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Semi-Supervised Learning

Semi-supervised learning (SSL) learns from both
labeled data (expensive and scarce)
unlabeled data (cheap and abundant)

Given iid samples from an unknown distribution p(x, y) over
x ∈ Ω and y ∈ Z organized as

a labeled set: Xl ∪ Yl = {(x1, y1), . . . , (xl , yl)}
an unlabeled set: Xu = {xl+1, . . . , xl+u}

Output missing labels Ŷu = {ŷl+1, . . . , ŷl+u} that largely
agree with true missing labels Yu = {yl+1, . . . , yl+u}
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Graph Based SSL

Graph based semi-supervised learning first constructs a graph
G = (V ,E ) from Xl ∪Xu which is usually

a sparse graph (using k-nearest neighbors)
and a weighted graph (radial basis function weighting)

Subsequently, G and Yl yield Ŷu via a labeling algorithm:
Laplacian regularization (Belkin & Niyogi 02)
Gaussian fields and harmonic functions (Zhu et al. 03)
Local and global consistency (Zhou et al. 04)
Laplacian support vector machines (Belkin et al. 06)
Transduction via alternating minimization (Wang et al. 08)

Rather than propose yet another labeling algorithm, we focus
on the graph construction step
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Graph Construction
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A Given the full dataset Xl ∪ Xu of n = l + u samples

B Form full weighted graph G with adjacency matrix A ∈ Rn×n

using any kernel k(., .) elementwise as Aij = k(xi , xj )
Kernel choice is application dependent and only locally reliable
Equivalent to use distances and matrix D ∈ Rn×n defined as
Dij =

√

k(xi , xi) + k(xj , xj) − 2k(xi , xj)

C Sparsify graph with pruning matrix P ∈ Bn×n
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Neighborhood Graphs

Neighborhood Graphs

ε-neighborhood Set P ∈ Bn×n as Pij = δ(Dij ≤ ε)
The ε-neighborhood often forms disconnected graphs
Better to make ε adaptive using k-nearest neighbors algorithm

k-nearest neighbors Set P = max(P̂ , P̂") where

P̂ = arg min
P∈Bn×n

∑

ij
PijDij s.t.

∑

j
Pij = k,Pii = 0

Despite its name, this algorithm doesn’t give k neighbors
Due to symmetrization of P̂ ,

∑

i Pij ≥ k neighbors

Alternatively, can take P = min(P̂ , P̂!), then
∑

i Pij ≤ k
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k-Nearest Neighbor Graphs

k-Nearest Neighbor Graphs

Above is k-nearest neighbors with k = 2
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b-Matching Graphs

b-Matching Graphs

Above is unipartite b-matching with b = 2
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b-Matching Graphs

b-Matching Graphs

b-matching is k-nearest neighbors with explicit symmetry

P = arg min
P∈Bn×n

∑

ij
PijDij s.t.

∑

j
Pij = b,Pii = 0,Pij = Pji

Known as unipartite generalized matching

Efficient combinatorial solver known (Edmonds 1965)

Like an LP with exponentially many blossom inequalities

Fastest solvers now use max product belief propagation
Exact for bipartite b-matching in O(bn3) (Huang & J 2007)
Under mild assumptions get O(n2) (Salez & Shah 2009)
Exact for integral unipartite b-matching (Sanghavi et al. 2008)
Exact for unipartite perfect graph b-matching (J 2009)
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b-Matching Graphs

Bipartite 1-Matching

Motorola Apple IBM

”laptop” 0$ 2$ 2$
”server” 0$ 2$ 3$
”phone” 2$ 3$ 0$

→ C =





0 1 0
0 0 1
1 0 0





GivenC , maxP∈Bn×n

∑

ij CijPij such that
∑

i Pij =
∑

j Pij = 1

Classical Hungarian marriage problem O(n3)

Creates a very loopy graphical model

Max product takes O(n3) for exact MAP (Bayati et al. 2005)

Use C = −D to mimic minimization of distances
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b-Matching Graphs

Bipartite b-Matching

Motorola Apple IBM

”laptop” 0$ 2$ 2$
”server” 0$ 2$ 3$
”phone” 2$ 3$ 0$

→ C =





0 1 1
1 0 1
1 1 0





GivenC , maxP∈Bn×n

∑

ij CijPij such that
∑

i Pij =
∑

j Pij = b

Combinatorial b-matching problem O(bn3), (Google Adwords)

