ~u1 ::: ~uN�2 ~uN�1

o
(4.26)

The covariance matrix C of our dataset is computed and its eigenvectors will form the

orthonormal basis which optimally spans the subspace of the data (human faces). There

exist two ways of computing and manipulating C which yield the same result yet with

di�erent e�ciencies [22]. We begin by considering C generated using Equation 4.27.

C = DTD(4.27)

We can compute the n eigenvalues (�i) and eigenvectors (êi) of this n � n symmetric

matrix. The eigenvectors and their corresponding eigenvalues are ranked such that �i > �j

for i < j. Mercer's theorem [34] can be used to obtain Equation 4.28:

D =
n�1X
i=0

�iêiêi(4.28)

Note that the magnitude of �i is equal to the variance in the dataset spanned by its

corresponding eigenvector êi (see Equation 4.29):

�i = �2i =
1

N

N�1X
x=0

~ux � êi(4.29)

It then follows that any vector, ~ux, in the dataset, D, can be optimally approximated

as in Equation 4.30. Thus, the n-dimensional face deviation vector can be re-de�ned as a

linear combination of eigenvectors determined by M coe�cients denoted by cxi (computed

using Equation 4.31. M is the number of eigenvectors used to approximate the original

vector. The larger the value of M , the more eigenvectors are used in the approximation

and, consequently, the more accurate it becomes. M can be reduced allowing more e�cient

storage of each face. However, the quality of the approximation degrades gradually as fewer

eigenvectors and coe�cients are used in the linear combination [22]:

~ux �
M�1X
j=0

cxj êj 0 �M � n(4.30)

cxj = ~ux � êj(4.31)
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Alternatively, we can obtain the same eigenvalues and eigenvectors from C0, another

symmetric covariance matrix, which is N �N . C0 is de�ned in Equation 4.32:

C0 = DDT(4.32)

This equation yields N eigenvalues (�0i) and eigenvectors (ê0i). These re also ranked

such that �0i > �0j for i < j. It is possible to then directly compute the �rst N eigenvalues

and eigenvectors of C, as given by Equation 4.34:

�i = �0i 8i�[0; N � 1](4.33)

êi = ê0iD
T 8i�[0; N � 1](4.34)

We shall now describe the covariance matrix we select as well as actual method used

to extract the eigenvalues and eigenvectors.

7.1. Computing Eigenvalues and Eigenvectors The direct computation of

eigenvalues and eigenvectors is a relatively straightforward operation for a symmetric ma-

trix. We choose to solve the eigensystem using Jacobi transformations [35] (alternative

techniques include Householder reductions followed by QR-QL and Hessenberg reductions

followed by QR) [35]. Unfortunately, direct methods are usually computationally expen-

sive and require O(n3) operations.Thus, solving the eigensystem of the form Equation 4.27

would require O((n = 7000)3) computations which would involve weeks of processing on

an SGI Indy workstation. If we utilize the more e�cient implementation found in Equa-

tion 4.32 we only need O((N = 338)3) computations to �nd the eigenvectors. This requires

only several hours of processing on an SGI Indy workstation.

If we wish to have a dynamic face recognition system that continuously enlarges D in

real-time as it views new individuals, it is possible to recompute the PCA using more e�cient

iterative gradient search methods, such as the one proposed by Roseborough and Murase

[41]. However, we shall only compute the eigenvectors once for a dataset of N = 338 faces

and then reuse these eigenvectors on new faces which were not part of the original dataset

matrix D. This approach is based on the assumption that a large enough initial training

sample of 300+ mug-shot faces would populate the \face-space" cluster within the larger

\image-space" quite adequately (i.e., densely and extensively enough). Thus, new faces will

simply fall within the predetermined face-space region and hence are well approximated by

the span of the eigenvectors that were previously generated [44].
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Figure 4.23. The ordered eigenvalues of the dataset.

Figure 4.24. The ordered eigenvectors (or eigenfaces) of the dataset.

Figure 4.23 shows a plot of the magnitude of the eigenvalues versus their rank. The

magnitude of an eigenvalue, �i, is equal to the variance in the data set that is spanned

by its corresponding eigenvector, êi. Thus, it is obvious that higher-order eigenvectors

account for less energy in the approximation of the data set since their eigenvalues have

low magnitudes. We choose to truncate the set of eigenvectors to the �rst 60 vectors. This

reduced set of eigenvectors accounts for enough face-variance to avoid excessively lossy

compression. M = 60 will be used throughout the experiments [22]. The �rst 10 of our

eigenvectors (also called eigenfaces since they are formed from face images) are shown in

Figure 4.24.

7.2. Encoding Face Images with a Linear Combination Key We now have

a way of converting each vector in the dataset into a set of 60 scalars which will form a

60-dimensional key coding of the image. The key is composed of the scalar coe�cients that

determine the linear combination of eigenvectors to approximate the original image vector.
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Figure 4.25. Converting a mug-shot into a key in KL-space.

The computation of the 60-coe�cient key (c0; c1; :::; c59) is performed using Equation 4.30.

In Figure 4.25, we display the 60 scalar code representing one face from our training set.

This encoding is performed for each face x (x�[0; N)) in the database giving us a total of N

60-element vectors of the form (cx0 ; cx1; :::; cx59).

With K-L decomposition, there is no correlation between the coe�cients in the

key (i.e., each dimension in the 60 dimensional space populated by face-points is fully

uncorrelated)[17]. Consequently, the dataset appears as a multivariate random Gaussian

distribution. The corresponding 60 dimensional probability density function is approxi-

mated in the L2 sense by Equation 4.35 [17]:

p(c0; c1; c2; :::; cM�1) =
M�1Y
k=0

�
1p
2��k

exp(� c2k
2�k

)

�
(4.35)

The envelope of this Gaussian distribution is a hyperellipsoid [17] whose axis along

each dimension is proportional to the eigenvalue of the dimension. In other words, the

hyperellipsoid is \thin" in the higher-order dimensions and relatively wide in the lower-

order ones. Although it is impossible to visualize the distribution in 60 dimensions, an idea

of this arrangement can be seen in Figure 4.26 which shows the distribution of the data set

along the 3 �rst-order coe�cients (associated with the 3 �rst-order eigenvectors).

