
Markov Models for Network-Behavior Modeling and
Anonymization

Yingbo Song
Intrusion Detection Sys. Lab
Dept. of Computer Science

Columbia University
yingbo@cs.columbia.edu

Salvatore J. Stolfo
Intrusion Detection Sys. Lab
Dept. of Computer Science

Columbia University
sal@cs.columbia.edu

Tony Jebara
Machine Learning Lab

Dept. of Computer Science
Columbia University

jebara@cs.columbia.edu

ABSTRACT
Modern network security research has demonstrated a clear need
for open sharing of traffic datasets between organizations, a need
that has so far been superseded by the challenge of removing sen-
sitive content beforehand. Network Data Anonymization (NDA)
is emerging as a field dedicated to this problem, with its main
direction focusing on removal of identifiable artifacts that might
pierce privacy, such as usernames and IP addresses. However, re-
cent research has demonstrated that more subtle statistical artifacts,
also present, may yield fingerprints that are just as differentiable
as the former. This result highlights certain shortcomings in cur-
rent anonymization frameworks – particularly, ignoring the behav-
ioral idiosyncrasies of network protocols, applications, and users.
Recent anonymization results have shown that the extent to which
utility and privacy can be obtained is mainly a function of the in-
formation in the data that one is aware and not aware of. This paper
leverages the predictability of network behavior in our favor to aug-
ment existing frameworks through a new machine-learning-driven
anonymization technique. Our approach uses the substitution of in-
dividual identities with group identities where members are divided
based on behavioral similarities, essentially providing anonymity-
by-crowds in a statistical mix-net. We derive time-series mod-
els for network traffic behavior which quantifiably models the dis-
criminative features of network ”behavior” and introduce a kernel-
based framework for anonymity which fits together naturally with
network-data modeling.

Keywords
Network behavior, Anonymity, Markov, Time-series, Kernel

1. INTRODUCTION
Modern network security research has demonstrated a clear ne-

cessity for the open sharing of large network traffic datasets be-
tween research organizations. Many security-related research fields,
such as detecting exploits, DDoS attacks, or worm outbreaks, would
benefit greatly if researchers had the ability to easily correlate in-
formation between several different resources, thus allowing them
to extend their scope beyond their own organization’s networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

This would encourage both collaboration, and facilitate confirma-
tion of research results. To date, however, sharing of large-scale
network traffic datasets, such as packet or Netflow captures, has
been relatively limited in scale. This is due primarily to the fact
that such datasets often contain sensitive content, including but not
limited to, personally identifiable information of third parties not
directly involved in the research – where the inadvertent release of
such information may cause damage to the releasing entity. As a
result, researchers often evaluate their technologies solely on their
own organization’s own traffic, making direct comparisons of re-
lated systems difficult to achieve.

Network Data Anonymization (NDA) is emerging as a field that
is dedicated to solving this problem [1]. The predominant direction
in NDA is content removal and masking, which includes deletion
of packet payloads and masking of headers; such as the removal
of flags, and one-way transforms on IP addresses. The most well
known tool in this area, for example, is tcpmkpub [21], which is
a policy-driven framework for utilizing a range of such transforma-
tions. Tools such as these facilitate the removal of human-identified
signatures which might fingerprint users, hosts, or services which
should otherwise remain anonymous.

However, recent research has demonstrated that beyond superfi-
cially observable datums such as IP addresses, more subtle statisti-

cal artifacts are also present in these traces which may yield finger-
prints that are just as differentiable as the former. Further, statistical
models trained on these artifacts may be used to breach confiden-
tiality. For example, previous work with hidden Markov models
(HMM) trained on packet timings for network protocols demon-
strate that, even if the traces are encrypted, HMMs were still able
to reliably isolate these protocols from the encrypted dataset [29].
This examples highlight certain shortcomings in current anonymiza-
tion frameworks; particularly, in ignoring the idiosyncrasies of net-
work protocols, applications, and users. As the field of network
traffic anonymization progresses, it is certain that behavioral fin-
gerprints should be taken into account.

1.1 Motivation
This paper aims to demonstrate that in a state of uncertainty, it is

possible to leverage behavioral idiosyncrasies in our favor, by using
machine-learning-driven methods to conceal both the known and
the unknown data. Through the substitution of individual identities
with group identities, each host is assigned to a particular group
based on the similarity of their own behavior to those of other group
members. In addition, perturbation of user-behavior is used, and
synthetic data drawn from learned behavioral-profiles are inserted
into the dataset. We draw from the well-known principle of mixed-
nets to provide anonymity by crowds. The intermixing (or ”clus-
tering”) of these identities effectively anonymizes each member of
that cluster (providing k-anonymity) while simultaneously preserv-

1

ing, in the aggregate, the statistics that characterize the members of
that group. ”Mixing” data in a group identity takes the form of
source aggregation; for example, assigning a single IP address to
all members of a group. Normally, any aggregation of statistics
naturally causes data-loss, as this translates to capturing a coarser
snapshot of the data. However, using statistical-modeling theory
from machine learning allows us to drive these transformations in
a way such that information-dilution is minimized. As this process
is independent of other anonymization transforms, it is compatible
with existing frameworks [21, 12] and can be considered as another
layer in existing anonymization chains.

Importantly, our research is founded on a kernel-based1 frame-
work, using graph-cutting methods for clustering, and closely re-
lated low-dimensional embedding techniques for visualization which
extend directly from this work. This approach, as we demonstrate,
is a natural fit for the network-traffic domain. By jointly leverag-
ing both Network Security and Machine Learning using this time-
series kernel-based framework, we explore a new field of potential
opportunities at the intersection of these domains.

1.2 Novel contributions
This paper presents the following novel contributions: 1) We

present new feature extraction algorithms that effectively quantifies
host-behavior based on network traffic. 2) We derive new time-
series models for network behavior as well as kernel similarity
functions for these models. 3) We present a clustering and visu-
alization framework based on graph-cutting algorithms and time-
series kernels, to identify groups of similarly-behaving hosts. 4)
We use these techniques to derive a new anonymization methodol-
ogy and demonstrate a framework for integration of our technology
into existing anonymization platforms.

1.3 Outline
This paper is outlined as follows: § 2 describes background work

in packet trace anonymization and gives an overview of the most
relevant related works, § 3 covers network behavior modeling in
vector and time-series domains. Clustering using time-series ker-
nels and Visualization are found in § 4, and finally, our framework
for network trace anonymization is presented in § 5.

1.3.1 Definitions and notations

In this paper, math variables in lower-case bold font such as x
and y denote column vectors. Non-bold lower-case variables, such
as d, denote scalar values. We use xi to denote the ith vector of a
set of vectors and use x(j) to denote the jth scalar component of
that vector. Matrices are denoted using bold, capital letters such as
A. Similarly, the (i, j)th component of a matrix is denoted X(i, j).
x� denotes the transpose of x. ”Kernel” refers to the mathemat-
ical inner product of vectors under a feature-space mapping and,
unless otherwise stated, does not represent the Operating Systems
concept.

2. BACKGROUND AND RELATED WORKS

2.1 The necessity of network-data sharing
In the year 2004, a hacker known as “Stakkato” broke into Ter-

ragrid, a large world-distributed research computing platform [27].
The attacks spanned a total of 19 months, and successfully infil-
trated thousands of university, corporate, and military machines, in
both the US and Europe. Forensics revealed that the attacks were
quick but consistent, however, collaborative mitigation and defense
1Mathematical kernel: inner-product in a Hilbert-space

efforts were hampered by the inability of the individual organiza-
tions to freely share data amongst themselves. This was due to
the fact that, among the fingerprints and clues that forensic experts
might want to extract from such network traffic, the data contained
private sensitive information which could not be released, which
the owners of such data could not easily remove.

