Kernelizing Sorting, Permutation and Alignment
for Minimum Volume PCA

Tony Jebara

Columbia University, New York, NY 10027, USA

jebara@cs.columbia.edu

Abstract. We propose an algorithm for permuting or sorting multiple
sets (or bags) of objects such that they can ultimately be represented ef-
ficiently using kernel principal component analysis. This framework gen-
eralizes sorting from scalars to arbitrary inputs since all computations
involve inner products which can be done in Hilbert space and kernel-
ized. The cost function on the permutations or orderings emerges from a
maximum likelihood Gaussian solution which approximately minimizes
the volume data occupies in Hilbert space. This ensures that few kernel
principal components are necessary to capture the variation of the sets
or bags. Both global and almost-global iterative solutions are provided
in terms of iterative algorithms by interleaving variational bounding (on
quadratic assignment problems) with a Kuhn-Munkres algorithm (for
solving linear assignment problems).

1 Introduction

Sorting or ordering a set of objects is a useful task in practical unsupervised
learning as well as in general computation. For instance, we may have a set
of unordered words describing an individual’s characteristics in paragraph form
and we may wish to sort them in a consistent manner into fields such that the
first field or word describes the individual’s eye color, the second word describes
his profession, the third word describes his gender, and so forth. Alternatively,
as in Figure 1, we may want to sort or order dot-drawings of face images such
that the first dot is consistently the tip of the nose, the second dot is the left
eye, the third dot is the right eye and so forth. However, finding a meaningful
way to sort or order sets of objects is awkward when the objects are not scalars
(scalars can always be sorted using, e.g. quick-sort). We instead propose sorting
many bags or sets of objects such that the resulting sorted versions of the bags
are easily representable using a small number of kernel principal components.
In other words, we will find the sorting or ordering of many bags of objects
such that the manifold formed by these sorted bags of objects will have low
dimensionality.

In this article, we refer to sorting or ordering in the relative sense of the
word and seek the relative ordering between objects in two or more unordered
sets. This is equivalent to finding the correspondence between multiple sets of
objects. A classical incarnation of the correspondence task (also referred to as

X X X X X X x@ X@ x@ X@ X@ XQ)
X x ¥ x® X® X®
x x XX XX X X X @@
X g X XXX X X @ . . @ @Xxxxx @xxx Xx
| | Tow?, | | 660
(a) 3 Unsorted dot images (b) 3 Sorted dot images

Fig. 1. Sorting or matching of 3 bags of 8 (x,y) coordinates representing faces.

matching, permutation or ordering between sets) is the so-called linear assign-
ment problem (LAP). A familiar example of LAP is in an auction or garage-sale
where N goods are available and N consumers each attribute a value to each
good. This solution to LAP is the the best pairing of each consumer to a single
good such that the total value obtained is maximal. This is solvable using the
classical Kuhn-Munkres algorithm in O(N?) time. Kuhn-Munkres provides a
permutation matrix capturing the relative ordering between the two sets (goods
and consumers).

Recent efficient variants of Kuhn-Munkres make it practical to apply to bags
of thousands of objects [3]. Alternatively, relaxations of LAP have been pro-
posed including the so-called invisible hand algorithm [8]. These tools have been
used for finding correspondence and aligning images of, for instance, digits [2, 14]
to obtain better models (such as morphable or corresponded models). In fact,
handling permutable or unordered sets is relevant for learning and image clas-
sification as well. For example, permutable images and other objects have been
handled via permutationally invariant kernels for support vector machine classi-
fiers [7] or permutationally invariant expectation-maximization frameworks [6].
It is known that removing invariant aspects of input data (such as permutation)
can improve a learning method [13]. Another approach is to explicitly estimate
the ordering or permutation by minimizing the number of principal components
needed to linearly model the variation of many sets or bags of objects [5,4].

In this paper, we build up a novel algorithm starting from the Kuhn-Munkres
algorithm. Kuhn-Munkres sorts only a pair of bags or sets containing N vector-
objects such that we minimize their squared norm. Our novel algorithm upgrades
the search for an ordering from two bags to many simultaneous bags of objects by
iterating the Kuhn-Munkres algorithm with variational bounds. The iterations
either minimize the squared norm from all sorted bags to a common “mean bag”
or minimize the dimensionality of the resulting manifold of sorted bags. These
two criteria correspond to a generalization of the linear assignment problem and
to the quadratic assignment problem, respectively. Both are handled via iterative
solutions of the Kuhn-Munkres algorithm (or fast variants). We also kernelize
the Kuhn-Munkres algorithm such that non-vectorial objects [11] can also be
ordered or sorted.