7.3. Decoding a Key into an Image The encoded faces can be synthesized (or

mapped back into image space) from their 60-coe�cient key (cj) by summing the mean face
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Figure 4.26. The distribution of the dataset in the �rst three coe�cient dimensions.
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Figure 4.27. Re-approximating the gallery's mug-shot images after KL-encoding

and the 60 weighted eigenvectors linearly. This forms an approximation n-tuple, ~wx, of each

original face, ~vx, as given by Equation 4.36. The remapped approximations for Figure 4.21

are shown in Figure 4.27. Note the low degree of \lossiness" of the compression despite the

large compression ratio of 7000 pixels to 60 coe�cients (i.e., 117:1 compression).

~wx = �v +
M�1X
i=0

cxi êi(4.36)

We can quantify the lossiness in the KL-based decomposition by measuring the variance

between the original vector ~vx and the optimal linear approximation vector ~wx. This residual

variance, residuex accounts for the total variance in our vector that cannot be spanned by

the eigenvectors. The total residual variance in the dataset that cannot be spanned by the

eigenvectors is denoted by �res = �2res and computed using Equation 4.38:
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Figure 4.28. The mean face generated with smaller mug-shots.

residuex = k~vx � ~wxk(4.37)

�res = �2res =
N�1X
x=0

k~vx � ~wxk(4.38)

We have thus described a method for converting a mug-shot image into a 60-scalar code

which describes it in the KL domain. Furthermore, we have shown how this transformation

can be inverted so that the 60-element code can be used to regenerate an approximation to

the original image. Thus, the KL transform and \inverse" KL transform are added to our

palette of tools.

7.4. Varying n for Speed or Resolution Note that the original vectors and

the eigenvectors are all n-tuples with n = 7000. Therefore, the computation of the 60-

dimensional key (c0; c1; :::; c59) given by Equation 4.30 requires convolution of the input

image (an arbitrary ~v n-tuple) with 60 eigenvectors (the êi n-tuples). Thus, 60 convolu-

tions of 7000 pixel masks must be performed each time to convert an image into its key.

To reduce this computation, we have also generated scaled versions of the input vectors

and eigenvectors. These images are 22 � 39 pixels and require n = 858 element vectors.

However, the computation of (c0; c1; :::; c59) for the smaller vectors requires roughly 10% of

the original processing time. The mean face for the smaller data set is shown in Figure 4.28.

Thus, these versions of the KL decomposition can be useful when time is more critical than

resolution or precision. However, the quality of such low resolution images makes them

unreliable for face recognition purposes. These should only be used to perform coarse face

detection. We shall now describe a technique for detecting a face using an image's 60-scalar

KL code.
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7.5. Using KL as a Faceness Detector Having processed an ensemble of train-

ing images with Karhunen-Loeve decomposition and having witnessed its face-compression

abilities, we now turn our attention to its usefulness in signal detection. The KL decompo-

sition has mapped each individual face ~vx into a 60-dimensional key describing the linear

combination of an orthonormal basis with a residual error, residuex. We wish to have a

scalar measure of how face-like a new image vector is by comparing it to the collection of

faces we have already considered. Each face in our database maps to a point in KL-space

and these points form a roughly Gaussian cluster. A new image will also map into a point

in this space. By observing how close the point is to the cluster formed by D, we can

measure how \face-like" it is. Thus, we can detect faces in a scene with this measure and

reject non-face images.

Before we proceed, we shall add a dimension to the 60-dimensional space we have formed

from our key. The value of residue indicates how well the KL decomposition approximates

our image with its eigenvectors. Thus, a human face will be well approximated since the

eigenvectors we formed from the database are optimal for such a task. Consequently, human

faces should yield low residue values. A non-face will generate a high residue value since it

is not in the span of the eigenfaces and can not be expressed as a linear combination of the

face-like eigenvectors. As was the case for each value in the 60-dimensional key, the value

of residue is expected to have a Gaussian distribution over the vectors in the dataset. The

� value of this distribution is �res.

Figure 4.29 depicts the distribution of the �rst two coe�cients (c0; c1) of the key on the

(x; y) plane and in the residue dimension on the z-axis (or vertical). Note the multivariate

distribution is now 61-dimensional with the addition of the residue dimension. A new

image vector that is presented to the KL-decomposition algorithm will map into a point

in this 61-dimensional cloud. The closer it is to the 61-dimensional cloud of previously

encountered points, the more face-like it appears. The probability of membership within

the class of faces is de�ned via a probability density function (p.d.f or \pdf") similar to the

one in Equation 4.35. We now discuss the pdf that will be used in our \faceness" equation.

The pdf we need must have a centroid at (0,0,0,...0) for all dimensions. Even though

the mean residue value (which is always positive) in the database is not 0, we shall consider

it to be 0. This is because the true centroid or mean of the data-set is the mean face (which

we computed in Equation 4.24). The locus of the mean face in the 61-dimensional space is

the 0-vector and so the centroid of the Gaussian distribution is the 0-vector (0,0,0...).
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Figure 4.29. The distribution of �rst two coe�cients and the residue (on the
vertical axis) for the dataset.

Now, we analyse the 61-dimensional cloud of points we are trying to model. We wish

to determine which Gaussian pdf will suit our needs. The value of this pdf will measure the

\faceness" of an image by how close it is to this cloud of points determined by our original

dataset, D.

We note, as expected [17], that the distribution of the points in the cloud is a multi-

variate Gaussian with a di�erent � value in each of its 61 dimensions. However, an important

observation is that the distribution has its worst-case outliers at di�erent extrema or dis-

tances along each dimension. In other words, the worst-case or L1 distance along each

dimension is not constant. Even more importantly, it is not proportional to the � value

along the corresponding dimension.

Observe the data-distribution of c1,c2 and c3 in Figure 4.30. The face points in the

histograms seem to have a Gaussian distribution in each dimension. Note the presence of

extreme outliers on either side of the plots. These are still valid faces despite their location to

the far left and the far right of the bell-curve. If we approximate the distribution by a tightly-

�tting Gaussian function, those outliers will be given an extremely low likelihood value.

However, they are true faces and should therefore register a strong \faceness" probability.

Thus, an equation similar to Equation 4.35 will not suit us as a face-detector since it will

reject outliers.

