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Abstract
Imitative learning has recently piqued the interest of

various fields including neuroscience, cognitive science
and robotics. In computational behavior modeling and
development, it promises an accessible framework for
rapidly forming behavior models without tedious super-
vision or reinforcement. Given the availability of low-
cost wearable sensors, the robustness of real-time per-
ception algorithms and the feasibility of archiving large
amounts of audio-visual data, it is possible to unobtru-
sively archive the daily activities of a human teacher and
his responses to external stimuli. We combine this data
acquisition/representation process with statistical learning
machinery (hidden Markov models) as well as discrimina-
tive estimation algorithms to form a behavioral model of
a human teacher directly from the data set. The resulting
system learns audio-visual interactive behavior from the
human and his environment to produce an interactive au-
tonomous agent. The agent subsequently exhibits simple
audio-visual behaviors that appear coupled to real-world
test stimuli.

1 Introduction
Imitative learning provides an easy approach1 for learn-

ing agent behavior by using real examples of agents inter-
acting in a world that can be learned from and generalized.
The two components of this process, passively perceiving
real world behavior and learning from it are portrayed in
Figure 1. We propose a generative statistical model at the
perceptual level to be able to regenerate or resynthesize vir-
tual characters while keeping a discriminative model on the
temporal learning to focus resources on the prediction task
necessary for action selection.

This paper is organized as follows. We first situate im-
itative learning in the context of other agent learning ap-
proaches and also motivate it with background in related
work. Subsequently, we describe a long-term behavioral
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1As Confucius says, there are 3 types of learning, “by reflection,

which is noblest; second, by imitation, which is easiest; and third by ex-
perience, which is the bitterest”.
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Figure 1: Imitative Learning through Discriminative Time
Series Prediction and Probabilistic Perception.

data collection system and the audio-visual representations
it utilizes to represent interactive behavior as a time series.
Discriminatively trained Hidden Markov models (HMMs)
are then proposed to extract and model the interactive be-
havior from the temporal dataset and synthesize imitative
behavior. We conclude with experimental results and dis-
cussions.

2 Background
Various approaches have been proposed for learning au-

tonomous agents in domains such as robotics and interac-
tive graphics. These include rule-based systems where a
programmer manually specifies the behavior model, super-
vised systems where a human labels data with appropriate
output behavior, and reinforcement learning [10] systems
where a human (or environment) penalizes/rewards behav-
ior. Imitative learning[18] curiously spans both supervised
and unsupervised regimes. If we collect data of real people
interacting with the real world, we are shown many exem-
plars of appropriate reactionary behavior in response to the
current context. Thus, the data is already labeled and needs
no teaching effort for the supervision. This, of course, as-
sumes that perceptual techniques can record and represent
natural real-world activity automatically. In such an incar-
nation, imitative learning is unsupervised and only involves
data collection. This makes it an attractive paradigm from
an implementation point of view. Furthermore, various re-
cent developments in other fields also motivate imitative
learning as crucial to human development.

Early research in behavior and cognitive sciences ex-



hibited strong interest in the role of imitative learning.
However, ground breaking works of Thorndike [19] and
Piaget [15] were followed by a lull in the area of move-
ment imitation. This was in part due to the presumption
that imitation or mimicry in an entity was not necessar-
ily the sign of higher intelligence and therefore not criti-
cal to development[18]. This prejudice slowly faded with
the arrival of several studies by Meltzoff and Moore that
indicated infants’ ability to perform facial/manual gesture
imitation from ages 12-21 days old and in some cases at
an hour old [14]. Imitative learning began to be seen as
an almost innate mechanism to help the development of
humans and certain species [20]. More recently, through
discoveries of mirror neurons, action-perception pathways
and functional magnetic resonance imaging results [16] [5]
[17], a neural basis for imitative learning has been recently
hypothesized. Experiments indicated consistent firings in
a mirror neuron either when an action was performed by
a subject or when another individual was perceived per-
forming it. These results have spurred applied efforts in
imitative approaches to robotics by Mataric [12], Brooks
[3], etc. where imitation has gained visibility and comple-
mented reinforcement learning [10].

However, these domains have predominantly focused
on uncovering direct mappings between action and per-
ception [18] [12]. It is through such a mapping that the
imitation learning problem can be translated into a direct
supervised learning scenario. This complex mapping is to
a certain extent the Achilles’ heel of imitation learning and
extensive effort in humanoid robot imitation rests in re-
solving Meltzoff and Moore’s so-called ’Active Intermodal
Mapping’ (AIM) problem. That is, the creation of a map-
ping of the visual perception of a teacher’s movement to
high-level representations that can then be matched to other
high-level representations of the learner’s action space and
proprioceptive senses.

