Majorization for CRFs and Latent Likelihoods

Tony Jebara Anna Choromanska
Department of Computer Science Department of Electrical Engineering
Columbia University Columbia University
jebaralcs.columbia.edu aec2l63@columbia.edu
Abstract

The partition function plays a key role in probabilistic modeling including condi-
tional random fields, graphical models, and maximum likelihood estimation. To
optimize partition functions, this article introduces a quadratic variational upper
bound. This inequality facilitates majorization methods: optimization of com-
plicated functions through the iterative solution of simpler sub-problems. Such
bounds remain efficient to compute even when the partition function involves
a graphical model (with small tree-width) or in latent likelihood settings. For
large-scale problems, low-rank versions of the bound are provided and outper-
form LBFGS as well as first-order methods. Several learning applications are
shown and reduce to fast and convergent update rules. Experimental results show
advantages over state-of-the-art optimization methods.

1 Introduction

The estimation of probability density functions over sets of random variables is a central problem
in learning. Estimation often requires minimizing the partition function as is the case in conditional
random fields (CRFs) and log-linear models [1, 2]. Training these models was traditionally done
via iterative scaling and bound-majorization methods [3, 4, 5, 6, 1] which achieved monotonic con-
vergence. These approaches were later surpassed by faster first-order methods [7, 8, 9] and then
second-order methods such as LBFGS [10, 11, 12]. This article revisits majorization and repairs
its slow convergence by proposing a tighter bound on the log-partition function. The improved ma-
jorization outperforms state-of-the-art optimization tools and admits multiple versatile extensions.

Many decomposition methods for conditional random fields and structured prediction have sought
to render the learning and prediction problems more manageable [13, 14, 15]. Our decomposi-
tion, however, hinges on bounding and majorization: decomposing an optimization of complicated
functions through the iterative solution of simpler sub-problems [16, 17]. A tighter bound provides
convergent monotonic minimization while outperforming first- and second-order methods in prac-
tice!. The bound applies to graphical models [18], latent variable situations [17, 19, 20, 21] as well
as high-dimensional settings [10]. It also accommodates convex constraints on the parameter space.

This article is organized as follows. Section 2 presents the bound and Section 3 uses it for ma-
jorization in CRFs. Extensions to latent likelihood are shown in Section 4. The bound is extended
to graphical models in Section 5 and high dimensional problems in Section 6. Section 7 provides
experiments and Section 8 concludes. The Supplement contains proofs and additional results.

2 Partition Function Bound

Consider a log-linear density model over discrete y € €2

p(yl0) = %h(ymp(m(y))

'Recall that some second-order methods like Newton-Raphson are not monotonic and may even fail to
converge for convex cost functions [4] unless, of course, line searches are used.

which is parametrized by a vector & € R? of dimensionality d € N. Here, f : Q +— R is
any vector-valued function mapping an input y to some arbitrary vector. The prior / : — RT
is a fixed non-negative measure. The partition function Z(0) is a scalar that ensures that p(y|0)
normalizes, i.e. Z(0) = >_, h(y) exp(6Tf(y)). Assume that the number of configurations of y is

|2] = n and is finite?. The partition function is clearly log-convex in @ and a linear lower-bound
is given via Jensen’s inequality. This article contributes an analogous quadratic upper-bound on the
partition function. Algorithm 1 computes® the bound’s parameters and Theorem 1 shows the precise
guarantee it provides.

Algorithm 1 ComputeBound

Input Parameters 0, f(y), h(y) Yy € Q 035
Initz — 07, u =03 =21 0s

For each y € Q2 {)
a = h(y)exp("f(y))
LT f(y})(TIN(/%))
tanh(3 log(a/z
4= 2log(a/z) nr

0.25

0.2

and Bounds

< 0.156

log(2)

0.1

H+= Z+Otl 0.0
z+=a } '
Output z, p, 3 %

Theorem 1 Algorithm 1 finds z, p, % such that z exp(5(0 — 0)"X(0 —0)+ (0 — 6)) upper-
bounds Z(8) = 3_, h(y) exp(8T£(y)) for any 6,0, f(y) € R? and h(y) € RT forall y € Q.

