Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling	Experiments	Conclusions

Graph Construction and *b*-Matching for Semi-Supervised Learning

Tony Jebara, Jun Wang and Shih-Fu Chang Columbia University

June 15, 2009

▲□▶▲□▶▲□▶▲□▶ ▲□▼ かへで

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling 000	Experiments	Conclusions

- Semi-Supervised Learning
- 2 Graph Sparsification
 - Neighborhood Graphs
 - k-Nearest Neighbor Graphs
 - *b*-Matching Graphs
- 3 Graph Weighting
- Graph Labeling
 - Gaussian Random Fields
 - Local and Global Consistency
 - Graph Transduction via Alternating Minimization

5 Experiments

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling	Experiments	Conclusions
Semi-Supervi	sed Learning	g			

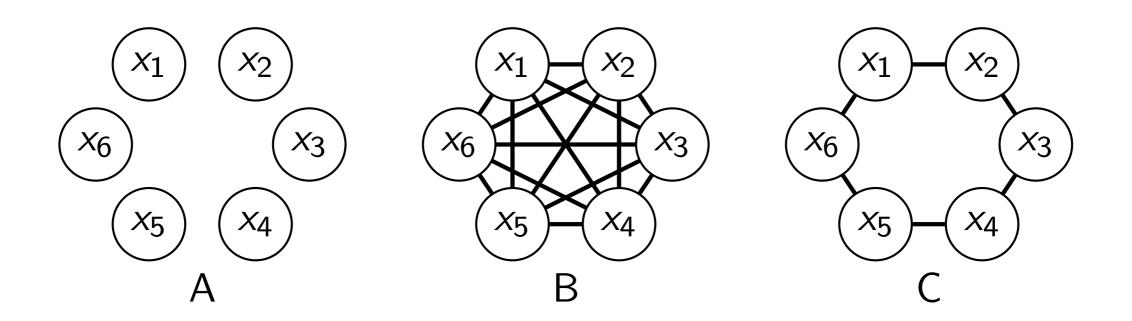


- Semi-supervised learning (SSL) learns from both
 - labeled data (expensive and scarce)
 - unlabeled data (cheap and abundant)
- Given *iid* samples from an unknown distribution p(x, y) over x ∈ Ω and y ∈ Z organized as
 - a labeled set: $\mathcal{X}_I \cup \mathcal{Y}_I = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_I, y_I)\}$
 - an unlabeled set: $\mathcal{X}_u = \{\mathbf{x}_{l+1}, \dots, \mathbf{x}_{l+u}\}$
- Output missing labels $\hat{\mathcal{Y}}_u = {\hat{y}_{l+1}, \dots, \hat{y}_{l+u}}$ that largely agree with true missing labels $\mathcal{Y}_u = {y_{l+1}, \dots, y_{l+u}}$

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling 000	Experiments	Conclusions
Graph Based	SSL				

- Graph based semi-supervised learning first constructs a graph $\mathcal{G} = (V, E)$ from $\mathcal{X}_I \cup \mathcal{X}_u$ which is usually
 - a sparse graph (using *k*-nearest neighbors)
 - and a weighted graph (radial basis function weighting)
- Subsequently, \mathcal{G} and \mathcal{Y}_l yield $\hat{\mathcal{Y}}_u$ via a labeling algorithm:
 - Laplacian regularization (Belkin & Niyogi 02)
 - Gaussian fields and harmonic functions (Zhu et al. 03)
 - Local and global consistency (Zhou et al. 04)
 - Laplacian support vector machines (Belkin et al. 06)
 - Transduction via alternating minimization (Wang et al. 08)
- Rather than propose yet another labeling algorithm, we focus on the graph construction step

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling	Experiments	Conclusions
Graph Constr	ruction				



- A Given the full dataset $X_I \cup X_u$ of n = I + u samples
- B Form full weighted graph \mathcal{G} with adjacency matrix $A \in \mathbb{R}^{n \times n}$ using any kernel k(.,.) elementwise as $A_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$
 - Kernel choice is application dependent and only locally reliable
 - Equivalent to use distances and matrix $D \in \mathbb{R}^{n \times n}$ defined as $D_{ij} = \sqrt{k(\mathbf{x}_i, \mathbf{x}_i) + k(\mathbf{x}_j, \mathbf{x}_j) - 2k(\mathbf{x}_i, \mathbf{x}_j)}$

