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Semi-Supervised Learning

Semi-Supervised Learning

@ Semi-supervised learning (SSL) learns from both

o labeled data (expensive and scarce)
o unlabeled data (cheap and abundant)

@ Given jid samples from an unknown distribution p(x, y) over
x € (2 and y € Z organized as

o a labeled set: XU YV, = {(x1,y1),---, (X1, 1)}
@ an unlabeled set: X, = {x/41,.--,X/14}
@ Output missing labels ), = {Vii1,..., Viou} that largely
agree with true missing labels YV, = {yj11,...,Vi1u}



Semi-Supervised Learning

Graph Based SSL

@ Graph based semi-supervised learning first constructs a graph
G =(V,E) from X; U X, which is usually

@ a sparse graph (using k-nearest neighbors)
o and a weighted graph (radial basis function weighting)

o Subsequently, G and ), yield ), via a labeling algorithm:

o Laplacian regularization (Belkin & Niyogi 02)

o Gaussian fields and harmonic functions (Zhu et al. 03)

o Local and global consistency (Zhou et al. 04)

o Laplacian support vector machines (Belkin et al. 06)

o Transduction via alternating minimization (Wang et al. 08)

@ Rather than propose yet another labeling algorithm, we focus
on the graph construction step



Graph Sparsification

Graph Construction

A Given the full dataset X, U X, of n = [ + u samples

B Form full weighted graph G with adjacency matrix A € R"*"
using any kernel k(.,.) elementwise as A;; = k(x;, X;)
@ Kernel choice is application dependent and only locally reliable
@ Equivalent to use distances and matrix D € R"*" defined as

DU — \/k(X,',X,') + k(Xj,Xj) — 2k(X,’,Xj)
C Sparsify graph with pruning matrix P € B"*"
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Neighborhood Graphs

Neighborhood Graphs

@ e-NEIGHBORHOOD Set P € B"*" as Pj; = d(Dj; < ¢)

@ The e-neighborhood often forms disconnected graphs
@ Better to make € adaptive using k-nearest neighbors algorithm

® k-NEAREST NEIGHBORS Set P = max(P, P ') where

p = P;D; s.t. Y P;=k,P;=
PQB%'PX,,ZU j i s Z j

@ Despite its name, this algorithm doesn't give k neighbors
o Due to symmetrization of P, > . P;; > k neighbors

o Alternatively, can take P = min(P, PT), then 3. P; < k
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k-Nearest Neighbor Graphs

k-Nearest Neighbor Graphs
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@ Above Is k-nearest neighbors with kK = 2
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b-Matching Graphs

b-Matching Graphs

@ Above Is unipartite b-matching with b = 2
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b-Matching Graphs

b-Matching Graphs

@ b-MATCHING Is k-nearest neighbors with explicit symmetry

P =a ' P;;D;; s.t. Pi;=b,P;=0,FP; = P;
s Pg]Blrpxn ZU U=l Zj s J) J

Known as unipartite generalized matching
Efficient combinatorial solver known (Edmonds 1965)

Like an LP with exponentially many blossom inequalities

e 6 ¢ ¢

Fastest solvers now use max product belief propagation

o Exact for bipartite b-matching in O(bn*) (Huang & J 2007)

o Under mild assumptions get O(n?) (Salez & Shah 2009)

o Exact for integral unipartite b-matching (Sanghavi et al. 2008)
o Exact for unipartite perfect graph b-matching (J 2009)
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b-Matching Graphs

Bipartite 1-Matching

Motorola | Apple | IBM 001 0"
Hlaptop” 0% 2% 2% c—-lo o1
server 0% 2% 3% 1 0 0
" phone” 2% 3% 0% - -

@ Given C, MaXpcpgnxn ZU CUPU such thatzi P,'j — Zj P,'j =1
@ Classical Hungarian marriage problem O(n?)
@ Creates a very loopy graphical model

@ Max product takes O(n?) for exact MAP (Bayati et al. 2005)

@ Use C = —D to mimic minimization of distances



Graph Sparsification
000e0000

b-Matching Graphs

Bipartite b-Matching

Motorola | Apple | IBM 001 1°
Hlaptop” 0% 2% 2% c-11 0 1
server 0% 2% 3% 110
" phone” 2% 3% 0% - -

o Given C, maxpepgnxn ) CjjPjj such that) . Py => . Pj=Db
Combinatorial b-matching problem O(bn?), (Google Adwords)
Creates a very loopy graphical model