Traditionally, statistically approaches to distribution modelling attempt to �t a Gauss-

ian to the distribution in an L2 sense [17]. However, we choose to consider an envelope that

wraps around the whole cloud of face-points (enclosing all outliers as well). The shape of

this envelope is hyper-ellipsoidal. The envelope is not de�ned by the variance in the data
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Figure 4.30. The distribution of the dataset in the �rst 3 coe�cients. (a) Coe�-
cient 0. (b) Coe�cient 1. (c) Coe�cient 2.

set or by �tting to the points in the data set. Instead, it is shaped to contain all the points

in the dataset and thus is de�ned by the boundary of the cloud or the most extreme points

in the cloud. These are all valid faces and therefore a detector should not discard them,

regardless of their distance to the cloud in an L2 sense.

Therefore, the sigmas in the Gaussian pdf that we use for detection should not be related

to the variance of the data in each dimension. Using the variance, as we have shown, will

cause misdetection of the odd outliers. However, these outliers which lie quite far from

the cluster are still valid faces. Therefore, we shall select the � values for our multivariate

Gaussian to be equal to the distance of the worst outlier in each dimension (outlieri as

given by Equation 4.39 and outlierresidue is given by Equation 4.40). The consequent pdf

is computed using Equation 4.41:

outlieri = (

j<N�1X
j=0

(cjij)
1)�1(4.39)

outlierresidue = (

j<N�1X
j=0

(residuej)
1)�1(4.40)

faceness(c0; :::; cM�1; residue) =
M�1Y
k=0

�
exp(� c2k

2(outlierk)2
)

�
exp(� residue2

2(outlierresidue)2
)

(4.41)

Alternatively, we can write the faceness value as a distance from the cloud. This

distance is obtained by computing the logarithm of Equation 4.41. Thus, our distance from
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facespace measure (DFFS) can be de�ned by Equation 4.42 (note that k is an arbitrary

constant used to scale the output for display purposes):

DFFS(c0; c1; :::; cM�1; residue) = k � (
M�1X
k=0

�
c2k

outlier2
k

�
+

residue2

outlier2
residue

)(4.42)

This DFFS measure is similar to Turk and Pentland's [44] approach to detection via a

distance-to-facespace technique [44]. However, their technique merely utilizes the residue

value in the computation and assumes all ck are 0. Consequently, this form of distance

measure assumes that faces form a hyperplane in image-space. We can see that this is

not the case since the cluster of face-points we have generated appears to form a hyper-

ellipsoidal cloud shape. Additionally, in Turk and Pentland's technique, an image which

happens to be spanned nicely by eigenfaces will be classi�ed as a face. Unfortunately,

eigenfaces, (especially higher-order ones) can be linearly combined to form images which

do not resemble faces at all. Hence, merely using the residue as a faceness measure is not

reasonable.

Figure 4.31 shows some sample faces and non-faces with their corresponding \DFFS"

value. The DFFS can be used for face-detection since it yields low values for faces and high

values for non-faces. The DFFS value is not exactly zero for true faces since only the mean

face is located precisely in the center of the cloud representing the distribution. All other

faces have a distance from the center of the cloud and, consequently, have a non-zero DFFS.

7.6. Nose Localization Revisited At this point, we recall the problem of nose-

localization that was discussed in Chapter 3. The solution for the exact horizontal position of

the nose was deferred because it was too di�cult to obtain using the direct image processing

techniques introduced in Chapters 2 and 3. However, Chapter 4 has introduced a reliable

\DFFS" measure based on Karhunen-Loeve statistical signal detection. We can use this

measure to to assist us in locating the nose.

Recall that at the end of Chapter 3, we detected the eyes and the mouth but only had

a line representing the nose. This situation is represented in Figure 4.32. This image is

similar to the �nal result of the detection performed in Chapter 3. The horizontal position

of the nose with respect to the eyes was uncertain and could be anywhere on the solid white

line.

The nose localization problem is solved using an algorithm based on the development

in Chapter 4. Along the horizontal line across the nose, a set of equally spaced points are
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Figure 4.31. Mug-shots containing true faces and non-faces and a graph of their
distance to face space (DFFS) values.

Figure 4.32. The nose localization problem.

picked. Each point is then used as the anchor point for the nose in the 3D normalization

process. Then, we obtain a mug-shot of the face from the 4 detected anchor points (eyes,

mouth and the nose being tested). This image is transformed into a key and a residue value

via the KL-decomposition. Using Equation 4.42, the distance to face-space of the image is

evaluated. This process is repeated for several trial anchor points along the line crossing

the nose and generates several mug-shot images as in Figure 4.33. Also shown is the DFFS

value for each mug-shot image. Note how misdetected noses generate a mug-shot image
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Figure 4.33. Distance to face space values for mug-shot images from di�erent
nose-point trials (from left to right across the nose-line)

Figure 4.34. The �nal localization.

that is very far from face-space and how the minimum \DFFS" value is registered when the

nose anchor point is properly localized on the nose in the image.

As we attempt di�erent possible nose points, we are generating a trajectory in the 61-

dimensional space which crosses through our cluster of database faces. The point at which

the trajectory in the 61-dimensional space is \closest" to face-space or has a maximum

\faceness" value corresponds to the a point on the nose-line. Using the sampled DFFS

measures for each trial nose-line point, we can select the best nose point as the one that

minimizes DFFS. Thus, the problem of �nding the nose is overcome by testing each possible

nose position on the line. The �nal, fully localized face is shown in Figure 4.34.
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Thus, the face detection algorithm ends up with 4 anchor points corresponding to the

eyes, the nose tip and the mouth as well as a \DFFS" measure. It also has a 60-element

key to represent it as well as a residue value (generate from the KL transform).

7.7. Discarding Non-Faces before the Recognition Stage At the recognition

stage, we have a \DFFS" value, the 60-element key, and the residue value of a fully nor-

malized mug-shot image. First, if the \DFFS" value is above a threshold (speci�ed by

the user), the mug-shot image does not contain a true face. In other words, it is quite

far from the cloud of faces in our training set and should probably be discarded from the

recognition algorithm. Recall the face localization procedure presented in Chapter 3. It is

possible that the face localization incorrectly converges to an image that is not a face. The

detection process described in Chapter 3 only dealt with blobs and limbs. This simplistic

description of image data allows us to detect faces in many poses, although this exibility

might also permit a non-face to be falsely detected by the algorithm. A soccer-ball, for

example, might look like a face with two eyes, a mouth and a nose (from a simple blob

and limb description of the image). Since the face-detection scheme described on Chapter

3 is based exclusively on a simple blob and limb description of the image, the recognition

stage might obtain a mug-shot of a soccer ball or other non-face object. However, in the

recognition stage, we utilize the statistically based \distance to face-space" measurement to

ultimately reject non-face mug-shots from the localization procedure. Thus, the mug-shots

generated by the face-localization process can be �ltered with a threshold on their \DFFS"

value before recognition is attempted. Equation 4.43 illustrates the use of a threshold on

the \DFFS" value to prevent recognition attempts on non-faces. Typically, the value used

for DFFSthreshold is roughly 3000.