Beyond forensics, it is a common goal of all scientific commu-
nities to share data, for purposes of cross-environment testing of
proposed algorithms, as well as results verification and reproduc-
tion. It is because of this need that organizations such as Open-
Packet [4], and the more recent U.S. Department of Homeland
Security-sponsored PREDICT [5], were recently created. How-
ever, unlike other disciplines, raw network traffic data often include
sensitive information. A packet capture of all network traffic, for
example, would include web traffic showing which websites users
visited, where they transfer files to and from, the locations of their
email, banking, and other private accounts, as well as any creden-
tials not protected by encryption. In addition to personal informa-
tion, the disclosure of network profiles such as vulnerability fin-
gerprints in existing machines, firewall policies, details of existing
security services, location of database and other sensitive servers,
and network infrastructure in general, can all lead to unintended
negative consequences for the releasing party.

A 2008 survey by Mirkovic showed that out of a total of 144
papers published in Special Interest Group on Data Communica-
tion (SIGCOMM) and Internet Measurement Conference (IMC) in
2006 and 2007, 49 of these had utilized network traces in their eval-
uations, but only 10 had used publicly available datasets [18]. This
result, along with other published opinions of a similar nature [6],
reflect a deficiency in the current network and security research
fields of publicly available large traffic-capture datasets.

2.2 Pitfalls of synthetic datasets
It is also pertinent to consider why synthetic data is not sufficient

as a substitute. The reason for this is that generating realistic and
useful data is, at best, an art that has yet to be perfected. Achiev-
ing realism for certain research purposes is a lofty goal that can
sometimes fail. One example is the 1998 DARPA KDD dataset
which was synthetically generated for IDS testing. After several
papers and results were published, it was discovered that all benign
packets in this dataset had a TTL entry of 127 or 254, whereas all
malicious packets had a TTL of 126 or 253, leading researchers to
declare this dataset as ”fundamentally broken,” and subsequently
all submitted papers using this dataset as the basis of their work
were rejected [9]. While this is an extreme example such problems,
it nevertheless highlights a pitfall in this particular approach.

Very powerful enterprise-level generators do exist; produced by
companies such as BreakingPoint [8] and Spirent [25]. These solu-
tions typically fulfill purposes such as testing loading-balancing,
routing, or firewall systems. In these settings, low emphasis is
placed on achieving behavior ”realism” at the host layer in the
dataset – it matters less that these traffic streams were not gener-
ated by human operators.

2.3 Anonymization paradigms
Existing network trace anonymization techniques typically fall

into one of two paradigms: query-based systems which control
the data on a protected server and allow users to make restricted
queries, and systems based on one-way transforms that modify
the original data and release an anonymized version. The former
model has been studied more frequently in the domain of statistical
databases, such as medical and health records, while the latter stan-
dard is more applicable to dissemination of network traffic traces

2

where the value of the data is not so easily broken down and quanti-
fied into sufficient statistics (such as means and deviations.) Often,
especially in the security context, the utility of the data is unknown
until researcher had a chance to examine it. Therefore, in these set-
tings, raw, minimally-tampered data is often desired. This section
explores previous work in network-data anonymization, discuss the
importance of policy-driven systems, and concludes with some dis-
cussion on relevant attacks against modern anonymization systems.

2.3.1 Query-based systems

Query-based systems have been well researched in the past, and
has observed the most progress in theoretical developments among
the different approaches. Their success owes to the underlying as-
sumptions and restrictions that makes up the foundation for this ap-
proach; specifically, that the value of the data can be broken down,
and re-represented to the outside world as a closed set of quanti-
fiers that users may makes queries against. For example, one may
ask for the count, mean, or standard deviation for a particular entry
in set of records. More quantifiers allow greater flexibility in pro-
cessing. Though, regardless of how expansive this range of queries
may be, this paradigm remains dependent on human operators to
identify and construct these quantifiers a priori. More subtle is the
assumption that the operator fully understands the full value and
scope of the data a priori. The secure query-based approach pro-
posed by Mirkovic is representative of this paradigm [18], where
an SQL-like query language is presented to the user, and security
policy enforcement is maintained on the server. Parate et al. [23,
22] advocates for an exchange of meta-level constraints and options
between the provider and user where the user sets the constraints
for utility such as port-consistency, and the server offers transfor-
mation policies such as encryption, re-ordering, etc, and reconcili-
ation is handled server-side. The benefit of having a restricted sys-
tem such as this is that metrics for diversity, entropy, and related
measurements are often simple to derive and as a result, theoretical
guarantees on anonymization are achievable. Beyond the difficulty
of quantifying data into elements of utility a priori, the other down-
side to this approach is that centralized server side solutions are not
scalable to large problem sets, where network traffic traces for just
one enterprise-level environment may span terabytes [20].

2.3.2 Anonymization as a one-way transform

The second approach, which is far more popular for network
data, transforms the data and releases the end-result. This pro-
cess ideally cleanses the dataset of discriminative identifiers which
might pierce privacy or anonymity. Many notable works in this
area are worth mentioning. These are listed as here in the chrono-
logical order of their release. Tcpdpriv [17] is one of the ear-
liest traffic-anonymization tools; simple packet-header sanitization
tool, it was invented before modern de-anonymization attacks were
known. Tcpurify [7] is another early, somewhat more advanced,
sanitization tool developed for university use. The tcpmkpub [21]
tool presented the first policy-driven anonymization framework of-
fering a range of anonymization primitives, transparent handling
of the tcp-stack, and advanced parsing functionality, all driven by
a customizable anonymization language. CryptoPan [11] is the
first provable prefix-preserving transformation method for IP ad-
dresses. SCRUB-tcpdump [31] allows one to extract only the
useful properties of the dataset from trace. Traffic Morphing tech-
niques presented by Wright et al. [28] attempts to mask the statis-
tical signature of network protocols through data-padding to make
them difficult to identify. Finally, the most recent advance in net-
work trace anonymization is the PktAnon framework [12] by Gamer
et al., which, much like tcpmkpub is a policy-driven approach

that allows users to customize a set of anonymization primitives
for use on the data, using an XML-driven anonymization-policy
language. Anonymization-policy driven frameworks is emerging
as the most effective and promising of all anonymization method-
ologies for offline data anonymization. This following subsection
explores this are in more detail.

2.3.3 Policy-driven frameworks

Policy-driven frameworks emerged from the realization that se-
curity, privacy, and utility for network trace data is a fluid con-
tinuum that is hard to define, and is not the same for every party.
Further, anonymization and de-anonymization methods all operate
using known- and unknown-information. There is no way to know
for example, if the a particular flag setting in a particular packet
uniquely identifies an individual, nor is it known if the removal
of all flags is a reasonable anonymization operation. It is this re-
alization that has led to the design of policy-driven anonymization
frameworks which aim to abstract the lower-level packet-processing
mechanics into a policy-driven language that users may customize
to their needs. A set of anonymization transforms is provided to
the user along with an intuitive language to drive these transforma-
tions, with best-use suggestions provided. It is further ideal that the
data provider and the user should have some form of a contract that
indicates what the data will be used for. This contract should guide
the design of the anonymization policy [21, 6, 12]. Our research
is grounded on this foundation: of privacy and anonymity in the
presence of information uncertainty.

