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I. Introduction

In their day-to-day lives, people naturally understand
and operate in a three dimensional world. Curiously,
though, they only sense 2D projections of it. The seem-
ingly e�ortless act of inferring 3D from 2D observations is
the result of complex mechanisms that are still quite far
from being resolved. For many years, this task has been
considered the primary role of visual processing. Pioneers
in the �elds of arti�cial intelligence and computer vision
set out to recover a 3D representation of visible scenes
which could then be used to recognize objects and reason
about the world.
However, the general problem of recovering 3D from

2D imagery and the many steps involved 1 require a sig-
ni�cant understanding of how the mind works, from is-
sues of learning to intelligent behavior. Thus, the �eld is
plagued by several of the same hurdles that have occu-
pied AI researchers for many years. A tractable and more
theoretically well-posed problem is the speci�c computa-
tion of 3D geometry from2D geometry or Structure-from-
Motion (SfM).

A. The Structure from Motion Task

Several simplifying assumptions are made to the gen-
eral problem of 3D models from 2D imagery to formulate
the Structure from Motion task. The �gure above shows
a standard SfM setup where a camera is viewing a scene.
One key assumption is that objects in the scene are mov-
ing rigidly or, equivalently, only the camera is allowed to
move in the environment.
An additional simpli�cation is that there exists a mod-

ule which pre-processes the camera's images to consis-

1These steps include di�cult problems such as segmentation, recog-
nition, correspondence, etc.

tently extract, locate and label 2D features in the scene.
Such 2D features could include salient points in the im-
age, corners of objects, lines along their edges or curves
around their contours. In each frame, the features are
detected and associated to their corresponding instan-
tiations in the other frames. These (usually noisy and
error-prone) 2D measurements are the inputs to the SfM
problem. The availability of corresponded features re-
stricts the SfM problem to the so-called Corresponded

Structure from Motion geometric task which will be the
focus herein. It should be noted, however, that matching
and detecting feature points is a fundamental and decid-
edly di�cult computer vision problem which can not be
dismissed so easily in practical implementations.
The locations of the 2D features in the images depend

on 1) their coordinates in 3D space, 2) the relative 3D
motion between the camera and the scene and 3) the cam-
era's internal geometry. We assume that we have no prior
knowledge of these three causes and wish to recover their
parameters only from 2D point coordinate measurements
over several frames or views. Of course, there exist many
alternative problem statements in the SfM community
with various twists ranging from the types of input fea-
tures (i.e. curves or line features are alternatives), to the
algorithm's required output, and so on. We shall focus
primarily on the task stated above. Other SfM overviews
can be seen in [31] [14] [41] [18].
The paper motivates the SfM approaches by describing

some current practical applications. This is followed by a
brief discussion of the background of the �eld. Then, sev-
eral techniques are outlined that show various important
approaches and paradigms to the SfM problem. Criti-
cal issues, advantages and disadvantages are pointed out.
Subsequently, we present our SfM approach for recur-
sive estimation of motion, structure and camera geome-
try in a nonlinear dynamic system framework. Results
are given for synthetic and real imagery. These are used
to assess the accuracy and stability of the technique. We
then discuss some practical and real-time applications we
have encountered and the reliability and 
exibility of the
approach in those settings. Finally, we conclude with
results from an independent evaluation study conducted
by industry where the proposed SfM algorithm compared
favorably to alternative approaches. Our SfM software is
available for public ftp at:

ftp whitechapel.media.mit.edu /pub/sfm



Fig. 1. Motion Matching: Camera-based head tracking for animating
virtual 3D face models

Fig. 2. Motion Matching: Adding 3D graphics to video.

II. Applications

The Structure from Motion community is not only mo-
tivated by the long term goals of computer vision, AI
and 3D visual understanding. It also has many practical
applications which presently drive research in SfM. Be-
low, we illustrate example applications. Some of these
are still in their early stages of development while others
are quickly becoming commercially viable techniques in
industry.

� 3D Model Reconstruction
Many techniques exist for scanning real-world ob-
jects to form computer graphic 3D models. These
range from 3D laser scanning to depth from defocus
estimation. Structure from Motion is an important
alternative and has been used to 
exibly construct
3D coordinates and 3D models from 2D imagery of
real objects. One demonstration, for instance, is
Debevec, Taylor and Malik's [13] reconstruction of
Berkeley's Campanile clock tower and surrounding
campus via photogrammetric techniques.

� 3D Motion Matching
The recovery of 3D motion parameters in the SfM
framework can also be used to drive 3D models for
animation purposes. Virtual objects can be a�xed
to real ones in the scene [6] (Figure 2) or computer
graphics animations can be visually controlled [5]
(Figure 1). Such techniques are currently being inte-
grated into standard computer graphics software for
use in �lm, video, games, interactive media, indus-
trial design and visualization.
In addition, motion matching can be used in virtual
and augmented reality environments. For example,
Kutulakos [35] describes a system with see-through
head mounted display where 3D objects are super-
imposed on the user's scene in real-time.

� Camera Calibration

Recovering a camera's external and internal param-
eters is another practical application. The exter-
nal parameters describe a camera's position in 3D
real-world coordinates and its internal parameters
include variables such as focal length. In the �eld of
Active Vision where cameras are expected to move
around and zoom in autonomously, automatic re-
calibration is crucial [8].

� 3D Vision
In many applications in computer vision, SfM paradigm
is a useful computational sub-component. The 3D
reconstruction that is recovered need not be the �-
nal goal of a vision system but an important inter-
mediate step that can be fed back and fed forward to
other vision modules. Thus, it can help in tracking,
recognition and modeling (for example, see [32]).

� Perceptual Computer Interfaces
Using vision as an interface for computer human in-
teraction is also a potential application for 3D re-
covery techniques which can be used to identify user
gestures that complement traditional keyboard and
mouse paradigms [57].

� Robotics
In the area of robotics which includes hand-eye co-
ordination tasks, navigation and obstacle detection,
3D scene structure is an important intermediate step.
Related work has been done by Wells [59] and Beard-
sley et al. [7].

� 3D Coding of Image Sequences
The estimation of 3D parameters to describe image
sequences is an important way to compactly encode
information about the scene. This representation
can then be used for low bit-rate communication,
compression as well as noise reduction (see \A Re-
view of Object-based Coding of 3D sequences", this
issue).

� Mosaics and Recti�cation
In photogrammetry, multiple images of a landscape
or scene are taken and need to be aligned into a large
composite image. SfM estimates the displacements
and aligns images to re-project them into a large
single image. Similarly, imagery can be mosaiced
into a larger scene such as in [53].

III. SfM Origins: Photogrammetry and Early

Vision

The roots of the Structure from Motion community
can be traced back to two key �elds, photogrammetry
and computer vision. Although SfM problems account
for a large portion of contemporary computer vision work,
they have a long history and span several schools of thought.
Photogrammetry is a relatively old technique for mea-

suring and processing lengths and angles in photographs
for mapping purposes [47]. Reconstruction e�orts were
initially attempted using a pair of ground cameras sepa-
rated by a �xed baseline. Pioneers in the 1840's include
Arago, Jordan, Stolze and Laussedat who used cameras



for estimating the shape of terrain from ground and aerial
photographs, coining the name 'photogrammetrie' [39].
The arrival of airplane and space photography techniques
spurred further development in the area. Estimates of
motion from 2D photographs were used to rectify images
into appropriate coordinates, mosaic multiple frames as
well as estimate structure and elevation.
In the vision community, which was traditionally driven

more from biology and AI roots, early achievements in-
clude the recovery of 3D scene structure from stereo by
Marr and Poggio [37] where the correspondence is es-
tablished automatically from two images via an itera-
tive cooperative algorithm. The algorithm searches for
unique matches of points between two images and recov-
ers smooth disparity (an intermediate form of 3D depth)
between them. Ullman [58] pioneered work on motion
based reconstruction. The approach showed that four
point correspondences over three views yield a unique so-
lution 2 to motion and structure which could be solved
via a nonlinear algorithm.
The formalism derived in photogrammetry and earlier

vision research provided an important foundational the-
ory for the SfM community. However, issues of imple-
mentation, stability, accuracy and so on have spurred nu-
merous developments in the �eld. In addition, the goals
and applications confronting the vision community have
changed and hence emphasized di�erent ways of thinking
about the SfM problem. One of the key issues in the com-
munity is the use of linear versus nonlinear techniques.
We discuss linear techniques, some of the critical issues
in motion based structure estimation and the nonlinear
techniques. Along the way, several camera models will
be described as they are needed.

IV. Linear Approaches

Although many agree that SfM is fundamentally a non-
linear problem, several attempts at representing it lin-
early have been made which provide mathematical ele-
gance as well as direct solution methods. On the other
hand, nonlinear techniques require iterative optimization
and must contend with local minima. However, they
promise good numerical accuracy and 
exibility.

