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Abstract

This article proposes an algorithm to automatically
learn useful transformations of data to improve accuracy
in supervised classification tasks. These transformations
take the form of a mixture of base transformations and are
learned by maximizing the kernel alignment criterion. Be-
cause the proposed optimization is nonconvex, a semidefi-
nite relaxation is derived to find an approximate global so-
lution. This new convex algorithm learns kernels made up
of a matrix mixture of transformations. This formulation
yields a simpler optimization while achieving comparable
or improved accuracies to previous transformation learn-
ing algorithms based on maximizing the margin. Remark-
ably, the new optimization problem does not slow down with
the availability of additional data allowing it to scale to
large datasets. One application of this method is learn-
ing monotonic transformations constructed from a base set
of truncated ramp functions. These monotonic transforma-
tions permit a nonlinear filtering of the input to the clas-
sifier. The effectiveness of the method is demonstrated on
synthetic data, text data and image data.

1 Introduction

In the past decade, large margin classifiers based on the
support vector machine formulation have been successful in
applied domains [4, 15]. A large part of this success can be
attributed to the use of explicit nonlinear transformations or
implicit mappings defined by reproducing kernels. These
mappings are useful since finding a linear decision bound-
ary in the new space is easy and mimics finding a nonlin-
ear boundary in the original space. The mappings extend
the applicability of linear classifiers which then can handle
highly nonlinear datasets. An open question and the sub-
ject of much research is how to pick an appropriate trans-
formation or kernel? Although there are various heuris-
tics and rules of thumb, more principled approaches that
learn the kernel from data are potentially more promising
[1, 17, 14, 6, 13, 2, 5, 19, 20, 18, 12].

This paper investigates a data driven method to learn
transformations that extends the kernel learning paradigm
and offers an alternative to the previously proposed large
margin transformation learning methods [8, 9]. Transfor-
mation learning was originally proposed to learn monotonic
transformations [8]. Whereas kernel learning methods typ-
ically learn a kernel made up of a mixture of base kernels,
k(~x, ~x′) =

∑
imiki(~x, ~x′), transformation learning learns

a mixture of transformations Φ(~x) =
∑
imiφi(~x) as de-

picted in Figure 1. This shows two truncated ramp functions
in 1(a) and 1(b) being combined into a simple piecewise
linear monotonic function in 1(c). Figure 2(a) shows a mix-
ture of kernels based on the ramp functions and Figure 2(b)
shows the kernel defined by the mixture of transformations.
In this case, the mixture of kernels defines a kernel with a
very clear flaw compared to the mixture of transformations
and is a case where a mixture of transformations can more
correctly encode the function of interest than the mixture of
kernels.

In this paper, transformations will be learned by maxi-
mizing the kernel alignment score of the mixture of trans-
formations kernel k(~x, ~x′) =

∑
ijmimjφi(~x)>φj(~x′).

This leads to a nonconvex optimization which is sub-
sequently relaxed to yield a convex semidefinite pro-
gram (SDP). This program learns a matrix mixture
of transformations with kernels defined as k(~x, ~x′) =∑
ijMijφi(~x)>φj(~x′). If the mixing matrix M is diago-

nal, this approach reduces to the usual mixture of kernels
framework [1] and if M is rank one, this approach reduces
to the mixture of transformations case. Otherwise, the ma-
trix mixture is a strict generalization of the two cases.

The paper is organized as follows. Section 2 starts with a
review of the transformation learning framework and large
margin transformation learning algorithms. Section 3 re-
views kernel alignment and algorithms for maximizing the
alignment to the ideal kernel made from the outer prod-
uct of the labels. In Section 4, a framework for learning
transformations via kernel alignment is explored. A straight
forward generalization of kernel learning to transformation
learning via alignment is first proposed and a convex relax-
ation to this nonconvex problem is derived. Because this
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Figure 1. Two truncated ramp functions (a)
and (b) are combined to form a piecewise lin-
ear monotonic function (c).

method does not perform well in practice, another more
efficient and accurate method is proposed and an associ-
ated convex relaxation is derived. Section 5 demonstrates
the usefulness of this new technique for learning monotonic
transformations on a synthetic data set, on image histogram
classification, and on text classification. Section 6 closes
with a discussion.