DFFS < DFFSthreshold(4.43)

7.8. Face Recognition with Distance Measures Once we have a fully normalized

mug-shot of a true, fully localized face, we can use it to probe for a match in the database of

previously detected individuals. Each mug-shot in the database is stored as a 60-dimensional

key (after KL). The most similar mug-shot in the database will be used to identify the probe

mug-shot. We compute the Euclidean distance between the test image's 60-dimensional

key and all the 60-dimensional keys in the database [44] using Equation 4.44. The key

which is geometrically closest to our probe's key will yield the lowest distance (dmin as in

Equation 4.45). This is the best match for the face, as given by Equation 4.46. The equation
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(a) (b)

Figure 4.35. A probe mug-shot face generated from an automatically localized
face in an arbitrary input image. (a) Arbitrary image. (b) Corresponding mug-shot
for database query.

assumes that there are P entries in the database and that the xth face in the database is

called facex, where 0 � x < P . The key of the xth face is cxi where 0 � i < 60; in other

words, i is the dimension of the coe�cient in the key:

d(probe; facex) =

vuut 59X
i=0

(cxi � cprobei)
2(4.44)

dmin = minx<Px=0 d(probe; facex)(4.45)

match = z such that d(probe; facez) = dmin(4.46)

In this way, we obtain the best match in the database, face z, as the output of the recognition

stage.

We illustrate the matching or recognition process for the test face in Figure 4.35. In

Figure 4.36(a) and Figure 4.36(b) the test image and the closest �ve matches in the database

are presented with their Euclidean distance d(probe; facez) from the test face. These are

database matches ordered from nearest to farthest (left to right). Additionally, we present

the original test image and the most similar original database images in Figure 4.36(c). The

original image is shown with the features localized in the top left and the database images

around it are ordered from nearest to farthest (left to right and top to bottom).
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(a) (b)

(c)

Figure 4.36. Database Matching. (a) The test mug-shot. (b) The closest �ve
matches in database from left to right and their Euclidean distances from the probe
mug-shot. (c) The original test image (top left) and the closest �ve matches in the
database and their Euclidean distance from the test image.

8. Synopsis

We have thus presented a method for normalizing images for 3D pose changes and

illumination. This technique is employed with the Karhunen Loeve decomposition to sta-

tistically determine how face-like an image is. This helps guide a nose detection search

which minimizes the \DFFS" value. Finally, the fully localized face is normalized and ana-

lyzed using the KL to match it to an image in the database. This �nal stage completes the

algorithm proposed in Chapter 3 and generates recognition results.
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1. IMPLEMENTATION

CHAPTER 5

Implementation and Testing

Having extensively discussed each module in our face detection, normalization and recogni-

tion system, we shall now describe an implementation of the complete system. We shall also

briey discuss the software design and the constraints on performance and e�ciency. The

system's user-friendly interface is then described. It facilitates the control of the algorithm

and displays the localization and recognition results visually. To test the feature detec-

tion capabilities of the system, the localization results are veri�ed for a few arbitrary input

images. A large, standard database of faces is then used to test the recognition rates of

the system. We follow the recognition and localization tests with a sensitivity analysis that

provides us with some insight on the inter-dependence of these two components (recognition

and localization) in the overall algorithm.

1. Implementation

The algorithm has a modular implementation and was written in C, C++ and assembly

code on SGI Indy and Pentium-based systems. We shall now consider the system as a whole.

The overall structure of the algorithm in terms of the separate modules is outlined. Then,

we discuss the computational e�ciency and performance of the algorithm. Subsequently, a

description of its user-interface is presented.

1.1. System Overview A block diagram description of the overall algorithm is de-

picted in Figure 5.1. The diagram shows the ow through the individual modules used

by the system. The algorithm's structure is complex and somewhat fragmented since it is

designed to deal with multiple scales and multiple possible face detections in an image.

We begin at a large scale with the image reduced so that operators acting upon it

detect the largest objects in the scene. The face blob localization module �nds all blobs in

the image at the current scale and then transmits the coordinates of the strongest blob to

98



1. IMPLEMENTATION

MINIMIZATION
DISTANCE TO FACE SPACE

ALONG NOSE LINE
10 NORMALIZATIONS

DFFS THRESHOLD

FIND BEST MATCH AND

FINAL NORMALIZATION

FAILURE

FAILURE

IRIS LOCALIZATION

FACE CONTOUR ESTIMATION

NOSE LINE LOCALIZATION

STORE ITS DISTANCE

<50 ms

<700 ms

<50ms

<5ms

<30ms

<10ms

<1ms

<30ms

<30ms

<30ms

<50ms

NO

YES

NO BLOBS LEFT

FACE BLOB LOCALIZATION

START AT LARGEST SCALE

<50 ms

RECOGNITION:

STOP

OF ALL SUCCESSFUL MATCHES
RETURN CLOSEST MATCH

SCALE < 4 X  ?

REDUCE SCALE

MOUTH LOCALIZATION

EYE LOCALIZATION

Figure 5.1. Block diagram description of the overall algorithm

the facial contour estimation module. If no face-like contour is present around the blob, the

face-contour estimation module sends a failure signal to the blob detector which, in turn,

provides it with another blob to process. If, however, a facial contour exists, the algorithm

proceeds to the eye localization module.

The eye localization stage �nds all eye-like blobs in the facial contour's eye band and

sends the dominant pair to the mouth localization stage. We then �nd the nose line and

the iris. To �nd the exact position of the nose, we sample the nose line ten times and

generate 10 normalized mug-shots from 10 nose anchor points on the nose line. The DFFS

is computed for each and the nose anchor point which yields the minimal DFFS is output.

