
Graph Construction and b-Matching for Semi-Supervised Learning

Tony Jebara jebara@cs.columbia.edu

Department of Computer Science, Columbia University, New York, NY 10027, USA

Jun Wang jwang@ee.columbia.edu

Shih-Fu Chang sfchang@ee.columbia.edu

Department of Electrical Engineering, Columbia University, New York, NY 10027, USA

Abstract

Graph based semi-supervised learning (SSL)
methods play an increasingly important role
in practical machine learning systems. A
crucial step in graph based SSL methods
is the conversion of data into a weighted
graph. However, most of the SSL litera-
ture focuses on developing label inference al-
gorithms without extensively studying the
graph building method and its effect on per-
formance. This article provides an empiri-
cal study of leading semi-supervised meth-
ods under a wide range of graph construc-
tion algorithms. These SSL inference algo-
rithms include the Local and Global Consis-
tency (LGC) method, the Gaussian Random
Field (GRF) method, the Graph Transduc-
tion via Alternating Minimization (GTAM)
method as well as other techniques. Sev-
eral approaches for graph construction, spar-
sification and weighting are explored includ-
ing the popular k-nearest neighbors method
(kNN) and the b-matching method. As op-
posed to the greedily constructed kNN graph,
the b-matched graph ensures each node in the
graph has the same number of edges and pro-
duces a balanced or regular graph. Experi-
mental results on both artificial data and real
benchmark datasets indicate that b-matching
produces more robust graphs and therefore
provides significantly better prediction accu-
racy without any significant change in com-
putation time.

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

1. Introduction

Recently, semi-supervised learning (SSL) has prolifer-
ated in applied machine learning settings since labeled
data is often easily complemented with large unlabeled
datasets. Of the current SSL methods, graph based
approaches have emerged as methods of choice for gen-
eral1 semi-supervised tasks in terms of accuracy and
computational efficiency. Graph based methods treat
both labeled and unlabeled samples from the dataset
as nodes in a graph and then instantiate pairwise edges
between these nodes which are weighted by the affinity
between the corresponding pairs of samples. The small
portion of vertices with labels are then used by SSL
methods to perform propagation or diffusion on the
graph which provides unlabeled nodes with predicted
labels. In many graph based SSL methods, these node
labeling procedures are formalized as regularized func-
tion estimation on an undirected graph.

Many graph based SSL techniques involve three im-
portant choices. First, the user chooses a similar-
ity function or kernel for estimating the affinity be-
tween pairs of samples or the edge weight between
pairs of nodes. For both empirical and theoretical
reasons (Belkin & Niyogi, 2008), the Gaussian ker-
nel is widely used in most situations. Alternatively,
for histogram data such as word counts or the TF-
IDF representation of documents, the cosine measure
or χ2 distance may be preferred. Second, the user
selects an algorithm for finding a sparse weighted sub-
graph from the fully connected weighted graph be-
tween all pairs of nodes. Sparsity is important to
ensure that the SSL algorithms remain efficient and
robust to noise. The algorithm that recovers the sub-
graph may prune some edges as well as reweight other

1In general (agnostic) settings when no parametric in-
formation is available about the data distribution, graph
based semi-supervised learning performs well. If additional
parametric information is known, other methods may be
useful, however.

Graph Construction and b-Matching for Semi-Supervised Learning

edges. The most common algorithm for recovering a
sparse subgraph is the k nearest neighbors algorithm
(kNN). Each node merely recovers its k neighbors us-
ing the similarity function and instantiates k undi-
rected edges between itself and the neighbors. An-
other contender approach is the ǫ-neighborhood graph
which merely includes edges if samples are within dis-
tance of ǫ away from each other. In the SSL literature
(Zhu, 2005), the vertex connection, graph sparsifica-
tion and edge weighting methods need to be explored
to produce graphs that are appropriate for the sub-
sequent label inference algorithms. The final step re-
quires the user to select a graph based SSL algorithm,
i.e. specify how to diffuse the labels on the known
part of the graph to the unknown nodes. Most graph
based SSL methods estimate a continuous classifica-
tion function F ∈ R

|V |×c, where |V | is the number of
vertices and c is the number of label class, on the graph
by optimizing a predefined energy function. Typically,
the energy function imposes a trade-off between the
empirical risk on labeled vertices and consistency or
smoothness of the function on the graph (agreement
in the predictions on closely connected vertices). The
current best graph based SSL techniques include the
min-cut method (Blum & Chawla, 2001), the Gaus-
sian fields and harmonic functions method (Zhu et al.,
2003), the local and global consistency method (Zhou
et al., 2004), the manifold regularization or Laplacian
support vector machine (Belkin et al., 2005) and, most
recently, the alternating graph transduction method
(Wang et al., 2008).