A. Perspective Camera Models

Most Structure from Motion (linear and non-linear)
techniques begin by assuming a perspective projection
model as shown in Figure 3 which can be traced back to
Durer and Renaissance painters. Alternative projection
models include paraperspective or orthographic cases. Here,
three 3D feature points are projecting onto an image
plane (�) with perspective rays originating at the center
of projection (COP), which would lie within the physical
camera. The origin of the coordinate system is tradi-
tionally taken to be the COP and the focal length, f is
the distance from the COP to the image plane along the

2More speci�cally, three orthographic views are used and the solu-
tion is unique up to a re
ection.
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Fig. 3. Perspective Projection

principal axis (or optical axis). The optical axis is tra-
ditionally aligned with the ~z axis. The projection of the
COP onto the image plane along the optical axis is called
the principal point.
Applying Thales theorem, we obtain the perspective

projection formula as in Equation 1. Typically, the focal
length f is set to 1 to simplify the expression since, in
this model, f only varies the scaling of the image.
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This perspective projection is often referred to as a
pinhole camera. Although the focal length is the most
emphasized internal camera geometry parameter, there
exist more complex full parameterizations. In fact, real
cameras have many other internal geometry variables.
A more complete camera parameterization is shown in
Equation 2 [41]. Here, the K matrix includes sx and sy,
the scalings of the image plane along the ~x and ~y axes.
Also note s� the skew between the ~x and ~y axes and
(u0; v0) the coordinates of the principal point in the im-
age plane. In addition to the linear e�ects summarized in
the K matrix, there are other nonlinear and second order
e�ects such as lens distortion. Typically, though, these
second-order e�ects and even variables in K can be ap-
proximated and compensated for via standard corrective
warping techniques [9].
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0 sy v0

�
(2)

B. Algebraic Projective Geometry

The perspective camera model falls nicely into the math-
ematical realm of projective geometry which was invented
by the French mathematician, Desargues (1591-1661).
This formalism has grown to contain some extremely
graceful mathematics ranging from invariants to injection
of a�ne spaces to duality theories. While it is beyond the
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scope of this paper to delve into this formalism, further
reading can be found in [41] [45]. In the following, we
shall discuss its practical implementation and implica-
tions in the SfM techniques that have adopted it.

C. Epipolar Geometry

The application of projective geometry techniques in
computer vision is most notable in the Stereo Vision

problem which is very closely related to Structure-from-
Motion. Unlike general motion, stereo vision assumes
that there are only two shots of the scene. In princi-
ple, then, one could apply stereo vision algorithms to a
structure from motion task.
Applying projective geometry to stereo vision is not

new and can be traced back from19th century photogram-
metry to work in the late sixties by Thompson [54]. How-
ever, interest in the subject was recently rekindled in the
computer vision community thanks to important works
in projective invariants and reconstruction by Faugeras
[16] and Hartley [26].
Figure 4 depicts the imaging situation for stereo vision.

The application of projective geometry to this situation
results in the now popular epipolar geometry approach.
The three points [COP1; COP2; P ] form what is called
an epipolar plane and the intersections of this plane with
the two image planes form the epipolar lines. The line
connecting the two centers of projection [COP1; COP2]
intersects the image planes at the conjugate points e1
and e2 which are called epipoles. Assume that the 3D
point P projects into the two image planes as the points
p1 and p2 which are expressed in homogeneous coordi-
nates (u1; v1; 1) and (u2; v2; 1) respectively. After some
manipulations, the main result of the epipolar geometry
is that the following linear relationship (Equation 3) can
be written.

pt1Fp2 = 0 (3)

Here, F is the so-called fundamental matrix which is a
3�3 entity with 9 parameters. However, it is constrained

to have rank 2 (i.e. kFk = 0) and can undergo an arbi-
trary scale factor. Thus, there are only 7 degrees of free-
dom in F . It de�nes the geometry of the correspondences
between two views in a compact way, encoding intrinsic
camera geometry as well as the extrinsic relative motion
between the two cameras. Due to the linearity of the
above equation, the epipolar geometry approach main-
tains a clean elegance in its manipulations. In addition,
the structure of the scene is eliminated from the estima-
tion of F and can be recovered in a separate step. Given
the matrix F , identifying a point in one image identi�es
a corresponding epipolar line in the other image. 3

Hartley proposes an elegant technique for recovering
the parameters of the fundamental matrix when at least
8 points are observed [24]. Expanding the expression in
Equation 3 gives one linear constraint on F per observed
point as in Equation 4. Combining N of these equations
fromN corresponded features results in the linear system
of the form Af = 0.

u1u2f11 + u1v2f12 + u1f13 + v1u2f21 + v1v2f22+
v1f23 + u2f31 + v2f32 + f33 = 0

(4)

Typically, one solves such a linear system using more
than 8 points in a least squares minimization minkAfk2
subject to the constraint kfk = 1. This constraint �xes
the scale of the fundamental which otherwise is arbitrary.
In addition, the rank 2 constraint must also be enforced.
The algorithm employed utilizes an SVD computation
but can be quite unstable. One way to alleviate this nu-
merical ill-conditioning is to normalize pixel coordinates
to span [�1; 1]. For robust fundamental matrix estima-
tion techniques, refer to [63].
The fundamental matrix F is recovered independently

of the structure and can be useful on its own, for example
in a robotics application [16]. Hartley also uses it to
derive Kruppa equations for recovering camera internal
parameters [41] [25]. Ultimately, it becomes possible to
recover Euclidean 3D coordinates for the structure which
are often desirable for most typical application purposes.
At this point it is worthwhile to study the stability

of such techniques. The reader should consider the case
where the centers of projection of both images are close
to each other (COP1 and COP2). Note the degeneracy
when the centers overlap, which is the case when there
is no translation and only rotation. A point in one im-
age does not project to an epipolar line in the other for
these cases. Degeneracy also occurs when all 3D points
in the scene are coplanar. The result is that it is not pos-
sible to determine the epipolar geometry between close
consecutive frames and it cannot be determined from im-
age correspondences alone. The linearization in epipo-
lar geometry creates these degeneracies and numerical
ill-conditioning near them. Therefore, one requires a

3Thus, once F is solved, �nding further corresponding points given
a location in one image is reduced to searching along the epipolar line
instead of the whole image.
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Fig. 5. Trifocal Geometry

large base-line or translation between the image planes
for small errors. One way to overcome these degeneracies,
is provided by Torr et al. [56]. Their technique involves
switching from epipolar feature matching to a homogra-
phy approach which can automatically detect and handle
degenerate cases such as pure camera rotation.
The linear epipolar geometry formulation also exhibits

sensitivity to noise (i.e. in the 2D image measurements)
when compared to nonlinear modeling approaches. One
reason is that each point can be corresponded to any
point along the epipolar line in the other image. Thus,
the noise properties in the image are not isotropic with
noise along the epipolar line remaining completely unpe-
nalized. Thus, solutions tend to produce high residual
errors along the epipolar lines and poor reconstruction.
Experimental veri�cation of this can be found in [3].

D. The Trifocal Tensor

The next natural step from the stereo formalism and
the fundamentalmatrix is a multi-camera situation (i.e. 3
or more projections). The trifocal tensor approach is such
an extension and maintains a similar projective geometry
spirit. This model has been proposed and developed by
Sashua [46], Hartley [23] and Faugeras [19] among others.
Figure 5 represents the imaging scenario.
Here, the trifocal plane is formed by the three optic

centers COP1, COP2 and COP3. Intersecting this plane
with the three image planes produces three lines called
the trifocal lines t1, t2 and t3. There are now two epipoles
(the ei;j). One could use standard epipolar geometry and
consider three fundamental matrices (one for each pair
of COPs) F12, F23 and F31. However, the fundamental
matrices are subject to some standard limitations which
might be avoidable here. For instance, if a point P is in
the trifocal plane, the fundamental matrices cannot de-
termine if its 3 images belong to a single 3D point. In
fact, there is additional information in the three plane
case. Given a point in one image, it is possible to con-
struct a line in another using the fundamental matrix.

However, given a point in the �rst image and a point
in the second image, one can directly compute the co-
ordinates of the third point using a structure called the
trifocal tensor which is the analog of the fundamental ma-
trix for 3 view situations. Typically, one uses this tensor
(denoted T ) to map a line in image 1 (l1) and a line in
image 2 (l2) to a line in image 3 (l3). This mapping is
again a linear expression as in Equation 5.

l3 = T (l1; l2) (5)

To map points, one merely considers intersections of
mapped lines. The tensor T can be considered as a 3 �
3� 3 cube operator (i.e. de�ned by 27 scalars in total).
It can also be represented as the concatenation of three
3� 3 matrices: G1, G2 and G3 which allow us to expand
the above into the more straightforward Equation 6.

l3 =

0
@ l3x

l3y
l3z

1
A =

0
@ lT1 G1l2

lT1 G2l2
lT1 G3l2

1
A (6)

If a set of corresponded points are known in each of
the 3 images, the tensor can be estimated in a similar
way as the fundamental matrix. For instance, one can
perform a least-squares linear computation to recover the
27 parameters [23] [46]. However, the trifocal tensor's 27
scalar parameters are not all independent unknowns. Not
every 3�3�3 cube is a tensor. It too has constraints (like
the fundamental matrix) and really has only 18 degrees
of freedom. The above linear methods for recovering the
tensor do not impose the constraints and can therefore
produce invalid tensors.
By making an appeal to Grassmann-Cayley algebra,

Faugeras gracefully derives the algebraic constraints on
trifocal tensors which can be viewed as higher order (4th
degree) polynomials on the parameters [19]. The 9 con-
straints are folded into a nonlinear optimization scheme
which recovers the 18 remaining degrees of freedom of the
tensor from image correspondences.