2.3.4 A balance between privacy and utility

A study of the state-of-the-art in network trace anonymization
reveals that, ultimately, high quality research datasets should be-
gin with live-captured traffic and, through a process of anonymiza-
tion, private information should be removed while everything else
should remain. The optimal anonymization procedure is simply
to remove all information from the data; conversely, the optimal
utility-preserving transformation makes no changes to the dataset.
These are both undesirable extremes that sacrifice one goal for the
other. One would expect that if utility does not require breach-of-
privacy then the two should not be mutually exclusive. Further,
privacy and utility are not universally defined; rather, they are often
subjective. Privacy therefore, much like the rest of security field,
revolves to a certain extent on risk-management [21], and policies
which drive any anonymization procedure should result from a mu-
tual understanding between the data provider and user. The ideal
anonymization tool should satisfy all party’s definitions of privacy,
with minimal dilution of the fidelity of the dataset; providing the
desired information, and nothing else.

3. NETWORK TRAFFIC MODELS
Network traffic modeling begins with feature extraction, where

raw packet information from PCAP data is transformed into sets of
numerical values that distinctively represent individual identities.
We delineate traffic behavior into the following levels of granular-
ity: Protocol: Data-transfer protocols, such as HTTP or SSH. En-
compasses features such as size, frequency, and timing of packet
exchanges. Application: A collection of network protocol usage,
this layer encompasses type and frequency of protocols used. Web-
browsers will typically use HTTP, and a typical connection sees
a small request followed by a large response. User/Host: A col-
lection of applications, and the characteristics of their usage, such
as time of use, frequency, and duration. Distinctive user-behavior
emerges at this level, as well as daemon services such as mail
servers. Network: A collection of host behaviors uniquely defines

3

the profile user-interaction on a given network.
Various works exist in classification tasks at different layers. This

includes Wright et al. [29] in demonstrating that protocol-level be-
havior is distinct, and that HTTP, FTP, etc can be uniquely identi-
fied even when the contents of these channels are encrypted. This
and related works typically model the size, timing, and frequency
of packet exchanges as statistical signatures.

The scope of this study is anonymization at the host layer, and
we seek to capture statistical representations of behavior for users
and network servers (referred to, colloquially, as ”hosts” in this pa-
per.) True labelings for interaction between these layers do not ex-
ist. For example, we may guess that user A is using a web-browser
if we observe outbound requests to port 80 on host B. Such com-
mon signatures, however, do not exceed but a handful; we further
might not know if hosts A and B are users, or service daemons, or
both. What network researchers typically do have, in the best sce-
nario, is access to packet-level data such as PCAP dumps captured
by a tool like tcpdump. Working with packet-level data gives us a
bottom-up view of network traffic characteristics, and the true inter-
actions between the network, user, application and protocol-layers
are hidden from us. What is needed is a cross-layer model that can
accurately classify hosts level behavior using raw data at the level
of packets.

3.1 Statistical representations of "behavior"
This paper proposes to abstract the interactions described above

using state-based models, with the unknown-interactions modeled
using hidden states. This section describes the foundation for our
work: we propose a representation of host behavior using meta-
content, namely packet headers and Netflow, to construct port-histogram
profiles, and extend these into the real-time domain using times-
series models. Among the models we propose are our variations
on the hidden Markov model and our Protocol-Transition model.
Meta-data such as packet headers is useful for several reasons: pri-
marily, content is usually not provided with the dataset and packet
headers are all that is available. Secondly, we aim to develop meth-
ods that characterize behavior which, at higher levels, is indepen-
dent of content – a user’s web browsing behavior (time, duration,
frequency, etc may be idiosyncratic, even if the pages he/she view
differs each day.)

Our main results demonstrated that host-layer behavior can be
uniquely represented by volumetric and transitional statistical fea-
tures for sent-to and received-on ports on a host, paired with time-
series models. The patterning and its time-series interpretation dis-
tinguishes one host from another, and given sufficient sampling dis-
tinct statistical fingerprints of behavior emerge.

Figure (1) shows an example of this pattern. This plot shows
the log-scale plot of the port-traffic histogram of two difference
machines on the Columbia network using traffic captured across the
span of one day; we see a user machine making requests to various
service ports on a foreign machine, and receiving responses back
on its ephemeral port. The server machine on the right receives
several distinct types of incoming requests and makes three main
types of outbound connections: a low-port connection, most likely
SSH, an outbound request for a port in the range of 600, and replies
on ephemeral ports (in this figure, ephemeral ports are coalesced
together on port 1025. However, a holistic view of traffic at the
granularity of a single day could be too coarse to truly capture the
intricacies of behavior shifts. What is needed is a time-varying
view of the host, and how these activities change across the span
of hours, days, weeks. A natural extension of the port-histogram
model is to capture the histogram on smaller intervals and use a
collection of such intervals as the feature set. This leads to the

(a) User machine port-histogram

(b) Server port-histogram

Figure 1: Log-scale port histograms. The first half of the x-
axis (x < 0) represents Received-On ports; the second, Sent-To
ports. Notice the distinct behavioral patterns.

Figure 2: The Activity-Grid: 288 five-minute port histograms;
a time-series feature representation for network traffic.

construction of the time-series histogram data structure. Figure (2)
shows what we call an ”Activity grid”, a dataset structure composed
of 288 distinct port histograms, captured at five-minute intervals
throughout the day; beginning at 00:00:00 of the day and ending at
23:59:59 (Hour:Minute:Second). Using 2050 features to represent
input and output port-activity gives us a 2050× 288 matrix.

3.1.1 Sparsity, and dimensionality reduction

For the vast majority of hosts, the 2050× 288 activity matrix is
sparse, with 90% of the entries unpopulated on average. This is due
to the host not observing any traffic in certain ports, and/or at cer-
tain times. This sparsity yields two sets of problems. First, under-
fitting leads to poor generalization performance. Secondly. mem-
ory requirements increase – if we used one full matrix per training
day, roughly 2Mb worth of memory would be required per host.
A trace file for enterprise-level traffic dumps typically consists of
thousands of hosts, and in our tests using Columbia’s traffic with
roughly 7,000 hosts, full-memory consumption and disk-thrashing
occurs roughly 10 seconds into processing under this naive set-
ting. To solve these problems, we use dimensionality-reduction
algorithms to project the data into a smaller subspace. The direct
approach is to use subspace projection-based algorithms. This con-

4

sists of learning a projection matrix P such that the new samples
are derived by the following linear relation: Y = P� (X− µ) , µ =
1
N

�N
i=1 Xi. Where X is an instance of an activity matrix. As

this is a linear projection, the columns of P are constrained to
be orthonormal. Using Principal Component Analysis (PCA), the
columns of P consists of the top eigenvectors of the covariance ma-
trix Σ, recovered from the samples: Σ =

�N
i=1 (Xi − µ) (Xi − µ)�.

Additionally, the Nyström method for low-rank approximations can
be used to obtain an estimate for the covariance matrix at sig-
nificantly less computational costs, with some sacrifice of preci-
sion. When computing Σ is still prohibitively expensive, Random-
Projection (RP) may be used, where P is randomly initialized and
an orthonormality step is applied using the Gram-Schmidt process.
For certain distributions, the information-loss in not prohibitive and
can be bounded (see Dasgupta [10]). A more effective kernel-based
non-linear extension is discussed in a subsequent section.

3.2 Exponential-family behavior models
In this paper, we study discrete time-series models with Markov

transitions. This scope is appropriate for two reasons. First, we
consider network behavior to be Markovian in nature, in that the
current state of the system is determined by its previous state. This
property is self-evident given the nature of network traffic, in that
events are not isolated, especially not at the packet-level. When
an event occurs (web-site downloaded, mail sent, etc) an interac-
tion of packet-traffic occurs, at the TCP layer with a SYN/ACK
hand-shake to establish the session, or an HTTP-request at the ap-
plication layer. Secondly, given that behavior is not static, a time-
varying model is more appropriate to capture behavior-transition.