This paper thoroughly explores the various combina-
tions of the above graph construction and label in-
ference algorithms. In addition, a novel graph con-
struction method is proposed which is known as b-
matching as an alternative to the k nearest neigh-
bor graph. Unlike k nearest neighbors which greedily
adds the k closest points to each node and may re-
turn graphs where some nodes have many more than k
neighbors (some nodes get selected very often by other
nodes), b-matching ensures the graph is exactly regu-
lar: every node has b neighbors at termination. While
b-matching is a popular tool in auctions, operations
research, circuit layout and many other optimization
settings, it has yet to be applied in semi-supervised set-
tings. In addition it can be computationally demand-
ing in traditional implementations. However, in the
recent work (Huang & Jebara, 2007), a fast implemen-
tation of b-matching was developed using a belief prop-
agation algorithm which (despite loops in the result-
ing Bayesian network) guarantees convergence to the
global solution in cubic time in the number of nodes in
the graph. Recent results show that (under some con-

ditions) the belief propagation approach can converge
in only quadratic time (Salez & Shah, 2009) for dense
networks (further speedup is possible if the network
itself is sparse to begin with). In practice, b-matching
(using belief propagation) is not significantly more de-
manding than the label inference and label propaga-
tion methods that follow it. Therefore it is a suitable
alternative to the k-nearest neighbor graph construc-
tion method. In investigating the graph construction
aspect of SSL, this article also considers b-matching
which, surprisingly, performs significantly better than
kNN, the previous contender. While kNN is compu-
tationally efficient and leads to accurate SSL, greed-
ily connecting neighborhood vertices usually results in
imbalance between the degrees of vertices and uneven
graph connectivity. This article proposes b-matching
as a tool for graph based semi-supervised learning and
experimental results on both artificial data and real
benchmark data shows that it produces significant im-
provement in accuracy.

The remainder of this paper is organized as follows.
In Section 2, we describe the details of the graph con-
struction methods prior to the label inference stage,
in particular neighborhood based methods and b-
matching methods. Section 3 reviews various state-
of-the art SSL algorithms. Section 4 provides ex-
perimental validation for the algorithms on both toy
and benchmark datasets, including text classification
and digit recognition. Comparisons with leading semi-
supervised methods are investigated. Concluding re-
marks and a discussion are then provided in Section 5.
Appendix A provides details of the implementation for
b-matching based on belief propagation.

2. Graph Construction for

Semi-Supervised Learning

Assume we are given iid (independent and identically
distributed) labeled samples {(x1, y1), . . . , (xl, yl)} as
well as unlabeled samples {xl+1, . . . ,xl+u} drawn from
a distribution p(x, y). The goal of semi-supervised
learning is to infer the missing labels {yl+1, . . . , yl+u}
corresponding to the unlabeled samples. Define the
set of labeled inputs as Xl = {x1, . . . ,xl} with cardi-
nality |Xl| = l and the set of unlabeled inputs Xu =
{xl+1, . . . ,xl+u} of cardinality |Xu| = u. A crucial
component of applying graph based semi-supervised
learning is the estimation of a weighted undirected
sparse graph G from the input data X = Xl ∪ Xu.
Subsequently, a labeling algorithm uses G and the
known labels Yl = {y1, . . . , yl} to provide estimates
Ŷu = {ŷl+1, . . . , ŷl+u} which hopefully agree with the
true labels Yu = {yl+1, . . . , yl+u} as measured by an

Graph Construction and b-Matching for Semi-Supervised Learning

appropriately chosen loss function.

In this section, the graph construction X → G is
addressed. In the subsequent section, the inference
method {G,Yl} → Yu is discussed. Given input data
X of cardinality |X | = l + u, graph construction pro-
duces a graph G = (V,E) consisting of n = l + u
vertices V where each vertex Vi is associated with the
sample xi. Furthermore, take E to be the set of undi-
rected edges between pairs of vertices. It is common to
also associate a weighted symmetric adjacency matrix
W with the edges E in G where W ∈ R

n×n has zeros
on its diagonal and each scalar Wij represents the edge
weight between node Vi and node Vj . The estimation
of G from X usually proceeds in two steps.