E. Application to Motion

Despite the elegance of the mathematics, these epipo-
lar techniques do not address some pertinent practical
issues in the Structure from Motion problem. In particu-
lar, they are reliable for perfect features and images with
wide baselines but are sensitive to noise [55]. The formal-
ism focuses on linear reformulations and only considers
2D measurement errors as an after thought. Thus it can
exhibit numerical instabilities. These are especially evi-
dent when the baseline (i.e. relative camera translation
between frames) is small. The case of no translation and
pure rotation in the motions are actually degenerate cases
for epipolar geometry. As the camera con�gurations ap-
proach degeneracies, the epipolar results vary wildly and
noise causes numerical ill-conditioning. In addition, in
the trifocal tensor case, the intermediate computation of
higher order polynomials could also be prone to noise
sensitivity.
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Essentially, these techniques focus on and perform best
in 2-frame and 3-frame structure from motion with large
baseline and small 2D measurement error. Their applica-
tion to image sequences involves further processing and
often requires some manual supervision. For instance,
Faugeras discusses the special treatment that the trifocal
technique requires on image sequences in post-production
type applications [17]. Herein, a human user must pre-
select the triples of appropriate frames in a sequence to
guarantee a wide range of camera motion (i.e. wide base-
line) in the trifocal tensor calculations. In addition, the
technique does not use all the images in a sequence, only
appropriate triples. Therefore, the estimates of structure
and motion are combined together using a somewhat un-
principled interpolation calculation. Since not all image
frames are used and interpolation is relied on (be it linear
or higher order), this technique discards data and hence
compromises some accuracy.

F. Tomasi-Kanade Factorization

An alternative way to simplify the SfM problem is to
consider a di�erent projection model. The perspective
projection case is characteristic of real cameras however,
the corresponding equations are di�cult to deal with.
The orthographic case in Figure 6 greatly simpli�es pro-
jection into the almost trivial form u = X and v = Y .
One orthographic approach which has gained popular-

ity is the factorization method proposed by Tomasi and
Kanade [55]. Once again, the result is a linear formula-
tion however the linearity is fundamentally di�erent from
the one induced in the previous epipolar geometry ap-
proaches. The technique begins with P tracked feature
points over F frames and these are all combined into a
matrixW of size 2F �P . For each frame (or row of W ),
the P feature points are registered by subtracting o� their
mean (recovering and factoring out the 2D translation).
The resulting 2F � P matrix Ŵ is then described as the
product Ŵ = RS where R is a 2F � 3 matrix and S is
3�P . These matrices are obtained from Ŵ via a singular
value decomposition and some direct linear operations.

The algorithm is robust in many situations however it
is tuned for orthographic projection, not for perspective
e�ects. Degeneracies may occur when the camera trans-
lates forward and this forward motion parameter is not
recovered by the system. Only two image-plane transla-
tions, camera yaw, roll and pitch are estimated. There-
fore, it may not be applicable in some situations. The
factorization method has subsequently been extended by
Poelman and Kanade to the paraperspective case which
is a closer approximation to perspective projection than
orthographic projection [44].

V. Issues for Motion Sequences

Before moving on to nonlinear and dynamic approaches,
we �rst discuss some of the issues that arise with contin-
uous motion sequences (i.e. video) versus 2 or 3 frame
static situations.

A. Probabilistic Feature Tracking

In video situations, be it real-time or o�ine processing,
as in the above cases corresponded features are needed for
the SfM problem. However, in video, features are com-
puted in a temporally incremental way or are 'tracked'
through the sequence. Tracked features may thus exhibit
signi�cant noise levels which should be estimated and
treated rigorously. A feature is simply a measurement
and all measurements have error (even at the pixel level
due to image digitization). Therefore, one should model
the error, for example via a typical Gaussian distribu-
tion (which identi�es an ellipsoidal iso-probability curve
around 2D feature points). In addition, over a video se-
quence, this error is likely to vary over time when the
feature gets occluded (i.e. generates a wide distribution)
or is very clearly observable (i.e. generates a tight dis-
tribution). This information is clearly useful and hence
should be included in an SfM framework.

B. Causality and Recursion

In video and real-time applications, one critical con-
straint arises: causality and temporal continuity. As we
begin considering more than three images, it becomes un-
likely that the observations are generated by individual
cameras but that a single camera was swept around the
scene instead. A physical camera does not move instan-
taneously from one view point to another or equivalently
objects being tracked can not teleport around the scene.
Thus, one can assume that in image sequences the rela-
tive position between the camera and the scene changes
incrementally. When applicable, this constraint or redun-
dancy should be folded into the Structure from Motion
estimation algorithm. For instance, one may consider the
use of dynamic system theory.
In addition, if a sequence is available or if real-time

video is streaming in, one may consider the use of online
and recursive techniques. Instead of waiting for all future
data to arrive, it makes sense to take advantage of the
causal continuity and process each incoming frame when



it arrives, summarizing all the past into a state vector.
This has computational e�ciency advantages as well as
providing a real-time output. This allows the SfM esti-
mates to be used in a closed loop control action such as
navigating a robot. For a review of recursive structure
from motion algorithms, consult [48] [49].

C. Small Baselines

One fundamental di�erence between causal methods
and epipolar and trifocal techniques is that only small
baselines are available as the camera or objects are dis-
placed incrementally. Thus, techniques that are sensitive
in this small displacement range will exhibit numerical
problems. The reality is that there is little to no SfM
information on a frame to frame basis, especially given
the possible noise on the image features. This is a di�-
culty for almost any two-frame SfM algorithm. Thus, one
must consider integrating (in batch or recursive form) the
information over the sequence.
An important advantage arises in small baseline situa-

tions, though. The correspondence problem and feature
tracking become easier. The proximity of features over
adjacent frames can be used to guide correspondence and
most feature detection techniques will exhibit more con-
sistent behavior as images change slowly.

VI. Nonlinear Approaches

Many nonlinear frameworks can be related to the clas-
sic Relative Orientation problem proposed by Horn [29]
[30]. The technique is a two-frame one with a perspective
projection camera model. Structure and motion (but not
camera internal geometry) are recovered by minimizing a
nonlinear cost function.
The technique begins with a setup similar to the one in

Figure 4 without any of the epipolar details. In addition,
the focal length f is assumed to be given. Assume that
the point P is actually represented as unknown 3D co-
ordinates P1 and P2 in two di�erent coordinate systems
(one for each COP). These 3D coordinates are directly
related to their 2D projections (u1; v1) and (u2; v2) by
perspective projection as in Equation 7.

X1 = u1
Z1
f

Y1 = v1
Z1
f

(7)

The projection of P in one image plane can be de�ned
as a translation and rotation of the 3D point in the co-
ordinate system of the other. Thus, the 3D point P1 in
COP1 can be computed from the 3D point P2 in COP2 as
in Equation 8. Here, rotation R and translation t de�ne
the relative 3D motion between the two cameras.

0
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Y2
Z2

1
A = R

0
@ X1

Y1
Z1

1
A + t

0
@ u2Z2=Z1

v2Z2=Z1
fZ2=Z1

1
A = R

0
@ u1

v1
f

1
A+ t f

Z1

(8)

Each corresponded pair of points increases the system
by three more equations with two more unknowns (the
Z1 and Z2). The system can undergo an arbitrary scal-
ing so a normality constraint is applied to translation to
force a unique solution. In addition, there are orthonor-
mality constraints on the rotation matrix (which only
has 3 true degrees of freedom). Thus, the 5 unknowns
for the relative 3D motion can be solved using 5 point
correspondences. However, a least-squares version with
more points is preferred for accuracy. The solution min-
imizes error using iterative nonlinear optimization. In
the process, the values of Z1 and Z2 are solved for each
corresponded point and 3D structure is recovered.

A. Batch Techniques

The above methodology can be extended to multiple
images (i.e. more than 2) which becomes a batch opti-
mization over the whole set of measurements. The rela-
tive motion must be estimated for each additional image
but the structure is rigid and �xed so the system becomes
more constrained. This approach was developed through
work by Kumar et al. [34], Szeliski and Kang [52] and
Weng et al. [61] where the SfM solution is found via
Levenberg-Marquardt nonlinear minimization.

B. Filtered and Recursive Multi-Frame Techniques

Another type of extension to multi-frame is a recursive
one where the multiple images are not available in batch
form but rather are streaming in serially. One way of
formulating this extension is by repeating the classic 2-
frame estimate such as the Longuet-Higgens technique
[36] or the algorithm described above [30]. Oliensis and
Thomas [42] and Soatto et al. [50] sequentially compute
such 2-frame estimates and post-process the output with
a smoothing Kalman �lter (KF). Here, the measurement
vectors and the state vectors are the same so the KF
is linear, completely observable and hence does not have
any linearization problems. In fact, the KF is only acting
as a smoothing �lter. It is not really being used in its full
capacity as a state estimator where the measurements
are nonlinearly inverted to obtain state informationwhile
keeping track of the state's internal complex dynamics.
Extended Kalman Filters (EKFs) deal with nonlin-

earity explicitly and can be applied to nonlinearly un-
cover motion and structure instead of smooth the output
of 2-frame techniques. EKF frameworks were utilized
on image sequences by Ayache and Faugeras [1], Broida
and Chellappa [11], Dickmanns and Graefe [15], Faugeras



et al. [20], Heel [28], Matthies et al. [38] and Young
and Chellappa [62]. A seminal paper by Broida, Chan-
drashekhar and Chellappa features a nonlinear EKF for
recovering state information [10] . It does not rely on
2-frame techniques but rather folds the estimation into
the Kalman �ltering equations. The �lter is used to non-
linearly invert the measurements to gather state infor-
mation. One important de�ciency of these techniques is
that camera internal geometry is not always estimated.
This is acceptable for some camera parameters such as
skew, etc. which can be less signi�cant and constant in
modern cameras. However, the focal length (which is
related to the zoom) readily changes in many di�erent
video situations. An additional problem is the perceived
unreliability of these techniques due to the linearization
at each time step in EKF calculations. We now outline
our method which estimates focal length and has stronger
stability properties due to parameterization changes.