This type of model can be interpreted as statistical finite-state
machines where, within each state, there is a distribution for a par-
ticular output symbol that can be a discrete value from an alpha-
bet or a real-valued output. As the system progresses through the
states, guided by a separate transition-probability model, a string of
outputs known as the ”observation sequence” is produced. In the
case of hidden-state machines, such as the hidden Markov model
(HMM)[24], the state of the machine at any given time is unknown.
Inference is performed using efficient algorithms (such as the Junc-
tion Tree Algorithm) to calculate the likelihood given all possi-
ble state-transition configurations. The complexity of a time-series
model is determined by the number of (hidden) states, the transi-

tions model, and the emissions model at each state. The emissions
model defines the statistical distribution from which data at a par-
ticular time step (xt) is implicitly drawn from. For example, if we
model human movement, there may be emissions models for dis-
crete classes of posture when walking (upright, bent, arms forward,
leg-back, etc); the transitions model defines how these emissions
flow between each other. Learning a time-series model consists of
finding the optimal configuration for all of the parameters of the
time-series model given a corpus of training data (observations). A
transition table is typically used to model the state-transition prob-
abilities for these types of models. This row-normalized (sums to
1) table tracks the probability of transitioning from one state to an-
other using a single scalar value ∈ [0, 1].

The question then becomes, what emissions model is appropriate
for network behavior. For reasons which will become self-evident,
our work focuses on the exponential-family of models: particularly
the Multi-variate Gaussian, Multinomial, and Discrete Probability
Table models. In addition to favorable empirical performance, this
class of models can be optimized in the same way, using maximum-
likelihood or expectation-maximization (EM) methods. A study
of the performance of these models provides insights into network
traffic modeling and drives the derivation of an improved model,

described in a later sub-section.
When we characterize behavior as a ratio of services executed,

the Multinomial model is most appropriate:

p(x|θ) =
n!

x(1)!, ...,x(k)!
θ(1)x(1) · · · θ(k)x(k). (1)

Here,
�k

i=1 x(i) = n, and the parameter variable θ constitutes the
normalized ratios of events x(i), ...,x(k) in the training data. The
Multinomial distribution models discrete event occurrences as sep-
arate independent events, and tracks the proportion of occurrence
to one-another. This entails fingerprinting a host’s network behav-
ior based on the ratio of services invoked, at each time step. When
it’s possible to label a state of a system using symbols from a finite
alphabet {”work”,”check email”,”web surf”,...}, through human-
intervention or an automated labeling process, Discrete Conditional
Probability Table (DCPT) model is more appropriate. This ap-
proach models the likelihood of a sequence of symbols, and the
transitional probabilities between one symbol to another:

p(a|b) = T(a, b),
�

j

T(i, j) = 1 ∀i. (2)

Maximizing the joint probability of symbols given their order of
appearance in the training data optimizes the parameters of this
model. Finally, when little information is known about the data, a
classic choice is the Multivariate-Gaussian distribution, also known
as the Multivariate-Normal (MVN) distribution. This model con-
siders the emission as a single independent-identically-distributed
(i.i.d.) multivariate variable. Due to the Central Limit Theorem,
a Multivariate-Gaussian assumption is most appropriate when lit-
tle domain-knowledge is available. The MVN is also a continuous
model, which allows flexibility in working with feature transfor-
mations and other preprocessing functions to optimize results. Let
θ = {µ,Σ}, we have:

p(x|θ) =
1

(2π)d/2
�

|Σ|
exp

�
−
1
2
(x− µ)�Σ−1(x− µ)

�
.

(3)

3.3 Time-series extension using discrete hid-
den Markov models

Given the emissions models described in the previous section,
we can perform the time-series extension by incorporating them
into hidden Markov models. An HMM is a Markov model where
the process transitions between states in an unobservable path. Con-
sider a first-order stationary HMM with Gaussian emissions, the
probability of a sequence is given as p(X|θ), where X = {x1, . . . ,xT }

is an observation sequence of length T , and each observation vec-
tor is xt ∈ �

d. This model assumes that xt at each time step t
was emitted from one of M independent emissions models (qt =
{1, . . . ,M}) which represent the state of the system at a particular
time-step. The exact value of qt is unknown and is referred to as a
”hidden’” state. The transition through a sequence of hidden states
q = {q1, . . . , qT } generates the observed sequence X . To obtain
a normalized distribution, we sum over all possible values of q:

p(X|θ) =
�

q0,...,qT

p(x0|q0)p(q0)
T�

t=1

p(xt|qt)p(qt|qt−1). (4)

This HMM is specified by the parameters: θ = {π,α,µ,Σ}.
These are the initial-state probability distribution πi = p(q0 = i),
i = 1 . . .M , the state transition probability distribution denoted
by a matrix α ∈ �

M×M where αij = p(qt = j|qt−1 = i), the
emission density p(xt|qt = i) = N (xt|µi,Σi), for i = 1 . . .M ,

5

where µi ∈ �
d and Σi ∈ �

d×d are the mean and covariance of
the Gaussian in state i. We use µ = {µ1, . . . ,µM} and Σ =
{Σ1, . . . ,ΣM} for short. d is the dimensionality of x.

Brute-force evaluation of equation (4) is requires exponential
time, however, dynamic programming methods such as the Junc-
tion Tree Algorithm (JTA) or the Forward-backward algorithm, can
compute this quantity efficiently. Estimating the parameter (θ) of
an HMM is then typically done via EM with random initialization.
We present our derivations for the EM-update rules for the MVN-
HMM here. The E-step uses a forward pass to obtain posterior
marginals over the hidden states given the observations:

γt(i) = p(qt = si|xn, θ) (5)
ξt(i, j) = p(qt = si, qt+1 = sj |xn, θ). (6)

A hat-variable (θ̂) represents a new estimation of that variable based
on the previous iteration of EM. The M-step updates the parameters
θ using these E-step marginals as follows:

π̂i = γ1(i) (7)

α̂ij =

�T−1
t=1 ξt(i, j)�T−1

t=1

�M
j=1 ξt(i, j)

(8)

µ̂i =

�T
t=1 γt(i)xt�T
t=1 γt(i)

(9)

Σ̂i =

�T
t=1 γt(i)(xt − µi)(xt − µi)

�

�T
t=1 γt(i)

. (10)

The E and M steps are repeated until the likelihood value p(X|θ)
of the training dataset X with model θ does not improve. The
above derivation yields the parameter update rules for the HMM
with MVN emissions. As previously stated, the benefit of using
distributions from the same exponential-family class means that
deriving HMMs with Multinomial, DCPT, emissions are derived
in the same way. These derivations are simple and (given that the
MVN model performed best) are omitted for brevity.