An alternative approach is to do away with the AIM
problem altogether by either providing the teacher’s per-
ceptual data in terms of the action-space of the learner [21]
[13] or by only considering virtual characters [9] [8] whose
action space is in the perceptual space. For example, Weng
[21] describes a human pushing a robot down a hallway
while the robot collects images of its context. The actu-
ators in the robot (not its cameras) measure the human’s
displacement and therefore to imitate the human, the dis-
placement values need only be regurgitated (under the ap-
propriate visual context). Hogg [9] alternatively describes
a vision system which obtains perceptual measurements
and needs only resynthesize behavior in the visual space to
generate an action virtually. Both methods cleverly avoid
a direct mapping of the perception of a teacher’s activity
into the learner’s action-space. We shall employ a simi-

lar strategy and only consider generating virtual characters
that can be resynthesized on-screen directly from previous
perceptual measurements.

3 Perceptual Interaction Data
The imitation framework we will describe learns an au-

tonomous agent that is able to interact and respond appro-
priately to external stimulus from the world and partici-
pants within it.2 Given the ability to perceive real behav-
ior in humans interacting in the world, we can collect data
to learn a predictive model. To resynthesize behavior, we
avoid the AIM problem by simply re-rendering the percep-
tual measurements via a virtual audio-visual character.

To resolve the issue of maintaining a consistent long-
term perception of the teacher’s behavior, we propose the
use of a wearable computer system. This is a convenient
way to collect a sizeable amount of data while the teacher
engages in natural activity and also preserves the regu-
lar conditions and point of view necessary for a non-AIM
based imitative learning framework. In Figure 2 a user
(or teacher) has a head mounted microphone and a cam-
era mounted to a boom that perceives his face. This audio-
video source is the perception space as well as the action
space for the system. Furthermore, a camera affixed to his
glasses and a microphone that is aimed outwardly track the
external world context. The wearable stores this data via
a small computer that transcribes both channels of audio-
video signals at roughly 100 megabytes per hour. Thus, the
platform provides a large data set of consistent stimulus-
response data which is appropriate for imitative learning.

Figure 2: 2-channel A/V wearable imitation platform.

Video is stored at 7Hz from both cameras as 60 by
80 pixel RGB images. The images are illumination-
normalized by histogram fitting and then filtered using a
skin-color distribution model which selects only the skin-
colored pixels from the images. This focuses modeling re-
sources on the wearable user’s face and focuses the exter-
nal stimulus data mostly on the head and hands of people
in the scene. Both audio streams are captured in real-time
and represented as 200-element spectrograms (which are
generated at 60Hz).

2This short paper is a brief overview of the imitative learning ap-
proach. More elaborate details are provided in [6].



Figure 3: Wearable Interaction Data. Both the teacher and
the world video are visible as well as the spectrograms for
their audio signals.

Figure 3 portrays several frames of the user as he walks
down a hallway and approaches an individual to begin con-
versation. The frames show both the user’s face and his
own eye’s view (from the camera attached to his glasses).
The spectrograms are shown adjacent to the corresponding
video images.

We now discuss our representation of the above real-
time audio-visual perceptual data. Effectively, the facial
images (each consists of thousands of pixels) and the au-
dio spectrograms (each consists of hundreds of frequen-
cies) will be described by compact 20-dimensional vec-
tors. Traditional ways to learn from and summarize com-
plicated multi-variate data include principal components
analysis (PCA), factor analysis and multidimensional scal-
ing. There are indeed many shortcomings with such ap-
proaches, particularly that they do not take advantage of
the underlying structure of the signals they deal with. In-
stead, data is rasterized directly into a vector form in a
high-dimensional Euclidean space. However, images, au-
dio, and time series are not vectors. A single color image
is not a single big vector but rather acollectionof small
vectors or tuples (pixels). Each of these tuples is vector of
5 values,(X;Y;R;G;B) which specify XY location and
RGB color. Similarly, an audio spectrogram is not a vector
but rather a collection of 2-tuples (frequency and ampli-
tude). This permits us to generate an interesting variant of
PCA where each datum in our data set (images, audio) is
not a vector but rather acollectionof vectors. This modi-
fication of the model is depicted in Figure 4 as a Bayesian
network.

