
Accordion: A Trainable Simulator for
Long-Term Interactive Systems

James McInerney
jmcinerney@netflix.com

Netflix
Los Gatos, CA, USA

Ehtsham Elahi
eelahi@netflix.com

Netflix
Los Gatos, CA, USA

Justin Basilico
jbasilico@netflix.com

Netflix
Los Gatos, CA, USA

Yves Raimond
yraimond@netflix.com

Netflix
Los Gatos, CA, USA

Tony Jebara
tonyj@spotify.com

Spotify & Columbia University
New York, NY, USA

ABSTRACT
As machine learning methods are increasingly used in interactive
systems it becomes common for user experiences to be the result of
an ecosystem of machine learning models in aggregate. Simulation
offers a way to deal with the resulting complexity by approximating
the real system in a tractable and interpretable manner. Existing
methods do not fully incorporate the interactions between user
history, recommendation quality, and subsequent visits. We develop
Accordion, a trainable simulator based on Poisson processes that
can model visit patterns to an interactive system over time from
large-scale data. New methods for training and simulation are de-
veloped and tested on two datasets of real world interactive systems.
Accordion shows greater sensitivity to hyperparameter tuning and
offline A/B testing than comparison methods, an important step in
building realistic task-oriented simulators for recommendation.

CCS CONCEPTS
• Computing methodologies→ Simulation environments; •
Information systems→ Recommender systems.

KEYWORDS
Poisson Process, Deep Learning, Simulation
ACM Reference Format:
James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony
Jebara. 2021. Accordion: A Trainable Simulator for Long-Term Interactive
Systems. In Fifteenth ACM Conference on Recommender Systems (RecSys ’21),
September 27-October 1, 2021, Amsterdam, Netherlands. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3460231.3474259

1 INTRODUCTION
Consider a machine learning practitioner who is building or improv-
ing a recommender system. After obtaining a dataset of features
and responses from historical interactions, she trains a model of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8458-2/21/09. . . $15.00
https://doi.org/10.1145/3460231.3474259

user preference to improve personalization within an interactive
system of users, items, and models over time. She may be replacing
one or several of the models at various positions or components of
the system while leaving the remaining models unchanged.1

Before deploying the new model, the practitioner must confront
a series of questions. What will be the overall effect of replacing the
model in component k with a new model? Such effects include the
incremental benefit of the behavior of the model at k with respect
to the behavior of all other models j , k as well as the change in
dataset collection that results from the altered system. What down-
stream interactions will the new model create, either directly with
the user or indirectly via other models? If there are hyperparam-
eters influencing data collection (e.g., exploration rates, post-hoc
business logic) how are they to be optimized? More fundamentally,
what is the mechanism of the anticipated improvement and is it
within acceptable bounds? For example, it is widely known that
showing familiar items based on recent interactions increases short-
term click rate [16], but a recommender that shows only recent
items will not help a user discover new items, which is important
in the long-term. If the improvement of a proposed system operates
via mechanisms that create negative externalities, e.g. increasing
short-term metrics at cost of the long-term outcomes, that are not
accounted for by measured quantities (either offline or in an A/B
test) then the proposed change may do more harm than good in
the totality of the interactive system.

The challenge inherent to answering these questions is a result
of the fact that, in application, machine learning systems tend to
coexist in a shared ecosystem. For instance, a user experience is
often the result of numerous machine learning systems layered
iteratively atop each other over a multi-year time period. These
models may span a variety of paradigms from unsupervised, su-
pervised, semisupervised and reinforcement learning as well as
methodologies from deep learning, Bayesian modeling, and more.
Due to such heterogeneity, it can eventually become impossible to
reconcile them into a single conceptual model. Even simple systems
interact with users and other stakeholders in complex ways. As the
system approaches a certain level of complexity, it becomes more
feasible to simulate it.

Recent research in simulation has presented platforms for build-
ing new simulators based on abstract assumptions about users and

1For example, changing a user-item affinity scoring model whose output is used in
some, but not all, downstream models affecting item impressions.