C Sparsify graph with pruning matrix $P \in \mathbb{B}^{n \times n}$

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling	Experiments	Conclusions
Neighborhood Graphs					
Neighborhoo	d Graphs				

• ϵ -NEIGHBORHOOD Set $P \in \mathbb{B}^{n \times n}$ as $P_{ij} = \delta(D_{ij} \leq \epsilon)$

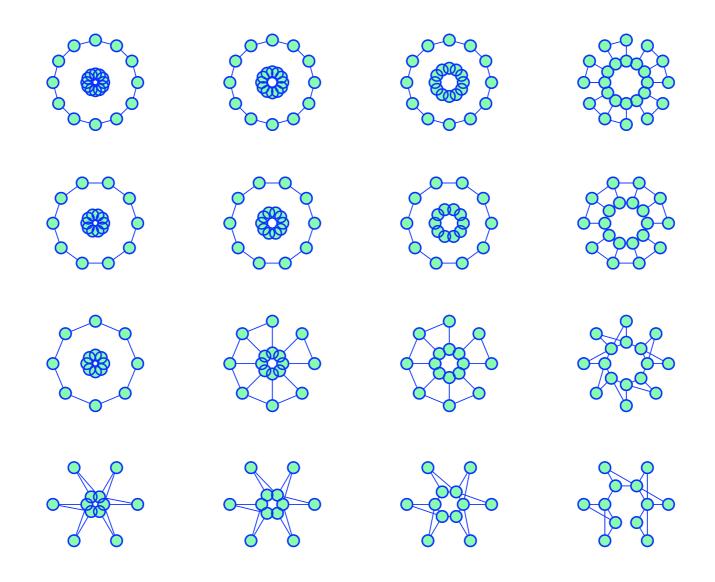
- The ϵ -neighborhood often forms disconnected graphs
- Better to make ϵ adaptive using k-nearest neighbors algorithm
- *k*-NEAREST NEIGHBORS Set $P = \max(\hat{P}, \hat{P}^{\top})$ where

$$\hat{P} = \arg\min_{P \in \mathbb{B}^{n \times n}} \sum_{ij} P_{ij} D_{ij} \ s.t. \ \sum_{j} P_{ij} = k, P_{ii} = 0$$

- Despite its name, this algorithm doesn't give k neighbors
- Due to symmetrization of \hat{P} , $\sum_{i} P_{ij} \ge k$ neighbors
- Alternatively, can take $P = \min(\hat{P}, \hat{P}^{\top})$, then $\sum_{i} P_{ij} \leq k$

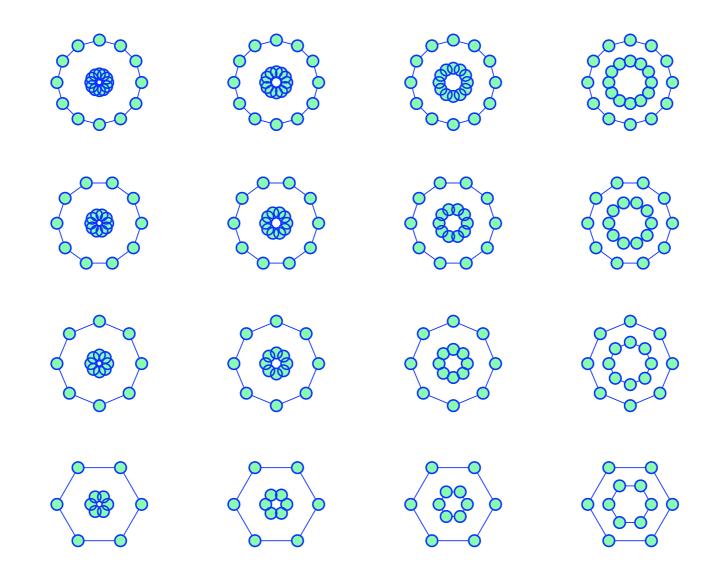
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 釣�?