Details of the implementation of the above model can
be seen in [6]. Effectively, we interleave assignment ma-
trix computations that solve a correspondence problem (be-
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Figure 4: Bayesian Network Representing a PCA Variant
for Collections of Vectors and Face Image Reconstruction

tween pixels tuples and eigenvector components) using the
invisible hand algorithm [11] while we recompute PCA
in an axis-parallel manner. These computations are iter-
ated until we reach convergence. The solution typically
improves on regular PCA yet does so non-monotonically
and is plagued by local minima. Finding a cleaner global
model/algorithm is important current research. Figure 4
depicts the model’s ability to reconstruct facial images of
the teacher (after skin-color based segmentation) from a
20 dimensional representation (compare it with the recon-
struction of PCA directly on these images). The variant
effectively has a squared reconstruction error that is up to
2.5 orders of magnitude better than PCA for the same level
of dimensionality reduction. Effectively, the variant cap-
tures much more of the image structure by permitting pixel
permutations.

All the facial and external world images in the data set
are processed as above and stored as 20-dimensional vec-
tors each. Furthermore, this variant of PCA is applied to
the agent and the external world’s spectrograms to com-
press them each into 21-dimensional vectors as well (ac-
curacy is again superior to PCA). The above representa-
tions generate a 20 or 21 dimensional vector for each frame
of agent audio, agent video, world audio and world video.
By processing the whole data set, we obtain four multidi-
mensional time series of these coefficients. These are then
time-aligned and aggregated into a large 82-dimensional
time series.

4 Conditional Hidden Markov Models
Given this large time series data set, our task will be

to train an imitative agent by learning a good predictive
model of what the teacher will do given the external stim-
ulus. Figure 5 depicts how the data is to be partitioned for
imitative learning. The data set which spans several hours
and hundreds of megabytes of images/spectrograms is ini-
tially split temporally into a training portion as well as a
testing portion. We also split the 82 dimensions in half
and denote the external world measurements asx (audio
and video) and the agent’s representation asy (audio and
video). Therefore, we havex = world andy = agent.



We now have a standard regression formulation where we
need to obtainy from x by learning from the training data.

x

y

train test

Figure 5: The Imitation Task. Using the training data, we
learn a model for mapping outside world measurementsx

to the measurementsy of the ’teacher’. The remaining un-
seen test data is used to evaluate the learned mapping.

It is widely known that a hidden Markov model is well-
suited to time series data and can effectively model time
warpings and sequential variations. Since we are inter-
ested in predicting the component of the time series (audio
and video) that the agent would generate, we now have a
discriminative prediction task, namely to predicty fromx.
Therefore we will employ a maximum conditional likeli-
hood criterion to learn an HMM that specifically produces
a good model of the mapping fromx to y. More specif-
ically, we have an input-output HMM structure [1] since
the inputsx are related to outputsy through a hidden state
s which evolves with Markovian dynamics. This HMM is
trained discriminatively (or conditionally) using the CEM
algorithm [6] [7]. We train one HMM to predict the agent’s
audio and one HMM to predict his video signals (both
HMMs use the external world’s A/V signal as input). Each
HMM has 30 hidden states and we assume Gaussian emis-
sion models with diagonal covariance matrices.

Since we estimate the HMMs using conditional like-
lihood, our model’s resources focus specifically on pre-
dicting the agent’s behaviorfrom external world stimulus.
The objective function to maximize is more specifically the
joint log-likelihood of an HMM over bothx andy com-
ponents of the time series (i.e. both inputs and outputs)
minusthe marginal log-likelihood of the HMM over thex
component of the time series (input only). This process is
depicted in Figure 6. This permits us to focus the learning
on salient stimuli such as conversations since they result in
a significant reaction from the agent. Meanwhile, episodes
of the data where the agent is not expressing any interest-
ing behavior (i.e. walking alone in the hallway, etc.) will
be ignored since the external-world stimuli there do not
help predict the agent’s activity. In a standard maximum
likelihood scenario, these irrelevant external world stimuli

would get modeled undiscriminatively and quickly waste
the HMM’s modeling resources. Thus, we obtain more ro-
bustness and superior learning through a maximum condi-
tional likelihood criterion [6].
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Figure 6: Conditional HMM Estimation. Effectively, we
maximize the jointp(x; y) log-likelihood of the HMM over
bothx andy (inputs and outputs) minus the marginal log-
likelihood of p(x) from an HMM over thex input space
alone.

5 Experiments
Using the training data, the hidden Markov models were

estimated with the CEM algorithm which maximizes con-
ditional likelihood to discriminatively predict the agent’s
responsefrom the external stimulus. For comparison, we
also also trained the HMMs using the traditional EM algo-
rithm. EM maximizes joint likelihood which is inappropri-
ate here since the world signalsx will always be measur-
able and need not be predicted or modeled on their own.
We only care about the conditional mapping fromx to y,
so conditional likelihood is the more principled training
and testing criterion. Table 5 depicts the conditional log-
likelihoods for the HMMs on the agent’s audio and video
prediction tasks using novel testing data. As shown, CEM
outperforms EM (note the logarithmic scale).