Max product takes O(bn?) for exact MAP (Huang & J 2007)

Use C = —D to mimic minimization of distances

e 6 6 ¢ ¢

Code also applies to unipartite b-matching problems
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b-Matching Graphs

Bipartite b-Matching

@ Graph G =(U,V,E) with U ={u1,...,u,} and
V ={v1,...,vp} and M(.), a set of neighbors of node u; or v;

@ Define x; € X and y; € Y where x; = M(u;) and y; = M(v;)

o Then p(X,Y) = 2 IT;T1;¥(xi, y;) [Tx ¢(x)d(vk) where
o(y;) = exp(zuieyj Cii) and ¥(xi,y;) = —(vj € xi ® u; € yj)
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b-Matching Graphs

b-Matching

@ Code at http://www.cs.columbia.edu/~jebara/code

@ Also applies to unipartite b-matching
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b-Matching Graphs

b-Matching
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1 | Applications:

o———— clustering (J & S 2006)
weaan mnngwmownen a0z ) Classification (H & J 2007)
. J—%a | collaborative filtering (H & J 2008)
. visualization (S & J 2009)
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Max product is O(n?), beats other solvers (Salez & Shah 2009)
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b-Matching Graphs

b-Matching
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@ Left is k-nearest neighbors, right is unipartite b-matching.
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Graph Weighting

Given sparsification matrix P, obtain final adjacency matrix W
graph for G using any of the following weighting schemes

BN BINARY Set W =P

GK GAUsSIAN KERNEL Set Wj; = P;; exp(—d(x;,x;)/207) where
d(.,.) is any distance function (¢, distance, chi squared
distance, cosine distance, etc.)

LLR LocALLY LINEAR RECONSTRUCTION Set W to reconstruct
each point with its neighborhood (Roweis & Saul 00)

- 2
W = arg Wg}éﬂx”z |x; — Z Pii Wiix;||* s.t. Z Wi =1, W; >0
I J J
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Graph Labeling

@ Given known labels ), and sparse weighted graph G with W
o Output Y, by diffusion or propagation
@ Define the following intermediate matrices

o Degree D € R™" where D;; = > .. Wj;, Djj =0 for i # j

@ Laplacian A =D - W
o Normalized Laplacian L = D~ /2AD—1/2

@ Classification function F € R"*¢ where F = { Il____/ }

o Label matrix Y € B"*¢, Y, =4(y; =Jj) and Y = [ 3/// ]
@ Consider these algorithms for producing F and Y

o Gaussian Random Fields (GRF)
o Local and Global Consistency (LGC)
o Graph Transduction via Alternating Minimization (GTAM)
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Gaussian Random Fields

@ (GAUSSIAN RANDOM FIELDS smooth classification function
over Laplacian while clamping known labels

min tr(F'AF) s.t. AF,=0,F =Y,
FERnXC

and then obtain Y from F by rounding
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Local and Global Consistency

Local and Global Consistency

@ LocAL AND GLOBAL CONSISTENCY smooth using
normalized Laplacian and softly constrain F; to Y]

_min_tr ((FTLF) +u(F—Y)T(F - Y))

and then obtain Y from F by rounding
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Graph Transduction via Alternating Minimization

Graph Transduction via Alternating Minimization

@ GRAPH TRANSDUCTION VIA ALTERNATING MINIMIZATION
make the optimization bivariate jointly over F and Y

min  tr (FTLF +u(F — vY)T(F - W)) sty V=1
FeRnXC .
YEB”XC J

where V' is a diagonal matrix containing class proportions

@ Given current F, Y is updated greedily one entry at at time
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Synthetic Experiments
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Figure: Synthetic dataset (a) two sampled rings (b) e-neighborhood
graph (c) k-nearest graph with k = 10 (d) b-matching with b = 10.
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Figure: 50-fold error rate varying o in Gaussian kernel for (a) LGC and
(b) GRF. GTAM (not shown) does best. One point per class labeled.
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Synthetic Experiments
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Figure: Synthetic dataset (a) two sampled rings (b) e-neighborhood
graph (c) k-nearest graph with k = 10 (d) b-matching with b = 10.
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Figure: 50-fold error rate under varying b or k and weighting schemes for
(a) LGC, (b) GRF and (c) GTAM. One point per class labeled.
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Real Experiment Error Rates

