Loopy Belief Propagation for Bipartite Maximum Weight

 b-Matching

 b-Matching}

Bert Huang and Tony Jebara
Computer Science Department
Columbia University
New York, NY 10027

Outline

1. Bipartite Weighted b-Matching
2. Edge Weights As a Distribution
3. Efficient Max-Product
4. Convergence Proof Sketch
5. Experiments
6. Discussion

Outline

1. Bipartite Weighted b-Matching
2. Edge Weights As a Distribution
3. Efficient Max-Product
4. Convergence Proof Sketch
5. Experiments
6. Discussion

Bipartite Weighted b-Matching

Bipartite Weighted b-Matching

On bipartite graph, $G=(U, V, E)$
$\left\{u_{1}, \ldots, u_{n}\right\} \in U$
$\left\{v_{1}, \ldots, v_{n}\right\} \in V$
$E=\left(u_{i}, v_{j}\right), \forall i \forall j$

Bipartite Weighted b-Matching

On bipartite graph, $G=(U, V, E)$
$\left\{u_{1}, \ldots, u_{n}\right\} \in U$
$\left\{v_{1}, \ldots, v_{n}\right\} \in V$
$E=\left(u_{i}, v_{j}\right), \forall i \forall j$
$A=$ weight matrix

s.t. weight of edge $\left(u_{i}, v_{j}\right)=A_{i j}$

Bipartite Weighted b-Matching

Task: Find the maximum weight subset of E such that each vertex has exactly b neighbors.

Bipartite Weighted b-Matching

Task: Find the maximum weight subset of E such that each vertex has exactly b neighbors.

Example:

Bipartite Weighted b-Matching

Classical Application: Resource Allocation

- Manual labor
- n workers
- n tasks

- Team of b workers needed per task.
- $A_{i j}$ skill of worker at performing task.

Bipartite Weighted b-Matching

Alternate uses of b-matching:

- Balanced k-nearest-neighbors
- Each node can only be picked k times.
- Robust to translations of test data.
- When test data is collected under different conditions (e.g. time, location, instrument calibration).

Bipartite Weighted b-Matching

Classical algorithms solve Max-Weighted b Matching in $O\left(b n^{3}\right)$ running time, such as:

- Blossom Algorithm (Edmonds 1965)
- Balanced Network Flow
(Fremuth-Paeger, Jungnickel 1999)

Outline

1. Bipartite Weighted b-Matching
2. Edge Weights As a Distribution
3. Efficient Max-Product
4. Convergence Proof Sketch
5. Experiments
6. Discussion

Edge Weights As a Distribution

- Bayati, Shah, and Sharma (2005) formulated the 1 -matching problem as a probability distribution.
- This work generalizes to arbitrary b.

Edge Weights As a Distribution

Variables:
Each vertex "chooses" b neighbors.

Example: u_{i}

Edge Weights As a Distribution

Variables:
Each vertex "chooses" b neighbors.

Edge Weights As a Distribution

Variables:
Each vertex "chooses" b neighbors.
For vertex u_{i},

$$
X_{i} \subset V, \quad\left|X_{i}\right|=b
$$

Similarly, for v_{j} have variable Y_{j}

Note: variables have $\binom{n}{b}$ possible settings.

Edge Weights As a Distribution

Weights as probabilities:
Since we sum weights but multiply probabilities, exponentiate.

$$
\begin{aligned}
\phi\left(X_{i}\right) & =\exp \left(\frac{1}{2} \sum_{v_{j} \in X_{i}} A_{i j}\right) \\
\phi\left(Y_{j}\right) & =\exp \left(\frac{1}{2} \sum_{u_{i} \in Y_{j}} A_{i j}\right)
\end{aligned}
$$

Edge Weights As a Distribution

Enforce b-matching:
Neighbor "choices" must agree

Example: Invalid settings

Edge Weights As a Distribution

Enforce b-matching:
Neighbor "choices" must agree

Edge Weights As a Distribution

Enforce b-matching:
Neighbor "choices" must agree
Pairwise compatibility function:

Edge Weights As a Distribution

$$
P(X, Y)=\frac{1}{Z} \prod_{i, j=1}^{n} \psi\left(X_{i}, Y_{j}\right) \prod_{k=1}^{n} \phi\left(X_{k}\right) \phi\left(Y_{j}\right)
$$

$$
\begin{gathered}
\phi\left(X_{i}\right)=\exp \left(\frac{1}{2} \sum_{v_{j} \in X_{i}} A_{i j}\right) \quad \phi\left(Y_{j}\right)=\exp \left(\frac{1}{2} \sum_{u_{i} \in Y_{j}} A_{i j}\right) \\
\psi\left(X_{i}, Y_{j}\right)=\neg\left(v_{j} \in X_{i} \oplus u_{i} \in Y_{j}\right) .
\end{gathered}
$$