VII. The Proposed Nonlinear Recursive

Framework

In the following we review and discuss the formulation
proposed by Azarbayejani and Pentland [2] for a recursive
recovery of 3D structure, 3D motion and camera geome-
try from feature correspondences over an image sequence.
The emphasis here is that the Structure from Motion is
cast into a dynamical system framework with important
representational improvements that provide an accurate
and stable implementation. In addition, the system in-
tegrates information over a complete sequence of images
in a probabilistic framework. Therefore, it is robust to
errors in 2D feature tracking. The pertinent issue is the
parameterization of the geometric concepts and the rep-
resentation which bring forth numerical advantages, real-
world reliability and new functionality. For instance, we
demonstrate the recursive recovery of focal length which
is free to span the full range from both perspective pro-
jection to orthographic projection. The recursive frame-
work allows online and real-time recovery of structure,
motion and focal length for true 
exibility and applicabil-
ity to real-time problems. Finally, the approach provides
a fully metric 3D recovery of structure (versus a pseudo-
structure recovery). Thus, it has important applications
in graphics and post-production which traditionally op-
erate in such representations.

A. The Dynamical System

We brie
y discuss the dynamics of the Structure from
Motion problem. As shown earlier, it is often the case (i.e.
in cinematographic post-production, robotics, etc.) that
cameras do not teleport around the scene and objects do
not move about too suddenly. These bodies are governed
by physical dynamics and it thus makes sense to constrain
the possible con�gurations of the camera to have some
smooth temporal changes over a causal time sequence.

For instance, we consider the typical dynamic system: 4

xt+1 = �xt +N (0; Q) (9)

yt = H(xt)xt +N (0; Rt) (10)

Here, the observations are the 2D features (in u,v co-
ordinates) which are concatenated into an observation
vector yt for each moment in time. The observations
are caused by the internal state of the system, x which
contains the scene's 3D structure, the relative 3D motion
between the camera and the scene and the camera's in-
ternal geometry. The mapping from x to y is tricky in
SfM since it is nonlinear (H(x) varies with x) and is also
corrupted by some noise. Here, the noise is represented
as an additive Gaussian (normal N ) process with zero-
mean and time-varying covariance Rt. The matrix Rt

probabilistically encodes the accuracy of the measured
2D feature coordinates and can represent features that
are missing in certain frames when large variances are
imputed into Rt appropriately.
In addition, the dynamics of the internal state are con-

strained. The 3D structure, 3D motion and camera ge-
ometry do not vary wildly but are linearly dependent (via
�) on their previous values at the past time interval plus
Gaussian noise. The noise process is additive with zero-
mean and covariance Q. For generality, we assume that
the motion of the camera through the scene is not known
a priori and thus, � is set to identity. Therefore, the in-
ternal state varies only through some Gaussian random
noise process. This can be seen as a 'random walk' type
of internal state space. In other words, the vector x varies
randomly but smoothly with small deltas from its past
values.
This dynamic system encodes the causal and dynamic

nature of the SfM problem and allows an elegant integra-
tion of multiple frames from image sequences. It is also
a probabilistic framework for representing uncertainty.
These dynamical systems have been extensively studied
are routinely solved via reliable Kalman Filtering (KF)
techniques. In our nonlinear case, an Extended Kalman
Filter (EKF) is utilized which linearizes H(xt) at each
time step.
The representation of the measurement vector yt is

simply the concatenation of the 2D feature point mea-
surements. We now turn our attention to the represen-
tation of the internal state xt of the unknowns of the
system: the 3D structure, 3D motion and internal cam-
era geometry. This step is critical since the e�ectiveness
of the Kalman �ltering framework depends strongly on
the representation.

B. Representation

In order to develop a dynamic system with robustness
and numerical stability for SfM geometry calculations,

4Note, more generally, all matrices can vary as functions of the state
x and with time t.
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one must interpret the SfM problem in an appropriate
representation. For instance, the representation should
not contain degeneracies, numerical ill-conditioning or in-
tractable coupling between variables. Herein, we shall
develop a practical derivation of the representation. A
more elegant Riemannian manifold theory argument for
the representations is found in [3].

A. Internal Geometry and Projection Model

In standard perspective projection, the mapping from a
3D coordinate onto the image plane is accomplished via
the projection Equation 11.

�
u
v

�
=

�
XC

YC

�
f

ZC
(11)

However, we instead use the central projection repre-
sentation as depicted in Figure 7. Here, the coordinate
system's origin is �xed at the image plane instead of at
the center of projection (COP). In addition, the focal
length is parameterized by its inverse, � = 1=f . This
camera model has long been used in the photogramme-
try community and has also been adopted by Szeliski and
Kang [52] in their nonlinear least squares formulation.
The projection equation thus becomes Equation 12.

�
u
v

�
=

�
XC

YC

�
1

1 + ZC�
(12)

Note how this projection decouples the camera focal
length (f) from the depth of the point (ZC ). In the tra-
ditional projection Equation 11, if ZC is �xed and the f
is altered, the imaging geometry remains the same while
the scale of the image changes. In other words, the cone
of perspective rays remains �xed while the focal plane
(�) translates along the optical (Z) axis. We note that
in the standard projection model, the imaging geometry
(i.e. the perspective rays) are only altered by varying
depth ZC which is the only way to alter the imaging ge-
ometry. Thus, f only acts as a scaling factor and the

imaging geometry and the depth are encoded in ZC .
In our representation, however, the inverse focal length

� alters the imaging geometry independently of the depth
value ZC . State variable decoupling is known to be criti-
cal in Kalman �ltering frameworks and is applicable here
since we plan on putting both camera internal geometry
� and structure ZC into the internal hidden state x.
Another critical property of � as opposed to f is that

it does not exhibit numerical ill-conditioning. It can span
the wide range of perspective projection but also the spe-
cial case of orthographic projection which occurs when
we set the focal length f = 1 and all rays project or-
thogonally onto the image plane. However, under ortho-
graphic projection, � = 0 which does not 'blow up' and
maintains numerical stability in KF frameworks. We can
thus combine both perspective and orthographic projec-
tion into the same so-called central projection framework
without any numerical instabilities (this is demonstrated
experimentally in the next section). This 
exibility is not
typical in many traditional computer vision approaches
where perspective and orthographic projection must be
treated quite di�erently. We now begin building our in-
ternal state vector with this well-behaved parameter, �
as in Equation 13.

x1 = (camera internal geometry) = � (13)

B. 3D Structure Model

We assume that N feature points are to be tracked over F
frames in an image sequence. In the �rst frame, each \fea-
ture point" is initially in terms of an image location (u,v).
Subsequent frames are then observed and the image loca-
tion of the feature is measured with some noisy zero-mean
Gaussian error. One may think of the 3D structure of the
model as the true (XC ; YC; ZC) coordinates of each of the
3D points which then project into (u; v) 2D coordinates.
However, this obvious parameterization is not compact
and stable. For one thing, it contains 3 unknowns (or
3 degrees of freedom) per point being tracked resulting
in the concatenation of 3�N dimensions to our internal
state vector x. Another problem with this representation
is that it in no way encodes the rigidity of the object
being tracked.
A more compact representation of the 3D location is

shown in Equation 14 below. Here, there is only one
degree of freedom per point, �. The �rst term represents
the initial image location and the second term represents
the perspective ray scaled by the unknown depth �:

0
@ X

Y
Z

1
A =

0
@ u

v
0

1
A + �

0
@ u�

v�
1

1
A (14)

Point-wise structure, therefore, can be represented with
one parameter per point (instead of 3).
This representation is consistent with early analyses

such as [29], but inconsistent with representations used



in much of the image sequence work, including [10;42;60],
which use three parameters per point. It is critical for
estimation stability, however, either to use this basic pa-
rameterization or to understand and properly handle the
additional parameters. Here we describe the computa-
tional implications of our parameterization and in Sec-
tion VII.D we show how it relates to alternate parame-
terizations.
First consider the total number of unknowns that are

to be recovered in a batch solution of these F frames and
N points. There are 6(F�1) motion parameters5 and 3N
structure parameters. Point measurements contribute
2NF constraints and one arbitrary scale constraint must
be applied. Hence, the problem can be solved uniquely
when 2NF + 1 > 6(F � 1) + 3N . Thus all motion and
structure parameters can in principle be recovered from
any batch of images for which F � 2 and N � 6.
However, in a recursive solution, not all constraints

are applied concurrently. At each step of computation,
one frame of measurements constrains all of the struc-
ture parameters and one set of motion parameters, i.e.
2N measurements constrain 6 + 3N degrees of freedom
at each frame. This is always an under-determined com-
putation having the undesirable property that the more
features that are added, the more under-determined it
is. Unless one already has low prior uncertainty on the
structure (e�ectively reducing the dimensionality of un-
knowns), one should expect unstable and unpredictable
estimation behavior from such a formulation. Indeed, in
[10], it was proposed that such �lters only be used for
\tracking" after a batch procedure is applied for initial-
ization.
On the other hand, in our formulation, constraints

