
Convex Invariance Learning

Tony Jebara
Department of Computer Science

Columbia University
New York, NY 10027

jebara@cs.columbia.edu

Abstract

Invariance and representation learning are
important precursors to modeling and classi-
fication tools particularly for non-Euclidean
spaces such as images, strings and non-
vectorial data. This article proposes a
method for learning invariances in data while
jointly estimating a model. The technique re-
sults in a convex programming problem with
a consistent and unique solution. Repre-
sentation variables are considered as affine
transformations confined by multiple equal-
ity and inequality constraints. These interact
individually with each datum yet maintain
the overall solvability of the model estima-
tion process while uniquely solving for the
representational variables themselves. The
method is applicable to various types of mod-
eling, including maximum likelihood estima-
tion, principal components analysis, and dis-
criminative methods. Starting from affine in-
variance, several types of invariances are pro-
posed and implemented as convex programs
including clustering, permutation, selection,
rotation, and translation. Experiments on
non-vectorial data such as images and col-
lections of tuples provide promising results.

1 Introduction

Recent progress in discriminative learning, support
vector machines and regularization theory have en-
couraged the view that model estimation can be per-
formed by minimizing a penalty function subject to
e.g. linear classification constraints on the model [10]
[4]. An important aspect of these formalisms is that
their learning algorithms generate solvable convex pro-
grams with appealing computational properties. We
propose a similar convex programming scheme for

learning invariances or representations of the data. In-
stead of considering classification constraints on mod-
els, we consider constraints on a space of transforma-
tions. While traditional machine learning methods
focus on estimating models (generative or discrimi-
native) from vectorial data, non-vectorial data such
as strings, images, audio and video require invariance
and representation learning before interacting with a
model. For example, permutational invariance of pix-
els in images is crucial to solve the so-called correspon-
dence problem [2]. Therefore, the flexible specification
of invariants and their reliable estimation is an imper-
ative task of machine learning in these domains. Prior
efforts in uncovering these representations involved it-
erative methods which were often difficult to embed
jointly within a model estimation algorithm and also
suffered from local minima. For instance, in [1] learn-
ing transformations for generative models requires an
iterative EM or variational implementation and also
discrete enumeration of all possible transforms. Simi-
larly, iterative techniques such as congealing [7] can un-
cover image rotations yet these again have local min-
ima and do not scale to, e.g. discriminative model es-
timation frameworks. Correspondence algorithms for
image registration and alignment also have local min-
ima problems and require relaxation or annealing [2].

In this paper we propose a novel approach to learn-
ing invariance and representation parameters via the
Convex Invariance Learning (CoIL) framework. The
text is organized as follows: we begin with motivation
and a broad description of convex invariance learn-
ing. We then specifies various types of invariants as
hulls of linear constraints. Subsequently, several tra-
ditional model estimation criteria are augmented to
jointly perform invariance learning. We then discuss
the collection of tuples representation for images, au-
dio and other signals and the particular types invari-
ance it requires. Implementation details are given for
learning a model while estimating the required invari-
ances. Finally preliminary experimental results are
shown along with discussions.

2 Invariance

In this paper, we adopt the view that representation
learning can be cast as learning with invariances and
is performed by estimating the transformation opera-
tions on data points prior to their interaction with a
model. A representation often implies (or is specified
by) invariance properties in an object. For example,
if we wish to represent a bag or collection of objects
(i.e. a bag of vectors or pixels), then the ordering of
the objects in the bag should be invariant. Permuting
the order of the objects should not change the rep-
resentation (i.e. permutational invariance). Another
example is in vision where an image patch might need
to be invariant to rotations and scaling of the image
(i.e. affine invariance). Thus, in many cases, repre-
sentations have built-in invariance properties. We will
handle invariance in terms of allowable transformation
operations upon an object.

We motivate invariance and representation learning
using a simple example of a manifold estimation prob-
lem, such as principal components analysis (PCA). In
Figure 1(a) we see a data set in <3 which needs to be
modeled by a lower dimensional manifold. Clearly,
no appropriate manifold is apparent and PCA will
not provide a useful result. However, if we general-
ize PCA and add invariants to the data, this is no
longer the case (see Figure 1(b)). For instance, we
may note an invariance property in our data and pro-
vide each datum with a path or manifold 1 that it may
move along prior to forming the PCA subspace model.
If points can be moved along their paths invariantly,
they clearly form a two-dimensional subspace. There-
fore, we can consider invariance learning as the esti-
mation of transformations on the data (i.e. the paths
around each datum) while simultaneously forming a
model (i.e. the PCA subspace or another model esti-
mation criterion).