Proof 1 (Sketch, See Supplement for Formal Proof) Recall the bound log(ee + 6’9) < ch? [22].
Obtain a multivariate variant log(e? X +e=0" L). Tilt the bound to handle log(h; 0 1 4 poet fo).

T T T
Add an additional exponential term to get log(hye® ' + hoe? 2 1 hzef). Iterate the last step
to extend to n elements in the summation.

The bound improves previous inequalities and its proof is in the Supplement. It tightens [4, 19] since
it avoids wasteful curvature tests (it uses duality theory to compare the bound and the optimized
function rather than compare their Hessians). It generalizes [22] which only holds for n = 2 and
h(y) constant; it generalizes [23] which only handles a simplified one-dimensional case. The bound
is computed using Algorithm 1 by iterating over the y variables (“for each y €) according to an
arbitrary ordering via the bijective function 7 : Q — {1,...,n} which defines i = 7(y). The order
in which we enumerate over (2 slightly varies the X in the bound (but not the p and z) when |Q] >
2. However, we empirically investigated the influence of various orderings on bound performance
(in all the experiments presented in Section 7) and noticed no significant effect across ordering
schemes. Recall that choosing 3% = - h(y) exp(0 " £(y))(f(y) — p)(f(y) — p) " with p and z
as in Algorithm 1 yields the second-order Taylor approximation (the Hessian) of the log-partition
function. Algorithm 1 replaces a sum of log-linear models with a single log-quadratic model which
makes monotonic majorization straightforward. The figure inside Algorithm 1 depicts the bound on
log Z () for various choices of . If there are no constraints on the parameters (i.e. any 8 € R?
is admissible), a simple closed-form iterative update rule emerges: 8 «+ 8 — X~ . Alternatively,
if @ must satisfy linear (convex) constraints it is straightforward to compute an update by solving a
quadratic (convex) program. This update rule is interleaved with the bound computation.

3 Conditional Random Fields and Log-Linear Models

The partition function arises naturally in maximum entropy estimation or minimum relative entropy
estimation (cf. Supplement) as well as in conditional extensions of the maximum entropy paradigm
where the model is conditioned on an observed input. Such models are known as conditional random
fields and have been useful for structured prediction problems [1, 24]. CRFs are given a data-set
{(z1,41), ..., (x+,y:)} of independent identically-distributed (iid) input-output pairs where y; is

2 Here, assume n is enumerable. Later, for larger spaces use O(n) to denote the time to compute Z.
*By continuity, take tanh(% log(1))/(2log(1)) = % and lim, _,+ tanh(4 log(a/2))/(2log(er/z)) = 0.

the observed sample in a (discrete) space 2; conditioned on the observed input ;. A CRF defines
a distribution over all y € Q; (of which y; is a single element) as the log-linear model

pla;.0) = g, (1) ex0(67 L, (1)

where 7, (0) = Zyeﬂ ha, (y) exp(0 £, (y)). For the j’th training pair, we are given a non-

negative function he;(y) € R+ and a vector-valued function f,,(y) € R? defined over the domain
y € Q;. In this sectlon for simplicity, assume n = max}_, |Q,, | Each partition function Z, (6) is
a functlon of 6. The parameter 0 for CRFs is est1mated by max1m121ng the regularized conditional
log-likelihood* or log-posterior: 2321 log p(y;|z;,0) — 2(/0]|? where A € R is a regularizer set
using prior knowledge or cross-validation. Rewriting gives the objective of interest

t
ha y
Z "0 +07 () — L1101)
=1

lj

If prior knowledge (or constramts) restrict the solution vector to a convex hull A, the maximization
problem becomes arg maxgea J(0).

Algorithm 2 proposes a method for maximizing the regularized conditional likelihood J(8) or,
equivalently minimizing the partition function Z(6). It solves the problem in Equation 1 subject
to convex constraints by interleaving the quadratic bound with a quadratic programming procedure.
Theorem 2 establishes the convergence of the algorithm and the proof is in the Supplement.

Algorithm 2 ConstrainedMaximization
0: Input x;, y; and functions hy, f, for j=1,... ¢, regularizer A € RT and convex hull A C R?