3.3.1 Accuracy evaluation

This section presents empirical evaluations for our proposed mod-
els. We collected three weeks of worth of packet-header-only traf-
fic covering 80 Columbia machines, chosen to represent a range
of different network hosts, from database servers to web servers,
to user machines. Since we do not have true labels for how hosts
should be clustered together, we test this key component of the al-
gorithm in a classification experiment to see if we can classify a
host’s own traffic correctly. Further on in this paper, we discuss
clustering. As our clustering algorithm is strongly determined by
the model parameters, classification performance is strongly cor-
related with clustering performance. And as we have no direct
way to evaluate clustering results on unlabeled data, this classifi-
cation set-up is most appropriate. We set up a classification ex-
periment, splitting each user’s traffic into randomized training and
testing sets. Each test sample is matched against the model of every
host in a highest-likelihood value wins setup, giving us an 80 ver-
sus 80 classification task. The baseline performance for this exper-
iment, using random guessing, would yield 1.25% accuracy. Raw
indicates unprocessed raw packet-count features. PCA indicates
normalized PCA-projected features, and “Session” indicates PCA
project features which were pre-processes to be gap-less – making
no attempt to model off-periods in network activity. Sandia A and
B represent similar experiments conducted in 2008 while Author
1 worked at Sandia National Laboratories. As Table (1) shows,
we perform considerably better than random guessing, achieving a

G-HMM M-HMM D-HMM G-VEC.
CU RAW — 22% 25% 82%
CU PCA 10% — — 63%

CU SESSION 28% 22% 25% 80%
SANDIA A 67%
SANDIA B 91%

Table 1: Performances of HMM models on CU’s 80 vs. 80
classification task. Baseline (random guess) would give 1.25%
accuracy. Dashed entries indicate infeasible settings. G-Vec.
refers to a Gaussian vector model.

nearly 6,600% improvement over the baseline using the Gaussian
model using vectors. In our experiments, 80% of the packet traffic
for a host is randomly chosen as the training set, and 20% as the
test set. The reported results are each averages of five independent
runs.

One important hypothesis emerges from these results: the spar-
sity of the data strongly influences performance; notice that as we
remove the sparsity from the CU data the performance improved.
Sandia’s experiments were conducted on servers with very dense
traffic output, compared to CU machines. Sandia A consists of
intra-class classification (e.g. database vs database), Sandia B con-
sists of inter-class (e.g. webserver vs database). Further, notice that
the Gaussian vector model had the strongest performance, in this
case the data is collapsed into a single vector emission (no transi-
tions are used). This indicates that for low-density traffic datasets,
a flat high-level model for behavior could suffer from under-fitting.
The following subsection describes a new model designed specifi-
cally for datasets where this is an issue.

3.4 Protocol-Transition Markov Model
Instead of modeling the dynamics of network traffic using hidden-

state models, a good alternative is to treat the system as a transi-
tion between specific application layer protocols (FTP → HTTP →

SMTP, ...) With this approach the protocols identify the states ex-
plicitly, thus we no longer need to use hidden-state representations.
Instead, we simply model the characteristics of the traffic observed
at any given state, while simultaneously tracking state-transitions.
To model the emissions behavior of these applications the same ex-
ponential family may be used, however given that MVN yields the
strongest performance in the previous experiments, we chose the
scalar-Gaussian mixture in this model:

p(x|θ) =
M�

i=1

1�
2πσ2

i

exp

�
−
(x− µi)

2

2σ2
i

�
. (11)

A mixture model allows us to implicitly capture an estimate of the
different types of traffic exchanges observed under a particular pro-
tocol. For example, a distribution on the sizes of websites visited,
or distribution on the lengths of emails sent. The above emissions
model can be easily estimated using EM. The update rules are de-
rived in the same manner as the multi-variate Gaussian maximiza-
tion step, except now the variance is scalar:

σ̂i =

�T
t=1 γt(i)(xt − µi)(xt − µi)�T

t=1 γt(i)
. (12)

The E-Step for computing the γ, ξ marginals remain the same. Since
the states are not hidden in this case, parameter estimation for the
state-transition parameter p(st|st−1) is much simpler and consists

6

of simply tracking the transition-frequencies as follows:

p(sb|sa) =
#(si = b, si−1 = a)

#(si = b, si−1 = a) + #(si �= b, si−1 = a)
. (13)

In the above equation #(si = b, si−1 = a) is a function that
counts the number of times state b follows state a in the training
data. Putting these together we obtain the probability distribution
for the protocol-transition model:

p(s,x|θ) = p(s1)p(x(1)|s1)
T�

t=2

p(st|st−1)p(x(t)|st). (14)

To bridge the gap between this model and network data, a few addi-
tional modifications are required. First and foremost, since PCAP
data does not come in the form of traffic-volume/protocol statistics,
the individual packets must be reassembled into sessions in order
for the needed statistical information to be derived. An easy so-
lution for this is to use a pcap-to-Netflow conversion tool. In our
experiments softflowd [16] was used to perform this conver-
sion. From the Netflow format, we can extract the features needed
to train the PT model. Secondly, given that there are 64k available
ports in TCP/IP, we could, in theory, have a 65, 536 × 65, 536-
sized transition matrix, which would be impossible to estimate ac-
curately. To solve this problem, we assume that all ports above
1024 to be ephemeral – baring no correlation with application-layer
traffic, and therefore can be collapsed into a single entry in the tran-
sition table (more complex delineations are possible given domain
knowledge.) Thirdly, if a state is encountered in testing that was
not seen in training, for example the appearance of HTTP traffic
where only SMTP was observed during training, then no entry for
that protocol would exist in the trained model. This can be solved
by adding a single dummy state to represent all protocols unseen
during training with a fixed value set for both entry- and exit- tran-
sition and emission probabilities. This state essentially represents
previously unseen traffic.

3.4.1 Accuracy evaluation

A range of datasets were used for this experiment, these include
the well-known LBNL dataset [3], collections from West Point and
NSA [2], and University traffic from CU and GMU. For each host,
multiple 150-entry segments of Netflow were sampled for testing
data, while the rest was used for training. The model that yields the
highest likelihood on the test sample labels that sample. If there are
100 hosts, a baseline would yield a 1% chance of a correct random
guess. Table (2) shows the performance of the PT-Markov model.
This model consistently achieves significantly higher performance
than the baseline, re-enforcing our hypothesis that deriving a lower-
level model at a finer granularity, where sparsity is less evident,
improves performance. The use of Netflow-like statistics permits
training with significantly less data than HMM-based approaches,
which could require data on the order of days. This lower level
model requires sessions on the order of minutes to hours, and works
very well even in cases of very sparse training data. This allowed
us to evaluate two additional CU machines which had very sparse
traffic that could not be evaluated in previous experiments. Our re-
sults show that given any traffic sample, on the order of 20 minutes
to an hour, our models can attribute that traffic to the true host, from
among 82, with 76% accuracy. This quantifies the degree to which
our models are correctly capturing statistical representations for the
idiosyncrasies of network behavior. The low-performance on the
NSA dataset can be attributed largely to session-reconstruction er-
rors. Poor reconstruction from PCAP to Netflow-like statistics can
lead to inaccurate records on session duration, size, etc., and this
inaccuracy influenced poorer performance on our model.

4. NETWORK TRACE CLUSTERING AND
SIMILARITY VISUALIZATION

4.1 Time-series kernels and Kernel-PCA
A very efficient general kernel between hidden Markov models

is the probability product kernel (PPK). First introduced by Jebara
et. al [13], the generalized inner product of this kernel is found
by integrating a product of two distributions over the space of all
potentially observable data sequences X :

K(p(x|θ), p(x|θ�)) =

�

x

pβ(x|θ)pβ(x|θ�)dx. (15)

When β = 1/2, the PPK becomes the classic Bhattacharyya affin-

ity metric between two probability distributions. This kernel is
different than previously proposed kernels, such as the Mutual-
Information/Cross-likelihood kernel by Yin et al. [30], in that the
inner product is solved as a direct function of the parameters of
the model, as opposed to traditional kernels which use the data se-
quences. This translates to a kernel that is both faster to compute,
and have comparatively much lower memory requirements than the
original. For certain distributions, the PPK can be computed analyt-
ically instead of numerically, greatly reducing computational costs.
When the probability distribution p(x|θ) of the integral in Eq. (15)
is a time-series model, such as an HMM, two elements of integra-
tion are required. For brevity, we denote p(x|θ) as p and p�(x|θ�)
as p�. The first component is the evaluation of what is known as
the elementary kernel Ψ(·), which is the Bhattacharyya affinity be-
tween emissions models for p and p� integrated over the space of
all emissions x:

Ψ(θ, θ�) =

�

x

p1/2(x|θ)p1/2(x|θ�)dx. (16)

For the exponential family of distributions, such as those de-
scribed in § 3, these integrals can be solved analytically. In the
case of full time-series models with Gaussian emission-models,
Ψ(θ, θ�) is solved as follows:

µ† = Σ−1
i µi + Σj

−1µj (17)

Σ† = (Σ−1
i + Σj

−1)−1 (18)

Z = µ�
i Σ

−1
i µi + µj

�Σj
−1µj − µ†�Σ†µ† (19)

Ψ(i, j) =
|Σ†

|
1/2

|Σi|
1/4|Σj |

1/4 exp
�
−

1
4Z

� . (20)

In the case of HMMs, the PPK of Eq. (15) requires integration over
their hidden-states in addition to their emissions models. An effi-
cient method for doing this is to take advantage of the interaction
between these hidden-states to factor the equation in a way that ad-
mits an iterative solution. Such a solution is provided in Table (3).