The first step is to compute a similarity score be-
tween all pairs of nodes using a similarity function.
This creates a full adjacency matrix A ∈ R

n×n, where
Aij = k(xi,xj) is computed using kernel function k(·)
to measure sample similarity. Subsequently, in the sec-
ond step of graph construction, the matrix A is spar-
sified and reweighted to produce the final matrix W .
Sparsification is important since it leads to improved
efficiency in the label inference stage, better accuracy
and robustness to noise. Furthermore, the kernel func-
tion k(·) is often only locally useful as a similarity and
does not recover reliable weight values between pairs
of samples that are relatively far apart.

2.1. Graph Sparsification

Starting with the fully connected matrix A ∈ R
n×n,

sparsification removes edges by recovering a binary
matrix P ∈ B

n×n where Pij = 1 indicates that an
edge is present between sample xi and xj and Pij = 0
indicates the edge is absent (assume Pii = 0 unless
otherwise noted). This article will primarily inves-
tigate two graph sparsification algorithms: neighbor-
hood approaches including the k-nearest neighbors al-
gorithm and matching approaches such as b-matching
(BM). All such methods operate on the matrix A or,
equivalently, the distance matrix D ∈ R

n×n obtained
from A element-wise as Dij =

√

Aii +Ajj − 2Aij

since it is possible to convert a similarity func-
tion k(·) into a distance function via d(xi,xj) =
√

k(xi,xi) + k(xj ,xj) − 2k(xi,xj).

2.2. Sparsification via Neighborhood Methods

There are two typical ways to build a neighborhood
graph, the ǫ-neighborhood graph connecting samples
within a distance of ǫ, and the kNN graph con-
necting k closest samples. A recent study showed
the dramatic influences these two different neighbor-

hood methods have on clustering techniques (Maier &
Luxburg, 2009). The kNN graph remains the more
common approach since it is more adaptive to scale
and data density while an improper threshold value in
the ǫ-neighborhood graph could result in disconnected
components or subgraphs in the dataset or even iso-
lated singleton vertices (Figure 1 (b)). In this paper,
kNN will be used for neighborhood graph construction
since the ǫ-neighborhood graphs provide consistently
weaker performance.

The k-nearest neighbor graph is a graph in which two
vertices i and j are connected by an edge if the dis-
tance Dij between i and j is k-th smallest among the
distances distances from i to other objects in V \ i.
Roughly speaking, the k-nearest neighbors algorithm
starts with a matrix P̂ of all zeros and for each point,
searches for the k closest points to it (without con-
sidering itself). If a point j is one of the k closest
neighbors to i, then we set P̂ij = 1. Finally, the ma-

trix is symmetrized as follows Pij = max(P̂ij , P̂ji). It
is straightforward to show that k-nearest neighbors is
solving the following optimization problem:

min
P̂∈B

∑

ij
P̂ijDij (1)

s.t.
∑

j
P̂ij = k, P̂ii = 0, ∀i, j ∈ 1, . . . , n

and then produces the solution P = max(P̂ , P̂⊤). This
greedy algorithm is in fact not solving a well defined
optimization problem over symmetric binary matrices.
In addition, since it produces a symmetric matrix only
via the adhoc maximization over P̂ and its transpose2,
the solution P it produces does not satisfy the equal-
ity

∑

k Pij = k but rather only satisfies the inequality
∑

j Pij ≥ k. Ironically, despite conventional wisdom
and the nomenclature, the k-nearest-neighbors algo-
rithm is producing an undirected subgraph with more
than k neighbors for each node. It behooves the prac-
titioner to consider the b-matching algorithm which
actually achieves the desired output.

2.3. Sparsification via b-Matching

The b-matching problem generalizes maximum weight
matching (linear assignment problem), where the ob-
jective is to find the binary matrix to minimize the
following optimization problem:

min
P∈B

∑

ij PijDij (2)

s.t.
∑

j Pij = b, Pii = 0, Pij = Pji, ∀i, j ∈ 1, . . . , n

2It is possible to replace the maximization operator with
minimization to produce a symmetric matrix yet in the

setting P = min(P̂ , P̂⊤) the solution P only satisfies the
inequality

P

j
Pij ≤ k and not the desired equality.