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling 000	Experiments	Conclusions
<i>k</i> -Nearest Neighbor Graphs					
k-Nearest Ne	ighbor Grap	ohs			



• Above is k-nearest neighbors with k = 2

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling 000	Experiments	Conclusions
<i>b</i> -Matching Graphs					
<i>b</i> -Matching (Graphs				



▲□▶▲□▶▲≡▶▲≡▶ ∮□▶ ∮ ◎ ◎ ◎ ◎

• Above is unipartite *b*-matching with b = 2

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling 000	Experiments	Conclusions
<i>b</i> -Matching Graphs					
<i>b</i> -Matching (Graphs				

• *b*-MATCHING is *k*-nearest neighbors with explicit symmetry

$$P = \arg\min_{P \in \mathbb{B}^{n \times n}} \sum_{ij} P_{ij} D_{ij} \ s.t. \ \sum_{j} P_{ij} = b, P_{ii} = 0, P_{ij} = P_{ji}$$

- Known as unipartite generalized matching
- Efficient combinatorial solver known (Edmonds 1965)
- Like an LP with exponentially many blossom inequalities
- Fastest solvers now use max product belief propagation
 - Exact for bipartite *b*-matching in $O(bn^3)$ (Huang & J 2007)
 - Under mild assumptions get $O(n^2)$ (Salez & Shah 2009)
 - Exact for integral unipartite *b*-matching (Sanghavi et al. 2008)
 - Exact for unipartite perfect graph *b*-matching (J 2009)

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling 000	Experiments	Conclusions
<i>b</i> -Matching Graphs					
Bipartite 1-N	latching				

	Motorola	Apple	IBM			1	ΛΊ
"laptop"	0\$	2\$	2\$		0		
"server"	0\$	2\$	3\$	\rightarrow C =	1	0	
"phone"	2\$	3\$	0\$		_ 1	U	υJ

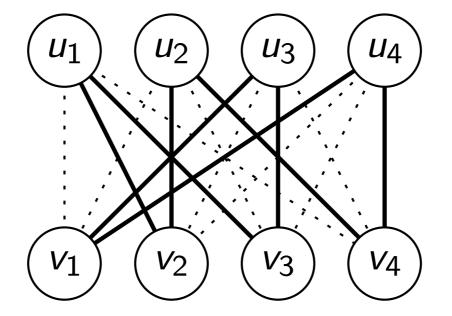
- Given C, $\max_{P \in \mathbb{B}^{n \times n}} \sum_{ij} C_{ij} P_{ij}$ such that $\sum_i P_{ij} = \sum_j P_{ij} = 1$
- Classical Hungarian marriage problem $O(n^3)$
- Creates a very loopy graphical model
- Max product takes $O(n^3)$ for exact MAP (Bayati et al. 2005)
- Use C = -D to mimic minimization of distances

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling 000	Experiments	Conclusions
<i>b</i> -Matching Graphs					
Bipartite <i>b</i> -N	latching				

	Motorola	Apple	IBM		\Box	1	1 7
"laptop"	0\$	2\$	2\$		1		
"server"	0\$	2\$	3\$	\rightarrow C =		U 1	
"phone"	2\$	3\$	0\$		- 1	T	υJ

- Given C, $\max_{P \in \mathbb{B}^{n \times n}} \sum_{ij} C_{ij} P_{ij}$ such that $\sum_i P_{ij} = \sum_j P_{ij} = b$
- Combinatorial b-matching problem O(bn³), (Google Adwords)
- Creates a very loopy graphical model
- Max product takes $O(bn^3)$ for exact MAP (Huang & J 2007)
- Use C = -D to mimic minimization of distances
- Code also applies to unipartite b-matching problems

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling 000	Experiments	Conclusions
<i>b</i> -Matching Graphs					
Bipartite <i>b</i> -N	latching				