Data set USPS | COIL | BCl | TEXT

Data set USPS | COIL | BCI | TEXT

LGC-KNN-BN 14.7 | 59.18 | 48.94 | 48.79

QC + CMN | 13.61 | 59.63 | 50.36 | 40.79

LGC-KNN-GK | 12.42 | 57.3 | 48.42 | 48.09

LDS 25.2 | 67.5 | 49.15 | 31.21

LGC-KNN-LLR | 15.8 | 56.75 | 48.65 | 40.28

Laplacian 17.57 | 61.9 | 49.27 | 27.15

LGC-BM-BN 14.4 | 59.31 | 48.34 | 40.44

Laplacian RLS | 18.99 | 54.54 | 48.97 | 33.68

LGC-BM-GR 11.89 | 58.17 | 48.17 | 37.39

CHM (normed) | 20.53 - 46.9 -

LGC-BM-LLR 14.44 | 58.69 | 48.08 | 39.83

GRF-KNN-BN | 19.11 | 64.45 | 48.77 | 47.65

GTAM-KNN-BN | 6.42 | 29.70 | 47.56 | 49.36

GRF-KNN-GK | 12.94 | 61.31 | 48.98 | 47.65

GTAM-KNN-GK | 4.77 | 16.69 | 47.29 | 49.13

GRF-KNN-LLR | 19.20 | 61.19 | 48.46 | 47.14

GTAM-KNN-LLR | 6.69 | 15.35 | 45.54 | 41.48

GRF-BM-BN | 18.98 | 60.63 | 48.44 | 43.16

GTAM-BM-BN 5.2 |1 25.83 | 47.92 | 17.81

GRF-BM-GR | 12.82 | 60.87 | 48.77 | 42.88

GTAM-BM-GR | 4.31 | 13.65 | 47.48 | 28.74

GRF-BM-LLR | 18.95 | 60.84 | 48.25 | 42.94

GTAM-BM-LLR | 5.45 (12.57 | 43.73 | 16.35




Real Experiment Error Rates with More Labeling

Experiments

Data set

USPS

TEXT

# of labels

10

100

10

100

QRC + CMN

13.61

6.36

40.79

25.71

TSVM

25.2

9.77

31.21

24.52

LDS

17.57

4.96

27.15

23.15

Laplacian RLS

18.99

4.68

33.68

23.57

CHM (normed)

20.53

7.65

GRF-KNN-BN

19.11

9.07

47.65

41.56

GRF-KNN-GK

13.01

5.58

48.2

41.57

GRF-KNN-LLR

19.20

11.17

47.14

35.17

GRF-BM-BN

18.98

9.06

43.16

25.27

GRF-BM-GK

12.92

5.34

41.24

22.28

GRF-BM-LLR

18.95

10.08

42.95

24.54

Data set U S PS T EXT

# of labels 10 100 10 100
LGC-KNN-BN | 14.99 | 12.34 | 48.63 | 43.44
LGC-KNN-GK | 12.34 | 5.49 | 49.06 | 41.51
LGC-KNN-LLR | 15.88 | 13.63 | 44.86 | 37.53
LGC-BM-BN 14.62 | 11.71 | 40.88 | 26.19
LGC-BM-GK 11.92 | 5.21 | 38.14 | 23.17
LGC-BM-LLR | 14.69 | 12.19 | 40.29 | 24.91
GTAM-KNN-BN | 6.59 | 5.98 | 49.36 | 46.67
GTAM-KNN-GK | 4.86 | 2.56 | 49.07 | 46.06
GTAM-KNN-LLR| 6.77 | 6.19 | 41.46 | 39.59
GTAM-BM-BN | 6.00 | 5.08 | 17.44 | 16.78
GTAM-BM-GR | 4.62 | 3.08 | 16.85 | 15.91
GTAM-BM-LLR | 5.59 | 5.16 (16.01 | 14.88




Conclusions

Conclusions

o
o
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o
o
o
Q
o
o

Graph construction method affects SSL performance
Investigated 3 sparsifications x 3 weightings x 3 algorithms
GTAM method has better accuracy than other algorithms
On real data, k-nearest neighbors creates irregular graphs
Regularity from b-matching ensures balanced manifolds
b-matching consistently improves k-nearest neighbors

Fast and exact b-matching code available using max-product

"he runtime of b-matching is not a bottleneck for SSL

"heoretical guarantees forthcoming