The nose is then fully localized and we compute a �nal normalization to obtain a high

resolution mug-shot image (a probe). This probe image is recognized in the recognition
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module which �nds its closest match in the database. The match and its distance from the

probe image are then stored and we loop back to the face blob localization stage to check

out the remaining face blobs in the image.

If none of the 10 normalizations along the face-line generated an adequate DFFS, the

DFFS threshold stage would generate a failure signal and inform the eye localization stage

to transmit another pair of eye blobs. Similarly, the lack of a valid mouth or nose-line could

also generate a failure from the corresponding module. This would also issue a request for

another pair of eyes from the eye localization module.

If the eye localization module has transmitted all the possible eye blobs and none have

successfully passed through all the subsequent stages, it generates a failure signal itself.

This informs the face blob localization stage to transmit another blob to the face contour

stage, forcing the search to process another face blob elsewhere in the image.

Once all blobs detected by the blob localization module have been investigated, it

generates a signal to the 'Reduce Scale' module. This generates an image at a new scale

at which face blob localization is re-executed. Thus, we have a new set of smaller face

blobs to investigate. This process continues, allowing the algorithm to search each scale

progressively (from large to small scales) for face blobs. Once the algorithm has reached the

smallest allowable scale (4�), all face blobs have been processed. The system then stops

searching and generates its recognition output.

Throughout the search, the algorithm will have localized several face-like objects which

were used as probe images to query its database of faces. Each probe image is matched

to a database member and the distance from the probe image to the database member is

stored. The probe image with the lowest distance to a database member is the one that

most accurately resembles a member of our database. Thus, we return this face as the

recognition result.

1.2. Performance and Code E�ciency In an e�ort to maintain computational

e�ciency and to allow the eventual adaptation of the algorithm to face tracking applications,

intense optimization of the code has been performed. Although further development is in

progress, the algorithm is currently fast and compact enough to run interactively on most

generic platforms.

Note, �rst, the sequential hierarchical search which proceeds from large scales to small

scales. This allows a rapid convergence if the face is dominant in the image. Furthermore,

the algorithm does not always ow through the complete loop. It stops as soon as one of the
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modules reports a failure and loops back to an earlier stage. For example, we do not search

for a mouth if no eyes are found. In this case, no time is wasted in the mouth module.

Additionally, we utilized special programming techniques to reduce the run-time. For

instance, wave propagation is used to generate the symmetry maps. This provides a compu-

tational e�ciency that makes the symmetry operator a practical tool. The 3D normalization

algorithm is also extremely e�cient and uses look-up tables and minimal calculations for in-

creased speed. The 10 normalizations and DFFS calculations required for nose-localization

also utilize small mug-shot images and eigenfaces to increase e�ciency.

Note the upper bound on the run-times for each module in Figure 5.1. The execution

times are measure on an SGI Indy machine which has a rating equivalent to that of a 1996

home personal computer. The e�ciency of the code allows a face to be found in an image

in under 1 second if it is the dominant structure. However, we loop through all objects in

the scene in an attempt to �nd all possible faces. Thus, the algorithm's loop is traversed

multiple times even though a face could have been detected in an earlier iteration of the

loop.

1.3. Graphical User Interface The graphical user interface links the modules in

an intuitive, easy-to-use window environment. The interface is displayed in Figure 5.2 and

its output window is shown in Figure 5.3.

Using the \Load" button, the user selects an arbitrary test image from disk and the

system then loads and processes it. The test image is then shown in the top left of the

video output window (see Figure 5.3) with the locations of the eyes, the nose and the

mouth labelled. The identity of the face is then recognized and the best database matches

are shown ordered from left to right and top to bottom. Additionally, the distance from

each match to the input face is shown superimposed on the matches. The image with the

minimum distance to the probe, (the one to the immediate right of the probe image) is the

best match found in the system's database.

The user can also choose to run the algorithm on any one of the images shown in

Figure 5.3 by selecting the number corresponding to it (\0", \1", ... \8" which identify

the images from left to right and top to bottom in the �gure). Also, the user can select

\Randomize" to replace the images in Figure 5.3 with a random sample of the images in

the database to quickly view some faces in the database.

By clicking on the \Recognize Video" button, the user can utilize the video camera and

frame grabber to capture data directly from the current scene, as in Figure 5.4. Here, the

user's own face has been localized and the closest match in the database is presented. In
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Figure 5.2. The user interface. The video output in Figure 5.3 is also part of the
user-interface.

this case, the user is not in the database so the closest match is the member of the database

that most closely resembles the user. Finally, the user can add a new face to the database

by selecting the \Save" button. The user is then prompted to enter a name identifying the

individual in the test image. Thus the database can be easily manipulated by the user who

can train the system and customize it for the set of individuals to be recognized.

2. Testing

The algorithm is then put through three tests to evaluate its e�ectiveness. The local-

ization test demonstrates the algorithms ability to detect faces and localize facial features

in several, arbitrary test images. A recognition test is then performed on a standard data-

base of faces to determine the recognition rates of the algorithm. In addition, we present a

sensitivity test which relates recognition e�ectiveness to localization accuracy.
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Figure 5.3. The video output for a sample image

2.1. Localization Test The algorithm is executed on a few sample images that span

the range of imaging situations the system is expected to deal with. The recognition module

results of the algorithm are omitted for these calculations since we are only interested in

the localization e�ectiveness. Figures 5.5, 5.6, 5.7, and 5.8 contain sample images with the

detected feature points marked in white.

In Figure 5.5(a) the face is localized even though it is in a non-frontal pose and despite

the thin veil that covers it. Figure 5.5(b) shows the localization of a face despite numerous

other faces in the image. Figure 5.6(a) shows the localization of a blurry face with a large

out-of-plane rotation and signi�cant background data. Figure 5.6(b) shows the successful

localization of a face with a beard and glasses which do not pose a problem for the algorithm.

Additionally, the face is leaning backwards slightly. Figure 5.7(a) contains a localized face

with a mustache and dishevelled hair. Figure 5.7(b) contains a face with thick glasses.
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Figure 5.4. The video output for a sample camera snapshot

(a) (b)

Figure 5.5. Sample test images.
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(a) (b)

Figure 5.6. Sample test images.

(a) (b)

Figure 5.7. Sample test images.