2 Permuting several sets

Consider a dataset D of T sets or bags D = {Xt}:;r:l. Each of these bags is merely
a collection of N unordered objects x; = {%,n}f:l- We wish to find an ordering
for objects in these bags that makes sense according to some fairly general crite-
rion. However, in the general case of bags over unusual objects (vectors, strings,
graphs, etc.) it is not clear that a natural notion of ordering exists a priori. We
will exploit kernels since they have been shown to handle a diverse range of input
spaces. If our sorting algorithms leverage these by exclusively using generalized
inner products within sorting computations we would be able to sort a variety of
non-scalar objects. We therefore propose another criterion for sorting that finds
orderings. The criterion is that the resulting ordered bags can be efficiently en-
coded using principal components analysis (PCA) or kernel principal component
analysis (kPCA) [12]. Essentially, we want kPCA to capture the variation seen
in the dataset with as few dimensions as possible.

We will eventually deal with non-vectorial objects but for simplicity, we could
assume that all bags simply contain N vectors of dimensionality D. Thus, we
assume each 7, € RP and we can rewrite each bag x; in an N x D matrix
form as X;. Our dataset of many bags can then be stored as T matrices and
consists of {Xt}?zl. To reorder each of these bags, we consider endowing each
matrix X; with an unknown N x N permutation matrix A; which re-sorts its
N row entries. Therefore, we augment our dataset with matrices that re-sort it
as follows {AtXt}thl. In the more general case where we are not dealing with
vectors for each ¢ ,, we will take the permutation matrices A; to be a general
permutation p; of the set {1,..., N} which defines an ordering of the bag as

follows p; ® x¢ = (’Yt,pt(n))::y This gives us an ordered version of the dataset
for a specific configuration of orderings denoted P which we write as follows
Dp={p:® Xt}thl-

Given the original dataset, we want to find a good permutation configuration
by optimizing the matrices {4;};_, or the permutation configurations {p;},,
To make the notion of goodness of permutation configurations concrete, we will
argue that good permutations will reveal a compact low-dimensional represen-
tation of the data. For instance, the data may lie on a low dimensional manifold
that is much smaller than the embedding space of size ND or N|vy |, where
|v¢,n| is the dimensionality of the objects being permuted (if and when such a
quantity makes sense). We now elaborate how to approximately measure the
dimensionality of the potentially nonlinear manifold spanning the data. This is
done by observing the eigenvalue spectrum of kernel PCA which approximates
the volume data occupies in Hilbert space. Clearly, a low volume suggests that
we are dealing with a low dimensional manifold in Hilbert space.

2.1 Kernel PCA and Gaussians in Hilbert space

We subscribe to the perspective that PCA finds a subspace from data by mod-
eling it as a degenerate Gaussian since only first and second order statistics of

4

a dataset {a:t}z:l are computed [7]. Similarly, kernel PCA finds a subspace in
Hilbert space b¥ only looking at first and second order statistics of the feature
vectors {¢(x¢) }—y instead®. In fact, we are also restricted to second order statis-
tics since we wish to use kernel methods and can thus only interact with data
in Hilbert space via inner-products k(z:, zy) = {(¢(x¢), ¢(zy)).

One way to evaluate the quality of a subspace discovered by kernel PCA is
by estimating the volume occupied by the data. In cases where the volume of
the data in Hilbert space is low, we anticipate that only a few kernel principal
components will be necessary to span and reconstruct the dataset. Since kernel
PCA hinges on Gaussian statistics, we will only use a second order estimator of
the volume of our dataset. Consider computing the mean and covariance of a
Gaussian from the dataset in Hilbert space. In kernel PCA [12], recall that the
top eigenvalues of the covariance matrix X' = 1. 3=, ¢(z¢)¢(z:) of the data are
related to the top eigenvalues of the T' x T Gram matrix K of the data which is
defined element-wise as [K];p = k(z¢, 2y). The eigenvalues A and eigenvectors
a of the Gram matrix are given by the solution to the problem:

<kw1) kzl) T <kE17k$T> 231 o31
. . . — T\ .