Given the elementary kernel, the PPK between two HMMs is
solved in O(TM2) operations using the formula in Table (3), where
T is the length of the sequence and M is the number of hidden
states. Further details about the PPK can be found in [13, 14]).
Given a kernel affinity between two HMMs, a non-parametric rela-
tionship between time series sequences emerges. It is now straight
forward to apply non-parametric clustering and embedding meth-
ods which will be described in in the following subsection.

The elementary kernel for the Protocol-transition model is simi-
larly derived. The main difference is the addition of a second layer
of interacting variables since each model represents a mixture of
scalar Gaussian distributions. The integral is solved by expand-
ing the product and following the same complete-the-squares tech-
nique as described in [13]. Due to the linearity of integration,

7

DATASET NUM HOSTS BASELINE MARKOV MODEL IMPROVEMENT
WEST POINT BORDER 47 2.13% 60% 28.2X

NSA CAPTURE 45 2.22% 37% 16.7X
LBNL ENTERPRISE 35 2.86% 78% 27.3X
COLUMBIA UNIV. 82 1.22% 76% 62.3X

GEORGE MASON UNIV. 65 1.54% 75% 48.8X
UMICH. MERIT 135 0.74% 62% 83.7X

Table 2: Accuracy evaluations across different datasets.

Probability product kernel K(p, p�):
Elementary kernel Ψ(θ, θ�) =

�
x
p1/2(x|θ)p1/2(x|θ�)dx

Φ(q0, q
�
0) = p(q0)

1/2p�(q�0)
1/2

for t = 1 . . . T
Φ(qt, q

�
t) =

�
qt−1

�
q�t−1

p(qt|qt−1)
1/2p(q�t|q

�
t−1)

1/2Ψ(qt−1, q
�
t−1)Φ(qt−1, q

�
t−1)

end
K(θ, θ�) =

�
qT

�
q�T

Φ(qT , q
�
T)Ψ(qT , q

�
T)

Table 3: FAST ITERATIVE ALGORITHM FOR THE PROBABILITY PRODUCT KERNEL

the elementary-kernel of a linear-mixture distribution, such as the
Protocol-Transition model, can be solved as a function of pair-wise
sub-elementary-kernels �Ψ, on the sub-models of the mixture. The
sub-elementary-kernel for a scalar-Gaussian is derived here. Let
µi,m and σi,m represent the mth sub-model of the ith Gaussian
mixture, then we have the following:

µ† = µm/σm + µn/σn (21)

σ† = (σ−1
m + σn

−1)−1 (22)

Z = µmσ−1
m µm + µnσn

−1µn − µ†σ†µ† (23)

�Ψ(θm, θn) =

√
σ†

(σmσn)
1/4 exp

�
−

1
4Z

� (24)

Ψ(i, j) =
�

m

�

n

αmγn�Ψ(θi,m, θj,n). (25)

α, γ represent the mixture coefficients of the i, j mixtures, respec-
tively. Note that the number of sub-models need not be the same
between two PT models, as long as each model is properly normal-
ized (i.e.

�
i αi = 1). Given the elementary kernel, computing

the full PPK for the PT model is similarly completed by using the
algorithm given in Table (3).

Note that our kernel-based framework allows one to use any

proper Mercer kernel, not just PPK. For example, a simpler cross-
likelihood kernel is also available. Shown in Eq. (26), this kernel
calculates the Hilbert-space inner-product as a function of the like-
lihood values from two densities (θp, θq), evaluated over a finite set
of training data. This kernel takes the following form:

K(p(x|θp), p(y|θq)) = exp

�
−
||p(y|θp)− p(x|θq)||
2σ2p(x|θp)p(y|θq)

�
. (26)

The main benefit of this kernel is the ease of implementation, re-
quiring only that likelihood-evaluation is possible given a model.
The downside of this kernel is the calculation overhead incurred
in having to explicitly recover the likelihood values for each data
sample used in the kernel estimate – for large sets of long data
sequences, this cost can be prohibitively expensive. The PPK is
proven to be orders of magnitude faster than this kernel [14].

4.2 Spectral Clustering for time-series data
Given any time-series model p(x|θ), the most straight forward

way to cluster the data is to extend the model using a linear mixture

�
i αip(x|θi) and use a soft-max algorithm such as Expectation-

Maximization to perform the clustering. However, for time-series
models, this type of clustering is prohibitively expensive and it re-
quires exponentially growing number of evaluations of the dataset.
Further, by using a linear-mixture, one adopts an implicit assump-
tion that the overall distribution of data takes on a parametric form.

Recent innovations in clustering has emerged, based on graph
theory. And Eigen-based solutions to such problems has led to new
classes of Spectral Clustering (SC) algorithms. In our context, an
{HMM, PT} model is trained for each data-sequence, the PPK is
then evaluated between all pairs of models to generate an Affin-
ity matrix, which represents a graph. A spectral graph-cut pro-
cedure (shown below) segments this graph into distinct subgraphs
(clusters). This leverages both parametric and non-parametric tech-
niques in the clustering process, by making use of parametric mod-
els (HMMs, etc) to represent the data, yet makes no assumptions
about the overall distribution of these models, allowing very non-
linear clusterings. A more detailed explanation of SC is omitted,
due to space constraints; the reader is referred to Ng & Weiss [19]
for additional reference. Listed below are the steps of our SC-PPK
algorithm, which is a time-series analogue of the Ng & Weiss SC
algorithm, extended using time-series kernels.

The SC-PPK algorithm:

1. Fit a model {HMM,PT} to each of the n = 1 . . . N time-
series sequences to retrieve models θ1...θN .

2. Calculate the Gram matrix A ∈ RN×N where Am,n =
K(θm, θn) for all pairs of models using the probability prod-
uct kernel (default setting: β = 1/2, T=10).

3. Define D ∈ RN×N to be the diagonal matrix where Dm,m =�
n Am,n and construct the Laplacian: L = D−1/2AD−1/2

4. Find the K largest eigenvectors of L and form matrix X ∈

RN×K by stacking the eigenvectors in columns. Renormal-
ize the rows of matrix X to have unit length.

5. Cluster the N rows of X into K clusters via k-means or any
other algorithm that attempts to minimize distortion.

6. The cluster labels for the N rows are used to label the corre-
sponding N time-series models.

8

Empirically, our algorithm greatly outperforms fully-parametric mod-
els such as mixtures-of-HMMs [14].

Figure 3: Sample HMM-clustering of host behaviors. Some
obvious clusters are annotated.