Graph Construction and b-Matching for Semi-Supervised Learning

achieving symmetry directly without post-processing.
Here, the symmetric solution is recovered up-front by
enforcing the additional constraints Pij = Pji. The
matrix then satisfies the equality

∑

j Pij =
∑

i Pij = b
strictly. The solution to Eq. 2 is not quite as straight-
forward or efficient to obtain as the greedy k-nearest-
neighbors algorithm. A polynomial time O(bn3) solu-
tion has been known yet recent advances show much
faster variants are possible via (guaranteed) loopy be-
lief propagation (Huang & Jebara, 2007). In Figure
1, an intuitive demonstration of neighborhood graphs
and b-matching graph are showed, where appropri-
ate values of ǫ were chosen to make the total num-
ber of edges in ǫ-neighborhood graphs comparable
with the other graphs. Compared with the neighbor-
hood graph, the b-matching graph is balanced or b-
regular. In other words, each vertex in the b-matched
graph has only b edges connecting it to other vertices.
This advantage plays a key role when conducting la-
bel propagation on typical samples X which are un-
evenly and non-uniformly distributed. An efficient im-
plementation for the b-matching problem is available
online from the authors of the loopy belief propaga-
tion method (Huang & Jebara, 2007), which handles
both unipartite and bipartite graphs. Previous work
also applied b-matching to remove spurious edges and
sparsify a graph from the original fully connected ad-
jacency matrix. For instance, in spectral clustering
analysis, b-matching showed empirical advantages (Je-
bara & Shchogolev, 2006). This article focuses on the
application of maximum weight b-matching for spar-
sification and then semi-supervised learning. In addi-
tion, due to the faster belief propagation implementa-
tion (which is detailed in the Appendix), it is possible
to apply the method to large scale problems without
significantly increasing the runtime of the overall semi-
supervised learning procedure.

Once a graph has been sparsified and a binary ma-
trix P is available to delete unwanted edges, several
procedures can then be used to recompute the weights
originally in the matrix A to produce a final set of edge
weights W .

2.4. Graph Edge Re-Weighting

Given the kernel matrix A and the binary linkage in-
formation P from the previous sections, a number of
edge weighting schemes are then applied to estimate
the weights W of the the now sparse graph. When-
ever Pij = 0, the edge weight is also Wij = 0 however
Pij = 1 implies that Wij ≥ 0. This article considers
three possible approaches for estimating the non-zero
components of W .

The simplest approach for building the weighted graph
is the binary (BN) weighting approach, where all the
linked edges in the graph are given the weight 1 and the
edge weights of disconnected nodes are given weight
0. In other words, this setting simply uses W = P .
However, this uniform weight on graph edges can be
sensitive, in particular if some of the graph nodes were
improperly connected by the sparsification procedure
(either the neighborhood based procedures or the new
b-matching procedure).

An alternative approach is Gaussian kernel (GK)
weighting which is often applied to modulate sample
similarity. Therein, the edge weight between two con-
nected samples xi and xj is computed as:

Wij = Pij exp

(

−
d(xi,xj)

2σ2

)

(3)

where the function d(xi,xj) evaluates the dissimilar-
ity of sample xi and xj and σ is the kernel bandwidth
parameter. There is are many choices for the distance
function d(·) including any ℓp distance and the χ2 dis-
tance, as listed below:

d1(xi,xj) = |xi − xj | d2(xi,xj) =‖ xi − xj ‖ (4)

d3(xi,xj) =
∑

k

(xi,k − xj,k)2

xi,k + xj,k

The ℓ2 distance is widely used in previous research
(Zhu, 2005), while χ2 distance is useful for histograms
(Zhang et al., 2007). Moreover, the cosine distance is
another straightforward way to compute scale invari-
ant sample similarly and is commonly used for the task
of text classification (Belkin et al., 2005).

One final way of estimating edge weight for the con-
nected edges is motivated by the locally linear embed-
ding technique presented by (Roweis & Saul, 2000).
In this procedure, a novel edge weighting model using
the non-negative coefficients of the locally linear recon-

struction (LLR) is performed as explicated in (Wang
& Zhang, 2008). Given the sparse connectivity matrix
P , the error of a locally linear reconstruction xi given
its (sparse) connectivity information (or neighborhood
information, equivalently) is defined as:

εi = ‖xi −
n

∑

j=1

PijWijxj‖
2. (5)

The best local linear reconstruction can be achieved
by minimizing the above reconstruction error. Since
direct optimization on Eq. 5 could generate negative
coefficients for Wij , constraints are imposed on the
optimization such that the weights are non-negative
and normalize to unity as follows:

Graph Construction and b-Matching for Semi-Supervised Learning

min
W

∑

i

‖xi −
n

∑

j=1

PijWijxj‖
2 (6)

s.t.
∑

j
Wij = 1,Wij ≥ 0.