2.1 Soft Invariance

An alternative to the above definition is soft-
invariance where changes in a datum from its origi-
nal setting incur a variable cost. This still permits us
to consider a path or manifold of invariance around
a point yet also balances the trade-off between the
model’s estimation and the excessive use of the invari-
ance. For instance in Figure 1(c), the invariant paths
are shown in fainter shades of gray at locations where
the invariance incurs more cost and is in an unlikely
configuration. Soft invariance can also relieve possible
ambiguities in the model. We now formalize invariance

1A path is a 1-dimensional manifold. In general, we
will consider many degrees of freedom in the invariance
and describe possible configurations by a manifold.

(a) −2
−1

0
1

2

−2
−1

0
1

2

−0.4

−0.2

0

0.2

0.4

0.6

xy

(b) −2
−1

0
1

2

−2
−1

0
1

2

−0.4

−0.2

0

0.2

0.4

0.6

xy

(c) −2
−1

0
1

2

−2
−1

0
1

2

−0.4

−0.2

0

0.2

0.4

0.6

xy

Figure 1: Invariant Manifold Learning

and soft invariance within a computational framework.

2.2 A Convex Framework

The convex invariance learning framework begins with
an input dataset of T vectors, X1, . . . , XT and pos-
sibly some corresponding labels y1, . . . , yT . We en-
dow each input data point with an affine transforma-
tion matrix At that interacts linearly with it as fol-
lows:

∑
j Aij

t Xj
t . In general, we shall be solving for

these matrices by minimizing a convex cost function
C(A1, . . . , AT). In addition, these many transforma-
tion matrices A = A1, . . . , AT satisfy a set of linear
equality/inequality constraints, giving rise to the fol-
lowing problem2 definition:

min
A

C(A) subject to
∑

ij

Aij
t Qij

td + btd ≥ 0 ∀t, d (1)

Through the many imposed linear constraints on each
of the At matrices3, we obtain a convex hull on the At

matrices. This convex hull on the At matrices in turn
defines a region, manifold, or path of invariance around
the datum as we span multiple valid settings of the
At.4 The above formulation is solvable via the variety
of convex programming techniques, including duality
methods5 and, most importantly, has a unique solu-
tion. The general optimization picture that emerges
is shown in Figure 2. In Section 3 we will discuss var-
ious strategies for designing these constraints on the
affine matrices. Subsequently, in Section 4 we develop
ways to compute C(A) which will emerge from classi-
cal model learning algorithms acting upon the training
data (X, y). To achieve the aforementioned soft invari-
ance, we can apply a penalty function to each matrix
which favors certain configurations over others within
the valid convex space. If this penalty function is con-
vex, then we can solve for the best setting of the affine
matrices as a convex program by exploring the hull
of constraints while minimizing a cost function plus
penalties: C(A) ← C(A) +

∑
t Pt(At). More gener-

ally, we can consider a single convex penalty function
that involves all the matrices jointly.

At this point, we have circumvented the crucial model
Θ estimation problem, which we will insert jointly in
the above framework in subsequent sections. We next

2More generally, nonlinear constraints may be used as
long as they are convex.

3More generally, we can consider linear constraints that
involve all the matrices jointly.

4In group theory, if the At matrices form a group, then
the corresponding space of configurations of the Xt vectors
they act upon is called an orbit. In the proposed frame-
work, the At matrices may sometimes form a group but
not necessarily so the term is not always appropriate.

5Dual space solutions may or may not be more efficient.

C(A)

A1

A2

Figure 2: A Convex Program over the Transformation
Matrices

elaborate some of the types of useful invariance we can
obtain from the affine matrices.

3 Linear Invariance Constraints

While full affine invariance is often too general and
leads to meaningless solutions (i.e. setting all At = 0
maximizes likelihood), by imposing various aggressive
equality and inequality constraints as well as by pre-
processing the data, we can obtain many types of
meaningful invariances. For instance, it is trivial to
use linear constraints to force sub components of the
At affine transformations to be identical to each other
or to limit their range and get a more controlled invari-
ance space. Below, we list a number of linear restric-
tions that are useful for our particular applications.