<k$T7 k:h) T (kﬂvT ’ kwT) ar ar

From the above, we find the top J eigenvectors a/ which produce the highest J
eigenvalues and approximate the dataset with a J-dimensional nonlinear mani-
fold. The eigenfunctions v (z) of the covariance matrix describe axes of variation
on the manifold and are unit-norm functions approximated by:

T

v (z) o Z ol k(x, zy).
t=1

These are normalized such that (v?,v7) = 1. The spectrum of eigenvalues de-
scribes the overall shape of a Gaussian model of the data in Hilbert space while
the eigenvectors of the covariance matrix capture the Gaussian’s orientation.
The volume of the data can then be approximated by the determinant of the
covariance matrix which equals the product of its eigenvalues M.

Volume =~ |X| = H)\j.
J

If we are dealing with a truly low-dimensional subspace, only a few eigenvalues
(corresponding to eigenvectors spanning the manifold) will be large. The many
remaining eigenvalues corresponding to noise off of the manifold will be small and

! While this Hilbert space could potentially be infinite dimensional and Gaussians
and kernel PCA should be handled more formally (i.e. using Gaussian processes
with white noise and appropriate operators) in this paper and for our purposes we
will assume we are manipulating only finite-dimensional Hilbert spaces. Formalising
the extensions to infinite Hilbert space is straightforward.

the volume we ultimately estimate by multiplying all these eigenvalues will be
low2. Thus, a kernel PCA manifold that is low-dimensional should typically have
low volume. It is well known that kernel PCA can also be (implicitly) centered
by estimating and removing the mean of the data yet we will not elaborate this
straightforward issue (refer instead to [12]). Before applying PCA, recall that we
perform maximum likelihood estimation to obtain the mean fi and the covariance
Y. The volume of the dataset is related to its log-likelihood under the maximum
likelihood estimate of a Gaussian model as shown in [4]:

l(/,L,E) = Zlog-/\/(xtlua E)
t

TD T 1 _
—Tlog@ﬂ - 510g|2|) Z(xt -)" Z N @ -).
¢

Log-likelihood simplifies as follows when we use the maximum likelihood setting

for the mean /i = 7), z; and covariance Y= =3 (@ —) (e —)T
. TD T A TD
1(f, ¥) = ——~log(2m) — 5 log [X] — —~.

Therefore, we can see that a kernel PCA solution which has high log-likelihood
according to the Gaussian mean and covariance will also have low volume low
log |¥| and produce a compact low-dimensional manifold requiring few principal
axis to span the data.

2.2 Permutations that maximize likelihood and minimize volume

We saw that we are solving a maximum likelihood problem to perform kernel
PCA and higher likelihoods indicate lower volume and a better subspace. How-
ever, the above formulation assumes we have vectors or can readily compute
kernels or inner products between kPCA’s T Hilbert-space vectors {¢(x:)},_,-
This is not trivial when each z; is actually an unordered bag of tuples as we had
when we were previously dealing with x;. However, given an ordering of each
via A; matrices or p; permutations, we can consider computing a kernel on the
sorted bags as follows:

N N
k(p: ® xt,pt ® X¢1) = Z <¢(’Yt,pt(i))a A(ver Dyt (z'))> = Z H(’Yt,pt(i),’)’t' Dyt (z'))
i=1 =1

assuming we have defined a base kernel «(.,.) between the actual objects v,
in our bags. Another potentially clearer view of the above is to instead assume
we have bags of Hilbert-space vectors where our dataset D has T of these sets
or bags D = {45,5}3:1. Each of these bags is merely a collection of N unordered

2 Here we are assuming that we do not obtain any zero-valued eigenvalues which
produce a degenerate estimate of volume. We will regularize eigenvalues in the sub-
sequent sections to avoid this problem.

objects in Hilbert space & = {¢(v, n)} .- Applying the ordering p; to this
unordered bag of Hilbert space vectors pr0v1des an ordered set as follows p;@®; =

(¢(%,pt (n))) . Inner products between two ordered bags are again given in
terms of the base kernel k(.,.) as follows:
N
(Pt ® D1, 9}, ® D) Z Ve 0O 90) = D 6V (> Vet 0))-
i=1 i=1

As in [4] we will find settings of A; or p; that maximize likelihood under a
Gaussian model to minimize volume. However, instead of directly minimizing the
volume by assuming we always have updated the mean and covariance with their
maximum likelihood setting, we will treat the problem as an iterative likelihood
maximization scheme. We have the following log-likelihood problem which we
argued measures the volume of the data at the maximum likelihood estimate of
pand X

l(pla---;pT;/J/:E) = th(ptnuaz) = Zlog/\/(pt ®dst|p’52)
t t

Further increasing likelihood by adjusting py,...,pr will also further decrease
volume as we interleave updates of p and X. Thus, the above is an objective
function on permutations and maximizing it should produce an ordering of our
bags that keeps kernel PCA efficient. Here, we are assuming we have a Gaussian
in Hilbert space yet it is not immediately clear how to maximize or evaluate
the above objective function and obtain permutation configurations that give
low-volume kernel PCA manifolds. We will next elaborate this and show that
all computations are straightforward to perform in Hilbert space.