2 Transformation Learning

Transformation learning was originally introduced in [8]
in order to learn monotonic transformations to improve clas-
sification accuracy with support vector machines (SVMs).
These transformations are similar to the nonlinear squash-
ing functions in neural networks and are estimated in an
adaptive way to improve the margin of the resulting clas-
sifier. The framework was developed further as a general
transformation learning method in [9]. Algorithms were
developed that simultaneously learn a mixture of transfor-
mations and a large margin hyperplane classifier. Trans-

(a) φ1(x1)
>φ1(x2)+φ2(x1)

>φ2(x2)
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(b) (φ1(x1)+φ2(x1))
>(φ1(x2)+φ2(x2))
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Figure 2. Kernel defined by a mixture of ker-
nels (a) and kernel defined by a mixture of
transformations (b). Note the mixture of ker-
nels has an unnecessary bump in the middle.

formations Φ(x) =
∑
imiφi(x) were composed of a mix-

ture of base transformations φ(x). The initial nonconvex
optimization problem proposed was to augment a standard
SVM with the mixture of transformations:

min
~w,b,~ξ,~m

‖~w‖22 + C

N∑
i=1

ξi (1)

s.t. yi

〈~w, J∑
j=1

mjφj(~xi)

〉
+ b

 ≥ 1− ξi ∀i

~ξ ≥ ~0, ~m ≥ ~0, ~m>~1 ≤ 1

where ~w is the hyperplane normal, b is the bias term, ~ξ
are the slack variables (as in the standard linear soft mar-
gin SVM). An alternating optimization scheme was used to
find a local minimum.

Despite strong performance, the above algorithm was
susceptible to local minima and often required restarts. This
motivated the following convex relaxation to find global ap-



proximate solutions:

min
M,t,λ,~ν,~δ

t (2)

s.t.

(
Y
∑
ijMijφ

>
i φjY (~1 + ~ν − ~δ + λ~y)

(~1 + ~ν − ~δ + λ~y)> t− 2C~δ>~1

)
� 0(

1 ~m>

~m M

)
� 0

~m ≥ ~0, ~m>~1 ≤ 1,
∑
i

Mii ≤ 1, ~ν ≥ ~0, ~δ ≥ ~0.

where X is a matrix of feature vectors, ~y is a vector of the
labels, Y is a matrix with ~y on the diagonal and zero else-
where, t is a dummy variable to optimize, ~ν and ~δ and λ are
dual variables and the mixing matrix M combines transfor-
mations into a kernel. We sometimes denote φi = φi(X)
for brevity when the meaning is clear from the context. The
resulting kernel is defined as the matrix mixture of transfor-
mations: k(x, x̃) =

∑
ijMijφi(x)>φj(x̃). This represen-

tation generalizes both the mixture of kernels which is re-
covered whenM is diagonal and the mixture of transforma-
tions when M is rank 1. In practice this convex relaxation
performs better than the nonconvex formulation and always
gives the same unique global optimum. One key shortcom-
ing of the method is its ability to scale to large datasets since
the large margin criterion is computationally cumbersome.
Instead, it is possible to consider a simpler criterion such as
kernel target alignment which may provide dramatic com-
putational improvements without any significant reduction
in generalization performance. This permits transformation
learning methods to apply to large scale datasets.

3 Kernel Alignment

Kernel alignment was originally proposed in [6] as a
measure of similarity between kernel matrices. The align-
ment between two kernels is defined as:

A(K1,K2) =
〈K1,K2〉F
‖K1‖F ‖K2‖F

. (3)

This can be seen as a similarity score based on the cosine of
the angle between K1 and K2 in an appropriate space. For
arbitrary matrices, this score ranges between -1 and 1. How-
ever, since kernel alignment is only measured using positive
semidefinite Gram matrices, the score is lower bounded by
0.