1: Initialize 6y anywhere inside A and set 8 = 6,
While not converged
2: Forj=1,...,t
Get 1,3, from h:v 5 6 via Algorithm 1
3: Set f=argmingea Y, (0 6) (S, +A0)(0 — 0) + 3.0 (u; — £2, (y;) + \9)

4: Output 6 = 0

Theorem 2 For any 6y € A, all ||f.;(y)|| < r and all |Q;] < n, Algorithm 2
outputs a 0 such that J(0) — J(0y) > (1 — €)maxgen(J(0) — J(80)) in more than
)

{log (%) /1log (1 + #(ZL—E % _1)-‘ iterations.

The series S0} % St % is the logarithmic integral which is O (logn)

asymptotically [26]. The next sections show how to handle hidden variables in the learning problem,
exploit graphical modeling, and further accelerate the underlying algorithms.

4 Latent Conditional Likelihood

Section 3 showed how the partition function is useful for maximum conditional likelihood problems
involving CRFs. In this section, maximum conditional likelihood is extended to the setting where
some variables are latent. Latent models may provide more flexibility than fully observable models
[21, 27, 28]. For instance, hidden conditional random fields were shown to outperform generative
hidden-state and discriminative fully-observable models [21].

Consider the latent setting where we are given ¢ iid samples x1, . .., x; from some unknown distri-
bution p(x) and ¢ corresponding samples y1, . .., y; drawn from identical conditional distributions
p(ylx1), ..., D(y|xs) respectively. Assume that the true generating distributions p(x) and p(y|x)
are unknown. Therefore, we aim to estimate a conditional distribution p(y|x) from some set of hy-
potheses that achieves high conditional likelihood given the data-set D = {(x1,y1), ..., (+, y+)}.

4 Alternatively, variational Bayesian approaches can be used instead of maximum likelihood via expectation
propagation (EP) or power EP [25]. These, however, assume Gaussian posterior distributions over parameters,
require approximations, are computationally expensive and are not necessarily more efficient than BFGS.

We will select this conditional distribution by assuming it emerges from a conditioned joint distri-
bution over = and y as well as a hidden variable m which is being marginalized as p(y|z,©) =
Zm p(z,y,m|©)
2y m P(Ty,m|O)”
y € €, is a discrete output variable. The parameter © contains all parameters that explore the
function class of such conditional distributions. The latent likelihood of the data L(©) = p(D|O)

subsumes Equation 1 and is the new objective of interest

t t
_ Z p x]aijnl|@)
L(®) = 31;[1 yjlz;,© H B S oy, y,me) (2)

Here m € (), represents a discrete hidden variable, x € (), is an input and

A good choice of the parameters is one that achieves a large conditional likelihood value (or poste-
rior) on the data set D. Next, assume that each p(x|y, m, ©) is an exponential family distribution

p(x|y, m, 6) = h(x) exp(OmiqS() - a(ey,m))

where each conditional is specified by a function & : €, — R™ and a feature mapping ¢ : 2, — R?
which are then used to derive the normalizer @ : R?Y +— R*. A parameter 6,,, € R? se-
lects a specific distribution. Multiply each exponential family term by an unknown marginal dis-

7Tym

tribution called the mixing proportions p(y, m|r) = 52— This is parametrized by an un-
yom Tyom

known parameter 7 = {7, ,,} Yy, m where 7, ,, € [0,00). Finally, the collection of all pa-
rameters is © = {0y .., Ty m} Vy,m. Thus, we have the complete likelihood p(z,y, m|©) =
Ty mh(z)

y,m Ty, m

stant factors that appear in both denominator and numerator. Apply the change of variables
exp(Vy,m) = Ty,m exp(—a(By,.,)) and rewrite the objective as a function® of a vector 6:

H eXp (GTJ,md)(m]) + Vyj7m) H eXp 0 f] Yj,m)
1 2y @D (01, 0(75) + Vym 1 2 ym P (0 Eym)

P (0;— m®(@) —a(By,,)). Insert this expression into Equation 2 and remove con-

The last equality emerges by rearranging all © parameters as a vector 8 € RI®vI[2mI(d+1) equal to