(1+2N ) outnumber degrees of freedom (6+1+N ) for mo-
tion, camera, and structure at every frame when N > 7.
The more measurements available the larger the gap. Our
experiments verify that the overdeterminancy results in
better stability, allowing for good convergence and track-
ing in most cases without the requirement of good prior
information. In both types of formulation, once structure
(and camera, in our case) has converged, each step is ef-
fectively overconstrained; the only issue is stability when
structure (and camera) is grossly uncertain.
It is clear, then, that excess parameters are undesirable

for stability, but how can both 3N - and N -parameter rep-
resentations describe the same structure? Section VII.D
relates the two and demonstrates that when measurement
biases are exactly zero (or known) the 3N space really
only has N degrees of freedom. Even in the presence
of bias, most uncertainty remains along these N DOFs,
justifying the structure parameterization

x2; � � � ;x1+N = (structure) = (�1; � � � ; �N)
We show experimentally that even relatively large biases
do not have a strong adverse e�ect on accuracy using this

5These encode the relative 3D rotation and the 3D translation be-
tween the camera and the scene.

more concise model.

C. 3D Motion Model - Translation

The translational motion is represented as the 3-D loca-
tion of the object reference frame relative to the current
camera reference frame using the vector

t = (tX ; tY ; tZ)

The tX and tY components correspond to directions par-
allel to the image plane, while the tZ component corre-
sponds to the depth of the object along the optical axis.
As such, the sensitivity of image plane motion to tX and
tY motion will be similar to each other, while the sensi-
tivity to tZ motion will di�er, to a level dependent upon
the focal length of the imaging geometry.
For typical video camera focal lengths, even with \wide

angle" lenses, there is already much less sensitivity to
tZ motion than there is to (tX ; tY ) motion. For longer
focal lengths the sensitivity decreases until in the limiting
orthographic case there is zero image plane sensitivity to
tZ motion.
For this reason, tZ cannot be represented explicitly in

our estimation process. Instead, the product tZ� is esti-
mated. The coordinate frame transformation equation

0
@ XC

YC
ZC�

1
A =

0
@ tX

tY
tZ�

1
A +

0
@ 1

1
�

1
AR

0
@ X

Y
Z

1
A
(15)

combined with Equation 12 demonstrates that only tZ�
is actually required to generate an equation for the im-
age plane measurements (u; v) as a function of the mo-
tion, structure, and camera parameters (rotation R is
discussed below).
Furthermore, the sensitivity of tZ� does not degener-

ate at long focal lengths as does tZ. For example, the
sensitivities of the u image coordinate to both tZ and
tZ� are

@u
@tZ

= �XC�
(1+ZC�)2

and @u
@(tZ�)

= �XC

(1+ZC�)2

demonstrating that tZ� remains observable from the mea-
surements and is therefore estimable for long focal lengths,
while tZ is not (� approaches zero for long focal lengths).
Thus we parameterize translation with the vector

(translation) = (tX ; tY ; tZ�)

True translation t can be recovered post-estimation sim-
ply by dividing out the focal parameter from tZ�. This
is valid only if � is non-zero (non-orthographic), which is
desirable, because tZ is not geometrically recoverable in
the orthographic case. To see this mathematically, the er-
ror variance on tZ will be the error variance on tZ� scaled
by 1=�2, which gets large for narrow �elds of view.



D. 3D Motion Model - Rotation

The 3-D rotation is de�ned as the relative rotation be-
tween the object reference frame and the current camera
reference frame. This is represented using a unit quater-
nion, from which the rotation matrix (R) can be gener-
ated:0
@ q2

0
+ q2

1
� q2

2
� q2

3
2(q1q2 � q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0
� q2

1
+ q2

2
� q2

3
2(q2q3 � q0q1)

2(q1q3 � q0q2) 2(q2q3 + q0q1) q2
0
� q2

1
� q2

2
+ q2

3

1
A
(16)

The four elements of the unit quaternion only have
three degrees of freedom due to the normality constraint.
Thus, all four cannot be estimated independently; only
a nonlinear constrained minimization will work to re-
cover the quaternion directly. Since the EKF utilizes a
linearization at each step, the nonlinear normality con-
straint cannot be rigidly enforced within the EKF com-
putational structure.
However, a 3-parameter incremental rotation represen-

tation, similar to that used in [11], can be used in the
EKF to estimate interframe rotation at each frame. In-
cremental Euler angles centered about zero (or discrete-
time \rotational velocity") do not overparameterize ro-
tation and are approximately independent and therefore
can be used reliably in a system linearization.
The incremental rotation quaternion is a function of

these three parameters:

�q =
�p

1� �; !X=2; !Y =2; !Z=2
�

(17)

� = (!2X + !2Y + !2Z)=4 (18)

This incremental rotation can be computed at each frame
and then composed with an external rotation quaternion
to maintain an estimate of global rotation. The global
quaternion is then used in the linearization process at
the next frame.
Thus, we have,

(interframe rotation) = (!X ; !Y ; !Z)

(global rotation) = (q0; q1; q2; q3)

where interframe rotation is part of the EKF state vec-
tor and global rotation is maintained and used in the
linearization at each step.

E. The Issue of Scale

It is well known that the shape and motion geometry in
SfM problems such as this are subject to arbitrary scal-
ing and that this scale factor cannot be recovered. (The
imaging geometry � and the rotation are recoverable and
not subject to this scaling.) In two-frame problems with
no information about true lengths in the scene, scale fac-
tor is usually set by �xing the length of the \baseline"
between the two cameras. This corresponds to the mag-
nitude of the translational motion.

It is equally acceptable to �x any other single length
associated with the motion or the structure. In many
previous formulations, including [10;42] some component
of the translational motion is �xed at a �nite value. This
is not a good practice for two reasons. First, if the �xed
component, e.g. the magnitude of translation is actually
zero (or small), the estimation becomes numerically ill-
conditioned. Second, every component of motion is gen-
erally dynamic, which means the scale changes at every
frame! This is disastrous for stability and also requires
some post-process to rectify the scale.
A better approach to setting the scale is to �x a static

parameter. Since we are dealing with rigid objects, all of
the shape parameters f�ig are static. Thus, �xing any
one of these establishes a uniform scale for all motion and
structure parameters over the entire sequence. The result
is a well-conditioned, stable representation. Setting scale
is simple and elegant in the EKF; the initial variance on,
say, �0 is set to zero, which will �x that parameter at
its initial value. All other parameters then automatically
scale themselves to accommodate this constraint. This
behavior can be observed in the experimental results.

C. The EKF Implementation

Using the representations discussed thus far, our com-
posite state vector consists of 7 + N parameters|6 for
motion, 1 for camera geometry, and N for structure|
where N is the number of features tracked:

x = (tX ; tY ; tZ�; !X ; !Y ; !Z; �; �1; � � � ; �N) (19)

The vector x is the state vector used in a standard EKF
implementation, where the measurement vector contains
the image locations of all the tracked features in a new
frame. As described earlier, an additional quaternion
is required for maintaining a description of the global
rotation external to the EKF.
The dynamics model in the EKF can be chosen triv-

ially as an identity transform plus noise, unless additional
prior information on dynamics is available. The measure-
ment equation is simply obtained by combining Equa-
tions 12, 15, and 14. The RHS (u; v) in Equation 14 is
the de�ning image location of the feature in its initial
frame, and the LHS (u; v) in Equation 12 is the measure-
ment.
The �nal implementation of the EKF is straightfor-

ward (standard references include [10;12;21]), with the
only additional computation being the quaternion main-
tenance. Computationally, the �lter requires inverting a
2Nx2N matrix (i.e. the size of the measurement vector)
[12;21], which is not a large task for the typical number
of features on a single object. Since all parameters are
overdetermined with 7 or more points, N rarely needs
to be more than 15 or 20 for good results, yielding �l-
ter steps which can be computed in real-time on modern
workstations.