• Permutation and Correspondence By limit-
ing affine matrices (element wise or block wise) to
be doubly-stochastic, i.e.

∑
i Aij

t = 1,
∑

j Aij
t = 1

and Aij
t ≥ 0 we approximate permutation matri-

ces and permit the input space Xt to be broken
down into a collection of tuples that can be re-
sorted. Thus, an image vector acts as a collection
of (x,y,intensity) tuples. Singly stochastic matri-
ces are also possible. The permutation matrices
are thus soft (i.e. not restricted to have [0, 1] en-
tries). Examples of this type of invariance are
shown in Section 5.

• Permutation Sub-Groups Consider a constant
permutation matrix P applied multiple times to
permute each Xt. Individual transformations
for each datum differ: each is the constant ma-
trix raised to a different power: At = P f(t).
For P of size D × D, only D powers are non-
redundant. These D distinct configurations can
be spanned by a D − 1 dimensional convex hull
(now over doubly-stochastic matrices) connecting
the P 1, P 2, . . . , PD entries linearly.

• Clustering To cluster data into M different cen-
troids, concatenate the D-dimensional mean of
the data X̄ to each input X̃t ← [Xt; X̄]. Each At

is constrained to be M ×2 identity matrices, with
each I scaled by a scalar αmn. The α are positive
and satisfy

∑
m αm1 = 1,

∑
m αm2 = M − 1 and∑

n αmn = 1. Multiplying X̃t with At creates an
MD-dimensional output vector placing the origi-
nal input Xt in one of the M slots while copying
the mean into the remaining empty ones.

• Latent Variables As in the clustering scenario,
mixture models and latent variable models can
be recast as transformations on the data. Latent
variables typically index different components of
a model, i.e. a mixture of Gaussians has a la-
tent class variable or a hidden Markov model has
a hidden state which selects the emission. We
can mimic such latent variables by considering in-
stead constrained transformations on the data it-
self, hence maintaining the convexity of the prob-
lem (latent variable maximum likelihood prob-
lems suffer from local minima). For instance, we
may consider mimicking a hidden Markov model
by allowing the input X to be a series of concate-
nated tuples which need to be assigned to one of
M different Gaussian emission models. Unlike the
clustering scenario above, additional constraints
link temporally adjacent tuples together.

• Selection To attenuate or zero-out certain com-
ponents of the D-dimensional input vector before
it interacts with the model, use a diagonal At

whose diagonal terms are positive and sum to a
value less than D.

• Translation To translate data by a vector Xt +
Yt, concatenate unity to each Xt and limit the
matrices to be partitioned into At = [I Yt].

• Rotation and Scaling Rotations R are a sub-
set of affine matrices, yet require quadratic con-
straints to delimit (i.e. RRT = I). However, a
single rotation about a fixed axis can be approx-
imated by linear constraints. This is a 2 × 2 ma-
trix [cosφ − sin φ ; sin φ cos φ] within an identity
matrix which determines the axis of rotation. φ-
dependent terms are constrained by equating the
2 diagonal terms and forcing off-diagonal terms to
sum to zero and remain in [−1, 1]. This generates
a rotation matrix with scaling.

In this article, we primarily explore the permutation
case, deferring other transformations to later papers.

4 Convex Cost Functions

We next consider the model estimation process com-
bined with the convex invariance framework to jointly
learn the model and the representation variables.

4.1 Maximum Likelihood Gaussian Mean

For jointly performing model estimation while learning
invariances, we first consider the simplest case of esti-
mating a Gaussian mean (fixed covariance) with max-
imum likelihood. Maximizing log-likelihood l(A,µ) =∑

t logN (AtXt;µ, I) over the model gives the usual
estimate for µ̂ = 1/T

∑
t AtXt. Reinserting the mean

estimate into the log-likelihood, we obtain:

l(A, µ̂) = −TD

2
log(2π) − 1

2

∑

t

‖AtXt − µ̂‖2

We convert (via negation) the above likelihood into an
equivalent cost function over the At matrices which is
rewritten as the trace of the covariance of the data:

C(A) = trace(Cov(A X))

The trace of the covariance is a convex quadratic func-
tion of the affine matrices. Combined with linear con-
straints, this Gaussian mean estimator is directly solv-
able via a polynomial time quadratic program. In
practice, however, we implement faster axis-parallel
methods as in Section 6. The above criterion selects
affine matrices that cluster data spherically, centering
it towards a common mean.