Figure (3) shows the output of a clustering. While we do not
have true labels for host behavior, we can infer some notion of ac-
curacy by using a reverse DNS-lookup and checking their domain
names. Here, we see groups of what appears to be similar hosts,
such as the the web servers (web1, web2,...), as well as the Planet-
lab research machines, and user workstations (boyacipc2, irtdesk1).
Based on our experience with Columbia’s IT department, we rec-
ognize groups [9] and [10] as clusters of server machines. Overall,
the initial results of this algorithm looks promising. A single out-
lier ([4] wood.cs) is generated, though this result is from an earlier
incarnation of our algorithm, later versions no longer allow unbal-
anced clusters such as this.

4.3 Network-behavior visualization with Low-
dimensional embedding

All data: scalar, vector, time-series, or otherwise, exist as single
points in some high (possibly infinite) dimensional Hilbert space.
Low-Dimensional Embedding is a class of techniques that seek to
capture a re-setting of these data points in a lower (typically 2-D
or 3-D) dimension, while maintaining – to the best extent – the
same pair-wise distances as the original data points. These tech-
niques permit visualization of high dimensional data, and can also
help confirm clustering patterns. Given a gram matrix K(i, j) :=
K(xi,xj) – the derivation of which was discussed in the previous
sub-section – many embedding algorithms are immediately avail-
able. The most well known is Kernel Principal Component Analy-
sis (KPCA). Given our derivations of the PPK for the HMM and
PT models, KPCA for time-series network data is available for
both data dimensionality reduction as well as visualization tasks.
Dimensionality-reduction, in this context, is analogous to the pre-
viously mentioned PCA method, which was used to compress the
Activity-grid input data. Whereas PCA finds a linear projection
into a sub-space that maximizes the intra-class covariance, kernel-
PCA finds an implicitly non-linear mapping by solving the same
problem in the image of the non-linear mapping Φ induced by the
kernel function:

C :=
1
m

m�

i=1

Φ(xi)Φ(xi)
�.

10

15

−2

0

2

4

−6

−4

−2

0

2

4

6
netbsd3

planetlab2

planetlab1

cluster00

monet

leaf

planetlab3

bmsalem

telemachus

kashmir

aphex

rcs

corsica

chihiro

metrorail

picard

cs

cal

web3web4

robotics

web1web2

templardb−pc01

raphson

vcxdigimgcindy−pcron
db−pc12

racecar

uribe

w4111b

bender

bank

db−files

coulomb03mail

int−ns1

gabriel

(a) 3-D embedding of abstract PPK-imaged HMM-space.

(b) Clusters of similar hosts are immediately recognizable.

Figure 4: Kernel-PCA embedding of HMM-measured mani-
fold. ”planetlab”, ”web”, and ”sos” clusters are easily visible.

The eigenvectors of K spans the Φ-images of the training data, the
solution set v takes the form v =

�m
i=1 αiΦ(xi), which leads to a

familiar eigenvalue decomposition problem:

mλα = Kα, K(i, j) := K(xi,xj).

The nth component of the kernel PCA projected data point is then:

�v(n),Φ(x)� =
m�

i=1

αn(i)K(xi,x). (27)

Where the kernel function K(·, ·) can be either the probability prod-
uct kernel or the cross-likelihood kernel. When projecting onto the
top three principal components, for example, KPCA would pro-
vide a 3-D view of the data, as Fig. (4) shows. Other similar algo-
rithms such as Multi-dimensional Scaling [15], Maximum Variance
Unfolding [26], require only the K matrix as the primary input.
Low-dimensional embedding allows us to view network traffic on a
2D/3D plane, to identify clusters of similar or anomalous behavior,
as well as provide insights into how many clusters might exist in
the dataset. A 4-dimensional view of this behavior manifold is also
possible, by examining the embedding across time. With a time-
lapse embedding we see how patterns of behavior can evolve, and
how hosts approach and drift in behavior. A video demonstration
of this is available on our website2.
2http://www.cs.columbia.edu/∼yingbo/MVE-DHS-2.mov

9

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of clusters (K)

A
n
o
n
ym

ity
 M

e
tr

ic

Figure 5: IMPACT: “Anonymity” vs Number-of-clusters.

5. NETWORK TRACE ANONYMIZATION

5.1 The IMPACT framework
The Internet-Measured Private Anonymously Clustered Traces

(IMPACT) framework is the realization of the results in this paper.
IMPACT operates through the following steps: First, the traffic for
all hosts in the network trace are extracted to produce statistical fea-
tures, which is then used to train time-series models using the meth-
ods described in § 3. These models represent points embedded in an
abstract-space (visualizable with techniques described in § 4.3. The
spectral clustering algorithm described in § 4 clusters these models
and provides a delineation of behavior classes for hosts within a
network trace, providing confidence that merging members of this
group would provide anonymity to the members while minimizing
information-dilution within that class. PCAP-clustering is actuated
in the Merge module of IMPACT which processes the network
trace and reassigns each member of the cluster a single group IP
address. All relevant parameters such as timestamps are adjusted
to be consistent. Optional filtering and pre-processing modules are
used to remove artifacts in the dataset. This de-noises the data
of fragmented packets, Bogon packets, and other unneeded net-
work oddities. For technology integration purposes, the first ver-
sion of IMPACT was designed to be a module within PktAnon,
allowing us to use their well-developed processing chains to further
anonymize the data, using primitives such as the CryptoPan and
other functions. Graphics which break down IMPACT’s modules
and functionality are provided in the Appendix. Fig. (9) shows the
graphical user interface which we have designed for IMPACT and
PktAnon. This technology allows users to select multiple trace
files, customize the feature extraction and clustering algorithms,
selecting the number of clusters for example, and adjust transfor-
mation primitives such as transformation settings for packet header
contents in a policy-driven system.

Utility-preservation is, unfortunately, not simple to evaluate, given
that ”utility” and ”anonymity” are largely subjective. However, we
can achieve some measure of anonymity by measuring the entropy-
gain given IMPACT’s mixing transform. Appealing to the Anonymity-
Set-Size estimate, we measure the ratio of one entity’s packet-count
to the resulting packet-count of the group-entity. Smaller ratios in-
dicate more anonymity as the original becomes ”lost in the crowd.”
An inverse harmonic mean of these ratios quantifies this concept.
Fig. (5) shows results on the Columbia dataset of 80 hosts. We
have the highest degree of anonymity when everyone is grouped
into one cluster and the lowest when 80 clusters are used – as ex-
pected – but notice a favorable fall-off in the plot, which indicates
that our system provides better groupings than purely random clus-

0 10 20 30 40 50 60 70 80 90
0

5

10

15
x 10

8

Heavy hitters: Original

0 5 10 15 20 25
0

1

2

3

4
x 10

9

Heavy hitters: 21−clusters

Figure 6: Heavy-Hitters: before and after. IMPACT preserves
statistical distribution; dashed line shows random even-mix.

tering, represented by the dashed line. Fig. (6) shows the statistic-
preserving properties; in a study on measuring Heavy-Hitters on a
network, we simply see a coarser view of the original density post-
mixing; a purely random even-mix would yield the uninformative
flat distribution represented by the dashed line.

5.2 Conclusion
Our approach to anonymization is founded on the hypothesis that

statistical models for static and temporal traffic behavior may be
used to identify groups of individuals with distinctively similar be-
havioral patterns. From there, we draw upon the concept of mix-
nets for anonymization. In a mix-net, the traffic from multiple users
are aggregated at smaller sets of exit points. Tor for example, is a
well known anonymity provider that concentrates all traffic which
enters the network through small set of exit nodes, using onion-
routing within the network to provide end-to-end anonymity. The
traffic aggregation in the Tor network does not, however, consider
the behavior profiles of the users in the switching logic. It and sim-
ilar solutions do not try preserve statistical features in the resulting
traffic. By using machine learning algorithms to profile and clus-
ter hosts based on behavioral characteristics, we apply a pseudo-
mixed-net transform to offline data, while simultaneously preserv-
ing, in the aggregate, the statistics that characterize the members
of individual groups. In this paper, we demonstrate quantifiable
performance improvements over a purely randomized approach.