The alignment can give a measure of the quality of a
kernel by comparing it to an idealized kernel made up of
the outer product of observed labels ~y~y>:

A(K,~y~y>) =

〈
K,~y~y>

〉
F

‖K‖F ‖~y~y>‖F
=

〈
K,~y~y>

〉
F

N‖K‖F
. (4)

This score defines a useful quantity to optimize when
searching for an optimal kernel:

max
K

A(K,~y~y>) (5)

s.t. K ∈ K.

Instead of maximizing the normalized score in (5), an alter-
native equivalent optimization [11] can be derived that can
be handled by standard solvers depending on the class of
kernel being considered.

max
K

〈
K,~y~y>

〉
F

(6)

s.t. trace(A) ≤ 1(
A K>

K IN

)
� 0

K ∈ K.

If K is the set of all positive definite matrices, this opti-
mization yields a trivial solution of K = c

n~y~y
>. This indi-

cates that it is important to constrain K to avoid such a de-
generate solution. The multiple kernel learning framework
uses the constraint K =

∑
imiKi forcing the solution to

involve a linear combination of base kernels. This problem
then becomes the following semidefinite program:

max
~m

〈∑
i

miKi, ~y~y
>

〉
F

(7)

s.t. trace(A) ≤ 1(
A K>

K IN

)
� 0∑

i

miKi � 0.

If the weights ~m are constrained to be positive, the SDP
simplifies further into a quadratically constrained quadratic
program (QCQP):

max
~m

~m>q (8)

s.t. ~m>S ~m ≤ 1
~m ≥ ~0

where qi = 〈Ki, ~y~y
>〉F and Sij = 〈Ki,Kj〉F . We next

consider the use of the kernel target alignment criterion for
learning transformations instead of simply learning linear
combinations of kernels.

4 Transformation Learning Via Alignment

In this section, the method of kernel alignment is gen-
eralized to estimate an optimal set of transformations. A



direct formulation, however, leads to a nonconvex opti-
mization problem which may be plagued by local minima.
Therefore, a convex relaxation is introduced. We first use
the standard approach to derive an alignment optimization
for learning transformations by constraining the norm. Sub-
sequently, we will derive a transformation alignment prob-
lem with constraints on the mixing components rather than
on the norm of the learned kernel. The latter method will be
demonstrated to scale better and perform more accurately
in practice.

4.1 Norm Constrained Alignment

First consider learning a mixture of transformations by
maximizing the alignment score to the labels where the ker-
nel is defined as K =

∑
ijmimjφi(x)>φj(x) and option-

ally mi ≥ 0. This can be phrased as a similar optimization
to (5) but with a mixture of transformations rather than a
mixture of kernels as follows:

max
m

A

∑
ij

mimjφi(x)>φj(x), ~y~y>

 (9)

s.t. ~m ≥ ~0.

We can now apply the general alignment optimization
derived in (6) to the task of learning a mixture of transfor-
mations:

max
m

∑
ij

mimj〈φi(X)>φj(X), yyt〉 (10)

s.t. trace(A) ≤ 1(
A

∑
ijmimjφ

>
j φi∑

ijmimjφ
>
i φj IN

)
� 0

~m ≥ ~0

Unfortunately, it is clear that this optimization is noncon-
vex. Consider convexifying it using a standard semidefinite
relaxation [16]:

max
M

∑
ij

Mij〈φ>i φj , yyt〉 (11)

s.t. trace(A) ≤ 1(
A

∑
ijMjiφ

>
j φi∑

ijMijφ
>
i φj IN

)
� 0(

1 ~m>

~m M

)
� 0, ~m ≥ 0.