4.2 Maximum Likelihood Gaussian
Covariance

If we generalize to Gaussians of variable covariance as
in N (AX;µ,Σ) we can also impute the ML covariance
estimate Σ̂ = 1/T

∑
t(AtXt−µ̂)(AxXt−µ̂)T to obtain:

l(A, µ̂, Σ̂) = −TD

2
log(2π) − T

2
log |Σ̂|

−1
2

∑

t

(AtXt − µ̂)T Σ̂−1(AtXt − µ̂)

After simplifications, the maximum likelihood setting
of A is given by the equivalent cost function:

C̃(A) = |Cov(A X)|

We choose to equivalently minimize the logarithm of
the above cost function C(A) = log |Cov(A X)| which
shares the same optima. If we regularize the cost func-
tion by adding a small identity matrix to the covari-
ance and adding a small tr(Cov(AX)) term (as in the

Gaussian mean case), we can also guarantee that this
cost function is convex. More specifically, we have:

C(A) = log |Cov(A X) + ε1I| + ε2tr(Cov(A X))

Both ε1 and ε2 are kept small (≈ 0.4).

We can prove convexity by only considering eigenval-
ues of the covariance (determinants and traces can be
computed solely via eigenvalues). The log-determinant
and trace terms become a summation over each eigen-
value or dimension separately. Since eigenvalues are
convex quadratic functions of the data, each dimension
we sum over has the following general form f(x) =
log(x2 + c) + bx2. The f(x) functionsare each indi-
vidually convex functions when bc ≥ 1/8. Since the
(regularized) log determinant of a covariance matrix
is convex in the data, it is also convex in linear or
affine matrices on the data such as the At. Therefore
C(A) is again convex and Equation 1 results in a con-
vex program. However, it is not a quadratic program.
We can instead minimize C(A) by iteratively upper
bounding using a quadratic function in A. This per-
mits us to sequentially solve multiple quadratic pro-
grams interleaved with variational bounding steps un-
til we converge to the global solution. First consider
log |S| where we have defined S = Cov(A X) + ε1I.
The logarithm of the determinant is concave over co-
variance matrices [3]. Since log |S| is concave, we can
upper bound it with a tangential linear function in S
that is equal and has the same gradient R = S−1

0 at the
current setting of S = S0 which is computed from our
current setting of our matrices, A = A0. The upper
bound is then:

log |S| ≤ trace(RS) + log |S0| − tr(RS0)

Adding our additional regularizer term with ε2 to the
above, we obtain the following upper bound on C(A):

C(A) ≤ trace(R(Cov(A X) + ε1I)) + log |S0|
−tr(RS0) + ε2tr(Cov(A X))

Simplifying the bound by removing terms that are con-
stant over A, we the following surrogate cost to mini-
mize:

C̃(A) = tr(MCov(A X))
where M = (Cov(A X) + ε1I)−1 + ε2I

We thus update M for the current setting of the At

matrices (by computing the covariance of the data af-
ter each At is applied to each Xt), then lock it for
a few iterations while we minimize the trace to up-
date the A parameters. Updates of M are interleaved
with updates of the A matrices until convergence. The
above criterion attempts to cluster data ellipsoidally

such that it forms a low-dimensional sub-manifold. It
is well known that the determinant of a covariance ma-
trix behaves like a volumetric estimator and approxi-
mates the volume of the data. Minimizing volume by
varying the constrained affine matrices is a valuable
preprocessing step for PCA since it concentrates signal
energy into a smaller number of eigenvalues, improv-
ing the effectiveness and reconstruction accuracy in the
PCA subspace. Therefore, this criterion attempts to
flatten the data via transformations such that it forms
as flat and low-dimensional a subspace as possible.