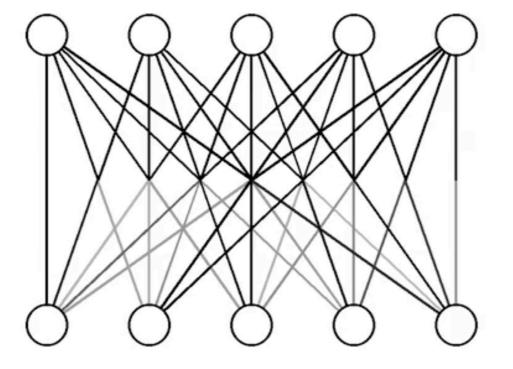


• Graph G = (U, V, E) with $U = \{u_1, \ldots, u_n\}$ and $V = \{v_1, \ldots, v_n\}$ and M(.), a set of neighbors of node u_i or v_j

• Define $x_i \in X$ and $y_i \in Y$ where $x_i = M(u_i)$ and $y_i = M(v_j)$

• Then $p(X, Y) = \frac{1}{Z} \prod_{i} \prod_{j} \psi(x_i, y_j) \prod_{k} \phi(x_k) \phi(y_k)$ where $\phi(y_j) = \exp(\sum_{u_i \in y_j} C_{ij})$ and $\psi(x_i, y_j) = \neg(v_j \in x_i \oplus u_i \in y_j)$

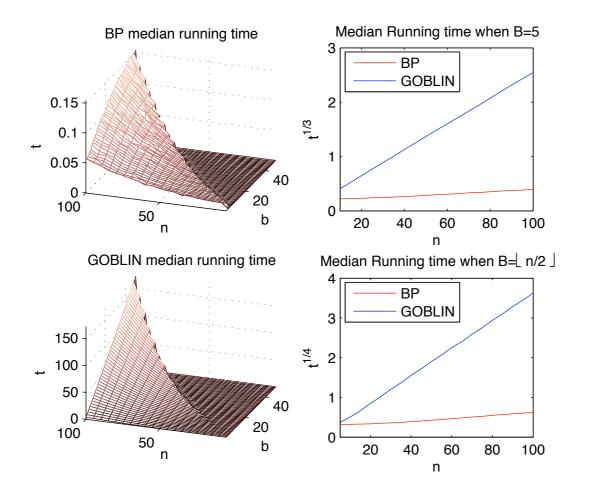
Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling	Experiments	Conclusions
<i>b</i> -Matching Graphs					
<i>b</i> -Matching					



Code at http://www.cs.columbia.edu/~jebara/code

• Also applies to unipartite *b*-matching

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling	Experiments	Conclusions
<i>b</i> -Matching Graphs					
<i>b</i> -Matching					

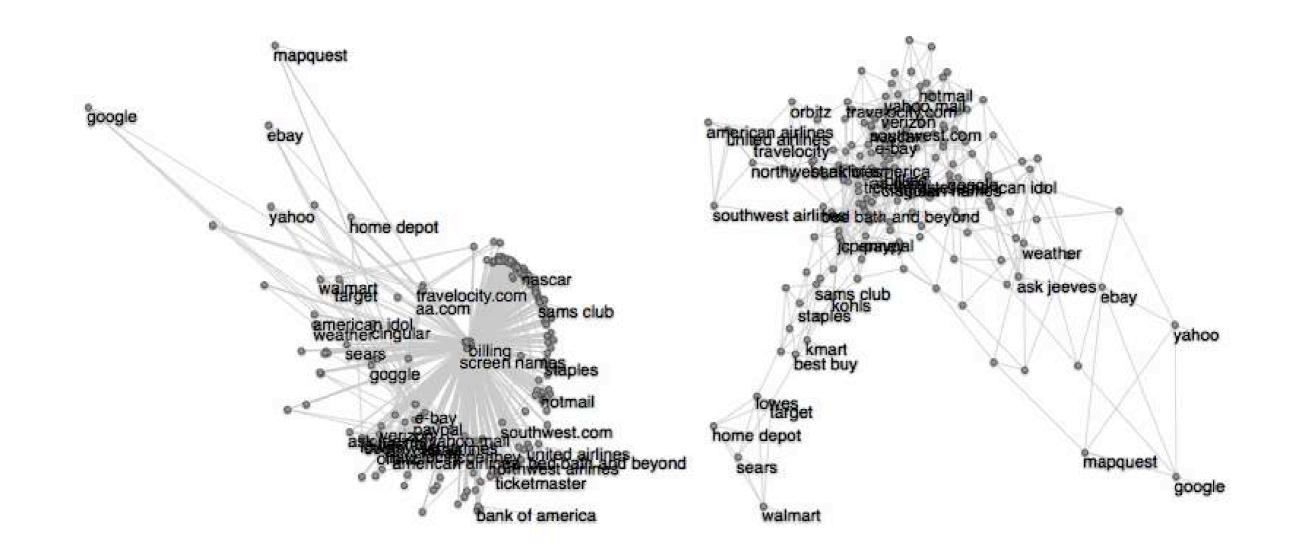


```
Applications:
clustering (J & S 2006)
classification (H & J 2007)
collaborative filtering (H & J 2008)
visualization (S & J 2009)
```