As part of our ongoing work, we can also achieve an interpola-
tion effect on the profiles by partially-mixing traffic among differ-
ent hosts. The kernel-based approach extends to kernel-regression
and interpolation naturally, allowing us to ”patch” missing traffic.
We can transform user traffic to appear 30% similar to one profile
and 70% to another, or some other desired ratio, by statistics-driven
mixing of raw traffic in the desired ratios. These properties extends
into a new field of statistics-driven traffic synthesis. Full papers on
these topics are forthcoming.

Acknowledgments
We thank the following individuals for their contributions to this ef-
fort: Steve Bellovin, Dan Rubenstein, Vishal Misra, Tal Malkin, Eli
Brosh, Kyung-Wook Hwang, Bert Huang, Blake Shaw, Krzysztof
Choromanski, and Oladapo Attibe. We thank Prof. Angelos Stavrou
and Brian Schulte at GMU for providing us with valuable data.
This research was sponsored by Department of Homeland Security,
SPAWAR Contract No. N66001-09-C-0080, Privacy Preserving
Sharing of Network Trace Data (PPSNTD) Program and a DURIP
Instrumentation grant from AFOSR (FA 99500910389).

10

Figure 7: IMPACT modules.

Appendix
6. REFERENCES
[1] 1st ACM Workshop on Network Data Anonymization (NDA

2008), October 2008.
[2] ITOC CDX Research Dataset.

http://www.icir.org/enterprise-tracing/, 2009.
[3] LBNL/ICSI Enterprise Tracing Project.

http://www.icir.org/enterprise-tracing/, 2011 2011.
[4] Openpacket.org: a centralized repository of network traffic

traces for researchers. https://www.openpacket.org, 2011.
[5] PREDICT: The Protected Repository for the Defense of

Infrastructure Against Cyber Threats.
http://www.predict.org, 2011.

[6] ALLLMAN, M., AND PAXSON, V. Issues and etiquette
concerning use of shared measurement data. In Proceedings

of the 7th ACM SIGCOMM conference on Internet

measurement (New York, NY, USA, 2007), IMC ’07, ACM,
pp. 135–140.

[7] BLANTON, E. TCPurify: A ”Sanitary” Sniffer.
http://masaka.cs.ohiou.edu/ eblanton/tcpurify/, January 2008.

[8] BREAKINGPOINT SYSTEMS. Breakingpoint.
http://www.breakingpointsystems.com/, 2011.

[9] BRUGGER, T. KDD Cup ’99 dataset (Network Intrusion)
considered harmful.
http://www.kdnuggets.com/news/2007/n18/4i.html,
September 2007.

[10] DASGUPTA, S. Experiments with random projection. In
Proceedings of the 16th Conference on Uncertainty in

Artificial Intelligence (San Francisco, CA, USA, 2000), UAI
’00, Morgan Kaufmann Publishers Inc., pp. 143–151.

[11] FAN, J., XU, J., AMMAR, M. H., AND MOON, S. B.
Prefix-preserving ip address anonymization:
measurement-based security evaluation and a new
cryptography-based scheme. The International Journal of

Computer and Telecommunications Networking 46, 2
(October 2004).

[12] GAMER, T., MAYER, C. P., AND SCHÖLLER, M. Pktanon -
a generic framework for profile-based traffic anonymization.
PIK Praxis der Informationsverarbeitung und

Kommunikation 2 (June 2008), 67–81.
[13] JEBARA, T., KONDOR, R., AND HOWARD, A. Probability

product kernels. Journal of Machine Learning Research 5

(2004), 819–844.
[14] JEBARA, T., SONG, Y., AND THADANI, K. Spectral

clustering and embedding with hidden markov models. In

Step 1 - Statistical feature extraction

Step 2 - Clustering points on an HMM Manifold

Step 3 - Discover groups of statistically-similar network hosts

Step 4 - Merge traffic between statistically-similar hosts

Figure 8: IMPACT: Step-by-step operations.

11

Figure 9: IMPACT interface: showing integration with
PktAnon framework

Machine Learning: ECML 2007, J. Kok, J. Koronacki,
R. Mantaras, S. Matwin, D. Mladenic, and A. Skowron, Eds.,
vol. 4701 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2007, pp. 164–175.

[15] KRUSKAL, J., AND WISH, M. Multidimensional Scaling.
Sage, 1978.

[16] MINDROT.ORG. softflowd, March 2011.
http://www.mindrot.org/projects/softflowd/.

[17] MINSHALL, G. TCPdpriv.
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html, October
2005.

[18] MIRKOVIC, J. Privacy-safe network trace sharing via secure
queries. In Proceedings of the 1st ACM workshop on

Network data anonymization (2008).
[19] NG, A., JORDAN, M., AND WEISS, Y. On spectral

clustering: Analysis and an algorithm. In Advances in Neural

Information Processing Systems (2001).
[20] PANG, R., ALLMAN, M., BENNETT, M., LEE, J., AND

PAXSON, V. A first look at modern enterprise traffic. In
Proceedings of the 5th ACM SIGCOMM conference on

Internet Measurement (2005).
[21] PANG, R., ALLMAN, M., PAXSON, V., AND LEE, J. The

devil and packet trace anonymization. SIGCOMM Comput.

Commun. Rev. 36 (January 2006), 29–38.
[22] PARATE, A., AND MIKLAU, G. A framework for

utility-driven network trace anonymization. Tech. rep.,
University of Massachusetts, Amherst, 2008.

[23] PARATE, A., AND MIKLAU, G. A framework for safely
publishing communication traces. In Proceeding of the 18th

ACM conference on Information and knowledge

management (2009).
[24] RABINER, L. R. A tutorial on hidden markov models and

selected applications in speech recognition. In Proceedings

of the IEEE (1989), pp. 257–286.
[25] SPIRENT. Spirent network traffic generator.

http://www.spirent.com/, 2011.
[26] WEINBERGER, K. Q., AND SAUL, L. K. Unsupervised

learning of image manifolds by semidefinite programming.
Int. J. Comput. Vision 70 (October 2006), 77–90.

[27] WIKIPEDIA. The Stakkato Intrusions.
http://en.wikipedia.org/wiki/Stakkato, 2004.

[28] WRIGHT, C. V., COULL, S. E., AND MONROSE, F. Traffic
morphing: An efficient defense against statistical traffic
analysis. In Proceedings of the Network and Distributed

Security Symposium - NDSS ’09 (February 2009), IEEE,
IEEE.

[29] WRIGHT, C. V., MONROSE, F., AND MASSON, G. M. On
inferring application protocol behaviors in encrypted
network traffic. Journal of Machine Learning Research

(2006).
[30] YIN, J., AND YANG, Q. Integrating hidden markov models

and spectral analysis for sensory time series clustering. In
Proceedings of the Fifth IEEE International Conference on

Data Mining (Washington, DC, USA, 2005), ICDM ’05,
IEEE Computer Society, pp. 506–513.

[31] YURCIK, W., WOOLAM, C., HELLINGS, G., KHAN, L.,
AND THURAISINGHAM, B. Scrub-tcpdump: A multi-level
packet anonymizer demonstrating privacy/analysis tradeoffs.
In Third International Conference on Security and Privacy in

Communications Networks (SecureComm) (2007).

12