We will maximize likelihood over p,...,pr, p and X iteratively in an axis-
parallel manner. This is done by locking all parameters of the log-likelihood and
modifying a single one at a time. Note, first, that it is straightforward, given a
current setting of (p1,...,pr) to compute the maximum likelihood p and X as
the mean and covariance in Hilbert space. Now, assume we have locked p and
X at a current setting and we wish to only increase likelihood by adjusting the
permutation p; of a single bag &;. We investigate two separate cases. In the first
case, we assume the covariance matrix X is locked at a scalar times identity and
we find the optimal update for a given p; by solving a linear assignment problem.
We will then consider the more general case where the current X covariance
matrix in Hilbert space is an arbitrary positive semi-definite matrix and updating
the current p; will involve solving a quadratic assignment problem.

3 Kernelized sorting via LAP and mean alignment

Given y, p1,...,pr and X = ol we wish to find a setting of p; which maximizes
the likelihood of an isotropic Gaussian. This clearly involves only maximizing
the following contribution of bag ¢ to the total log-likelihood:

It (pe, p,) = log N (ps ® b¢|p, o).

We can simplify the above as follows:

1
Le(pe, p, X) = const — o ((pr ® Do, pr © Pe) = 2(pe @ Po, 1) + (s 1) -
Since (p; ® &, p; ® $;) is constant despite our choice of p;, maximizing the above
over p; is equivalent to maximizing the following function:

Dy = argn;a}x(pt Q Py, p) .

Assume we have the current maximum likelihood mean which is computed from
the locked permutation configurations from the previous iteration py,...,pr.
The above then simplifies into:

T N T
. 1 .
Py = argmax <pt ® Py, T Z Py ® ¢t'> = arg H;?XZ Z 5 (Yepe (> Ve 00 () -

t'=1

The above problem is an instance of the linear assignment problem (LAP) and
can directly be solved producing the optimal p; in O(N?) via the Kuhn-Munkres
algorithm (or more efficient variants such as QuickMatch [10], auction algorithms
or the cost scaling algorithm). Essentially, we find the permutation matrix A,
which is analogous to p; by solving the assignment problem on the N x N matrix
D, via a simple call to the (standard) function KuhnMunkres(—D;) where D,
is an N x N matrix giving the value of kernel evaluations between items in the
current bag and the mean bag. We define the D; matrix element-wise as:

T
[D¢lier = Z & (Veyi> Ve o (1)) -

t'=1

Iterating the update of each p; in this way for ¢ = 1...7T and updating
the mean p repeatedly by its maximum likelihood estimate will converge to a
maximum of the log-likelihood. While a formal proof is deferred in this paper,
this maximum may actually be global since the above problem is analogous to
the generalized Procrustes problem [1]. In the general Procrustes setting, we can
mimic the problem of aligning or permuting many bags towards a common mean
by instead computing the alignments or permutations between all possible pairs
of bags. For instance, it is possible to find permutations p;y or matrices Ay
that align each bag x: to any other bag xu via [Div]i.s = k(Ve,i,v,)- These
then give a consistent set of permutations to align the data towards a com-
mon mean prior to kernel PCA. This provides us with the ordering py, ..., pr
of the data which now becomes a dataset of ordered bags {p; ® @t}z;l. Sub-
sequently, we perform kernel PCA on the data in O(T®) using singular value
decomposition on the T' x T centered Gram matrix. This gives the eigenvectors,
eigenvalues and eigenfunctions that span the nonlinear manifold representation
of the ordered data. This will have a higher likelihood and potentially use fewer
principal components to achieve the same reconstruction accuracy than imme-
diate application of kernel PCA on the dataset D. Of course, this argument only

holds if the dataset itself truly has a natural permutation invariance or was a
collection of sets or bags.

We now turn to the more general case where the Gaussian covariance is
arbitrary and is not artificially locked at a spherical configuration. However, in
this setting, global convergence claims are even more elusive.