4.3 Fisher Discriminant

Fisher’s discriminant finds a w vector that maximizes
wT Uw
wT Sw

to linearly separate labeled input data in a bi-
nary classification task. Here U = (µ+ − µ−)(µ+ −
µ−)T computes the variance between the class means.
Meanwhile S = Σ+ +Σ− is the sum of the covariances
of each class. Evidently increasing the distance be-
tween the means U while decreasing the within-class
scatter S improves the separation. Therefore, to esti-
mate good affine matrix parameters prior to comput-
ing the Fisher discriminant model, we minimize:

C̃(A) = |Σ+ + Σ− − λ(µ+ − µ−)(µ+ − µ−)T |
Optimizing the logarithm of the above with a regular-
ized of the covariance (as was done earlier) can again
produce a convex cost function as long as the λ scalar
is chosen to maintain a positive determinant. Once
again, the above C(A) = log C̃(A) is convex as the
previous in Gaussian covariance since the affine pa-
rameters appear quadratically within the determinant.
The above criterion discriminatively estimates affine
matrices that cluster data of a given class while re-
pelling the means of the two classes. In later work,
we will elaborate large margin criteria for convex in-
variance learning via support vector machine [10] and
maximum entropy discrimination frameworks [4].

5 Collection of Tuples

We now discuss the case where the At are constrained
to be permutation matrices. This form of invariance
is crucial for so-called collections of tuples. A gray-
scale image, for instance, can be represented as a col-
lection of XYI tuples (x-coordinate, y-coordinate and
intensity value). While traditional appearance-based
representations of images generate a single vector of
concatenated intensity values on the image (I1 . . . IN),
such a representation ignores important properties in
the data structure such as the inherent spatial prox-
imity of certain pixels, and so forth. Furthermore,
vector-based representations of images can produce
highly nonlinear behavior under, for instance, simple

translation of the imagery. It is possible to recover
translation by considering nonlinear operators on the
image vectors [1] or by having a finely sampled space
of data and using local metric-based representations
[9]. However, translation of XYI tuples is more im-
mediate and merely involves adding a scalar value to
all the X entries or all the Y entries and gives rise to
linear behavior in this representation. 6

While the collection-of-tuples representation is conve-
nient in principle, it cannot directly be mapped into
into vector form since tuples are in no particular order.
Furthermore, it would be inappropriate to enforce an
arbitrary ordering on what is effectively a bag of tuples.
Instead, a flexible permutation matrix can be applied
to an arbitrary ordering of the tuples to permit us to
estimate the ordering before interacting with, e.g. a
Gaussian model. This block-wise permutation matrix
A merely resorts the tuples in each image prior to form-
ing a vector, i.e. Y = AX. Using a dataset of several
images where each has its own A matrix, this frame-
work can effectively resort all the pixels of the image
such that a common registration or correspondence[2]
between image pixels is established permitting a much
better final model (i.e. a Gaussian fit or a Fisher dis-
crimination). For instance, images of faces should get
aligned and registered such that pixels corresponding
to the nose map to the same position in the ordering
in the Y vector, while pixels corresponding the left eye
map to a another consistent position in the ordering.

Similarly, other forms of data can also be viewed as a
collection of tuples. Audio spectrograms have an am-
plitude and frequency value for each band. Therefore,
one can consider them to be a collection of AF tuples.
Sequence data as well can be treated as a collection of
tuples. For example a uni-dimensional time series x(t)
can be written down as a collection of XT tuples (X
value and time) permitting translation in time.

6 Implementation

The cost functions so far considered basically minimize
a constrained trace of a covariance:

trace(MS) =
1
T

∑

mpnqi

Amn
i Apq

i Xq
i MpmXn

i

− 1
T 2

∑

mpnqij

Amn
i Apq

j Xq
j MpmXn

i

While all the transformations listed earlier are com-
patible with the above cost function, we focus here on
the permutation matrix case for handling collections

6Appearance-based models treat images as a vector of
intensities alone. These tediously represent translation and
morphing by addition and deletion of intensity values.

of tuples. In implementing the above cost functions,
it is evident that certain degenerate solutions may
arise since we approximate permutation with doubly-
stochastic matrices. For instance, At’s entries might
all be a low-valued constant, c = 1/M which averages
out all the entries in the vector.

One possible approach to avoiding degenerate solu-
tions is to force the At matrices to only have binary
elements yet this violates the convex program frame-
work. Interestingly, minimizing the cost over binary
At matrices is a min-cut problem. This optimiza-
tion approach will be deferred for the moment. In-
stead, we will encourage the convex program to es-
timate hard doubly-stochastic matrices by adding a
quadratic penalty function to the above cost which is
−λ

∑
imn(Amn

i − c)2. The λ is chosen adaptively to
maintain the convexity of the overall cost.