071100010 - 0| 10, Yoy li0,] " and introducing £.5 5, € RII2m (1) defined

s [[@(z) T 1)5[@m)=(1,1)] - [b(e;) T1]8[(g.m)=(12, |2,)] (thus the feature vector [¢(z;) 1] T
positioned appropriately in the longer f; 5 5 vector which is elsewhere zero). We will now find a
variational lower bound on L(6) > Q(6, 8) which is tight when 8 = 0 such that L(0) = Q(6, 6).
We proceed by bounding each numerator and each denominator in the product over 7 = 1,...,t.
Apply Jensen’s inequality to lower bound each numerator term as

§ : T 0 X, nim iy m— 3 Tim 108 Njm
exp (9 fj,yj,’rn) Z e >) 3595 > J j
m

07f . AR P . .
v (3, € ™). Algorithm 1 then bounds the denominator
Z Te Le-07=;0-6)+06-0)Tp,
exp (0'fjym) < ze2 :

Yy, m

where 1;., = (e

The overall lower bound on the likelihood is then
Q(6,0) = L(@)e—%(19—«‘5)T2(0—5)—(9—5)7;1

where 3 = Z;Zl jand i = Z;Zl(uj — > MjmfEjy; m). The right hand side is simply an
exponentiated quadratic function in @ which is easy to maximize. This yields an iterative scheme
similar to Algorithm 2 for monotonically maximizing latent conditional likelihood.

5 Graphical Models for Large n

The bounds in the previous sections are straightforward to compute when {2 is small. However,
for graphical models, enumerating over €) can be daunting. This section provides faster algorithms

*It is now easy to regularize L(6) by adding —2(|0]°.

that recover the bound efficiently for graphical models of bounded tree-width. A graphical model
represents the factorization of a probability density function. This article will consider the factor
graph notation of a graphical model. A factor graph is a bipartite graph G = (V, W, E') with variable
vertices V' = {1, ..., k}, factor vertices W = {1,...,m} and a set of edges E between V and W.
In addition, define a set of random variables Y = {y1, ..., yx} each associated with the elements of
V and a set of non-negative scalar functions ¥ = {41, ...,%,,} each assomated with the elements
of W. The factor graph implies that p(Y’) factorizes as p(y1,...,yx) = % [L.ew ¥e(Ye) where
Z is a normalizing partition function (the dependence on parameters is suppressed here) and Y. is
a subset of the random variables that are associated with the neighbors of node c. In other words,
Y. = {yili € Ne(c)} where Ne(c) is the set of vertices that are neighbors of c. Inference in
graphical models requires the evaluation and the optimization of Z. These computations can be
NP-hard in general yet are efficient when G satisfies certain properties (low tree-width). Consider
a log-linear model (a function class) indexed by a parameter & € A in a convex hull A C R? as
follows

p(Y16) = H he(Ye) exp (07 £.(Y2))
CEW

where Z(0) = >y [T.cw he(Ye) exp (6T £.(Y2)). The model is defined by a set of vector-valued

functions f.(Y,) € R? and scalar-valued functions h.(Y.) € R*. Choosing a function from the
function class hinges on estimating € by optimizing Z(6). However, Algorithm 1 may be inappli-
cable due to the large number of configurations in Y. Instead, consider a more efficient surrogate
algorithm which computes the same bound parameters by efficiently exploiting the factorization of
the graphical model. This is possible since exponentiated quadratics are closed under multiplication
and the required bound computations distribute nicely across decomposable graphical models.

Algorithm 3 JunctionTreeBound

Input Reverse-topological tree 7 with ¢ = 1,...,m factors h.(Y,) exp(8 " f.(Y.)) and 6 € R?
Forc=1,...,m
If (C < ’I’I’L) {Yi)oth =Y. N Ypa(c)7 Ysolo=Ye \ Ypa(c)}
Else {}/both = {}7 Ysolo :1/;}
For each u € Yyon,
{ Initialize Ze|w 0+7 Helz = 0, ECW = ZC‘xI
For each v € Y010
{ w=u®u;
Qo = hc(w)eoTfC(w)Hbech(c)ZHw’ 1, = fc(w) — Heju + ZbECh(c) Hp|ws
tanh(log(Za“‘“) T o
c|u Zbech(c)z:bhu Wlwlw; Heju = Zc\u-t(xwl“” Relu = Ow; }}
Zelu