EM CEM
Audio Prediction HMM 99.61 100.58
Video Prediction HMM -122.46 -121.26

Table 1: Conditional Log-Likelihoods on Test Data.

Following this quantitative evaluation of the models, we
used the HMMs to resynthesize the learned agent behavior
to verify if it qualitatively matches our expectations. Given
a generative statistical model on the temporal data (i.e. our
HMMs) as well as a generative model of the perceptual in-
put (i.e. the structured variant of PCA), it is straightforward
to reconstruct the audio and video that correspond to the
agent and visualize the reactions and behavior the model is
predicting. We used the HMMs to synthesize agent reac-



tions to test data where only the world stimulus was mea-
surable. This is done by first solving for the state distri-
butions usingx alone (with a marginalized HMM). Given
the hidden states therein, it is straightforward to compute
the expected value of the output vectorsyt at each time
point by averaging the means of the Gaussian emissions
weighted by their corresponding state assignment proba-
bility [2] [4].

The hidden Markov models thus provide us with a time
series of predicted vectors of audioŷa and videoŷv coef-
ficients for the agent for each time step. Using these we
reconstruct the original signals (images and spectrograms)
by multiplying the coefficients with the eigenvectors pro-
duced by the PCA variant. Ultimately we obtain a collec-
tion of spectrogram tuples or collections of pixels. For eas-
ier visualization, we render the image in the training data
that is closest to a given synthesized collection of pixels
(using Euclidean distance). Spectrograms too can be in-
verted to play back sound, however noise arises since the
phase information is lost.

We first verified the resynthesis on training data (which
the HMM was originally estimated with) as in Figure 7.
We see the synthetic agent initiating a conversation as he
approaches an individual in the external world. The agent
says “Hi” followed by the human saying “Hi”. Then the
agent says “how are you” to which the human replies “fine
and you”. Most of the other agent articulations are mum-
bles that are difficult to decipher and generally sound like
“I see”, “hmm” and “yeah” except these are interleaved
appropriately into the acoustics of the real human’s speech
in the external world stream. Furthermore, the system an-
imates the agent such that its head movement and visual
cues coincides appropriately with the external stimuli from
the real world. Unfortunately, the agent also says what
sounds like “hi” and “how are you” at semantically inap-
propriate places in the conversation.

To truly test the imitative learning and the HMMs, we
maintained the latter portion of the time series samples
fully hidden from the training algorithms. Figure 8 de-
picts the resulting synthesized agent just as in the previ-
ous format. As the agent initially approaches the human,
it remains quiet. Once they are within range and convers-
ing, it interleaves rather mumbled “Hi”, “I see”, “How are
you” and “I’m not sure” expressions with the audio of the
human in the external world channel. Once again, there is
some facial motion which appears to be most active when
the agent is producing audio. Although most of the inter-
actions are semantically meaningless, it is interesting that
the model recovers some of the timing issues in the inter-
actions and interjects audio that integrates smoothly into
the conversation flow with “Umms”, “Yeahs” and so forth.
Such prosodic and textural interaction is difficult to design

Figure 7: HMM Resynthesis on Training Data. Time is in-
creasing from top to bottom at 3 seconds per frame. Left
to right: world spectrograms, synthesized agent spectro-
grams, world image data and synthesized agent image data.

into structured synthetic conversational agents and speech
recognition systems due to its behavioral as opposed to
syntactical/semantic nature.

6 Discussion and Ongoing Work
We have discussed a statistical approach to imitative

learning where we predict an agent’s behavior given the ex-
ternal world via the distributionp(agentjexternalworld).
This distribution is modeled as an input-output hidden
Markov model that is discriminatively learned from data
using CEM. The system quantitatively performed better
than EM and qualitatively generates interesting yet sim-
ple audio-visual responses to the external real-world chan-
nel triggers. This behavioral model was estimated auto-
matically and without supervision from a large perceptual
dataset of human interactions acquired with a wearable
computer. The perceptual data was represented accurately
and compactly in vector space using a variant of PCA that
takes advantage of the inherent structure in acoustic spec-
trograms and in image pixel data.

Ultimately, however, the problems of imitative learning
and development both still loom large and our implemen-
tation merely scratches the surface of what is possible with
a statistical learning paradigm when it is applied to a large
data set of perceptual measurements from human activity.
As future work, we recognize the acquisition of “behav-
ior” as described in this paper is quite constrained. With
more sophisticated perceptual mechanisms (speech recog-
nition, natural language processing, specialized computer
vision) and more structured temporal learning models (i.e.



Figure 8: HMM Resynthesis on Test Data.

hierarchical HMMs), it would be possible to naturally ex-
tend the imitative learning framework herein to produce in-
creasingly more realistic and more compelling behavioral
models.
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