102

https://doi.org/10.1145/3460231.3474259
https://doi.org/10.1145/3460231.3474259

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony Jebara

user-item trajectory

re
co

m
m

en
de

r s
ys

te
m

UI

user-item simulations

simulated
UI

user
selection

model

user
visit

model

model1 model2

sub
-model1

sub
-model2

sub
-modelK

re
co

m
m

en
de

r i
m

ita
to

r

model1 model2

sub
-model1

sub
-model2

sub
-modelK

Figure 1: Diagram showing how the simulator is organized.
The generative process for observational trajectories ap-
pears on the left in black and the simulator appears on the
right in blue. There are two points of interaction between
observational and simulated data indicated by the dashed
lines, one between databases of user-item interactions and
the other between logged UI impressions.

items [11, 26]. While it is possible to recreate emergent patholo-
gies from such simulators, it does not answer the question of how
any specific real-world system behaves, nor does it answer ques-
tions related to incremental improvement and optimal settings. In
a limited sense, these quantities can be approximated with offline
evaluation on historical datasets using the new model in isolation.
But, with the proliferation of models in modern infrastructure, no
single model acts in isolation. In this way, the practitioner’s goal of
improving individual models encounters a coordination problem
with other components of the system.

Furthermore, a key aspect of modeling the entire system is the
pattern of user visits. Extant methods do not include a generative
account of visit behavior. The choice of visit time patterns reveals
information about the user state, e.g., satisfaction or curiosity, that
are dependent on the quality of previous recommendations. A full
account of the emergent properties of an interactive system includes
the effect that previous interactions (and their success) have on
visits.

To address these shortcomings we develop Accordion, a set of
novel methodologies for the simulation of interactive systems that
minimize the gap between simulation and reality (the sim2real gap)
and capture the behavior of recommenders and users over time. A
high-level design is given in Figure 1. The full interactive system
being imitated is highly complex and is shown on the left hand side
of Figure 1. It comprises various models, algorithms, user interfaces

(UI), user experiences (UX), and associated features that may require
extensive computational resources. While it is possible, in principle,
to query the non-user components of the real system many times to
perform holistic evaluations of the kind previously discussed, the
computational cost is prohibitive. The right hand side of Figure 1 is
a “good enough” approximation (the simulation) with two points
of contact with reality. The first is the logged trajectories of users
and items that result from interactions over time. The second is
the impressions comprising the output of the recommender system.
Taken together, these induce a training objective to optimize with
respect to the parameters of the simulation.

We base the methodology of Accordion on the inhomogeneous
Poisson process [12], a stochastic process with strong simplify-
ing assumptions that are nonetheless flexible enough to capture
emergent properties of interactive systems over time. The key sim-
plifying assumption is that non-overlapping time intervals exhibit
statistical independence as it relates to the random variables of the
simulation conditioned on its parameters. While this assumption
appears overly restrictive at first, particularly for characterizing
systems over time, inhomogeneity allows us to capture a large
range of behaviors. In more detail, the problem of simulation is
formalized into that of learning an intensity function which maps
arbitrary user and item features to the differential number of events
(i.e. visits, interactions) evaluated at specific points in time. The
intensity function is tractable to learn from a potentially large num-
ber of observed events. Furthermore, the superposition property of
the Poisson process enables interpretability of the trained simula-
tor and its data samples. For example, Figure 2 shows the trained
simulator for a random user in the ContentWise dataset [21] and
visualizes which assumptions contributed to the fit.

The contributions of this work are as follows:

• We present Accordion, a fully trainable simulator for inter-
active systems based on inhomogeneous Poisson processes
that enables the comparison of different realistic simulation
settings and their effect on the total number of visits, positive
interactions, impressions, and any other empirical quantity
that can be derived from a sampled dataset.
• We develop a novel scalable algorithm for training deep in-
homogeneous Poisson process models and provide a model
architecture that decomposes the simulation problem into a
set of simpler components allowing interpretability of sam-
pled events.
• We provide empirical comparisons between Accordion and
other approaches to simulating interactive systems and find
that the ability to simulate variable-sized datasets is crucial
to the end goal for the common tasks of hyperparameter
and model selection. We use data from online A/B testing,
the gold standard for evaluating algorithms, to verify our
approach.

The rest of the paper is organized as follows. We discuss related
work in Section 2. Then, we present the simulator in Section 3 and
develop model assumptions, the training algorithm, and simulation
algorithm. An empirical evaluation in Section 4 with two large
real-world datasets is provided comparing the simulator against
benchmarks. We discuss conclusions and future work in Section 5

103

Accordion: A Trainable Simulator for Long-Term Interactive Systems RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

0 20 40 60 80 100
time (days)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

in
te

ns
ity

visit
positive interaction
total intensity
global intensity
state intensity
self-exciting intensity

Figure 2: The superposition property of the Poisson process enables interpretability of the trained simulator and its data
samples. The plot shows the intensity fit for a random user in the ContentWise dataset [21]. The real observed user visits
are plotted with light crosses (visits) and dark crosses (positive interactions). The modeled intensity function is plotted with a
dashed line. Total intensity is a sum of the intensities of three sub-components: global, state, and self-exciting intensity which
depends on successful recommendations in the history.