Output Bound as z = 2z, it = o, 2 = X,

Begin by assuming that the graphical model in question is a junction tree and satisfies the running
intersection property [18]. In Algorithm 3 (the Supplement provides a proof of its correctness), take
ch(c) to be the set of children-cliques of clique ¢ and pa(c) to be the parent of ¢. Note that the
algorithm enumerates over v € Yp,() NYc and v € Y. \ Ypa(c)- The algorithm stores a quadratic
bound for each configuration of v (where u is the set of variables in common across both clique ¢
and its parent). It then forms the bound by summing over v € Y. \ Yjq(c). €ach configuration of
each variable a clique c has that is not shared with its parent clique. The algorithm also collects
precomputed bounds from children of c¢. Also define w = u ® v € Y, as the conjunction of both
indexing variables v and v. Thus, the two inner for loops enumerate over all configurations w € Y,
of each clique. Note that w is used to query the children b € ch(c) of a clique c to report their bound
parameters 2|y, Ho|w» 2bjw- Lhis is done for each configuration w of the clique c. Note, however,
that not every variable in clique c is present in each child b so only the variables in w that intersect Y3
are relevant in indexing the parameters 2y, fp|w, 25} and the remaining variables do not change
the values of 2p|y, Kp|ws 2p|w-

Algorithm 3 is efficient in the sense that computations involve enumerating over all configurations
of each clique in the junction tree rather than over all configurations of Y. This shows that the

computation involved is O(} " |Y;|) rather than O(|€2|) as in Algorithm 1. Thus, for estimating the
computational efficiency of various algorithms in this article, take n =) _|Y;| for the graphical
model case rather than n = [€2|. Algorithm 3 is a simple extension of the known recursions that
are used to compute the partition function and its gradient vector. Thus, in addition to the 3 matrix

which represents the curvature of the bound, Algorithm 3 is recovering the partition function value
dlog Z(0)

z and the gradient since p = 50

0=06
6 Low-Rank Bounds for Large d

In many realistic situations, the dimensionality d is large and this prevents the storage and inver-
sion of the matrix 3. We next present a low-rank extension that can be applied to any of the
algorithms presented so far. As an example, consider Algorithm 4 which is a low-rank incar-
nation of Algorithm 2. Each iteration of Algorithm 2 requires O(tnd? + d*) time since step 2
computes several 3; € R¥*4 matrices and 3 performs inversion. Instead, the new algorithm
provides a low-rank version of the bound which still majorizes the log-partition function but re-

quires only O(tnd) complexity (putting it on par with LBFGS). First, note that step 3 in Algo-

Algorithm 4 LowRankBound

Input Parameter 6, regularizer A € R*, model f;(y) € R% and h,(y) € Rt and rank k € N
Initialize S = 0 € RF** 'V = orthonormal € R**? D = t\I € diag(R?*9)
Foreacht { Setz — 07; u = 0;

For each y{

AT tanh(log(&
@ =)0 w = LR)~)
Fori=1,....,k:p(i)=r"V(i,-);r =1 —p(i)V(i,-);
Fori=1,...,k:Forj=1,....k:S(i,j) = S(z,j)-i-p() (4);
QTAQ =svd(S);S + A; V <« QV;

= [S(1,1),...,S(k, k), ||r|* AT k= argming—1 41 8(3);
lf(k <k){ D- D +S(k, k)1T[V(j,")| diag([V (k.)));
S(k, k) = [[r||* r=|[r|"'r; V(k,-) =13}
else { D =D +17|r|diag(|r|); } }
pt=40(y) —p); 2 +=o
Output S € diag(R*¥**), V € R**? D ¢ diag(R?™*9)

rithm 2 can be written as @ = 6 — X~ 1u where u = t\@ + 22:1 w; — £, (y;). Clearly, Al-
gorithm 1 can recover u by only computing p; for j = 1,...,t and skipping all steps involving
matrices. This merely requires O(tnd) work. Second, we store 3 using a low-rank represen-
tation V'SV + D where V € R¥*? is orthonormal, S € R**¥ is positive semi-definite, and
D € R%*? is non-negative diagonal. Rather than increment the matrix by a rank one update of the