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ∽ へ ○

Max product is $O(n^2)$, beats other solvers (Salez & Shah 2009)

Semi-Supervised Learning	Graph Sparsification ○○○○○○○○	Graph Weighting	Graph Labeling 000	Experiments	Conclusions
<i>b</i> -Matching Graphs					
<i>b</i> -Matching					



• Left is *k*-nearest neighbors, right is unipartite *b*-matching.

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling 000	Experiments	Conclusions
Graph Weigh	ting				

Given sparsification matrix P, obtain final adjacency matrix W graph for \mathcal{G} using any of the following weighting schemes

BN BINARY Set
$$W = P$$

- GK GAUSSIAN KERNEL Set $W_{ij} = P_{ij} \exp(-d(\mathbf{x}_i, \mathbf{x}_j)/2\sigma^2)$ where d(.,.) is any distance function (ℓ_p distance, chi squared distance, cosine distance, etc.)
- LLR LOCALLY LINEAR RECONSTRUCTION Set W to reconstruct each point with its neighborhood (Roweis & Saul 00)

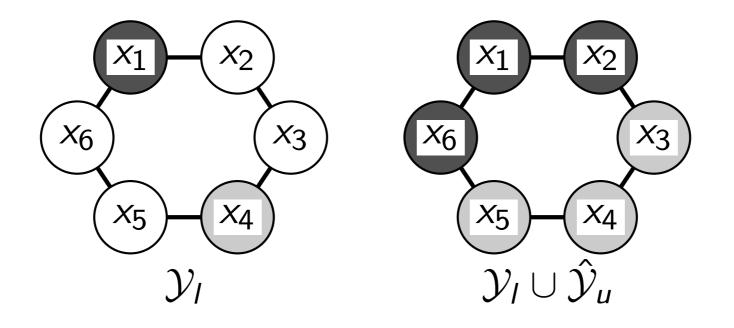
$$W = \arg\min_{W \in \mathbb{R}^{n \times n}} \sum_{i} \|\mathbf{x}_{i} - \sum_{j} P_{ij} W_{ij} \mathbf{x}_{j}\|^{2} s.t. \sum_{j} W_{ij} = 1, W_{ij} \ge 0$$

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling	Experiments	Conclusions
Graph Labelir	۱g				

- Given known labels \mathcal{Y}_l and sparse weighted graph \mathcal{G} with W
- Output $\hat{\mathcal{Y}}_{\mu}$ by diffusion or propagation
- Output Define the following intermediate matrices
 - Degree $\mathcal{D} \in \mathbb{R}^{n \times n}$ where $\mathcal{D}_{ii} = \sum_{i} W_{ij}$, $\mathcal{D}_{ij} = 0$ for $i \neq j$
 - Laplacian $\Delta = D W$
 - Normalized Laplacian $L = \mathcal{D}^{-1/2} \Delta \mathcal{D}^{-1/2}$