(a) (b) (c)

Figure 5.8. Sample test images.
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Figure 5.9. The 30 individuals in the Achermann database

Figure 5.8(a) shows the localization of a face with a large in-plane rotation and unusual

lighting. Figure 5.8(b) depicts a face which is situated in a complex background, under

unusual lighting, with in-plane rotation and at a small scale. Figure 5.8(c) depicts the

localization of a face with dark skin against a bright background. Note the algorithm's

ability to localize the faces in these everyday images despite variations in pose, expressions,

facial paraphernalia, lighting and background clutter.

2.2. Recognition Test The database chosen to test the algorithm is the Achermann

database from the University of Bern in Switzerland. The database contains 30 individuals

with 10 di�erent views of each. Figure 5.9 contains a sample image of each of the 30

individuals in the database.

Unlike many other databases which contain only frontal views, the faces in this database

span a variety of depth rotations. The individuals in the database are presented in 10

106



2. TESTING

Figure 5.10. The 10 di�erent views per individual in the database

di�erent poses. Poses #1 and #2 display the individual in a frontal pose. Poses #3 and #4

depict the face looking to the right and poses #5 and #6 depict it looking to the left. Poses

#7 and #8 depict the face looking downwards and poses #9 and #10 depict it looking

upwards. The di�erent views are shown in Figure 5.10.

The changes the face undergoes in Figure 5.10 include large out-of-plane rotations which

cause large nonlinear changes in the 2D images. Thus, there is a need for an algorithm that

can compensate for out-of-plane rotations, such as the proposed 3D normalization developed

in Chapter 4.

For recognition, the algorithm is �rst trained with 1 sample image for each of the 30

faces. These training images are then stored as KL-encoded keys. Then each of the 300

images in the Bern database is presented to the algorithm as a probe image. The system

outputs the best match to the probe from its collection of 30 training images (of the 30

individuals). A sample of the recognition output is shown in Figure 5.11. On the left is

a probe image from the 300-element Achermann database and on the right is the closest

match the system has in its 30 training images.

The number of correct matches and incorrect matches were determined and a recog-

nition rate of 65.3% was obtained. In other words, of the 300 test images, the system
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Figure 5.11. The recognition video output

recognized 196 correctly and 104 incorrectly. Had the system been purely guessing the

identity of the subject, the recognition rate would be 1
30 = 3:3%. This performance was

achieved with only 1 training image per individual in the database. If the number of train-

ing images per individual is increased, superior performance can be expected [23]. These

results are similar to the ones observed by Lawrence [23] whose recognition algorithm uti-

lizes a self-organizing map followed by a convolution network. Lawrence achieves 70%

recognition accuracy using only 1 training image per individual. However, his algorithm

requires restricted pose variations. Furthermore, Lawrence tested his algorithm on the ORL

(Olivetti Research Laboratory) database which has more constrained pose changes than the

Achermann database.

In Figure 5.12 we plot the recognition rates of the algorithm for each of the di�erent

views (from pose #1 to pose #10) to analyze its e�ectiveness to pose variations. As ex-

pected, the algorithm fares best with frontal images (poses #1 and #2). The algorithm

recognized the left and right views (poses #3, #4, #5 and #6) better than the up and

down views (poses #7, #8, #9, #10). It seems that the recognition is more sensitive to up

and down poses. In comparison, most conventional algorithms have trouble with poses #3

to #10 which are non-frontal.

In Figure 5.13 we plot the e�ectiveness of the algorithm for each of the 30 subjects

displayed in Figure 5.9. Subjects #1, #8 and #9 were especially di�cult to recognize

while subjects #2, #15, #17 and #28 were always recognized. Subjects with particularly

distinct features (such as a beard) were easier to recognize. This is expected since the

algorithm distinguishes faces on the basis of intensity variances. Thus, large changes in the

face induced by beards, etc. cause the most variance and are easiest to recognize.
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Figure 5.12. The recognition rates for di�erent views
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Figure 5.13. The recognition rates for di�erent individuals

2.3. Sensitivity Analysis Evidently, the recognition stage depends on the accu-

racy of the localization stage. We wish to observe the e�ect of localization errors on the

recognition process to quantify the sensitivity of the recognition algorithm. Recall the

normalization procedure described in Chapter 4. We shall represent this procedure as a

function, N , which acts on an image, I , to produce a standard mug-shot (probe) which can

be used to search for a match in the database. The parameters of the normalization are the
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(a) (b)

Figure 5.14. Original Normalization. (a) Input image with anchor points. (b)
Corresponding synthesized mug-shot image.

(x; y) positions of the 4 feature points i0, i1, i2 and i3 (left eye, right eye, nose and mouth)

and the original intensity image I . This computation is shown in Equation 5.1:

probe = N(i0x; i0y; i1x; i1y ; i2x; i2y; i3x; i3y; I)(5.1)

We then introduce the concept of recognition certainty. Certainty involves comparing

the distance a face has from its correct match in the database to the distance it has from

other members in the database. Evidently, our recognition output is more reliable (or has

better certainty) if a face is much closer to its match and than it is to other members of the

database. Consider face#0 from the database which is shown with its synthesized mug-shot

image in Figure 5.14. The eyes, nose and mouth have been localized accurately at positions

i00, i
0
1, i

0
2 and i03. These anchor points are used to generate a mug-shot version of face#0

using Equation 5.1.

This face is a member of our database (face0) and so d(probe; face0) =

d(face0; face0) = 0. However, if we perturb the values i00, i
0
1, i

0
2 and i

0
3 by a small amount,

the resulting probe image using Equation 5.1 will be di�erent and dmin will no longer be

0. The distance of the probe face (probe) to the correct match face#0 in the database is

de�ned as d(probe; face0). The distance to the closest incorrect response is dminjx�(0;P ), as

de�ned in equation 5.2:
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dminjx�(0;P ) = minx<Px=1 d(probe; facex)(5.2)

In Equation 5.3 we compute a margin of safety which is positive when the probe re-

sembles its correct match face#0 and negative when the probe matches another element of

the database, instead.

c = dminjx�(0;P ) � d(probe; face0)(5.3)

Since the probe is actually the result of the function N in Equation 5.1, it has i0,

i1, i2 and i3 as its parameters as well. By the same token, the value of c in Equa-

tion 5.3 also has i0, i1, i2 and i3 as parameters. Thus, it is more appropriate to write

c(i0x; i0y; i1x; i1y ; i2x; i2y; i3x; i3y). However, for compactness, we shall only refer to the cer-

tainty as c.