By considering all neighborhoods for each point as de-
termined by Pij , it is possible to reconstruct an en-
tire set of edge weights. This gives another procedure
for setting the edge weights W from the sparsified bi-
nary connectivity P . Also, note that in all three edge
weighting procedures, a value of Pij = 0 implies that
Wij = 0.

This final step in the graph construction procedure
ensures that the unlabeled data X has now been con-
verted into a graph G with a weighted sparse undi-
rected adjacency matrix W . Given this graph and
some label information Yl, any of the current popular
algorithms for graph based SSL can now be brought
to bear on the labeling problem.

3. Label Diffusion and Inference

Given the constructed graph G = {V,E}, whose geo-
metric structure is represented by the weight matrix
W , the label inference task is to diffuse the known la-
bels Yl to all the unlabeled vertices Vu in the graph
and estimate Ŷu. Designing a robust label diffusion
algorithm for such graphs is a widely studied problem
and many recent methods are surveyed in (Zhu, 2005;
Wang & Zhang, 2008).

In most of these SSL approaches, several standard
quantities are computed from the edge weights W , for
instance the diagonal node degree D = {dii}, where
dii =

∑

iWij , the graph Laplacian △ = D −W , and
the normalized graph Laplacian L = D−1/2 △D−1/2.
The label information is formulated as a label matrix
Y ∈ B

|V |×c, where Yij = 1 if sample xi is associated
with label j for j ∈ {1, 2, · · · c} and Yij = 0 otherwise.
For single label problems (as opposed to multi-label
problems), the constraints

∑

j Yij = 1 are also im-
posed. The SSL methods then utilize the graph and
W as well as the known labels to recover a continu-
ous classification function F = [Fl Fu]

⊤ ∈ R
|V |×c by

optimizing a predefined energy cost on the graph. A
number of approaches for recovering F will be consid-
ered and are summarized below.

Gaussian Random Fields (GRF): (Zhu et al., 2003)
proposed Gaussian random fields and harmonic func-
tions for optimizing the following cost on a weighted
graph G to recover the classification function:

min
F∈R|V |×c

tr(F⊤ △ F). (7)

Two conditions are imposed on the harmonic function
F , △Fu = 0 for unlabeled samples, and Fl = Yl on
labeled data.

Local and Global Consistency (LGC): Instead of
clamping the classification function on labeled nodes
by setting the hard constraint Fl = Yl, (Zhou et al.,
2004) presented an elastic fitness term to regularize
the energy function as follows:

min
F∈R|V |×c

tr{F⊤LF + µ(F − Y)⊤(F − Y)}. (8)

where the parameter µ ∈ [0 ∞) balances the trade-
off between local fitting and global smoothness of the
function F .

Graph Transduction via Alternating Minimiza-
tion (GTAM): Both the above label diffusion methods
depend on a univariate energy function and treat the
classification function F as the only variable of inter-
est. Since the given labels launch the label diffusion
process, the above methods are extremely sensitive to
the choice (and noisiness) of the initially provided la-
bels. To alleviate the dependency on the initial labels,
(Wang et al., 2008) proposed a bivariate transductive
formulation which alternates optimization of both the
classification function F and the predicted binary la-
bel variables Yu or Yu in matrix form. Specifically, the
energy function is defined as:

min
F∈R

|V |×c

Y ∈B
|V |×c

tr
{

F⊤LF + µ(F − V F)⊤(F − V Y)
}

s.t.
∑

j Yij = 1 (9)

where V is the label regularization matrix, which mod-
ulates label importance and class ratios. This trans-
ductive graph labeling approach provided significant
improvements in accuracy (Wang et al., 2008).

These three label prediction methods will be com-
bined with the variety of graph sparsification and edge
reweighting procedures in Table 1 to determine in a
thorough manner which configurations and algorithms
are best suited for semi-supervised learning in prac-
tice. The table shows the shorthand notation that will
be used to refer to the various combinations of spar-
sification and edge-reweighting schemes that will be
considered.

Table 1. The graph construction using different types of
sparsification and re-weighting methods.

Binary Gaussian Locally Linear

Kernel Reconstruction

kNN KNN-BN KNN-GK KNN-LLR

b-Matching BM-BN BM-GK BM-LLR

Graph Construction and b-Matching for Semi-Supervised Learning

(a) (d)(c)(b)

Figure 1. The synthetic dataset used for evaluating the graph construction methods. a) The synthetic data; b) the
ǫ-neighborhood graph; c) the kNN graph (k = 10); d) the b-matched graph (b = 10).