 - Classification function $F \in \mathbb{R}^{n \times c}$ where $F = \begin{bmatrix} F_i \\ F_u \end{bmatrix}$ Label matrix $Y \in \mathbb{B}^{n \times c}$, $Y_{ij} = \delta(y_i = j)$ and $Y = \begin{bmatrix} Y_i \\ Y_u \end{bmatrix}$
- Consider these algorithms for producing F and Y
 - Gaussian Random Fields (GRF)
 - Local and Global Consistency (LGC)
 - Graph Transduction via Alternating Minimization (GTAM)

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling ●○○	Experiments	Conclusions
Gaussian Random Fields					
Gaussian Rar	ndom Fields				



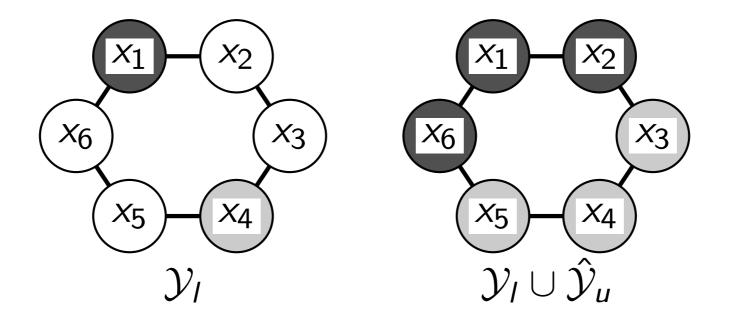
• GAUSSIAN RANDOM FIELDS smooth classification function over Laplacian while clamping known labels

$$\min_{F \in \mathbb{R}^{n \times c}} \operatorname{tr}(F^{\top} \Delta F) \quad s.t. \ \Delta F_u = 0, F_l = Y_l$$

▲□▶▲□▶▲□▶▲□▶ ▲□ シ へ ()

and then obtain Y from F by rounding

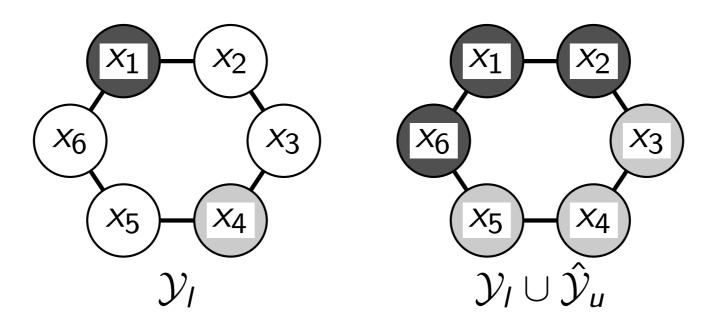
Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling ○●○	Experiments	Conclusions
Local and Global Consistency					
Local and Glo	obal Consist	ency			



• LOCAL AND GLOBAL CONSISTENCY smooth using normalized Laplacian and softly constrain F_1 to Y_1

$$\min_{F \in \mathbb{R}^{n \times c}} \operatorname{tr} \left((F^{\top} LF) + \mu (F - Y)^{\top} (F - Y) \right)$$

and then obtain Y from F by rounding



• GRAPH TRANSDUCTION VIA ALTERNATING MINIMIZATION make the optimization bivariate jointly over *F* and *Y*

$$\min_{\substack{F \in \mathbb{R}^{n \times c} \\ Y \in \mathbb{B}^{n \times c}}} \operatorname{tr} \left(F^{\top} LF + \mu (F - VY)^{\top} (F - VY) \right) s.t. \sum_{j} Y_{ij} = 1$$

where V is a diagonal matrix containing class proportions
Given current F, Y is updated greedily one entry at at time

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling	Experiments	Conclusions
Synthetic Exp	periments				-