form ¥, = X, + rirz—.r where r; = mng%&%(ﬂ — Hi)’ simply project r; onto each

eigenvector in V and update matrix S and V via a singular value decomposition (O(k?) work).
After removing k such projections, the remaining residual from r; forms a new eigenvector ey 1
and its magnitude forms a new singular value. The resulting rank (k 4 1) system is orthonormal
with (k 4 1) singular values. We discard its smallest singular value and corresponding eigenvector
to revert back to an order k eigensystem. However, instead of merely discarding we can absorb
the smallest singular value and eigenvector into the D component by bounding the remaining outer-
product with a diagonal term. This provides a guaranteed overall upper bound in O(tnd) (k is
assumed to be logarithmic with dimension d). Finally, to invert 33, we apply the Woodbury formula:
S 1 =D 14+ D V(S 14+ VD 'VT)"1VD~! which only requires O(k®) work. A proof of
correctness for Algorithm 4 can be found in the Supplement.

7 Experiments

We first focus on the logistic regression task and compare the performance of the bound (using
the low-rank Algorithm 2) with first-order and second order methods such as LBFGS, conjugate
gradient (CG) and steepest descent (SD). We use 4 benchmark data-sets: the SRBCT and Tumors

data-sets from [29] as well as the Text and SecStr data-sets from http:/olivier.chapelle.cc/ssl-
book/benchmarks.html. For all experiments in this section, the setup is as follows. Each data-set is
split into training (90%) and testing (10%) parts. All implementations are run on the same hardware
with C++ code. The termination criterion for all algorithms is a change in estimated parameter or
function values smaller than 10~ (with a ceiling on the number of iterations of 10°). Results are
averaged over 10 random initializations close to 0. The regularization parameter A\, when used, was
chosen through crossvalidation. In Table 1 we report times in seconds and the number of iterations
for each algorithm (including LBFGS) to achieve the LBFGS termination solution modulo a small
constant € (set to 10~%). Table 1 also provides data-set sizes and regularization values. The first 4
columns in Table 1 provide results for this experiment.

Data-set SRBCT Tumors Text SecStr CoNLL PennTree
Size n=4 n = 26 n=2 n=2 m =9 m =45
t =83 t =308 t = 1500 t = 83679 t = 1000 t = 1000
d = 9236 d = 390260 | d = 23922 d =632 d = 33615 d = 14175
A =10! A= 10! A =102 =10t = 10! X =10*
Algorithm || time [iter | time [iter | time [iter | time [iter time [iter time [iter
LBFGS 6.10 | 42 | 3246.83 | 8 | 15.54 | 7 | 881.31 | 47 || 25661.54 | 17 | 62848.08 | 7
SD 7.27 | 43 | 18749.15 | 53 | 153.10 | 69 | 1490.51 | 79 || 93821.72 | 12 | 156319.31 | 12
CG 40.61 | 100 | 14840.66 | 42 | 57.30 | 23 | 667.67 | 36 || 88973.93 | 23 | 76332.39 | 18
Bound 3.67 | 8 | 163993 | 4 6.18 3 27.97 9 ||16445.93 | 4 | 2707342 | 2

Table 1: Time in seconds and iterations required to obtain within e of the LBFGS solution (where
e = 10~%) for logistic regression problems (on SRBCT, Tumors, Text and SecStr data-sets where
n is the number of classes) and Markov CRF problems (on CoNLL and PennTree data-sets, where
m is the number of classes). Here, ¢ is the total number of samples (training and testing), d is the
dimensionality of the feature vector and A is the cross-validated regularization setting.

Structured prediction problems are explored using two popular data-sets. The first one contains
Spanish news wire articles from the a session of the CoNLL 2002 conference. This corpus involves
a named entity recognition problem and consists of sentences where each word is annotated with
one of m = 9 possible labels. The second task is from the PennTree Bank. This corpus involves a
tagging problem and consists of sentences where each word is labeled with one of m = 45 possible
parts-of-speech. A conditional random field is estimated with a Markov chain structure to give
word labels a sequential dependence. The features describing the words are constructed as in [30].
Two last columns of Table 1 provide results for this experiment. We used the low-rank version of
Algorithm 3. In both experiments, the bound always remained fastest as indicated in bold.