Edge Weights As a Distribution

$$
P(X, Y)=\text { 代 } \prod_{i, j=1}^{n} \psi\left(X_{i}, Y_{j}\right) \prod_{k=1}^{n} \phi\left(X_{k}\right) \phi\left(Y_{j}\right)
$$

$$
\begin{gathered}
\phi\left(X_{i}\right)=\exp \left(\frac{1}{2} \sum_{v_{j} \in X_{i}} A_{i j}\right) \quad \phi\left(Y_{j}\right)=\exp \left(\frac{1}{2} \sum_{u_{i} \in Y_{j}} A_{i j}\right) \\
\psi\left(X_{i}, Y_{j}\right)=\neg\left(v_{j} \in X_{i} \oplus u_{i} \in Y_{j}\right) .
\end{gathered}
$$

Ignore the Z normalization, $P(X, Y)$ is exactly
the exponentiated weight of the b-matching.

Edge Weights As a Distribution

$$
P(X, Y)=\not{\nmid} \prod_{i, j=1}^{n} \psi\left(X_{i}, Y_{j}\right) \prod_{k=1}^{n} \phi\left(X_{k}\right) \phi\left(Y_{j}\right)
$$

$$
\begin{gathered}
\phi\left(X_{i}\right)=\exp \left(\frac{\left.\sqrt[y]{\mathbf{A}_{v_{j} \in X_{i}}} A_{i j}\right) \quad \phi\left(Y_{j}\right)=\exp \left(\frac{\sqrt[y]{\mathbf{4}}}{\mathbf{A}_{u_{i} \in Y_{j}}} A_{i j}\right)}{\psi\left(X_{i}, Y_{j}\right)=\neg\left(v_{j} \in X_{i} \oplus u_{i} \in Y_{j}\right) .} .\right.
\end{gathered}
$$

Also, since we're maximizing, ignore the $1 / 2$ (makes the math more readable).

Outline

1. Bipartite Weighted b-Matching
2. Edge Weights As a Distribution
3. Efficient Max-Product
4. Convergence Proof Sketch
5. Experiments
6. Discussion

Standard Max-Product

Send messages between variables:

$$
m_{X_{i}}\left(Y_{j}\right)=\frac{1}{Z} \max _{X_{i}}\left[\phi\left(X_{i}\right) \psi\left(X_{i}, Y_{j}\right) \prod_{k \neq j} m_{Y_{k}}\left(X_{i}\right)\right]
$$

Fuse messages to obtain beliefs (or estimate of max-marginals):

$$
b\left(X_{i}\right)=\frac{1}{Z} \phi\left(X_{i}\right) \prod_{k} m_{Y_{k}}\left(X_{i}\right)
$$

Standard Max-Product

Converges to true maximum on any tree structured graph (Pearl 1986).

We show that it converges to the correct maximum on our graph.

Standard Max-Product

Converges to true maximum on any tree structured graph (Pearl 1986).

We show that it converges to the correct maximum on our graph.

But what about the $\binom{n}{b}$-length message and belief vectors?

Efficient Max-Product

- Use algebraic tricks to reduce $\binom{n}{b}$-length message vectors to scalars.
- Derive new update rule for scalar messages.
- Use similar trick to maximize belief vectors efficiently.

Let's speed through the math.

Efficient Max-Product

Take advantage of binary $\psi\left(x_{i}, y_{j}\right)$ function:
Message vectors consist of only two values

$$
\begin{aligned}
& m_{x_{i}}\left(y_{j}\right) \propto \max _{v_{j} \in x_{i}} \phi\left(x_{i}\right) \prod_{k \neq j} m_{y_{k}}\left(x_{i}\right), \text { if } u_{i} \in y_{j} \\
& m_{x_{i}}\left(y_{j}\right) \propto \max _{v_{j} \notin x_{i}} \phi\left(x_{i}\right) \prod_{k \neq j} m_{y_{k}}\left(x_{i}\right), \text { if } u_{i} \notin y_{j}
\end{aligned}
$$

Efficient Max-Product

Take advantage of binary $\psi\left(x_{i}, y_{j}\right)$ function:
Message vectors consist of only two values

$$
\begin{aligned}
& m_{x_{i}}\left(y_{j}\right) \propto \max _{v_{j} \in x_{i}} \phi\left(x_{i}\right) \prod_{k \neq j} m_{y_{k}}\left(x_{i}\right), \text { if } u_{i} \in y_{j} \\
& m_{x_{i}}\left(y_{j}\right) \propto \max _{v_{j} \notin x_{i}} \phi\left(x_{i}\right) \prod_{k \neq j} m_{y_{k}}\left(x_{i}\right), \text { if } u_{i} \notin y_{j}
\end{aligned}
$$

If we rename these two values we can break up the product.