We shall now compute the sensitivity of the certainty (c) to variations in the localization

(i0, i1, i2 and i3) for the image I corresponding to face#0. This is done by computing

c(i00x + �0x ; i
0
0y +�0y ; i

0
1x +�1x ; i

0
1y +�1y ; i

0
2x +�2x ; i

0
2y +�2y ; i

0
3x +�3x ; i

0
3y +�3y).

We vary the � values which cause the localization of a feature point to move around

its original position. The anchor point's displacement caused by a particularly large � is

depicted in Figure 5.15. The dimensions of this image are 512 � 342 and the intra-ocular

distance is approximately 60 pixels. In the experiments, the � values are varied over a

range of [-15,15] pixels each. We then synthesize a new mug-shot image from the perturbed

anchor points.

Figure 5.16 shows several synthesized images after perturbing �0x and �0y , with all

other � values �xed at 0. Not surprisingly, the mug-shots that are synthesized appear

slightly di�erent depending on the position of i0 (the locus of the left eye). Similarly,

Figure 5.17 shows the approximations after the KL encoding of the mug-shots in Figure 5.16.

The approximations, too, are a�ected, showing that the KL transformations is sensitive to

errors in localization. Finally, in Figure 5.18 we show the value of c as we vary �0x and

�0y , with all other � = 0.

Figure 5.19 shows the value of c for variations in the (x; y) position of the right eye

anchor point. Similarly, Figure 5.20 and Figure 5.21 show the same analysis for the nose

point under two di�erent views. Finally, Figure 5.22 shows the e�ect of perturbing the

mouth point. This surface is quite di�erent from the ones in the previous experiments. In

fact, the value of c stays constant and positive indicating that the changes in the mouth
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(a) (b)

Figure 5.15. Perturbed Normalization. (a) Input image with anchor points. (b)
Corresponding synthesized mug-shot image.

position have brought no change in the synthesized mug-shot and that the recognition

performance is una�ected by mouth localization errors. This is due to the insensitivity the

3D normalization procedure (de�ned in Chapter 4) has to the locus of the mouth point.

The above plots show that the localization does not have to be perfect for recognition

to remain successful. In these graphs, as long as the value of c is positive, then the subject

is identi�able. Even though these sensitivity measurements were made by varying only two

parameters, the 8 dimensional sensitivity surface can be approximated by a weighted sum

of the 4 individual surfaces described above. Thus, an 8 dimensional sub-space exists which

de�nes the range of the 8 � perturbations that will be tolerated before recognition errors

occur. In short, the anchor-point localizations may be perturbed by several pixels before

recognition degrades excessively.

From the above plots, it is evident that the �2y (the nose locus) is the most sensitive

anchor point since it causes the most drastic change in c. Consequently, an e�ort should

be made to change the normalization algorithm to reduce the sensitivity of the recognition

to this locus. On the other hand, there is a large insensitivity to the location of the mouth.

This is due to the limited e�ect the mouth has in the normalization procedure. In fact, the

mouth only determines the vertical stretch or deformation that needs to be applied to the

3D model. Thus, an e�ort should be made to use the location of the mouth more actively

in the normalization algorithm discussed in Chapter 4. Recall that an error Emouth was

present in the normalization while the other 3 anchor points always aligned perfectly to the
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Figure 5.16. Synthesized mug-shots with left eye anchor point perturbed

eyes and nose in the image (using the WP3P). Thus the 3D normalization has an alignment

error concentrated upon the mouth-point which is the only point on the 3D model which

does not always line-up with its destination on the image. If this error could be distributed

equally among all four features points, each point will be slightly misaligned and the total

misalignment error would be less. Consequently, the 3D model's alignment to the face in

the image would be more accurate, overall. Thus, we would attempt to minimize Etotal

as in Equation 5.4 instead of minimizing Emouth with Eleft�eye = Eright�eye = Enose = 0.

The end result would be an overall greater insensitivity and recognition robustness for the

8 localization parameters combined.
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Figure 5.17. KL approximations to mug-shots with left eye anchor point perturbed

Etotal =
q
E2
mouth

+ E2
left�eye +E2

right�eye +E2
nose(5.4)

We have thus presented the system's structure as a whole. The localization and recog-

nition tests evaluate its performance. For one training image, the system is competitive

when compared to contemporary face recognition algorithms such as the one proposed by

Lawrence[23]. Other current algorithms include [32] and [29] which report recognition

rates of 98% and 92% respectively. However, these algorithms were tested on mostly frontal

images (not the Achermann database or similar database). Finally, a sensitivity analysis

depicts the dependence of the recognition module on the localization output. We see that
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Figure 5.18. Variation in recognition certainty under left eye anchor point perturbation
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Figure 5.19. Variation in recognition certainty under right eye anchor point perturbation

the localization does not have to be exact for recognition to be successful. However, the

sensitivity plots do show that recognition is not equally sensitive to perturbations in the

localization of di�erent anchor point. Thus, the normalization process needs to be adjusted

to compensate for this discrepancy.
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Figure 5.20. Variation in recognition certainty under nose anchor point pertur-
bation (View 1)
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Figure 5.21. Variation in recognition certainty under nose anchor point pertur-
bation (View 2)

116



2. TESTING

−15

 −5

  5

 15

 15

  5

 −5

−15
1340

1340.5

1341

1341.5

1342

1342.5

Delta i3xDelta i3y

c

Figure 5.22. Variation in recognition certainty under mouth anchor point perturbation

117



CHAPTER 6. CONCLUSIONS

CHAPTER 6

Conclusions

A face recognition system must be able to recognize a face in many di�erent imaging situa-

tions. The appearance of a face in a 2D image is not only inuenced by its identity but by

other variables such as lighting, background clutter, and pose. This thesis has described a

method for detecting the face despite these variations, as well as a 3D-based normalization

algorithm to compensate for them. This step essentially removes the large nonlinear e�ects

of pose, lighting and background clutter, eliminating much of the variance these variables

generate. In essence, the normalization generates a mug-shot from an arbitrary, uncontrived

image containing a face. This then permits the use of holistic linear recognition techniques

(which require frontal mug-shots). Thus, the 3D normalization acts as a bridge connect-

ing the detection algorithm (which can handle arbitrary input images) to the recognition

engine.