Creates a very loopy graphical model

Max product takes O(bn3) for exact MAP (Huang & J 2007)

Use C = −D to mimic minimization of distances

Code also applies to unipartite b-matching problems
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b-Matching Graphs

Bipartite b-Matching

u1 u2 u3 u4

v1 v2 v3 v4

Graph G = (U,V ,E ) with U = {u1, . . . , un} and
V = {v1, . . . , vn} and M(.), a set of neighbors of node ui or vj

Define xi ∈ X and yi ∈ Y where xi = M(ui ) and yi = M(vj)

Then p(X ,Y ) = 1
Z

∏

i

∏

j ψ(xi , yj )
∏

k φ(xk)φ(yk) where
φ(yj ) = exp(

∑

ui∈yj
Cij) and ψ(xi , yj ) = ¬(vj ∈ xi ⊕ ui ∈ yj)
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b-Matching Graphs

b-Matching

Code at http://www.cs.columbia.edu/∼jebara/code

Also applies to unipartite b-matching
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b-Matching Graphs

b-Matching
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Applications:
clustering (J & S 2006)
classification (H & J 2007)
collaborative filtering (H & J 2008)
visualization (S & J 2009)

Max product is O(n2), beats other solvers (Salez & Shah 2009)
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b-Matching Graphs

b-Matching

Left is k-nearest neighbors, right is unipartite b-matching.
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Graph Weighting

Given sparsification matrix P , obtain final adjacency matrix W

graph for G using any of the following weighting schemes

BN Binary Set W = P

GK Gaussian Kernel Set Wij = Pij exp(−d(xi , xj )/2σ2) where
d(., .) is any distance function ("p distance, chi squared
distance, cosine distance, etc.)

LLR Locally Linear Reconstruction Set W to reconstruct
each point with its neighborhood (Roweis & Saul 00)

W = arg min
W∈Rn×n

∑

i

‖xi −
∑

j

PijWijxj‖
2 s.t.

∑

j

Wij = 1,Wij ≥ 0
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Graph Labeling

Given known labels Yl and sparse weighted graph G with W

Output Ŷu by diffusion or propagation

Define the following intermediate matrices
Degree D ∈ Rn×n where Dii =

∑

i Wij , Dij = 0 for i "= j
Laplacian ∆ = D − W
Normalized Laplacian L = D−1/2∆D−1/2

Classification function F ∈ Rn×c where F =

[

Fl

Fu

]

Label matrix Y ∈ Bn×c , Yij = δ(yi = j) and Y =

[

Yl

Yu

]

Consider these algorithms for producing F and Y

Gaussian Random Fields (GRF)
Local and Global Consistency (LGC)
Graph Transduction via Alternating Minimization (GTAM)
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Gaussian Random Fields

Gaussian Random Fields

x1 x2

x3

x4x5

x6

x1 x2
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Yl Yl ∪ Ŷu

Gaussian Random Fields smooth classification function
over Laplacian while clamping known labels

min
F∈Rn×c

tr(F"∆F ) s.t. ∆Fu = 0,Fl = Yl

and then obtain Y from F by rounding
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Local and Global Consistency

Local and Global Consistency
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Yl Yl ∪ Ŷu

Local and Global Consistency smooth using
normalized Laplacian and softly constrain Fl to Yl

min
F∈Rn×c

tr
(

(F"LF ) + µ(F − Y )"(F − Y )
)

and then obtain Y from F by rounding
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Graph Transduction via Alternating Minimization

Graph Transduction via Alternating Minimization

x1 x2
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Yl Yl ∪ Ŷu

Graph Transduction via Alternating Minimization

make the optimization bivariate jointly over F and Y

min
F∈Rn×c

Y∈Bn×c

tr
(

F"LF + µ(F − VY )"(F − VY )
)

s.t.
∑

j

Yij = 1

where V is a diagonal matrix containing class proportions

Given current F , Y is updated greedily one entry at at time
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Synthetic Experiments

(a) (d)(c)(b)

Figure: Synthetic dataset (a) two sampled rings (b) ε-neighborhood
graph (c) k-nearest graph with k = 10 (d) b-matching with b = 10.