4 Kernelized sorting via QAP and covariance alignment

In the case where we consider anisotropic Gaussians, the covariance matrix is
an arbitrary positive semi-definite matrix and we have a more involved proce-
dure for updating a given p;. However, this is more closely matched to the full
problem of minimizing the volume of the data and should produce more valu-
able orderings that further reduce the number of kernel principal components we
need to represent the ordered bags. Here, we are updating a single p; again yet
the covariance matrix X' is not a scaled identity. We therefore have the following
contribution of bag t to the log-likelihood objective function:

lt(PtaH: E) = logN(pt ® ¢t|:u’7 E)

Due to the presence of the ¥, this will no longer reduce to a simple linear as-
signment problem that is directly solvable for A; or p; using a polynomial time
algorithm. In fact, this objective will produce an NP-Complete quadratic assign-
ment problem [9]. Instead we will describe an iterative technique for maximizing
the likelihood over p; by using a variational upper bound on the objective func-
tion.

Define the inverse matrix M = X~! which we will assume has actually been
regularized as follows M = (X+€ 1)_1 +e2] where €; and e, are small scalars (the
intuition for this regularization is given in [5]). Recall kernel PCA (with abuse
of notation) gives the matrix X as follows X = 3>, Mo/ (v7)". Meanwhile, the
matrix M can also be expressed with abuse of notation in terms of its eigenvalues
A and eigenfunctions v7 from as follows M = Y 7_ Mv?(v7)T + oI. We can
assume we pick a finite J that is sufficiently large to have a faithful approximation
to M. Recall that, as in kernel PCA, the (unnormalized) eigenfunctions are
given by the previous estimate of the inverse covariance at the previous (locked)
estimates of the permutations py:

T
(v, po &)=Y ol (p©&,p @ Pr)
t=1

where the normalization such that (v/,v7) = 11is absorbed into the M for brevity.
We can now rewrite the (slightly regularized) log-likelihood more succinctly by

noting that g and X are locked (thus some terms become mere constants):

1
It(p¢) = const — i(pt Q& — p) M(p @ By — p)

1
= const — i(pt ® ®) T M(py ® B;) + (0 @ B)" Mp

= const — — pt @ @)T T(pe @ ®e) + (pr ®) Mp

IIM&

where we have used the expanded definition of the M matrix yet its isotropic
contribution oI as before has no effect on the quadratic term involving p;. How-
ever, the anisotropic contribution remains and we have a QAP problem which
we continue simplifying by writing the eigenvectors as linear combinations of
Hilbert space vectors or kernel functions:

T 2
N (Z od, (pe ® B, ®¢m>>
m=1

T
(Pt @ B, i © B} D @y (B ©) + 0 (py © By, o) -

j=1 m=1 n=1

+
M-
!
M%

S&)

For notational convenience, exchange the p; notation and start using the per-
mutation matrix notation A; by noting the following relationship:

(P @B, pp @ Bp) =D Y [Addii (¥e,i> Yer 5,0 (1))-

i=14'=1

We can now rewrite the (negated) log-likelihood term as a cost function C'(4;) =
—I(A;) over the space of permutation matrices A;. This cost function is as follows
after we drop some trivial constant terms:

J

o[NN 2 N N
C(Ar) :Z?<22At liir Za NVtz;’Ym,pm(z' > _ZZ[At]i,z”[Dt]z’,i’

i=1¢'=1 i=1¢=1

where we have defined the readily computable N x N matrix D; element-wise
as follows for brevity:

T
Dt’ll’ _ZAJ Zaj ’Yt ’la'ympm(z (Za% <M7ﬁn®¢n>>

n=1
T
Z %,z‘;’Yt',ﬁ;(z"))-

This matrix degenerates to the previous isotropic case if all anisotropic Lagrange
multipliers go to zero leaving only the oI contribution. Note, we can fill in the

HIQ

10

terms in the parentheses as follows:

</J/7pn ® ¢ Z (Pt' ® Byt , P ® ¢ Z Z ’Vn,pn (3)» ’Yt’,ﬁt:(z))
t’ 1 t’ 1i=1
which lets us numerically compute the D; matrix’s N x N entries.

Clearly the first term in C(A4;) is quadratic in the permutation matrix A
while the second term in C'(4;) is linear in the permutation matrix. Therefore,
the second LAP term could be optimized using a Kuhn-Munkres algorithm how-
ever, the full cost function is a quadratic assignment problem. To address this
issue, we will upper bound the first quadratic cost term with a linear term such
that we can minimize C(A4;) iteratively using repeated applications of Kuhn-
Munkres. This approach to solving QAP iteratively via bounding and LAP is
similar in spirit to the well-known Gilmore-Lawler bound method as well as other
techniques in the literature [9].