4. Experiments

4.1. Synthetic Data

The synthetic dataset used in these experiments is
shown in Figure 1 (a). Clearly, this dataset contains
two clusters of points, a dense Gaussian cluster sur-
rounded by a ring cluster. Furthermore, the cluster
data is unevenly sampled; one cluster is dense and the
other is fairly sparse.

The three label prediction approaches, GRF, LGC

and GTAM, were investigated under different graph
sparsification and edge reweighting methods. Note
that the ℓ2 distance was used in the Gaussian ker-
nel weighting (see Table 1). The experiment consisted
of 50 folds or runs where each fold involved labeling
the rest of the dataset given a single positive and a
single negative example drawn from each class ran-
domly. The average error rate over the 50 folds is
reported in Figure 2 for different graphs construction
and labeling algorithms. The figure shows that the
b-matching graph significantly improved stability and
robustness across a wide range of choices for b. It im-
proves over the kNN graph under all the weighting
models and all label diffusion approaches. When the
appropriate values of k and b are selected, the simple
binary b-matching graph provides better performance
than the kNN graph with more sophisticated weight-
ing approaches. A demonstration of the constructed
graphs by b-matching and neighborhood connection
models (kNN and ǫ-neighborhood) is shown in Figure
1 (b)(c)(d), where more cross-cluster edges are created
by the kNN approach due to the unevenly distributed
sample points. Note that ǫ-neighborhood graphs were
not included in some experiments because of overall
weak performance. This is because they have a ten-
dency to fragment the dataset into disconnected com-
ponents which makes the performance of SSL deterio-
rate. In fact, most edges in the ǫ-neighborhood graphs
appeared only in the central dense cluster in the syn-
thetic dataset across most choices of ǫ, as shown in
Figure 1 (b).

In another experiment, we evaluate the robustness of
the b-matched graph and the kNN graph with respect

to the Gaussian kernel size σ. Since GTAM was fairly
robust to the choice of σ, only the experiments using
the LGC and GRF methods were reported here. The
prediction errors for different values of σ are shown in
Figure 3. Clearly, the b-matched graph is much more
robust to the kernel bandwidth parameter for both the
LGC and GRF methods.

(a) (b)

Figure 3. Robustness to different kernel bandwidth set-
tings using the Gaussian kernel weighting. The x axis
shows the kernel bandwidth parameter and the y axis
shows the error rate (%) for a) the LGC method, and b)
the GRF method.

4.2. Real Benchmark Data

To evaluate the performance of SSL approaches across
the wide range of graph construction methods, we
carried out experiments on real benchmark data sets
(Chapelle et al., 2006). Two datasets (USPS and
TEXT) were used in these experiments. Moreover, we
used the originally suggested data splits to conduct our
experiments for fair comparison, where each data set
is associated with 12 different partitions of labeled and
unlabeled subsets. For all experiments, both 10 and
100 labeled samples are tested. The parameters for
these experiments are uniformly set as k = b = 12,
µ = 0.05. The kernel size for GK reweighting is
σ = d̄k/3, where d̄k is the average distance between
each sample and its kth nearest neighbor (Chapelle
et al., 2006). In addition, the ℓ2 distance was used for
the USPS data and the χ2 distance was used for Text
data. The experimental results are shown (in terms of
average error rate) in Table 2.

In the table, 5 more methods were also evaluated in
addition to the techniques mentioned in this article
since they were among the best performers (out of
a total of 13 methods) reported in the recent sur-

Graph Construction and b-Matching for Semi-Supervised Learning

(b)(a) (c)

Figure 2. Robustness to different values of k in the kNN graph and b in the b-matched graph. The x axis explores various
settings for k or b while the y axis reports the error rate (%) of a) the GRF method, b) the LGC method, and c) the
GTAM method.

vey paper (Chapelle et al., 2006). Along with these
5 competitor techniques, the three label diffusion al-
gorithms GRF, LGC, and GTAM were tested using
different graphs construction methods. From the ta-
ble of results, some statistically significant conclusions
can be made. First, the b-matched graph consistently
improves performance compared with the kNN graph
in most of the cases. A drastic example is seen in
the improvement b-matching brings to GTAM on the
TEXT dataset. Second, the GTAM method had con-
sistently better accuracy than the other label diffusion
methods (LGC and GRF) which otherwise had compa-
rable accuracy (in other words GTAM≫LGC≃GRF).