Efficient Max-Product

Take advantage of binary $\psi\left(x_{i}, y_{j}\right)$ function:
Message vectors consist of only two values

$$
\begin{gathered}
\mu_{x_{i} y_{j}} \propto \max _{v_{j} \in x_{i}} \phi\left(x_{i}\right) \prod_{u_{k} \in x_{i} \backslash v_{j}} \mu_{k i} \prod_{u_{k} \notin x_{i} \backslash v_{j}} \nu_{k i} \prod_{u_{k} \in x_{i} \backslash v_{j}} \mu_{x_{i} y_{j}} \propto \max _{v_{j} \notin x_{i}} \phi\left(x_{i}\right) \prod_{k i \notin x_{i} \backslash v_{j}} \nu_{k i} .
\end{gathered}
$$

If we rename these two values we can break up the product.

Efficient Max-Product

"Normalize" messages by dividing whole vector by $\nu_{x_{i}} y_{j}$

$$
\hat{\mu}_{x_{i} y_{j}}=\frac{\mu_{x_{i} y_{j}}}{\nu_{x_{i} y_{j}}} \quad \text { and } \quad \hat{\nu}_{x_{i} y_{j}}=1
$$

Efficient Max-Product

"Normalize" messages by dividing whole vector by $\nu_{x_{i}} y_{j}$

$$
\hat{\mu}_{x_{i} y_{j}}=\frac{\mu_{x_{i} y_{j}}}{\nu_{x_{i} y_{j}}} \quad \text { and } \quad \hat{\nu}_{x_{i} y_{j}}=1
$$

$\binom{n}{b}$-length vector \longrightarrow scalar

Efficient Max-Product

Derive update rule:

$$
\hat{\mu}_{x_{i} y_{j}}=\frac{\max _{j \in x_{i}} \phi\left(x_{i}\right) \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}}{\max _{j \notin x_{i}} \phi\left(x_{i}\right) \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}}
$$

Efficient Max-Product

Derive update rule:

$$
\begin{array}{r}
\hat{\mu}_{x_{i} y_{j}}=\frac{\max _{j \in x_{i}} \overbrace{\max _{j \notin x_{i}}\left(x_{i}\right)}^{\left.\operatorname{mox}_{i}\right)} \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}}{\prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}} \\
\phi\left(x_{i}\right) \propto \prod_{k \in x_{i}} \exp \left(A_{i k}\right)
\end{array}
$$

Efficient Max-Product

Derive update rule:

$$
\begin{aligned}
\hat{\mu}_{x_{i} y_{j}} & =\frac{\max _{j \in x_{i}} \phi\left(x_{i}\right) \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}}{\max _{j \notin x_{i}} \phi\left(x_{i}\right) \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}} \\
& =\frac{\max _{j \in x_{i}} \prod_{k \in x_{i}} \exp \left(A_{i k}\right) \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}}{\max _{j \notin x_{i}} \prod_{k \in x_{i}} \exp \left(A_{i k}\right) \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}}
\end{aligned}
$$

Efficient Max-Product

Derive update rule:

$$
\begin{aligned}
\hat{\mu}_{x_{i} y_{j}} & =\frac{\max _{j \in x_{i}} \phi\left(x_{i}\right) \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}}{\max _{j \notin x_{i}} \phi\left(x_{i}\right) \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}} \\
& =\frac{\max _{j \in x_{i}} \prod_{k \in x_{i}} \exp \left(A_{i k}\right) \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}}{\max _{j \notin x_{i}} \prod_{k \in x_{i}} \exp \left(A_{i k}\right) \prod_{k \in x_{i} \backslash j} \hat{\mu}_{k i}} \\
& =\frac{\exp \left(A_{i j}\right) \max _{j \in x_{i}} \prod_{k \in x_{i} \backslash j} \exp \left(A_{i k}\right) \hat{\mu}_{k i}}{\max _{j \notin x_{i}} \prod_{k \in x_{i}} \exp \left(A_{i j}\right) \hat{\mu}_{k i}}
\end{aligned}
$$

Efficient Max-Product

After canceling terms message update simplifies to

$$
\hat{\mu}_{x_{i} y_{j}}=\frac{\exp \left(A_{i j}\right)}{\exp \left(A_{i \ell}\right) \hat{\mu}_{y_{\ell} x_{i}}} \cdot \ell=\begin{aligned}
& b \text { th greatest setting } \\
& \text { of } k \text { for the term } \\
& \exp \left(A_{i k}\right) m_{y_{k}}\left(x_{i}\right), \text { s. } \mathbf{t .} k \neq j
\end{aligned}
$$

and we maximize beliefs with

$$
\begin{aligned}
\max _{x_{i}} b\left(x_{i}\right) & \propto \max _{x_{i}} \phi\left(x_{i}\right) \prod_{k \in x_{i}} \hat{\mu}_{y_{k} x_{i}} \\
& \propto \max _{x_{i}} \prod_{k \in x_{i}} \exp \left(A_{i k}\right) \hat{\mu}_{y_{k} x_{i}}
\end{aligned}
$$

Both these updates take $O(b n)$ time per vertex.