The system was motivated by a number of criteria. The algorithm had to �nd faces

e�ciently without exhaustively searching the image. Thus, we proposed the use of low-

level perceptual mechanisms based on contrast, symmetry and scale. This allows us to

focus computational resources on perceptually signi�cant objects in a scene. We discussed

the development of attentional mechanisms and the symmetry transform which quickly

pinpoint interesting objects in a scene. The symmetry transform was then adapted to

selectively search for the symmetry found in facial contours.

We then described a framework for using low-level mechanisms to �nd faces and facial

features in an arbitrary image. The proposed hierarchical search is e�cient and robust and

proceeds in a coarse-to-�ne method as it searches for faces. We begin by �nding face-like

blobs in the image. Then we identify the facial contour that encloses the face and use it to

restrict the search for eyes in the image. Blobs that resemble eyes are then detected and we
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proceed to search for a mouth. Once a mouth is located, an approximation of the position

of the nose is found using signature analysis.

Subsequently, we developed a 3D normalization technique which compensates for any

facial pose by using the positions of the eyes, the nose and the mouth. This 3D normalization

uses a deformable 3D model of the average human head. The model is used to synthesize

a mug-shot from a localized face in an arbitrary input image. Thus, we e�ectively compen-

sate for pose variations and background clutter. Subsequently, the lighting is normalized

using a mixture of windowed histogram �tting transfer functions. The e�ectiveness of the

normalization technique was then illustrated with several examples.

Next, the details of the Karhunen-Loeve based statistical detection and recognition

algorithm were presented. The KL transform is used to compress the face data by over two

orders of magnitude. In addition, we adapted the KL transform to function as a detection

mechanism for improving the localization of faces and for discarding incorrect localizations.

In addition, the KL provided a convenient way of matching a probe image to a database of

faces using distance measurements.

The complete implementation was then described. The assembly of individual modules

in software as well as the user interface were discussed. We then tested the system with

arbitrary input images to determine its e�ectiveness at localizing faces. Then, the recogni-

tion rates were computed on a standard database. We also performed a sensitivity analysis

to determine the e�ect of localization on recognition.

The localization and recognition results obtained demonstrate the algorithm's ability

to handle a variety of pose changes, illumination conditions and background clutter. This

is due to the 3D normalization stage which links the localization output to the recognition

engine. Thus, we overcome the constraints of holistic linear recognition which requires mug-

shot input images. The 3D normalization and illumination correction act as an intermediate

step which links the robust feature detection stage to the precise linear recognition stage.

1. Contributions

We approached face detection using a hierarchical, multi-scalar, blob and limb search.

The use of low-level attentional mechanisms and symmetry was found to be e�cient for face

localization and robust to pose variations. Traditional face localization techniques require

contrived images and/or excessive computational resources.

We also introduced the selective symmetry transform to extend the concepts of sym-

metric enclosure to non-circular contours (such as the semi-elliptical ones found in human
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faces). This permits the selective detection of particular blob shapes. Most other facial

contour estimation techniques are not motivated by low-level perception theory and utilize

template matching or deformable models without a measure of symmetric enclosure.

Traditionally, there have been two approaches to face recognition: feature-based tech-

niques and holistic techniques. We propose a way of bridging the gap between the two tech-

niques by synthesizing mug-shot images from arbitrary input images with a high-quality

3D normalization. The 3D normalization involves a deformable 3D model of the average

human face which produces superior normalization for out-of-plane rotations than other

techniques. Thus, we combine the robust face detection of a feature-based stage with the

precise classi�cation capabilities of a linear, holistic, recognition stage.

We proposed the use of mixed-histogram �tting to correct for illumination. The gradual

mixture of di�erent histogram correction functions allows a smooth illumination correction

for both sides of a face. Typically, illumination correction was performed on the face as

whole. We window the histogram analysis and use weighted mixtures of the histogram

transfer functions to achieve superior illumination correction.

Finally, we proposed a sensitivity analysis relating the localization accuracy to the

recognition certainty. This form of analysis relates the performance of two di�erent com-

ponents of face recognition: localization and classi�cation.

2. Direction of Future Work

Current work is being done to improve the accuracy of the normalization, localiza-

tion and recognition. Furthermore, other possible applications of the algorithm are being

investigated.

We are investigating alternate ways of computing the WP3P to obtain a more accurate

alignment of the 3D model. As was shown in the sensitivity analysis, the recognition is too

sensitive to the nose localization. A 3D normalization which depends less upon this anchor

point might improve recognition results.

Alternativeely, we can improve localization accuracy. Some proposed techniques include

the use of eigenspace analysis of the mug-shot to determine normalization and localization

errors directly. In other words, we are investigating a way to compute a DFFS vector or

gradient as opposed to a simple DFFS scalar value. This would allow the recognition to

detect and report the orientation of small localization errors to the normalization stage.

Thus, a gradient descent could be used to optimize the localization. Furthermore, we also

have the option of performing more DFFS measurements in the neighbourhood around the
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initial localization from the face detection stage. The sample DFFS measurements could

be used to approximate a vector or DFFS gradient which could then be used by a gradient

descent optimization to quickly converge to a superior localization.

We are also considering preceding the recognition stage with some transforms to de-

sensitize it to small errors in the localization stage. Preceding the KL transform with a

Fourier, discrete cosine or wavelet transform will yield some small spatial invariance which

might generate superior overall recognition rates. In addition, the size of the synthesized

mug-shots could be increased so that more pixels are used to represent a face. Such higher

resolution mug-shots could yield superior recognition rates. We are also investigating pos-

sible ways to group faces into categories (race, facial hair, sex, etc.) to generate specialized

eigenspaces for each class. This would yield more accurate recognition since eigenvectors

would be dedicated to the members of the group (i.e. eigenfaces for bearded men, eigen-

faces for women, etc.) Finally, we are testing the algorithm's recognition rates for multiple

training images per individual (instead of only one training image per individual).

The algorithm could be optimized to perform face tracking in real-time. This would

allow the face to be used as a control device for the handicapped or for gaze-detection-

based virtual reality. Furthermore, the algorithm could be used for low-bandwidth video

conferencing applications since the face data is compressed to 60 scalar coe�cients using the

KL decomposition. Finally, we propose the use of the algorithm in interactive 3D movies

since the 3D normalization allows the user to view many di�erent poses of an individual

from a single original photograph (or video stream). These are just a few of the many

applications of face recognition, detection and normalization.
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