Table 2. Experimental results on the benchmark data sets
(in terms of % error rate) for the variety of label prediction
algorithms as well as graph construction approaches.

Data set USPS TEXT

of labels 10 100 10 100

QC + CMN 13.61 6.36 40.79 25.71

TSVM 25.2 9.77 31.21 24.52

LDS 17.57 4.96 27.15 23.15

Laplacian RLS 18.99 4.68 33.68 23.57

CHM (normed) 20.53 7.65 - -

GRF-KNN-BN 19.11 9.07 47.65 41.56

GRF-KNN-GK 13.01 5.58 48.2 41.57

GRF-KNN-LLR 19.20 11.17 47.14 35.17

GRF-BM-BN 18.98 9.06 43.16 25.27

GRF-BM-GK 12.93 5.34 42.96 25.29

GRF-BM-LLR 18.96 10.08 42.95 24.56

LGC-KNN-BN 14.99 12.34 48.63 43.44

LGC-KNN-GK 12.34 5.49 49.06 41.51

LGC-KNN-LLR 15.88 13.63 44.88 37.52

LGC-BM-BN 14.62 11.71 40.88 26.19

LGC-BM-GK 11.92 5.21 41.32 23.85

LGC-BM-LLR 14.67 12.19 40.27 24.92

GTAM-KNN-BN 6.59 5.98 49.36 46.67

GTAM-KNN-GK 4.86 2.56 49.07 46.06

GTAM-KNN-LLR 6.77 6.19 41.42 39.59

GTAM-BM-BN 6.00 5.08 17.74 16.78

GTAM-BM-GK 4.62 3.08 19.73 17.89

GTAM-BM-LLR 5.59 5.14 16.06 14.87

5. Conclusion

Though a gamut of graph-based semi-supervised learn-
ing algorithms has been developed in the past years,
the influence of graph construction procedures on
such algorithms has only received limited study de-
spite its critical impact on accuracy (Wang & Zhang,
2008). Most implementations of SSL apply neighbor-
hood methods (such as k nearest neighbors) to create
graphs for semi-supervised learning, yet this article
shows that these can produce imbalanced and irreg-
ular graphs both in synthetic and real data situations.
This article proposed the maximum weight b-matching
method for graph construction (or sparsification) and
showed its consistent empirical advantage across a
wide range of algorithms, weighting procedures, and
datasets. In addition, the article systematically stud-
ied the impact of graph construction approaches on
a variety of semi-supervised algorithms. This study
confirms the importance of graph construction meth-
ods in semi-supervised learning as well as motivates b-
matching as a valuable alternative to k-nearest neigh-
bors which many practitioners believe produces regu-
lar undirected graphs yet in practice often generates
irregular graphs. While theoretical guarantees for the
advantages of b-matching are not provided in this ar-
ticle they are the subject of future work.

A. b-Matching via Belief Propagation

Given an adjacency matrix C ∈ R
n×n of a graph

G = (V,E) with n nodes V and O(n2) edges E, the
maximum weight b-matching problem finds a subgraph
of G with maximum weight while constraining the
number of edges for each vertex to equal b. b-matching
is a direct generalization of the maximum weight uni-
partite matching problem (b = 1) which is solved by
Edmonds’ algorithm in polynomial time O(n3) (Ed-
monds, 1965). In (Bayati et al., 2005), the 1-matching
problem was formulated as a discrete probability dis-
tribution and solved by max-product loopy belief prop-
agation (BP) to recover the maximum a posteriori
(MAP) assignment in O(n3). In (Huang & Jebara,
2007), the extension of loopy belief propagation from

Graph Construction and b-Matching for Semi-Supervised Learning

1-matching to b-matching was provided as well as a
proof of convergence in O(bn3). Furthermore, various
implementation issues and changes to the canonical
message passing rules of belief propagation were pro-
vided to maintain computational efficiency (standard
message passing involves messages of exponential size)
leading to an efficient tool to solve the combinatorial
b-matching problems. Here we show the algorithm in
the bipartite case where the nodes in the graph are
split into two sets a priori before being b-matched.
The extension to the unipartite case is straightforward
simply by modifying the algorithm such that messages
are passed between all pairs of nodes instead of only
in across the bipartition.