Other simplifications are possible. For instance, in the
determinant minimization, we may lock the Gaussian
mean estimate to be one of the original data points,
i.e. µ = Xi for the i’th image and also lock its corre-
sponding permutation matrix to identity, i.e. Ai = I.
Since we are solving for a correspondence we can lock
the particular ordering of a single datum (or image)
without losing any effective flexibility in the estima-
tion. This helps avoid the aforementioned degenerate
solution where all permutation matrices become soft-
ened to a constant and average out the tuples. We next
elaborate an update rule for monotonically minimizing
the cost function in an axis-parallel manner.

6.1 Axis-Parallel Optimization

To minimize the cost function with constraints, many
methods are possible, including quadratic program-
ming. We follow the SMO approach [8] and vary
a single At matrix for a single datum (the t’th
one) at a time. We only update 4 of its entries
(Amn

t , Amq
t , Apn

t , Apq
t) while all others are locked. Even

though we ultimately estimate each scalar in each At

matrix, only 4 scalars are updated at a time. Double-
stochasticity gives the equality constraints: Amn

t +
Amq

t = a, Apn
t + Apq

t = b, Amn
t + Apn

t = c and
Amq

t +Apq
t = d. So only one degree of freedom is left to

compute per iteration and is updated as in Figure 3.
The operations involve computing all possible inner
products between the X-tuples Xn and Xq weighted by
all relevant sub-matrices Mmm, Mmp, Mpp and Mpm.
For clarity, here the matrices and vectors are indexed
with subscripts instead of superscripts and all entries
where the datum index does not appear refer to the
datum at the t’th index.

We also limit Amn
t to satisfy the inequalities Amn

t ∈
[max(0, a−d, c−1),min(a, c, 1+a−d)]. After updating

Amn
t ← NUM

2DEN
NUM = cXT

n MmpXn + cXT
n MppXq + 2aXT

q MpmXq + cXT
n MpmXn + aXT

n MmmXq − 2aXT
q MmmXq −

2cXT
n MppXn − aXT

n MmpXq − cXT
n MpmXq − aXT

n MpmXq − XT
q MmpXqd − XT

n MppXqd + XT
n MppXqa +

XT
n MmpXqd−XT

q MpmXqd+2XT
q MppXqd−2XT

q MppXqa+2aXT
q MmpXq +H1−H3+H4−H2−cXT

q MmpXn−
aXT

q MmpXn − aXT
q MpmXn + aXT

q MmmXn + cXT
q MppXn + XT

q MpmXnd−XT
q MppXnd + XT

q MppXna + 4aλ +
2cλ − 2dλ
DEN = XT

q MmpXq − XT
n MmmXn − XT

q MmmXq − XT
n MppXn + XT

n MpmXn − XT
q MppXq + XT

n MmmXq −
XT

n MpmXq + XT
n MmpXn − XT

n MmpXq + XT
n MppXq + XT

q MpmXq − XT
q MpmXn − XT

q MmpXn + XT
q MppXn +

XT
q MmmXn + 4λ

H1 = (XT
n MT

um + XT
n Mmu)(

∑
u,v 6={mn,mq,pn,pq} AuvXv − 1

T−1

∑
u,v,τ 6=t Aτ,uvXτ,v)

H2 = (XT
n MT

up + XT
n Mpu)(

∑
u,v 6={mn,mq,pn,pq} AuvXv − 1

T−1

∑
u,v,τ 6=t Aτ,uvXτ,v)

H3 = (XT
q MT

um + XT
q Mmu)(

∑
u,v 6={mn,mq,pn,pq} AuvXv − 1

T−1

∑
u,v,τ 6=t Aτ,uvXτ,v)

H4 = (XT
q MT

up + XT
q Mpu)(

∑
u,v 6={mn,mq,pn,pq} AuvXv − 1

T−1

∑
u,v,τ 6=t Aτ,uvXτ,v)

Figure 3: Update Rule for Permutation Invariance

Amn
t , we update the other 3 entries via their linear de-

pendence on Amn
t . Iterating the update rule randomly

over different entries and matrices while intermittently
recomputing bounds (via the inverse M) converges
monotonically to the global minimum of C(A).