D. Biased Measurements

We turn attention here to the issue of biased measure-
ment noise in the EKF and how it relates to representa-
tion of object structure.
We have assumed that features are identi�ed in the

�rst frame and that measurements are obtained by com-
paring new images to the previous images and that our
measurements are zero-mean or very close to zero-mean.
This thinking leads to the � description of structure given
earlier in which the single unknown depth for each fea-
ture fully describes structure. These parameters can be
computed very e�ectively using the EKF, which assumes
zero-mean measurements.
It is common to use Kalman �lters even when mea-

surements are not truly zero-mean. Good results can be
obtained if the biases are small. However, if the mea-
surements are biased a great deal, results may be inaccu-
rate. In the case of large biases, the biases are observable
in the measurements and can therefore be estimated by
augmenting the state vector with additional parameters
representing the biases of the measurements. In this way,
the Kalman �lter can in principle be used to estimate bi-
ases in all the measurements.
However, there is a tradeo� between the accuracy that

might be gained by estimating bias and the stability of
the �lter, which is reduced when the state vector is en-
larged. When the biases are large, i.e. compared to the
standard deviation of the noise, they can be estimated
and can contribute to increased accuracy. But if the bi-
ases are small, they cannot be accurately estimated and
they do not a�ect accuracy much. Thus, it is only worth
augmenting the state vector to account for biases when
the biases are known to be signi�cant relative to the noise
variance.
In the SfM problem, augmenting the state vector to

account for bias adds two additional parameters per fea-
ture. This results in a geometry representation having
a total of 7 + 3N parameters. Although we do not rec-
ommend this level of state augmentation, it is interesting
because it can be related to the large state vector used
in [10;42] and others, where each structure point is rep-
resented using three free parameters (X,Y,Z).
If we add noise bias parameters (bu,bv), Equation 14

can be written0
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Y
Z

1
A =

0
@ (1 + ��)(u+ bu)

(1 + ��)(v + bv)
�

1
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This relation is invertible so the representations are ana-
lytically equivalent. However, geometrically the (�; bu; bv)
parameterization is more elucidating than (X;Y; Z) be-
cause it parameterizes structure along axes physically rel-
evant to the measurement process. Thus, it allows us to
more e�ectively tune the �lter, ultimately reducing the
dimensionality of the state space quite signi�cantly.
It is clear that, in general, uncertainty in � trivializes

uncertainty in the direction of the biases. By using ini-

tial error variance on � that is high in comparison to
the error variances on (bu; bv), the state space is essen-
tially reduced because the system responds more sti�y in
the direction of the biases, favoring instead to correct the
depths. In the limit (zero-mean-error tracking) the biases
can be removed completely, resulting in the strictly lower
dimensional formulation that we typically use in this pa-
per. Our experimental results demonstrate that bias is
indeed a second-order e�ect and is justi�ably ignored in
most cases.

VIII. Experiments

To test our recursive structure from motion system,
a variety of simulations were carried out with synthetic
data. These tests are detailed in [2] and demonstrate the
accuracy and reliability of the method. Structure, 3D
motion and focal length were stably recovered in situ-
ations that included increased noise levels, orthographic
projection, increased noise bias and degenerate rotational
motion. The estimator performed accurately despite ex-
treme levels of noise and was robust to bias as well. In
addition, it properly handled the orthographic and de-
generate rotation cases which typically cause problems
for other techniques and camera models. In addition,
an extensive Monte Carlo analysis was performed with
thousands of trials to con�rm the stability of the tech-
nique and show smooth degradation in increasing noise
conditions.
In this section, we present results from applying our

estimation formulation to two sequences of real imagery.
Additional real imagery results can also be found in [2].

A. Experiment 1: Egomotion, Models from Video

In this example, a texture-mapped model of a building
is extracted from a 20-second video clip of a walk-around
outside a building (the Media Laboratory, MIT). Fig-
ure 8(a) shows two frames of the original digitized video
with feature points overlaid.
Twenty-one features on the building were tracked and

used as measurement input to the EKF described ear-
lier. The resulting estimates of camera geometry, camera
motion, and pointwise structure are shown in Figure 10.
The EKF is iterated once to remove the initial transient.
Recovered 3-D points were used to estimate the pla-

nar surfaces of the walls. The vertices were selected in
an image by hand and back projected onto the planes to
form 3-D polygons, depicted in wireframe in Figure 8(b).
These polygons, along with the recovered motion and fo-
cal length were used to warp and combine video from
25 separate frames to synthesize texture maps for each
wall using a procedure developed by Galyean [6]. In Fig-
ure 8(c,d), the texture-mapped model is rendered along
the original trajectory and at some novel viewing posi-
tions.



Experiment 1: Models from Video
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Fig. 10. Experiment 1: Models from Video. Structure, motion, and focal length recovered from 2D features.

Experiment 1: Models from Video
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Fig. 8. Experiment 1: Recovering Models from Video. (a) Features are
tracked from video using normalized correlation. (b) 3-D polygons are
obtained by segmenting a 2-D image and back-projecting the vertices
onto a 3-D plane. This 3-D plane is computed from the recovered 3-D
points corresponding to image features in the 2-D polygon. (c) Texture
maps are obtained by projecting the video onto the 3-D polygons. The
estimated motion and camera parameters are used to warp and combine
the video from 25 separate frames to create the texture map for each
polygon. (d) Alternate views of the recovered model.

Experiment 2: Head Tracking
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Fig. 9. Experiment 2: Head Tracking. (a) 2D Feature tracking, (b)
Vision and Polhemus estimates of head position. Much of the observed
error is known to be due to Polhemus error. RMS di�erences are 0:11
units and 2:35 degrees.



B. Experiment 2: Object Tracking { Head

In this experiment, a person's head was tracked using
both the vision algorithm and the Polhemus magnetic
sensor 6 simultaneously. Figure 9 shows the vision esti-
mate and Polhemus measurements (after an absolute ori-

entation [29] was performed to align the estimates prop-
erly). The RMS di�erence in translation is 0:11 units and
the RMS di�erence in rotation is 2:35�. (The scale of
translation is, of course, unknown, but is approximately
10{12cm per unit, yielding a RMS tracking error of ap-
proximately 1 cm.) This yields accuracy on the order of
the observed accuracy of the Polhemus sensor, indicat-
ing that the vision estimate is at least as accurate as the
Polhemus sensor.
This example is identical to the example presented in

our earlier work on vision-based head tracking [5], except
here we recover focal length and structure simultaneously
with motion. The previous work relied on a rough, a
priori structural model and calibration of focal length.
The RMS errors between vision and Polhemus estimates
for this example were slightly better than those in the
previous study, (�1cm versus 1.67cm and 2.35 degrees
versus 2.4 degrees).

C. Independent Evaluation

In an independent evaluation performed by Soatto and
Perona [49], a technique similar to the proposed one demon-
strated good results when compared to other variants.
The similar algorithm (referred to as the \Structure In-
tegral Filter" in their paper) was cast into a generic eval-
uation framework [48] and then compared with subspace
�lters [27], essential �lters and �xation constraint meth-
ods. The system performed well in terms of accuracy,
robustness and noise tolerance. The authors reported
some sensitivity to initialization errors in the technique.
However, the aforementioned bias estimation component
did not seem to be included in the estimation process.
Erroneous initialization is precisely the reason for includ-
ing a bias estimation stage and it can easily be added to
the framework when these situations are expected.

IX. Extending the Framework: Feedback and

Feedforward Tracking

Since the development of the above recursive SfM tech-
nique, we have explored its interaction as a module in
other vision frameworks. The module is fed 2D data and
computes 3D estimates. However, it is not necessarily
a processing dead-end. One can consider SfM as a sub-
component in larger vision systems with multiple loops.
Thus, SfM can feed its results back to lower level vision
processes or forward to higher level modules.
One real-time application developed by Jebara and Pent-

land [32] is the automatic real-time 3D face tracking sys-
tem shown in Figure 11. An automatic initialization
module �nds the face, locating eyes, nose and mouth

6The Polhemus sensor is physically attached to the head

(a) (b) (c)

(d) (e) (f)

Fig. 11. Real-Time 3D Face Tracker

coordinates in under a second. These are then used to
initialize 8 normalized correlation tracking squares (i.e.
sum-squared distance minimization [22]) on the face.
Each square can translate, rotate and scale and so is

equivalent to two 2D point features (Figure 12(a)(b)(c)).
The resulting 16 features are fed into the SfM algorithm
resulting in the recovery of 16 rigid 3D points. This esti-
mated rigid 3D model is then reprojected onto the image
plane to generate a set of 16 rigidly constrained 2D points.
These points are used to relocate the individual trackers
for tracking the motion in the next frame. The trackers
estimate an instantaneous trajectory yet are not permit-
ted to follow through with it (i.e. in a nearest-neighbor
tracking framework). Instead, this estimate is used in the
SfM which computes the corresponding rigid trajectory
and repositions the trackers along this rigid 'path' for the
next frame in the sequence. Thus, instead of letting each
square individually track, the SfM couples them all, forc-
ing them to behave as if they were glued onto a rigid 3D
body (i.e. a 3D face). Furthermore, the 8 trackers output
an error level which can be used in the R matrix in the
SfM Kalman �ltering to adaptively weight good features
more than bad features in the 3D estimates. Feature er-
rors are mapped into a Gaussian uncertainty in localiza-
tion by an initial perturbation analysis which computes
each tracker's error sensitivity under small displacements.
The end result is a much more stable tracking frame-

work (operating at 30Hz). If some trackers are occluded
or fail, the others pull them along via the imposed rigidity
constraint. The feedback from the adaptive Kalman �lter
maintains a sense of 3D structure and enforces a global
collaboration between the separate 2D trackers. Thus,
tracking remains stable for minutes instead of seconds (if
no feedback SfM is used). Figure 12(d) depicts the sta-
bility under occlusion where a mouth and eye tracker are
distracted by the presence of the user's �nger. Similarly
in Figure 12(e), the mouth tracker is distracted by de-
formation (smiling) where the mouth is no longer similar
to the closed mouth the template was initialized with.
These conditions remain stable due to the feedback loop.
The algorithm also re-initializes when it detects that
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it has lost the face as in Figure 13(a). This detection is
performed via the so-called \Distance-from-Face-Space"
calculation which essentially computes the probability of
a face pixel image with respect to a constrained Gaus-
sian distribution [40]. While multiple real and synthetic
tests show very strong convergence we have also used the
system extensively in the above real-time application set-
tings where it behaved consistently and reliably.
We can also feed forward the SfM results. Recall that

SfM recovers 3D pose (or motion) as well as 3D structure.
In the above, the 16 3D points recovered are not detailed
enough to generate a 3D graphical model of the face
(adding points is too slow, with complexity � O(N3)).
Instead, 3D pose is fed forward into a module that un-
warps the face into a standard mug-shot pose for a second
stage where a fast, linear 3D shape estimator can be used
(see Jebara, Russel and Pentland [33]), to compute a full
3D model. The result is shown in Figure 13(b) which is
a full 3D model computed in real-time from facial images
of the user seen in Figure 11.