(a) (b)

Figure: 50-fold error rate varying σ in Gaussian kernel for (a) LGC and
(b) GRF. GTAM (not shown) does best. One point per class labeled.
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Synthetic Experiments

(a) (d)(c)(b)

Figure: Synthetic dataset (a) two sampled rings (b) ε-neighborhood
graph (c) k-nearest graph with k = 10 (d) b-matching with b = 10.

(b)(a) (c)

Figure: 50-fold error rate under varying b or k and weighting schemes for
(a) LGC, (b) GRF and (c) GTAM. One point per class labeled.
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Real Experiment Error Rates

Data set USPS COIL BCI TEXT

QC + CMN 13.61 59.63 50.36 40.79

LDS 25.2 67.5 49.15 31.21

Laplacian 17.57 61.9 49.27 27.15

Laplacian RLS 18.99 54.54 48.97 33.68

CHM (normed) 20.53 - 46.9 -

GRF-KNN-BN 19.11 64.45 48.77 47.65

GRF-KNN-GK 12.94 61.31 48.98 47.65

GRF-KNN-LLR 19.20 61.19 48.46 47.14

GRF-BM-BN 18.98 60.63 48.44 43.16

GRF-BM-GR 12.82 60.87 48.77 42.88

GRF-BM-LLR 18.95 60.84 48.25 42.94

Data set USPS COIL BCI TEXT

LGC-KNN-BN 14.7 59.18 48.94 48.79

LGC-KNN-GK 12.42 57.3 48.42 48.09

LGC-KNN-LLR 15.8 56.75 48.65 40.28

LGC-BM-BN 14.4 59.31 48.34 40.44

LGC-BM-GR 11.89 58.17 48.17 37.39

LGC-BM-LLR 14.44 58.69 48.08 39.83

GTAM-KNN-BN 6.42 29.70 47.56 49.36

GTAM-KNN-GK 4.77 16.69 47.29 49.13

GTAM-KNN-LLR 6.69 15.35 45.54 41.48

GTAM-BM-BN 5.2 25.83 47.92 17.81

GTAM-BM-GR 4.31 13.65 47.48 28.74

GTAM-BM-LLR 5.45 12.57 43.73 16.35
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Real Experiment Error Rates with More Labeling

Data set USPS TEXT
# of labels 10 100 10 100

QC + CMN 13.61 6.36 40.79 25.71

TSVM 25.2 9.77 31.21 24.52

LDS 17.57 4.96 27.15 23.15

Laplacian RLS 18.99 4.68 33.68 23.57

CHM (normed) 20.53 - 7.65 -

GRF-KNN-BN 19.11 9.07 47.65 41.56

GRF-KNN-GK 13.01 5.58 48.2 41.57

GRF-KNN-LLR 19.20 11.17 47.14 35.17

GRF-BM-BN 18.98 9.06 43.16 25.27

GRF-BM-GK 12.92 5.34 41.24 22.28

GRF-BM-LLR 18.95 10.08 42.95 24.54

Data set USPS TEXT
# of labels 10 100 10 100

LGC-KNN-BN 14.99 12.34 48.63 43.44

LGC-KNN-GK 12.34 5.49 49.06 41.51

LGC-KNN-LLR 15.88 13.63 44.86 37.53

LGC-BM-BN 14.62 11.71 40.88 26.19

LGC-BM-GK 11.92 5.21 38.14 23.17

LGC-BM-LLR 14.69 12.19 40.29 24.91

GTAM-KNN-BN 6.59 5.98 49.36 46.67

GTAM-KNN-GK 4.86 2.56 49.07 46.06

GTAM-KNN-LLR 6.77 6.19 41.46 39.59

GTAM-BM-BN 6.00 5.08 17.44 16.78

GTAM-BM-GR 4.62 3.08 16.85 15.91

GTAM-BM-LLR 5.59 5.16 16.01 14.88
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Conclusions

Graph construction method affects SSL performance

Investigated 3 sparsifications × 3 weightings × 3 algorithms

GTAM method has better accuracy than other algorithms

On real data, k-nearest neighbors creates irregular graphs

Regularity from b-matching ensures balanced manifolds

b-matching consistently improves k-nearest neighbors

Fast and exact b-matching code available using max-product

The runtime of b-matching is not a bottleneck for SSL

Theoretical guarantees forthcoming