This relaxation is a semidefinite program which can be han-
dled by standard interior point solvers. The learned kernel is
K =

∑
ijMijφi(x)φj(x) and defines a matrix mixture of

transformations. Detailed derivations can be found in Ap-
pendix A.1. Unfortunately, the above semidefinite program

scales with the number of kernels as well as the number of
datapoints in the classification problem which prevents it
from handling large datasets. We next consider another reg-
ularization scheme for recovering the kernel K which will
lead to a slightly different semidefinite program which does
not scale with the number of datapoints and therefore can
handle large datasets.

4.2 Mixing Weight Constrained Alignment

Optimizing the kernel alignment A(K,~y~y>) in (5) can
be seen as maximizing a similarity score 〈K,~y~y>〉F subject
to a complexity constraint based on the norm ‖K‖F = 1.
Other types of complexity control could be used in this set-
ting. We now investigate simple constraints on the mixing
weights of the kernel ~m ≥ ~0 and ~m>~1 ≤ 1:

max
m

〈∑
ij

mimjφ
>
i φj , ~y~y

>

〉
F

(12)

s.t. ~m ≥ ~0, ~m>~1 ≤ 1.

This nonconvex problem can be convexified via standard
techniques into the following semidefinite relaxation:

max
m

〈∑
ij

Mijφ
>
i φj , ~y~y

>

〉
F

(13)

s.t.
(

1 ~m>

~m M

)
� 0

~m ≥ ~0, ~m>~1 ≤ 1,
∑
i

Mii ≤ 1.

The derivation can be found in Appendix A.2. The method
has better space and time complexity than either norm con-
strained transformation learning or large margin transfor-
mation learning. While the previous two methods have
semidefinite blocks that scale with the number of data points
and require storing all N × N kernel matrices in mem-
ory, this formulation requires neither and can precompute
the most burdensome quantity with only matrix-vector and
vector-vector multiplication:〈∑

ij

Mijφ
>
i φj , ~y~y

>

〉
F

=
∑
ij

Mij trace
(
(~y>φ>i )(φj~y)

)
.

Thus, a non-trivial semidefinite program for transformation
learning is derived which remains extremely fast on large
scale datasets.

5 Experiments

In this section we investigate the empirical effectiveness
of the proposed alignment based transformation learning



algorithms. The newly proposed norm constrained (NC-
TLA) (11) and mixing weight constrained (MWC-TLA)
(13) transformation learning algorithms are compared to
standard kernel alignment (KA) (8) and to large margin
transformation learning (LMTL) (2). In [9], large mar-
gin transformation learning performed best overall when
compared to many other kernel and transformation learn-
ing methods. We investigate the same problems and use the
large margin transformation learning method as the state of
the art baseline.

The experiments use truncated ramp functions as base
transformations in order to learn piecewise linear mono-
tonic transformations of the input data. These ramp func-
tions are defined as:

φj(x) =


0 x ≤ zj
x−zj

zj+1−zj
zj < x < zj+1

1 zj+1 ≤ x
(14)

where zj is the j’th knot defined a priori at the quan-
tiles. These truncated ramp functions are depicted in Fig-
ure 1. Positivity constraints on the mixing weights enforce
monotonicity of the final learned transformations. The ker-
nels defined for the kernel alignment algorithm are sim-
ply inner products of each transform with itself kj(x, x̃) =
φj(x)>φj(x̃). All experiments were repeated 10 times us-
ing cross-validation and test results were averaged. The op-
timization problems were solved in Matlab with Yalmip and
SeDuMi.

5.1 Synthetic Experiment

This experiment demonstrates the methods’ abilities to
recover a simple monotonic transformation of the data. Six
hundred two dimensional data points were sampled near
a hyperplane with margin. These data points were trans-
formed with three different monotonic transformations: the
linear, logarithmic and quadratic functions. Clearly, if the
inverse transformation is recovered, a linear hyperplane will
separate the data perfectly. The data was split evenly into
sets of 200 training, 200 cross validation, and 200 testing
points. The inverse transformation to be recovered are the
linear, exponential and square root functions.