First, we construct an upper bound on the cost by introducing two J x N
matrices called Q and Q. The entries of both @ and () are non-negative and
have the property that summing across their columns gives unity as follows:

S0k = 1 it Tl -

We insert the ratio of a convex combination of these two matrices (weighted by
a positive scalar 67 € [0, 1]) into our cost such that C'(4;) =

J o~ ~ 2
Z)\7 (Z Z[At Q 4 El — 5] Q Jﬂ' Z aJ ’Yt 46y Y, pom (4)))
J,‘L

j=1 i=114i=1 37” m=1

- Z Z[At]z',i’ [Dy)iir-

i=1 =1

Note that this in no way changes the cost function, we are merely multiplying
each entry of the matrix A; by unity. Next recall that the squaring function
f(x) = 2? is convex and we can therefore apply Jensen’s inequality to pull
terms out of it. We first recognize that we have a convex combination within the
squaring since:

> i (F1QLs+ (1=)@ls) =8 +(1-8) = 1 Vi,

i=114i'=1

Therefore, we can proceed with Jensen to obtain the upper bound on cost as
follows, C(A;) <

i X i i[At]i i (5j [Ql,.i + (1 — 69)[Q); z) (Zz:i a%K(%’i’Vm”i’”("'))>2
— 2 ’ ’ ’ 3@l + (1 — 69)[Q]

Jj=1 i=1i'=1
N N
= D [Adi[Diliir

i=1¢=1

11

The above bound is actually just a linear assignment problem (LAP) which we
write succinctly as follows:

2
il T N <Z£:1 a'ZnK‘(’Yt,z’a'Vm,ﬁm(i’)))
At S ; ;[At]i,i’ Z ? 6][@]]71 i (1 — 6])[@]]71, — [Dt]i,i'

Jj=1

The above upper bound can immediately be minimized over permutation matri-
ces and gives A; via a Kuhn-Munkres computation or some variant. However, we
would need to actually specify @, Q and all the 87 for this computation. In fact,
the right hand side is a variational LAP bound over our original QAP with the
(augmented parameters) over Q, Q, & = (6%, ...,87) and A; which can each be
iteratively minimized. Thus, we anticipate repeatedly minimizing over A; using
Kuhn-Munkres operations followed by updates of the remaining bound param-
eters given a current setting of A;. Note, the left term in the square bracket is
constant if all eigenvalues :\j are equal (in which case the log-likelihood term
overall is merely an LAP). Thus, we can see that the variance in the eigen-
values is likely to have some effect as we depart from a pure LAP setting to a
more severe QAP setting. This variance in eigenvalue spectrum can give us some
indication about the convergence of the iterative procedure.

We next minimizing the bound on the right hand size over @ and Q which
is written more succinctly as follows:

mmmlnz E Z 89[Q;. (1 - 53)[@]] i

i=114'=1 j=1

where we have defined each matrix P’ element-wise using the formula at the
current setting of A;

2
[P7]iir = [Adliw ¥ (Z o,k %zmm,pm(z'))) :

This is still not directly solvable as is. Therefore we consider another varia-
tional bounding step (which leads to more iterations) by applying Jensen on the
convex function f(z) = 1/z (this is true only when z is non-negative which is
the case here). This produces the following inequality:

N N J

z i j]z 4 _ [Pj]i,i’
ZZZ‘SJ[Q]M 51)[@]11’ _ZZZ(S [QJ’ a 6)[Q]J}i’

i=1 =1 j=1 i=14'=1 j=1

Clearly, once we have invoked the second application of Jensen’s inequality on
this function, we get an easy update rule for () by taking derivatives and setting
to zero. In addition, we introduce the Lagrangian constraint that enforces the
summation to unity)_.[@];; = 1. Ultimately, we obtain this update rule:

Yo VP

(@l = SIS

12

Similarly, Q is updated as follows:

2 VIP i
2 VP i

The remaining update rule for the ¢/ values is then given as follows:

[P 1,4
n’llnzzz&] 1_5])[@]] M

i=11i'=1 j=1

[Qly =

The terms for each single 7 are independent and yield the following:

min [Pj]i’il
2 2 St - 9Ol

One straightforward manner to minimize the above extremely simple cost over
a scalar 87 € [0,1] is to use brute force techniques or bisection/Brent’s search.