Outline

1. Bipartite Weighted b-Matching
2. Edge Weights As a Distribution
3. Efficient Max-Product
4. Convergence Proof Sketch
5. Experiments
6. Discussion

Convergence Proof Sketch

Convergence Proof Sketch

Assumptions:

- Optimal b-matching is unique.
- $\epsilon=$ difference between weight of best and 2 nd best b-matching is constant.
- Weights treated as constants.

Convergence Proof Sketch

Basic mechanism: Unwrapped Graph, T

1. Pick root node
2. Copy all neighbors
3. Continue but don't backtrack
4. Continue to depth d

Convergence Proof Sketch

Basic mechanism: Unwrapped Graph, T

1. Pick root node
2. Copy all neighbors
3. Continue but don't backtrack
4. Continue to depth d

u_{1}

Convergence Proof Sketch

Basic mechanism: Unwrapped Graph, T

1. Pick root node
2. Copy all neighbors
3. Continue but don't backtrack
4. Continue to depth d

Convergence Proof Sketch

Basic mechanism: Unwrapped Graph, T

1. Pick root node
2. Copy all neighbors
3. Continue but don't backtrack
4. Continue to depth d

Convergence Proof Sketch

Basic mechanism: Unwrapped Graph, T

1. Pick root node
2. Copy all neighbors
3. Continue but don't backtrack
4. Continue to depth d

Convergence Proof Sketch

Basic mechanism: Unwrapped Graph, T

- Construction follows loopy BP messages in reverse.
- True max-marginals of root node are exactly belief at iteration d.
- Max of unwrapped graph distribution is the maximum weight b-matching on tree.

Convergence Proof Sketch

Proof by contradiction:
What happens if optimal b-matching on T differs from optimal b-matching on G at root?

Convergence Proof Sketch

Best b-matching on T

Best b-matching on G
copied onto T

Convergence Proof Sketch

There exists at least one path on T that alternates between edges that are b-matched in each b-matching.

Convergence Proof Sketch

There exists at least one path on T that alternates between edges that are b-matched in each b-matching.

Convergence Proof Sketch

Claim: If depth d is great enough, if we replace the blue edges of this path with the red edges in the optimal b-matching on T, we get a new b-matching with greater weight.

Convergence Proof Sketch

Claim: If depth d is great enough, if we replace the blue edges of this path with the red edges in the optimal b-matching on T, we get a new b-matching with greater weight.

Convergence Proof Sketch

Claim: If depth d is great enough, if we replace the blue edges of this path with the red edges in the optimal b-matching on T, we get a new b-matching with greater weight.

Convergence Proof Sketch

Modifying optimal b-matching produced better b-matching

Original contradiction impossible.

We can analyze the change in weight by looking only at edges on path.

Convergence Proof Sketch

Loopy BP converges to true maximum weight b-matching in d iterations

$$
d \geq \frac{n}{\epsilon} \max _{i, j} A_{i j}=O(n)
$$

$\epsilon=$ difference between weight of best and 2 nd best b-matching.

Convergence Proof Sketch

Loopy BP converges to true maximum weight b-matching in d iterations

$$
d \geq \frac{n}{\epsilon} \max _{i, j} A_{i j}=O(n)
$$

$\epsilon=$ difference between weight of best and 2 nd best b-matching.

Running time of full algorithm: $O\left(b n^{3}\right)$

Outline

1. Bipartite Weighted b-Matching
2. Edge Weights As a Distribution
3. Efficient Max-Product
4. Convergence Proof Sketch
5. Experiments
6. Discussion

Experiments

Running time comparison against GOBLIN graph optimization library.

- Random weights.
- Varied graph size n from 3 to 100
- Varied b from 1 to $\lfloor n / 2\rfloor$

Experiments

Experiments: Translated Test Data

On toy data, translation cripples KNN but b-matching makes no classification errors.

Accuracy

Experiments

MNIST Digits with pseudo-translation

- Image data with background changes is like translation.
- Train on MNIST digits 3,5 , and 8 . 335588
- Test on new examples with various
"bluescreen" textures.

Experiments

Outline

1. Bipartite Weighted b-Matching
2. Edge Weights As a Distribution
3. Efficient Max-Product
4. Convergence Proof Sketch
5. Experiments
6. Discussion

Discussion

Provably convergent belief propagation for a new type of graph (b-matchings).

+ Empirically faster than previous algorithms.
+ Parallelizeable
- Only bipartite case.
- Requires unique maximum.

Interesting theoretical results coming out of sum-product for approximating marginals.