Table 1 summarizes the results using the four algorithms.
The kernel alignment and the norm constrained transforma-
tion learning via alignment performed poorly on this task.
This is mainly because both methods penalize transforma-
tions with large norm and end up favoring some truncated
ramp functions more than others. The large margin trans-
formation learning and mixing weight constrained transfor-
mation learning via alignment performed similarly. MWC-
TLA had a small edge on LMTL and performed better than
or equivalently on all three experiments. Remarkably, the

x exp(x)
√
x Avg

LMTL 0.20 0.20 0.35 0.25
KA 12.55 11.95 12.20 12.23
NC-TLA 6.75 6.30 8.65 7.23
MWC-TLA 0.15 0.05 0.35 0.18

Table 1. Percent testing error rates for the
synthetic experiments. Data was sampled
near a linear decision surface and then trans-
formed with a monotonic function. The in-
verse of the transformation is then learned
in order to achieve accurate linear classifi-
cation. The Norm Constrained Transforma-
tion Learning via Kernel Alignment (NC-TLA)
and Mixing Weight Constrained Transforma-
tion Learning via Kernel Alignment (MWC-
TLA) were compared to Large Margin Trans-
formation Learning (LMTL) and Kernel Align-
ment (KA). Results for each dataset (the three
target monotonic functions, linear, exponen-
tial and square root) are reported in their re-
spective columns as well as the average in
the Avg column. The results are averaged
over 10 runs and the best error rate for each
experiment is in bold.

performance of MWC-TLA required dramatically less com-
pute time and was orders of magnitude faster.

5.2 Image Histogram Classification

A real-world experiment involving images from the
Corel image dataset was then investigated. Four categories
of animals were chosen from the images: (1) eagles, (2)
elephants, (3) horses, and (4) tigers. Each category con-
sists of 100 color images. These images are represented
as RGB histograms following the standard binning strategy
suggested in [3, 7]. In previous work, it was shown that
learned monotonic transformations were superior to kernels
such as the RBF and polynomial kernel in [3]. All six pair-
wise classification tasks were solved with a split of 160 ex-
amples in the training set, 20 examples in the cross vali-
dation and 20 in the testing set. These experiments were
repeated 10 times and the results averaged and reported in
Table 2.

The Norm Constrained Transformation Learning via
Kernel Alignment and standard Kernel Alignment algo-
rithms again perform poorly. The Mixing Weight Con-
strained Transformation Learning via Alignment algorithm
had equivalent error rates on five out of six datasets as the
Large Margin Transformation Learning and outperformed
LMTL on the sixth one. This again demonstrates an effec-



1/2 1/3 1/4 2/3 2/4 3/4 Avg
LMTL 2.5 1.0 0.5 1.0 2.0 1.0 1.34
KA 3.5 1.0 3.5 3.5 8.5 6.5 4.42
NC-TLA 3.0 2.0 2.0 4.0 5.0 7.5 3.92
MWC-TLA 2.5 1.0 0.5 1.0 1.5 1.0 1.25

Table 2. Percent testing error rates on Corel
image histogram dataset. Four classes of an-
imals, (1) eagles, (2) elephants, (3) horses,
and (4) tigers were used in 6 pair-wise clas-
sification tasks. The average error rate over
all experiments is reported in the Avg column.
The Norm Constrained Transformation Learn-
ing via Kernel Alignment (NC-TLA) and Mixing
Weight Constrained Transformation Learning
via Kernel Alignment (MWC-TLA) were com-
pared to Large Margin Transformation Learn-
ing (LMTL) and Kernel Alignment (KA). Re-
sults for each pair-wise classification are re-
ported in their respective columns as well as
the average in the Avg column. The results
are averaged over 10 runs and the best error
rate for each experiment is in bold.

tive technique that performs comparably to the previously
proposed LMTL. However, the performance is achieved
with remarkably better running times which have very little
dependence on the training set size.