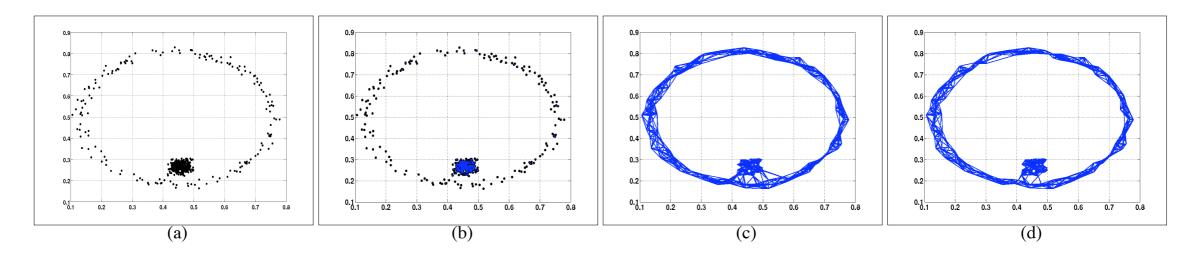


Figure: Synthetic dataset (a) two sampled rings (b) ϵ -neighborhood graph (c) k-nearest graph with k = 10 (d) b-matching with b = 10.

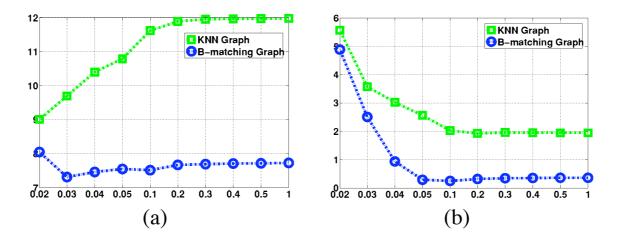


Figure: 50-fold error rate varying σ in Gaussian kernel for (a) LGC and (b) GRF. GTAM (not shown) does best. One point per class labeled.

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling	Experiments	Conclusions
Synthetic Ex	periments				

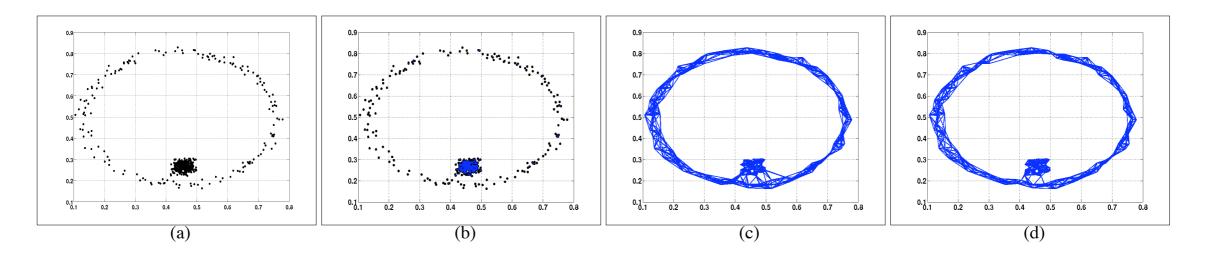


Figure: Synthetic dataset (a) two sampled rings (b) ϵ -neighborhood graph (c) k-nearest graph with k = 10 (d) b-matching with b = 10.

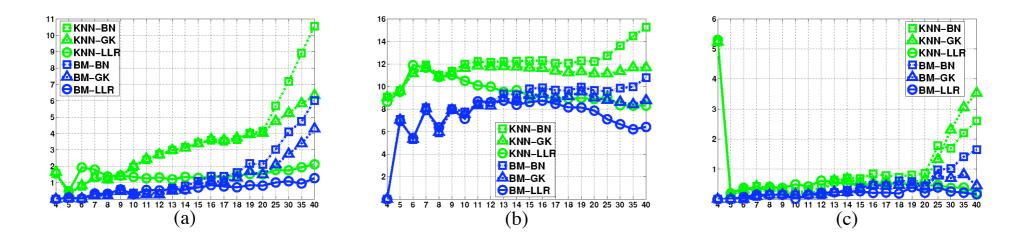


Figure: 50-fold error rate under varying b or k and weighting schemes for (a) LGC, (b) GRF and (c) GTAM. One point per class labeled.