EM

Data-set Bound

+

*
o3 ‘% o4

§ ° §
D AT SRS LA M T SR i 3%
* * ¢+

@
o
.
-
-
@
-

> 4
0 ge, Y . -10 M 10— *
. 4 ¢ $ * LR $. ¢
. o"‘ . 0«’»“‘\) 0"‘ 0“‘“ 0‘0"‘ . 0‘«
-15 IS -15 * -15 .
0 \
-20) -20 -20
-25 -25 -25
25 [) 5 10 15 20 25 =5 0 5 10 15 20 25 -5 0 5 10 15 20 25

Figure 1: Classification boundaries using the bound and EM for a toy latent likelihood problem.

We next performed experiments with maximum latent conditional likelihood problems. We denote
by m the number of hidden variables. Due to the non-concavity of this objective, we are most in-
terested in finding good local maxima. We start with a simple toy experiment from [19] comparing
the bound to the expectation-maximization (EM) algorithm in the binary classification problem pre-
sented on the left image of Figure 1. The model incorrectly uses only 2 Gaussians per class while
the data is generated using 8 Gaussians total. On Figure 1 we show the decision boundary obtained
using the bound (with m = 2) and EM. EM performs as well as random chance guessing while the
bound classifies the data very well. The average test log-likelihood obtained by EM was -1.5e+06
while the bound obtained -21.8.

We next compared the algorithms (the bound, Newton-Raphson, BFGS, CG and SD) in maximum
latent conditional likelihood problems on five benchmark data-sets. These included four UCI data-
sets® (ion, bupa, hepatitis and wine) and the previously used SRBCT data-set. The feature mapping
used was ¢(x) = x € R? which corresponds to a mixture Gaussian-gated logistic regressions
(obtained by conditioning a mixture of m Gaussians per class). We used a value of A = 0 throughout
the latent experiments. We explored setting m € {1, 2, 3,4}. Table 2 shows the testing latent log-
likelihood at convergence for m chosen through cross-validation (the Supplement contains a more
complete table). In bold, we show the algorithm that obtained the highest testing log-likelihood.
The bound is the best performer overall and finds better solutions in less time. Figure 2 depicts the
convergence on ion, hepatitis and SRBCT data sets.

Data-set ion | bupa | hepatitis | wine | SRBCT
Algorithm || m=3 | m=2 | m=2 |m=3| m=4
BFGS -5.88 | -21.78 | -5.28 | -1.79 | -6.06
SD -5.56 | -21.74 | -5.14 | -137 | -5.61
CG -5.57 |-21.81| -484 |-095| -5.76
Newton | -5.95 |-21.85| -550 | -0.71 | -5.54
Bound -4.18 | -19.95| -4.40 | -048 | -0.11

Table 2: Test log-likelihood at convergence for ion, bupa, hepatitis, wine and SRBCT data-sets.

ion hepatitis SRBCT

-2

-4

g g 4 2
= 3 2 —_
b4 =] % —6
o o -g| K]
T =15 T T
=+Bound -8
Newton -9
-20 =v-BFGS 10 10
=== Conjugate gradient| - OV b i
Steepest descent L wEa—pv¥ociad
25 [5 0 % 4 -2 [} 2 s Ty 2 0 4
log(Time) [sec] log(Time) [sec] log(Time) [sec]

Figure 2: Convergence of test latent log-likelihood on ion, hepatitis and SRBCT data-sets.

8 Discussion

A simple quadratic upper bound for the partition function of log-linear models was proposed and
makes majorization approaches competitive with state-of-the-art first- and second-order optimiza-
tion methods. The bound is efficiently recoverable for graphical models and admits low-rank vari-
ants for high-dimensional data. It allows faster and monotonically convergent majorization in CRF
learning and maximum latent conditional likelihood problems (where it also finds better local max-
ima). Future work will explore intractable partition functions where likelihood evaluation is hard but
bound maximization may remain feasible. Furthermore, the majorization approach will be applied
in stochastic [31] and distributed optimization settings.