Simplifications can be used to speed up convergence.
One example is online estimation of the At matrices,
i.e. optimizing them one at a time incrementally
and locking them. Another example is initializing the
optimization of the At by forcing the initial M matrix
to be identity and then replacing it with the proper
inverse covariance for subsequent initializations.

If a new (test) datum XT+1 is observed after training,
it can be added to the cost function and we reperform a
re-estimation of all A1 . . . AT+1 matrices. However, for
efficiency, it is also reasonable to lock all previous ma-
trices At for t = 1..T which converged during training
and only estimate the final corresponding AT+1 ma-
trix. This efficiently approximates the desired solution
for a new datum in an online manner.

Alternatively, once the affine matrices A minimize the
determinant, it is natural to apply PCA on the co-
variance matrix since the data has been flattened into
a subspace. Recall that minimizing the determinant
reduces the volume of the data and will typically re-
sult in a lower dimensional manifold representation. If
k eigenvectors are maintained and sufficiently repre-
sent the covariance, we may perform a simpler opti-
mization to obtain AT+1 for the new datum. This is
done by aligning the new datum to the eigenspace by
choosing the affine matrix AT+1 that minimizes the
squared error of the reconstruction of the datum. If
the eigenspace is composed of eigenvectors V1, . . . , Vk,
this requires minimizing the following quadratic cost

subject to double-stochasticity constraints:

AT+1 = arg min
A

‖
∑

k

(V T
k AXT+1)Vk − AXT+1‖2

This is again more efficient with a slightly worse ap-
proximation to the true AT+1 that would have resulted
from retraining with the new datum.

7 Experiments

To test the framework we used 3 different data sets:
point images (XY) of digits, intensity images (XYI) of
faces and spectrograms (AF) on audio.

7.1 Point Image Representation

In the first dataset, we obtained 28x28 gray scale im-
ages of the digits 3 and 9 which were then represented
as a collection of 70 XY pixels by sampling the region
of high intensity. This effectively generates clouds of
2D points shaped in the form of 3’s or 9’s. A total of
20 such images was collected with 70 (x,y) pixels each
and used to estimate the At matrices. Figure 4(a) de-
picts 12 exemplars of the original image data as point
clouds. In Figure 4(b), PCA’s reconstruction on the
collection of tuples is shown. Finally, in Figure 4(c),
PCA (with the same number of eigenvectors) was ap-
plied to the collection of tuples after estimation of the
permutation matrices. Note that the images are re-
constructed more faithfully in the latter case due to
the estimation of the permutation or correspondence.
Unlike the PCA eigenvectors which are do not resolve
correspondence, CoIL eigenvectors seem to translate
and morph the digits smoothly.

(a) Original images

(b) PCA reconstruction

(c) CoIL reconstruction

Figure 4: Reconstruction of digit images via PCA with
and without permutation estimation.

7.2 Intensity Image Representation

One major difficulty with using large datasets involves
storing the At matrices which, for a collection of N
pixels each requires O(N2) scalars to define the trans-
formation matrix. An alternative formulation to rep-
resenting doubly-stochastic matrices can be found in
[6] where each matrix is stored as 2N scalars and esti-
mated with a statistical physics approximation called
the Invisible Hand algorithm. For larger datasets, we
modified the above framework to utilize this alterna-
tive formulation which converges more quickly and re-
quires less storage. Roughly 300 grayscale images of
faces were collected and sampled to form a collection
of 2000 XYI tuples (sampling was constrained to the
face using a simple skin-color distribution that ignores
the background). The face images were of a single
individual’s face as it spans many lighting, 3D pose
and expression configurations. Once the permutation
transformation matrices were computed, we found an
eigenspace of 20 components over the dataset and re-
constructed the images from 20 coefficients alone. Fig-
ure 5 depicts the accuracy of the reconstructed faces
when PCA (20 eigenvectors) alone was used as well as
when the PCA-variant which performs permutation es-
timation. The images show much higher fidelity when
permutations are also estimated. The CoIL XYI eigen-
vectors act smoothly, rotating and morphing the face
in 3D as well as changing its illumination [5]. Tradi-
tional appearance-based PCA causes ghosting effects
where translated images do not move smoothly but,
instead, appear to fade in and out.