Thus, we can iterate updates of Q, Q, and the § with updates of A4, to iter-
atively minimize the upper bound on C(A;) and maximize likelihood. Updating
A; is straightforward via a Kuhn Munkres algorithm (or faster heuristic algo-
rithms such as QuickMatch [10]) on the terms in the square bracket multiplying
the entries of the A; matrix (in other words, iterate a linear assignment problem,
LAP). Convergence of this iterative scheme is reasonable and improves the like-
lihood as we update A;. But, it may have local minima®. We are working on even
tighter bounds that seem promising and should further improve convergence and
alleviate the local minima problem. Once the iterative scheme converges for a
given bag &;, we obtain the A; matrix which directly gives the permutation
configuration p;.

We continue updating the p; for each bag in our data set while also updating
the mean and the covariance (or, equivalently, the eigenvalues, eigenvectors and
eigenfunctions for kernel PCA). This iteratively maximizes the log-likelihood
(and minimizes the volume of the data) until we reach a local maximum and

converge to a final ordering of our dataset of bags {p; ® @t}thl.

5 Implementation Details

We now discuss some particular implementation details of applying the method
in practice. First, we are not bound to assuming that there must be exactly V
objects in each bag. Assume we are given t = 1...T bags with a variable number
N; of objects in each bag. We first pick a constant N (typically N = max; Ny)
and then randomly replicate (or sample without replacement for small N) the
objects in each bag such that each bag has N objects. Another consideration is
that we generally hold the permutation of one bag fixed since permutations are

3 This is not surprising since QAP is NP-Complete.

13

relative. Therefore, the permutation p; for bag &, is locked (i.e. for a permutation
matrix we would set A; = I) and only the remaining permutations need to be
optimized. We then iterate through the data randomly updating each p; at a time
from the permutations ps,...,pr. We first start by using the mean estimator
(LAP) and update its estimate for each p; until it longer reduces the volume (as
measured by the regularized product of kPCA’s eigenvalues). We then iterate the
update rule for the covariance QAP estimator until it no longer reduces volume.
Finally, once converged, we perform kernel PCA on the sorted bags with the
final setting of pa,...,pr.

6 Experiments

In a preliminary experiment, we obtained a dataset of 7" = 100 digits of 9’s and
3’s as shown in Figure 2(a). Each digit is actually a bag or a set of N = 70 total
(z,y) coordinates which form our v, € R*. We computed the optimal per-
mutations p; for each digit using the minimum volume criterion (i.e. maximum
likelihood with the anisotropic Gaussian case). Figure 2(b) shows the eigenvalue
spectrum for PCA before ordering (i.e. assuming the given pseudo-random order-
ing in the raw input dataset) as well as the eigenvalue spectrum after optimizing
the ordering. Note that lower eigenvalues indicate a smaller subspace and that
there are few true dimensions of variability in the data once we sort the bags.

3

30178
30176

Sao4

3,017,
30168
110 115 120 125 130 135 140
Index

(a) Bags of points dataset (b) Eigenvalue spectrum (c) Log-Likelihood

fo0 105

5 10 15 20 25 30 3 40 45 50
Epochs.

Fig. 2. Ordering figits as bags of permutable point-clouds prior to PCA. In (a) we
see a sample of the original training set of 100 digits while in (b) we see the original
PCA eigenvalue spectrum (darker bars) with the initial pseudo-random ordering in the
data. In (b) we see the eigenvalue spectrum (lighter bars) after optimizing the ordering
to minimize the volume of the subspace (or maximize likelihood under an anisotropic
Gaussian). In (c), note the increasing log-likelihood as we optimize each p;.

To visualize the resulting orderings, we computed linear interpolations be-
tween the sorted bags for different pairs of digits in the input dataset. Figure 3
depicts the morphing as we mix the coordinates of each dot in each digit with an-
other. Note in (a), these 'bags of coordinates’ are unordered. Therefore, blending
their coordinates results in a meaningless cloud of points during the transition.

14

However, in (b), we note that the points in each bag or cloud are corresponded
and ordered so morphing or linearly interpolating their coordinates for two dif-
ferent digits results in a meaningful smooth movement and bending of the digit.
Note that in (b) morphs from 3 to another 3, 9 to another 9 or a 3 to a 9 main-
tain meaningful structure at the half-way point as we blend between one digit
and another. This indicates a more meaningful ordering has emerged unlike the
initial random one which, when blending between two digit shapes, always gen-
erates a random cloud of (z,y) coordinates (see Figure 3(a)). For this dataset,
results were similar for the mean vs. covariance estimator as well as linear vs.
quadratic choices for the base kernel &(.,.).