Graph Sparsification

Graph Weighting

Graph Labeling

Experiments Conclusions

Real Experiment Error Rates

Data set	USPS	COIL	BCI	TEXT
QC + CMN	13.61	59.63	50.36	40.79
LDS	25.2	67.5	49.15	31.21
Laplacian	17.57	61.9	49.27	27.15
Laplacian RLS	18.99	54.54	48.97	33.68
CHM (normed)	20.53	-	46.9	-
GRF-KNN-BN	19.11	64.45	48.77	47.65
GRF-KNN-GK	12.94	61.31	48.98	47.65
GRF-KNN-LLR	19.20	61.19	48.46	47.14
GRF-BM-BN	18.98	60.63	48.44	43.16
GRF-BM-GR	12.82	60.87	48.77	42.88
GRF-BM-LLR	18.95	60.84	48.25	42.94

Data set	USPS	COIL	BCI	TEXT
LGC-KNN-BN	14.7	59.18	48.94	48.79
LGC-KNN-GK	12.42	57.3	48.42	48.09
LGC-KNN-LLR	15.8 56.75 48.65		40.28	
LGC-BM-BN	14.4	59.31	48.34	40.44
LGC-BM-GR	11.89	58.17	48.17	37.39
LGC-BM-LLR	14.44	58.69	48.08	39.83
GTAM-KNN-BN	6.42	29.70	47.56	49.36
GTAM-KNN-GK	4.77	7 16.69 47.29		49.13
GTAM-KNN-LLR	6.69	15.35	45.54	41.48
GTAM-BM-BN	5.2 25.83 47.92		17.81	
GTAM-BM-GR	4.31	13.65	47.48	28.74
GTAM-BM-LLR	5.45	12.57	43.73	16.35

◆□▶ ◆□▶ ▲≡▶ ▲≡▶ ▲□▶

nting Gra

Graph Labeling

Experiments Conclusions

Real Experiment Error Rates with More Labeling

Data set	USPS		TEXT	
# of labels	10	100	10	100
QC + CMN	13.61	6.36	40.79	25.71
TSVM	25.2	9.77	31.21	24.52
LDS	17.57	4.96	27.15	23.15
Laplacian RLS	18.99	4.68	33.68	23.57
CHM (normed)	20.53	-	7.65	-
GRF-KNN-BN	19.11	9.07	47.65	41.56
GRF-KNN-GK	13.01	5.58	48.2	41.57
GRF-KNN-LLR	19.20	11.17	47.14	35.17
GRF-BM-BN	18.98	9.06	43.16	25.27
GRF-BM-GK	12.92	5.34	41.24	22.28
GRF-BM-LLR	18.95	10.08	42.95	24.54

Data set	USPS		TEXT	
# of labels	10	100	10	100
LGC-KNN-BN	14.99	12.34	48.63	43.44
LGC-KNN-GK	12.34	5.49	49.06	41.51
LGC-KNN-LLR	15.88	13.63	44.86	37.53
LGC-BM-BN	14.62	11.71	40.88	26.19
LGC-BM-GK	11.92	5.21	38.14	23.17
LGC-BM-LLR	14.69	12.19	40.29	24.91
GTAM-KNN-BN	6.59	5.98	49.36	46.67
GTAM-KNN-GK	4.86	2.56	49.07	46.06
GTAM-KNN-LLR	6.77	6.19	41.46	39.59
GTAM-BM-BN	6.00	5.08	17.44	16.78
GTAM-BM-GR	4.62	3.08	16.85	15.91
GTAM-BM-LLR	5.59	5.16	16.01	14.88

◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ● 三

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

Semi-Supervised Learning	Graph Sparsification	Graph Weighting	Graph Labeling 000	Experiments	Conclusions
Conclusions					

- Graph construction method affects SSL performance
- Investigated 3 sparsifications \times 3 weightings \times 3 algorithms
- GTAM method has better accuracy than other algorithms
- On real data, k-nearest neighbors creates irregular graphs
- Regularity from *b*-matching ensures balanced manifolds
- *b*-matching consistently improves *k*-nearest neighbors
- Fast and exact *b*-matching code available using max-product
- The runtime of *b*-matching is not a bottleneck for SSL
- Theoretical guarantees forthcoming