5.3 Document Classification

In another real-world experiment, the WebKB dataset
was considered. Therein, webpages from four universities
are split into multiple categories. We considered classifi-
cation of the four largest categories which consists of 1641
student webpages, 1124 faculty webpages, 930 course web-
pages, and 540 project webpages. Each page was processed
to remove HTML tags and converted into a bag of words
representation (i.e. each document is simply a vector of
word counts). In the experiments, 80 percent of the data
was used for training, 10 percent for cross validation and 10
percent for testing.

In [10, 7] it was shown that preprocessing the word
counts with a square root transformation improved clas-
sification accuracy. In [9], Large Margin Transformation
Learning was shown to perform as well as the square root
transformation and better than other transformation and
kernel learning techniques. We compare Mixing Weight
Constrained Transformation Learning via Alignment to
Large Margin Transformation Learning. Norm Constrained
Transformation Learning via Alignment could not be run
on this dataset because the N × N kernel matrices were

1/2 1/3 2/3 1/4 2/4 3/4 Avg
LMTL 1.32 2.03 4.51 1.13 4.35 2.80 2.69
MWC-TLA 1.80 1.82 4.44 1.09 5.51 2.71 2.90

Table 3. Percent testing error rates for the
WebKB bag of words webpage classification.
Four classes of webpages, (1) student, (2) fac-
ulty, (3) course, and (4) projects were used in
all 6 pair-wise classification tasks. The aver-
age error rate is reported in the Avg column.
The Mixing Weight Constrained Transforma-
tion Learning via Kernel Alignment (MWC-
TLA) was compared to Large Margin Trans-
formation Learning (LMTL). Results for each
pair-wise classification are reported in their
respective columns as well as the average in
the Avg column. The results are averaged
over 10 runs and the best error rate for each
experiment is in bold.

too large to store in memory. LMTL also suffers from
this problem so an extragradient based algorithm was used
which was proposed in [9] and computes kernels as they
are needed as opposed to storing them in memory. Results
are reported in Table 3. MWC-TLA performs better than
LMTL on 3 out of 6 experiments and a little worse over-
all. The new alignment based transformation learning can
solve this medium sized problem without having to resort
to a specialized solver and achieved comparable results to
LMTL.

5.4 Empirical Running Time Comparisons

We now compare the empirical running time of Large
Margin Transformation Learning, Norm Constrained Trans-
formation Learning via Alignment, and Mixing Weight
Constrained Transformation Learning via Alignment. The
synthetic experiment from Section 5 was varied over several
training sizes for learning the square root transformation. At
800 training points LMTL runs out of memory using a 32
bit version of Matlab. Results for the experiments are found
in Figure 3. The running time for the alignment-based al-
gorithms include the running time for the alignment SDP
as well as the running time for a simple dual SVM imple-
mented with quadratic programming and Mosek.

Previous sections show that MWC-TLA is a viable alter-
native to LMTL in terms of accuracy. The empirical running
time results show that it could be considered as a replace-
ment based on its favorable scaling. The alignment SDP
only scales with the number of transformations and not the
data points as opposed to LMTL and NC-TLA which scale
with both the data points and the number of transformations.



Figure 3. Empirical scaling results for Large
Margin Transformation Learning (LMTL),
Norm Constrained Transformation Learning
via Alignment (NC-TLA) and Mixing Weight
Constrained Transformation Learning via
Alignment (MWC-TLA).

Thus, extremely large datasets could be used since, clearly,
the SDP has no dependence on the number of training sam-
ples in the dataset.

6 Discussion

In this paper we presented two algorithms for learning
transformations by optimizing the kernel alignment. The
initial optimizations were nonconvex so appropriate convex
relaxations were derived to find globally optimal solutions.
It was shown empirically that the direct generalization of
kernel alignment to transformation learning, Norm Con-
strained Transformation Learning via Alignment, did not
perform well and the Mixing Weight Constrained Trans-
formation Learning via Alignment was far superior. The
MWC-TLA algorithm was shown to have comparable ac-
curacy to LMTL but has far better scaling properties. These
results suggest that MWC-TLA can be used in place of
LMTL and can be readily applied to large scale datasets.
An extragradient algorithm has been developed for LMTL
in order to overcome the poor scaling in terms of number
of data points, it however does not help much in terms of
scaling with the number of transformations. Even with the
extragradient algorithm, kernels need to be cached or com-
puted on the fly. MWC-TLA has the advantage of only

needing to precompute kernels and does not needed to keep
them in memory.