(a) Morphing unsorted digits (b) Morphing sorted digits (c) Flow

Fig. 3. Linear interpolation from left to right (morphing) of the point-clouds with and
without sorting. In (a) we see the linear morphing between unordered point clouds
which results in poor intermediate morphs that are not meaningful. Meanwhile in (b)
where we have recovered good orderings p; for each digit by minimizing the Gaussian’s
volume, we note that the digits preserve the correspondence between different parts
and induce a smooth and natural morph between the two initial digit configurations.
In (c) we show the two digits with arrows indicating the flow or correspondence.

7 Conclusions

We have proposed an algorithm for finding orderings or sortings of multiple sets
of objects. These sets or bags need not contain scalars or vectors but rather
contain N arbitrary objects. Interacting with these objects is done solely via
kernel functions on pairs of them leading to a general notion of sorting in Hilbert
space. The ordering or sorting we propose is such that we form a low-dimensional
kernel PCA approximation with as few eigenfunctions as possible to reconstruct
the manifold on which these bags exist. This is done by finding the permutations
of the bags such that we move them towards a common mean in Hilbert space
or a low-volume Gaussian configuration in Hilbert space. In this article, this
criterion suggested two maximum likelihood objective functions: one which is
a linear assignment problem and the other a quadratic assignment problem.
Both can be iteratively minimized by using a Kuhn Munkres algorithm along
with variational bounding. This permits us to sort or order sets in a general

15

way in Hilbert space using kernel methods and to ultimately obtain a compact
representation of the data. We are currently investigating ambitious applications
of the method with various kernels and additional results available at:

http://www.cs.columbia.edu/~ jebara/bags/

In future work, we plan on investigating discriminative variations of the sort-
ing/ordering problem to build classifiers based on support vector machines or
kernelized Fisher discriminants that sort data prior to classification (see [4] which
elaborates a quadratic cost function for the Fisher discriminant).

Acknowledgments

Thanks to R. Dovgard, R. Kondor and the reviewers for suggestions. T. Jebara
is supported in part by NSF grants CCR-0312690 and II1S-0347499.

References

1. Ian L. Dryden and Kanti V. Mardia. Statistical Shape Analysis. John Wiley and
Sons, 1998.

2. S. Gold, C.P. Lu, A. Rangarajan, S. Pappu, and E. Mjolsness. New algorithms for
2D and 3D point matching: Pose estimation and correspondence. In NIPS 7, 1995.

3. A.V. Goldberg and R. Kennedy. An efficient cost scaling algorithm for the assign-
ment problem. Mathematical Programming, 71(2):153-178, 1995.

4. T. Jebara. Convex invariance learning. In 9th International Workshop on Artificial
Intelligence and Statistics, 2003.

5. T. Jebara. Images as bags of pixels. In International Conference on Computer
Vision, 2003.

6. S. Kirshner, S. Parise, and P. Smyth. Unsupervised learning with permuted data.
In Machine Learning: Tenth International Conference, ICML, 2003.

7. R. Kondor and T. Jebara. A kernel between sets of vectors. In Machine Learning:
Tenth International Conference, ICML, 2003.

8. J. Kosowsky and A. Yuille. The invisible hand algorithm: Solving the assignment
problem with statistical physics. Neural Networks, 7:477-490, 1994.

9. Y. Li, P. M. Pardalos, K. G. Ramakrishnan, and M. G. C. Resende. Lower bounds
for the quadratic assignment problem. Annals of Operations Research, 50:387—-411,
1994.

10. J.B. Orlin and Y. Lee. Quickmatch: A very fast algorithm for the assignment prob-
lem. Technical Report WP# 3547-93, Sloan School of Management, Massachusetts
Institute of Technology, March 1993.

11. Bernhard Schélkopf and Alexander J. Smola. Learning with Kernels: Support Vec-
tor Machines, Regularization, Optimization and Beyond. MIT Press, 2001.

12. Bernhard Schélkopf, Alexander J. Smola, and K.-R. Miiller. Nonlinear principal
component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299—
1319, 1998.

13. P. Y. Simard, Y. LeCun, J. S. Denker, and B. Victorri. Transformation invariance
in pattern recognition — tangent distance and tangent propagation. International
Journal of Imaging Systems and Technology, 11(3), 2000.

14. J.B. Tenenbaum and W.T. Freeman. Separating style and content with bilinear
models. Neural Computation, 12(6), 1999.