Figure 5: Reconstruction of facial images with PCA
and with CoIL estimating permutation matrices.

Figure 6 depicts the squared error of the reconstruction
that PCA generates as well as the permutation-based
variant (as it converges). Squared error is reduced by
approximately 3 orders of magnitude over PCA. In (a),
only a single individual’s face was used while in (b) the
data contains multiple faces of different identities.

0 10 20 30 40 50 60
0

2

4

6

8

10

12
x 10

5

Iterations

S
qu

ar
ed

 E
rr

or

User Image Reconstruction

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9
x 10

5

Iterations

S
qu

ar
ed

 E
rr

or

World Image Reconstruction

(a) Face Images (b) Multi-Person Images

Figure 6: Reconstruction error for images with 20
eigenvectors. The dashed red line is PCA error while
the solid blue line is CoIL error.

7.3 Audio Representation

Similarly, we collected several thousand spectrograms
of 200 frequency bands and represented them as a col-
lection of 200 2-tuples of amplitude and frequency.
Again, we used the Invisible Hand algorithm due to the
large dataset in this experiment. With 20 eigenvectors,
the method has significantly better reconstruction er-
ror than PCA. Figure 7 depicts squared reconstruction
error for audio from a close-talking microphone in (a)
as well as an ambient audio microphone.

0 10 20 30 40 50
0

50

100

150

200

250

300

350

Iterations

S
qu

ar
ed

 E
rr

or

User Spectrogram Reconstruction

0 50 100 150
0

0.5

1

1.5

2

2.5
x 10

5

Iterations

S
qu

ar
ed

 E
rr

or

World Spectrogram Reconstruction

(a) Close talking mike (b) Wide area mike

Figure 7: Reconstruction error for spectrograms with
20 eigenvectors. The dashed red line is PCA error
while the solid blue line is CoIL error.

8 Discussions

We have developed a new framework for specifying
affine invariances within various model-learning prob-
lems and for estimating the invariances jointly. Com-
putations were constructed such that solutions are
unique and emerge from convex programs. The opti-
mizations involve minimizing traces and determinants
over covariances matrices on the data which are solv-
able by quadratic programming and iterative bounds.
This framework has many possible application invari-
ances, including clustering, permutation, and so forth.
We explored the permutation invariance for dealing
with datums that are organized into collections of tu-
ples (i.e. images and pixels) showing that model-
ing can benefit from the simultaneous estimation of
example-specific transformations. Data points are ef-

fectively aligned before interacting with a model. They
are also aligned as a whole dataset instead of via ad
hoc pair-wise criteria [2]. Future work will explore
the other types of invariance as well as other possible
implementations of the framework (gradient descent,
convex programming, etc.) for improved convergence.
However, our preliminary experiments are motivating
and indicative of the potential of the method.

References

[1] B. Frey and N. Jojic. Estimating mixture models of
images and inferring spatial transformations using the
EM algorithm. In CVPR, 1999.

[2] S. Gold, C.P. Lu, A. Rangarajan, S. Pappu, and
E. Mjolsness. New algorithms for 2D and 3D point
matching: Pose estimation and correspondence. In
NIPS 7, 1995.

[3] D. Jakobson and I. Rivin. Extremal metrics on graphs.
Forum Math, 14(1), 2002.

[4] T. Jebara and T. Jaakkola. Feature selection and du-
alities in maximum entropy discrimination. In Uncer-
tainty in Artifical Intelligence 16, 2000.

[5] M. Jones and T. Poggio. Hierarchical morphable mod-
els. In CVPR, 1998.

[6] J. Kosowsky and A. Yuille. The invisible hand algo-
rithm: Solving the assignment problem with statisti-
cal physics. Neural Networks, 7:477–490, 1994.

[7] E. Miller, N. Matsakis, and P. Viola. Learning from
one example through shared densities on transforms.
In Computer Vision and Pattern Recognition, 2000.

[8] J. Platt. Using analytic QP and sparseness to speed
training of support vector machines. In Neural Infor-
mation Processing Systems 11, 1999.

[9] S. Roweis and L. Saul. Nonlinear dimensional-
ity reduction by locally linear embedding. Science,
290(5500), 2000.

[10] V. Vapnik. Statistical Learning Theory. John Wiley
& Sons, 1998.