A Derivation of Transformation Learning
via Alignment Optimizations

A.1 Norm Constrained Transformation Learning
via Alignment

In order to derive an optimization to maximize the align-
ment of a mixture of transformations with unit norm we first
recall a general optimization result from [11]. Maximizing
the alignment of a kernel to the label kernel as follows

max
K

A(K,~y~y>) (15)

s.t. K ∈ K,

can be solved via the semidefinite program:

max
K

〈
K,~y~y>

〉
F

(16)

s.t. trace(A) ≤ 1(
A K>

K IN

)
� 0

K ∈ K.

We can now apply this general alignment optimization to
the task of learning a mixture of transformations:

max
m

∑
ij

mimj〈φ>i φj , yyt〉

s.t. trace(A) ≤ 1(
A

∑
ijmimjφ

>
j φi∑

ijmimjφ
>
i φj IN

)
� 0

~m ≥ ~0.

Unfortunately, this optimization is nonconvex due to the
quadratic interaction of the mixing weights but can be con-
vexified using standard semidefinite relaxations. First, a
matrix variable M replaces quadratic terms involving m
and is defined element-wise as Mij = mimj . This yields:

max
M

∑
ij

Mij〈φ>i φj , yyt〉

s.t. trace(A) ≤ 1(
A

∑
ijMijφ

>
j φi∑

ijMijφ
>
i φj IN

)
� 0

M − ~m~m> = 0
~m ≥ ~0.



This is equivalent and still nonconvex due to the equality
constraint M − ~m~m> = 0. This can be relaxed to a lin-
ear matrix inequality M − ~m~m> � 0 which can be con-
verted into a semidefinite constraint via the Schur comple-
ment lemma:

M − ~m~m> � 0 ⇐⇒
(

1 ~m>

~m M

)
� 0.

Substituting this result produces the following SDP:

max
M

∑
ij

Mij〈φ>i φj , yyt〉

s.t. trace(A) ≤ 1(
A

∑
ijMjiφ

>
j φi∑

ijMijφ
>
i φj IN

)
� 0(

1 ~m>

~m M

)
� 0, ~m ≥ ~0.

A.2 Mixing Weight Constrained Transformation
Learning via Alignment

The mixing weight constrained alignment problem can
be derived in a similar way. The original nonconvex opti-
mization can be set up as:

max
~m

〈∑
ij

mimjφ
>
i φj , ~y~y

>

〉
F

s.t. ~m ≥ ~0, ~m>~1 ≤ 1,
∑
i

m2
i ≤ 1,∀i.

This includes an additional redundant constraint
∑
im

2
i ≤

1 that will is useful in the relaxation. Introducing the pos-
itive semidefinite matrix M as in the previous subsection
yields the desired convex relaxation:

max
~m

〈∑
ij

Mijφ
>
i φj , ~y~y

>

〉
F

s.t.
(

1 ~m>

~m M

)
� 0

~m ≥ ~0, ~m>~1 ≤ 1,
∑
i

Mii ≤ 1.
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[17] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale
multiple kernel learning. Journal of Machine Learning Research,
7:1531–1565, 2006.

[18] K. Tsuda, S. Akaho, and K. Asai. The EM algorithm for kernel
matrix completion with auxiliary data. Journal of Machine Learning
Research, 4:67–81, 2003.

[19] C.K.I. Williams and D. Barber. Bayesian classification with Gaus-
sian processes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(12):1342–1351, 1998.

[20] C.K.I. Williams and C.E. Rasmussen. Gaussian processes for regres-
sion. In Advances in Neural Information Processing, 1995.