Acknowledgments
The authors thank A. Smola, M. Collins, D. Kanevsky and the referees for valuable feedback.

References

[1] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In /CML, 2001.

[2] A. Globerson, T. Koo, X. Carreras, and M. Collins. Exponentiated gradient algorithms for log-linear
structured prediction. In ICML, 2007.

[3] J. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models. Annals of Math. Stat.,
43:1470-1480, 1972.

SDownloaded from http://archive.ics.uci.edu/ml/

(4]

[5
(6]

—

(7]
[8

—

[9
(10]

—

(11]

(12]
[13]
(14]

(15]

(16]

(17]

(18]

[19]
(20]

(21]

(22]

(23]

[24]
[25]
(26]
(27]

(28]

[29]

(30]
(31]

(32]

D. Bohning and B. Lindsay. Monotonicity of quadratic approximation algorithms. Ann. Inst. Statist.
Math., 40:641-663, 1988.

A. Berger. The improved iterative scaling algorithm: A gentle introduction. Technical report, 1997.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. /EEE PAMI, 19(4),
1997.

R. Malouf. A comparison of algorithms for maximum entropy parameter estimation. In CoNLL, 2002.

H. Wallach. Efficient training of conditional random fields. Master’s thesis, University of Edinburgh,
2002.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In NAACL, 2003.

C. Zhu, R. Byrd, P Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. TOMS, 23(4), 1997.

S. Benson and J. More. A limited memory variable metric method for bound constrained optimization.
Technical report, Argonne National Laboratory, 2001.

G. Andrew and J. Gao. Scalable training of /1-regularized log-linear models. In /CML, 2007.
D. Roth. Integer linear programming inference for conditional random fields. In /ICML, 2005.

Y. Mao and G. Lebanon. Generalized isotonic conditional random fields. Machine Learning, 77:225-248,
2009.

C. Sutton and A. McCallum. Piecewise training for structured prediction. Machine Learning, 77:165-194,
2009.

J. De Leeuw and W. Heiser. Convergence of correction matrix algorithms for multidimensional scaling,
chapter Geometric representations of relational data. 1977.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm.
J. of the Royal Stat. Soc., B-39, 1977.

M. Wainwright and M Jordan. Graphical models, exponential families and variational inference. Foun-
dations and Trends in Machine Learning, 1(1-2):1-305, 2008.

T. Jebara and A. Pentland. On reversing Jensen’s inequality. In NIPS, 2000.

J. Salojarvi, K Puolamaki, and S. Kaski. Expectation maximization algorithms for conditional likelihoods.
In ICML, 2005.

A. Quattoni, S. Wang, L. P. Morency, M. Collins, and T. Darrell. Hidden conditional random fields. /IEEE
PAMI, 29(10):1848-1852, October 2007.

T. Jaakkola and M. Jordan. Bayesian parameter estimation via variational methods. Statistics and Com-
puting, 10:25-37, 2000.

G. Bouchard. Efficient bounds for the softmax and applications to approximate inference in hybrid mod-
els. In NIPS AIHM Workshop, 2007.

B. Taskar, C. Guestrin, and D. Koller. Max margin Markov networks. In NIPS, 2004.
Y. Qi, M. Szummer, and T. P. Minka. Bayesian conditional random fields. In AISTATS, 2005.
T. Bromwich and T. MacRobert. An Introduction to the Theory of Infinite Series. Chelsea, 1991.

S. B. Wang, A. Quattoni, L.-P. Morency, and D. Demirdjian. Hidden conditional random fields for gesture
recognition. In CVPR, 2006.

Y. Wang and G. Mori. Max-margin hidden conditional random fields for human action recognition. In
CVPR, pages 872-879. IEEE, 2009.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization for Machine Learning, chapter Convex
optimization with sparsity-inducing norms. MIT Press, 2011.

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector machines. In /CML, 2003.

SVN. Vishwanathan, N. Schraudolph, M. Schmidt, and K. Murphy. Accelerated training of conditional
random fields with stochastic gradient methods. In ICML, 2006.

T. Jebara. Multitask sparsity via maximum entropy discrimination. JMLR, 12:75-110, 2011.