X. Practical Experience in Commercial

Post-Production Applications

Years of experience and comparative testing in the �lm
and video post-production industry by the authors and
software developers has demonstrated the e�ectiveness
and importance of our computational foundation of non-
linear and probabilistic modeling for 3D computer vi-

sion over competing approaches. In the �lm and video
production industry, software based on the principles of
the above SfM technique has been used in a commercial
setting by Alchemy 3D Technology's MatchMaker(TM)
and Alias|Wavefront's MayaLive(TM) software prod-
ucts [43] and has recently been chosen to contribute to the
feature-based vision subsystem of SynaPix's SynaFlex(TM)
[51] system.
In this industry, there has been a proliferation of de-

mand for computer-graphics based special e�ects. An
emerging staple in producing such e�ects is the process
of "3D compositing", in which 2D-source imagery (i.e.
�lm, video, or digital image sequences) is combined with
3D-source imagery (i.e. 3D computer graphics) in a re-
alistic and metrically accurate fashion by �rst recovering
an accurate 3D representation of the 2D-source imagery
using computer vision techniques. The computer vision
component is known as "3D matchmoving" and results
in a 3D representation of camera motion, scene geome-
try, and camera imaging geometry.
Product developers have sought for years to develop re-

liable vision front-ends to facilitate this growing need and
have considered all available published work in the �eld
as candidate technology, including linear algebraic tech-
niques, photogrammetric techniques, and optical-
ow-based
techniques. The selection of software based on our tech-
nology as the basis of several majormatchmoving systems
is testimony to the practical importance of the theoreti-
cal foundation as borne out in results of objective testing
in the �eld against competing approaches. In particular,
software based on our technology has exhibited substan-
tially greater e�ciency, reliability, accuracy, 
exibility,
and extensibility. There is sound theoretical grounding
for these observations.
E�ciency arises from the ability to combine probabilis-

tic representations of information recursively. In typical
cinematic sequences of 200-300 frames, software based
on our techniques usually obtain complete solutions in
00:00:30 (30 seconds) to 00:08:00 (8 minutes), whereas
comparable solutions with photogrammetric or other non-
linear approaches on the same sequences typically require
many hours, often overnight processing.
Reliability arises from the stability associated with prob-

abilistic rather than rigid linear algebraic modeling of
spatial and dynamic processes. In the presence of noisy
input, our techniques have proven to be resilient where
competing methods produce nonsensical output. Long
"dolly" shots (primarily translation along z-axis) in par-
ticular have proven di�cult for most solution techniques,
but our techniques routinely acquire accurate solutions,
including in extreme conditions, e.g. a 1550-frame heli-
copter shot with over 70 features and large turnover of
features [4].
Accuracy arises from nonlinear 3D scene-based model-

ing. Linear algebraic techniques are fragile in the pres-
ence of real-world data and modeling imperfections and
often do not even produce a useful 3D Euclidean output.



For post-production applications which depend upon use-
ful 3D (Euclidean) output to match 3D CG representa-
tions, there is no substitute for Euclidean modeling. Op-
tical 
ow methods produce dense depth maps, but since
they are view-based and based on pairs of closely spaced
images, there is no easy or su�ciently general way of
producing a consistent and accurate scene-based 3D de-
scription and there is no general way of controlling scaling
and drift.
Flexibility arises from probabilistic modeling. Since

probabilistic modeling facilitates accumulation and prop-
agation of information, such modeling allows e�cient so-
lution of otherwise di�cult sequences. Among these are
sequences in which features disappear and reappear and
those in which there is insu�cient visual information through-
out all frames. Competing systems have found it par-
ticularly di�cult to solve cinematic shots in which fea-
tures appear and disappear due to foreground occlusions
caused by, e.g., actors and vehicles, those in which only
a camera pan (pure rotation) is present, those in which
almost the entire feature set changes from the start to the
end, and those in which large segments of the sequence
are completely unusable (e.g. due to practical e�ects such
as steam, explosions, or blinding light). Software based
on our techniques routinely solve these types of cinematic
shots because probabilistic modeling can be used to ac-
count for missing information.
Finally, extensibility arises from probabilistic model-

ing. Many shots encountered in cinematic post-production
do not have ideal camera motions for 3D recovery purely
from 2D visual motion. In these cases, additional in-
formation about scene structure is necessary to obtain
complete solutions. The information can come in many
forms and must be integrated in some consistent fash-
ion. Probabilistic modeling has long been used as the
foundation for integrating information from qualitatively
di�erent sources, and this application is no exception.
Since the visual process is already modeled probabilisti-
cally, the integration of, e.g., scene-based measurements
with visual feature measurements has been able to take
place quite naturally and allow shots to be solved that
techniques based purely on visual relationships could not
possibly have solved completely.
In short, the theoretical foundation of nonlinear and

probabilistic modeling for 3D computer vision has borne
itself out in at least one industry with an important appli-
cation using these techniques. The objective nature of the
arena in which the technology has competed and is now
enjoying growing preference lends credence to the funda-
mental practical advantages of the formulation. From an
evolutionary standpoint, the observed 
exibility and ex-
tensibility in particular o�er the greatest indication that
the technology can �nd an important place both in fur-
ther software applications and in a larger framework for
perceptual information processing.

XI. Concluding Remarks

From the original inspirations of AI and vision to the
aforementioned practical uses for Structure from Motion,
multiple approaches have been proposed. These range
from linear to non-linear, perspective to orthographic, 2-
frame to multi-frame, and recursive to batch tradeo�s.
The methods have their own idiosyncrasies with di�er-
ent input features, di�erent accuracies, degeneracies, and

exibilities. Ultimately, the choice of which framework
to use is application dependent.
We have also discussed the use of these techniques on

video and continuous motion sequences and the implica-
tions that has on the algorithms. We emphasized our
nonlinear recursive probabilistic approach for its stabil-
ity and ease of use in these environments. These capa-
bilities were con�rmed in synthetic experiments, in real
imagery experiments, under independent evaluation by
others, within large vision implementations for real-time
tracking, and with post-production industry evaluation.
Fundamentally, this technique proved accurate, practical
and resilient to a wide variety of such tests.

XII. Acknowledgments

The authors thank Alias|Wavefront and Alchemy 3D
Technology for data and results of testing and evaluation.

References

[1] Nicholas Ayache and Olivier Faugeras. Maintaining representa-
tions of the environment of a mobile robot. IEEE Trans. Robotics
Automation, 5(6):804{819, 1989.

[2] A. Azarbayejani and A Pentland. Recursive estimation of motion,
structure, and focal length. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 17(6), 1995.

[3] A.J. Azarbayejani. Nonlinear Probabilistic Estimation of 3-D
Geometry from Images. PhD thesis, Massachusetts Institute of
Technology, February 1997.

[4] Ali Azarbayejani, Chris Perry, and Alex Pentland. Vision-based
modeling for production-quality integration of photographic im-
agery and 3D graphics. In Visual Proceedings, Siggraph '96, page
155, New York, NY, August 1996. ACM Siggraph, Association for
Computing Machinery.

[5] Ali Azarbayejani, Thad Starner, Bradley Horowitz, and Alex Pent-
land. Visually controlled graphics. IEEE Trans. Pattern Analysis
and Machine Intelligence, 15(6):602{605, June 1993.

[6] Ali J. Azarbayejani, Tinsley Galyean, Bradley Horowitz, and Alex
Pentland. Recursive estimation for cad model recovery. In 2nd
CAD-based Vision Workshop, Los Alamitos, CA, February 1994.
IEEE Computer Society, IEEE Computer Society Press. (Cham-
pion, PA).

[7] P.A. Beardsley, A. Zisserman, and D.W. Murray. Navigation using
a�ne structure from motion. In ECCV94, pages B:85{96, 1994.

[8] A. Blake and A. Yuille. Active vision. MIT Press, 1992.
[9] P. Brand, R. Mohr, and Ph. Bobet. Distorsion optique: Correction

dans un modele projectif. In Actes du 9eme Congres AFCET de
Reconnaissance des Formes et Intelligence Arti�cielle, pages 87{
98, Paris, France, January 1994.

[10] Ted J. Broida, S. Chandrashekhar, and Rama Chellappa. Recur-
sive estimation of 3-d motion from a monocular image sequence.
IEEE Trans. Aerosp. Electron. Syst., 26(4):639{656, July 1990.

[11] Ted J. Broida and Rama Chellappa. Estimation of object motion
parameters from noisy images. IEEE Trans. Pattern Analysis
and Machine Intelligence, 8(1):90{99, January 1986.