Assume that b-matching returns the neighbor vertex
sets N (ui) and N (vj) for vertex ui and vj , respectively.
The combinatorial problem in Eq. 2 can be written as:

max
N

W(N) = max
N

|V |
X

i=1

X

vk∈N (ui)

Cik+

|V |
X

j=1

X

ul∈N (vj)

Clj (10)

For each vertex, two random variables are defined as
zi ∈ Z and sj ∈ S and zi = N (ui) and sj = N (vj).
Hence we can have the following potential functions:

φ(zi) = exp(
∑

vj∈zi

Cij) φ(sj) = exp(
∑

ui∈sj

Cij)

ψ(zi, sj) = ¬(vj ∈ zi ⊕ ui ∈ sj). (11)

By multiplying the above potential functions and
pairwise clique functions, the objective function for
weighted b-matching problem can be formulated as
a probability distribution via p(Z, S) ∝ exp(W(N))
(Chung, 1997), where the joint distribution can be ex-
pressed as:

p(Z, S) =
1

Z

|V |
∏

i=1

|V |
∏

j=1

ψ(zi, sj)

|V |
∏

k=1

φ(zi)φ(sj) (12)

Max-product message passing on the above distribu-
tion is guaranteed to converge to the true maximum
in O(n3) time on bipartite graphs, the proof provided
in (Huang & Jebara, 2007) is omitted here for brevity.
In practice, convergence is much faster than this worst
case runtime. Furthermore, (Salez & Shah, 2009)
prove that, under mild assumptions on the matrix C,
belief propagation for matching problems can converge
in O(n2) for dense graphs. If the graph is sparse, con-
vergence is typically O(|E|) time or proportional to
the number of edges in the graph.

References

Bayati, M., Shah, D., & Sharma, M. (2005). Maxi-
mum weight matching via max-product belief prop-

agation. Int. Symp. on Information Theory (pp.
1763–1767).

Belkin, M., & Niyogi, P. (2008). Towards a Theoretical
Foundation for Laplacian Based Manifold Methods.
J. Comput. System Sci., 1289–1308.

Belkin, M., Niyogi, P., & Sindhwani, V. (2005). On
manifold regularization. Int. Workshop on Artificial

Intelligence and Statistics.
Blum, A., & Chawla, S. (2001). Learning from labeled

and unlabeled data using graph mincuts. Int. Conf.

on Mach. Learn. (pp. 19–26).
Chapelle, O., Schölkopf, B., & Zien, A. (Eds.). (2006).

Semi-supervised learning. Cambridge, MA: MIT
Press.

Chung, F. (1997). Spectral Graph Theory. American
Mathematical Society.

Edmonds, J. (1965). Paths, trees and flowers. Cana-

dian Journal of Mathematics, 17, 449–467.
Huang, B., & Jebara, T. (2007). Loopy belief propaga-

tion for bipartite maximum weight b-matching. Int.

Workshop on Artificial Intelligence and Statistics.
Jebara, T., & Shchogolev, V. (2006). B-Matching for

Spectral Clustering. The European Conf. on Mach.

Learn. (pp. 679–686). Springer.
Maier, M., & Luxburg, U. (2009). Influence of graph

construction on graph-based clustering measures.
The Neural Information Processing Systems, 22,
1025–1032.

Roweis, S., & Saul, L. (2000). Nonlinear Dimension-
ality Reduction by Locally Linear Embedding. Sci-

ence, 290, 2323–2326.
Salez, J., & Shah, D. (2009). Optimality of Be-

lief Propagation for Random Assignment Problem.
ACM-SIAM Symp. on Discrete Algorithms.

Wang, F., & Zhang, C. S. (2008). Label propagation
through linear neighborhoods. IEEE Trans. Knowl.

Data Eng., 20, 55–67.
Wang, J., Jebara, T., & Chang, S. F. (2008). Graph

transduction via alternating minimization. Int.

Conf. on Mach. Learn. (pp. 1144–1151).
Zhang, J., Marszalek, M., Lazebnik, S., & Schmid, C.

(2007). Local Features and Kernels for Classifica-
tion of Texture and Object Categories: A Compre-
hensive Study. Int. J. Compt. Vision., 73, 213–238.

Zhou, D., Bousquet, O., Lal, T., Weston, J., &
Schölkopf, B. (2004). Learning with local and global
consistency. The Neural Information Processing

Systems (pp. 321–328).
Zhu, X. (2005). Semi-supervised learning literature

survey (Technical Report 1530). Computer Sciences,
University of Wisconsin-Madison.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-
supervised learning using gaussian fields and har-
monic functions. Int. Conf. on Mach. Learn. (pp.
912–919).