[12] Robert Grover Brown. Introduction to Random Signal Analysis
and Kalman Filtering. John Wiley & Sons, New York, 1983.

[13] P.E. Debevec, C.J. Taylor, and J. Malik. Modeling and rendering
architecture from photographs. In SIGGRAPH '96, August 1996.

[14] U. Dhond and J. Aggarwal. Structure from stereo - a review. IEEE
Transactions on Systems, Man and Cybernetics, 19(6), 1989.

[15] Ernst Dieter Dickmanns and Volker Graefe. Dynamic monocular
machine vision. Machine Vision and Applications, 1:223{240,
1988.



[16] O. Faugeras. What can be seen in three dimensions from an un-
calibrated stereo rig? In Proceedings of the 2nd European Con-
ference on Computer Vision, pages 563{578, Santa Margherita
Ligure, Italy, 1992. Springer-Verlag.

[17] O. Faugeras. From geometry to variational calculus: Theory and
applications of three-dimensional vision. In Computer Vision for
Virtual Reality Based Human Communications, CVVRHC'98,
Bombay, India, January 1993. IEEE Computer Society.

[18] O. Faugeras. Three-Dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, 1993.

[19] O. Faugeras and T. Papadopoulo. A nonlinear method for esti-
mating the projective geometry of 3 views. In Sixth International
Conference on Computer Vision, pages 477{484, January 1998.

[20] Olivier D. Faugeras, Nicholas Ayache, and B. Faverjon. Building
visual maps by combining noisy stereo measurements. In Proc.
IEEE Conf. on Robotics and Automation, April 1986. (San Fran-
cisco, CA.).

[21] Arthur Gelb, editor. Applied Optimal Estimation. MIT Press,
Cambridge, MA, 1974.

[22] G.D. Hager and P.N. Belhumeur. Real time tracking of image
regions with changes in geometry and illumination. In CVPR96,
pages 403{410, 1996.

[23] R. Hartley. Lines and points in three views - an integrated ap-
proach. In Proceedings of the ARPA IU Workshop. DARPA,
Morgan Kaufmann, 1994.

[24] R. Hartley. In defence of the 8-point algorithm. In Proceedings
of the 5th International Conference on Computer Vision, pages
1064{1070, Cambridge, Massachusetts, USA, 1995.

[25] R. Hartley. Kruppa's equations derived from the fundamental ma-
trix. IEEE Trans. Pattern Analysis and Machine Intelligence,
19(2):133{135, February 1997.

[26] R. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated
cameras. In Proceedings of the Conference on Computer Vision
and Pattern Recognition, pages 761{764, Urbana-Champaign, Illi-
nois, 1992.

[27] D. Heeger and A. Jepson. Subspace methods for recovering rigid
motion i: Algorithm and implementation. International Journal
of Computer Vision, 7(2):95{117, 1992.

[28] Joachim Heel. Temporally integrated surface reconstruction. In
ICCV '90. IEEE, 1990.

[29] Berthold Klaus Paul Horn. Robot Vision. MIT Press, 1986.
[30] Berthold Klaus Paul Horn. Relative orientation. International

Journal of Computer Vision, 4(1):59{78, January 1990.
[31] T. Huang and A. Netravali. Motion and structure from feature

correspondences: A review. Proceedings of the IEEE, 82(2), 1994.
[32] T. Jebara and A. Pentland. Parametrized structure from motion

for 3d adaptive feedback tracking of faces. In IEEE Conference
on Computer Vision and Pattern Recognition, 1997.

[33] T. Jebara, K. Russel, and A. Pentland. Mixtures of eigenfeatures
for real-time structure from texture. In Proceedings of the Inter-
national Conference on Computer Vision, 1998.

[34] Ratnam V. Raja Kumar, Arun Tirumalai, and Ramesh C. Jain. A
non-linear optimization algorithm for the estimation of structure
and motion parameters. In Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition, pages 136{143, June 1989. (San
Diego, CA.).

[35] K. Kutulakos. Altering reality through interactive image and video
manipulation. In Computer Vision for Virtual Reality Based
Human Communications, CVVRHC'98, Bombay, India, January
1993. IEEE Computer Society.

[36] H. C. Longuet-Higgens. A computer algorithm for reconstructinga
scene from two projections. Nature, 293:133{135, 1981.

[37] D. Marr and T. Poggio. Cooperative computation of stereo dis-
parity. Science, 194:282{287, October 1976.

[38] Larry Matthies, Takeo Kanade, and Richard Szeliski. Kalman
�lter based algorithms for estimating depth from image sequences.
International Journal of Computer Vision, 3(3):209{236, 1989.

[39] S. Maybank. Theory of Reconstruction from Image Motion.
Springer-Verlag, 1993.

[40] B. Moghaddam and A. Pentland. Probabilistic visual learning for
object detection. In ICCV95, pages 786{793, 1995.

[41] R. Mohr and B. Triggs. Projective geometry for image analysis.
Technical report, International Society for Photogrammetry and
Remote Sensing, Vienna Congress, July 1996. WG III/2 Tutorial.

[42] J. Oliensis and J. Inigo Thomas. Incorporating motion error in
multi-frame structure from motion. In IEEE Workshop on Vi-
sual Motion, pages 8{13, Los Alamitos, CA, October 1991. IEEE
Computer Society, IEEE Computer Society Press. (Nassau Inn,
Princeton, NJ.).

[43] Harri Paakkonen. Alias|wavefront's mayalive: Plug-in tracking
helps meld animation and live action. Millimeter, 26(6), October
1998.

[44] Conrad J. Poelman and Takeo Kanade. A paraperspective factor-
ization method for shape and motion recovery. CMU-CS 92-208,
School of Computer Science, Carnegie Mellon University, Pitts-

burgh, Pennsylvania 15213-3890, October 1992.
[45] J.G. Semple and G.T. Kneebone. Algebraic Projective Geometry.

Oxford Science Publication, 1952.
[46] A. Shashua and M. Werman. On the trilinear tensor of three per-

spective views and its underlying geomtry. In International Con-
ference on Computer Vision, 1995.

[47] C.C. Slama, editor. Manual of Photogrammetry. American So-
ciety of Photogrammetry and Remote Sensing, Falls Church, Vir-
ginia, 4 edition, 1980.

[48] S. Soatto and P. Perona. Reducing "structure from motion": A
general framework for dynamic vision part 1: Modeling. Pattern
Analysis and Machine Intelligence, 20(9), September 1998.

[49] S. Soatto and P. Perona. Reducing "structure from motion": A
general framework for dynamic vision part 1: Implementation and
experimental assessment. Pattern Analysis and Machine Intelli-
gence, 20(9), September 1998.

[50] S. Soatto, P. Perona, R. Fraezza, and G. Picci. Recursive motion
and structure estimation with complete error characterization. In
1993 IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 428{433, Los Alamitos, CA, June 1993. IEEE Com-
puter Society, IEEE Computer Society Press. (New York).

[51] Bruce Stockler. The tommy awards: Millimeter's second annual
"best of nab" awards. Millimeter, 26(6), June 1998.

[52] Richard Szeliski and Sing Bing Kang. Recovering 3d shape and
motion from image streams using non-linear least squares. In 1993
IEEE Conference on Computer Vision and Pattern Recognition,
pages 752{753, Los Alamitos, CA, June 1993. IEEE Computer
Society, IEEE Computer Society Press. (New York).

[53] Richard Szeliski and Heung-Yeung Shum. Creating full view
panoramic image mosaics and environment maps. In Computer
Graphics Proceedings, Annual Conference Series (Proc. SIG-
GRAPH '97), pages 251{258, 1997.

[54] E. Thompson. The projective theory of relative orientation. Pho-
togrammetria, 23(1):67{75, 1968.

[55] Carlo Tomasi and Takeo Kanade. Shape and motion from image
streams under orthography: a factorization method. International
Journal of Computer Vision, 9(2):137{154, November 1992.

[56] P. Torr, W. Fitzgibbon, and A. Zisserman. Maintaining multiple
motion model hypotheses over many views to recover matching
and structure. In Sixth International Conference on Computer
Vision, pages 485{491, January 1998.

[57] M. Turk, editor. Workshop on Perceptual User Interfaces, San
Francisco, CA, 1998.

[58] S. Ullman. The Interpretation of Visual Motion. MIT Press,
Cambridge, MA, 1979.

[59] W.M. Wells III. Visual estimation of 3-d line segments from mo-
tion: A mobile robot vision system. RA, 5:820{825, 1989.

[60] Juyang Weng, Narendra Ahuja, and Thomas S. Huang. Optimal
motion and structure estimation. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition, pages 144{152, June 1989.
(San Diego, CA.).

[61] Juyang Weng, Narendra Ahuja, and Thomas S. Huang. Optimal
motion and structure estimation. IEEE Trans. Pattern Analysis
and Machine Intelligence, 15(9):864{884, September 1993.

[62] G-S. Young and Rama Chellappa. 3-d motion estimation using a
sequence of noisy stereo images: Models, estimation and unique-
ness. IEEE Trans. Pattern Analysis and Machine Intelligence,
12(8):735{759, January 1990.

[63] Z. Zhang, R. Deriche, O. Faugeras, and Q.T. Luong. A robust
technique for matching two uncalibrated images through the re-
covery of the unknown epipolar geometry. Arti�cial Intelligence
Journal, 78:87{119, October 1995.