2 RELATEDWORK
We discuss related work from several areas of research in recom-
mender systems, likelihood-free inference, and deep Poisson pro-
cess models.

Recommender Systems Simulators. There is a long history of using
simulation to evaluate systems for information retrieval, filtering,
and recommendation [5, 8, 19]. A comprehensive account is beyond
the scope of this paper. Although the types of item interaction have
changed significantly, and along with them, fundamental changes
in methods for recommendation and evaluation, it has long been
recognized that user interactions exist within a larger system with
complex outcomes and various stakeholders, e.g., users, produc-
ers, information platforms [1]. Simulations are used to evaluate
how algorithms improve the user experience and success of the
overall system (e.g., purchases on an e-commerce platform, user
satisfaction with content) as well as to identify and study, e.g., filter
bubbles [6], statistical bias [10]. Other research introduces simu-
lation platforms to encourage collaboration around a wider scope
of simulation models and to provide simulated interventional data
for reinforcement learning algorithms. RecSim [11] and RecoGym
[26] provide frameworks allowing users and items to interact in
a discrete-time Markovian fashion, both wrapped in the OpenAI
gym interface for reinforcement learning [4].

Most simulators are synthetic, in the sense that, although they
can provide existence proofs of emergent properties in interactive
systems, they are not trained to imitate any specific system from
data. An exception is RecSim NG, an extension to RecSim, that pro-
vides a platform using probabilistic programming to allow a high
degree of flexibility in specifying and training agents and entities in
a simulated interactive system, e.g., users, items, content providers
[18]. The platform exposes data likelihood under imperatively-
specified models allowing inference over the random variables in

simulation. The current engine for specifying the likelihood is based
on discrete-time Markovian dynamics. While it is possible, in princi-
ple, to approximate continuous-time, non-Markovian assumptions
and to make missingness explicit, doing so increases the number of
“nuisance variables“ in the system that fuels variance and makes
inference non-trivial.

Likelihood-Free Inference. A wide range of inference methods
may be used to train a simulator. They fall into two broad cate-
gories, likelihood-based inference and likelihood-free inference.
Likelihood-based inference uses a tractable explicit likelihood func-
tion to infer the random variables of the simulation. Popular meth-
ods include maximum likelihood estimation, maximum a poste-
riori, Markov Chain Monte Carlo, variational inference [2]. The
requirement of having an explicit likelihood function restricts the
applicable class of models. Likelihood-free inference can apply to
the full range of Turing-complete generative processes and uses
the discrepancy between simulated data and real data to infer the
parameters [15, 27]. It is most useful for existing imperative im-
plementations of complex generative processes, often created by
experts in other domains, e.g., evolutionary biology, econometrics,
physics [22, 24]. However, there is a lack of theory guiding the
design of the discrepancy function, resulting in data-specific heuris-
tic design. Furthermore, the lack of assumed structure means that
inference, in general, is more computationally intensive. For these
reasons we opt for an explicit likelihood approach based on the
Poisson process [12].

Deep Poisson Processes. Like many classical methods from sta-
tistics, Poisson processes have undergone adaptation to settings
accessible to large scale data and computation in recent years [9].
Extensions to learning the Poisson process intensity function at
scale include measure transport [20], variational autoencoders [3],

104

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony Jebara

!t1 !t2

λ

time

intensity

E[N1] = λ!t1 E[N2] = λ!t2

(a) Homogeneous Poisson process

t1

λ

time

intensity

E[N1] =t1 ∫t1’ λ(t) dt E[N2] =t2 ∫t2’ λ(t) dt

t’1 t2 t’2

(b) Inhomogeneous Poisson process

Figure 3: Examples intensity functions for Poisson pro-
cesses. Area under curve for sub-intervals expresses ex-
pected number of events.

stochastic gradient Riemannian Langevin dynamics [13]. In com-
parison, our approach sidesteps some of the complexity of inference
by specifying a fully amortized model, i.e., the generative process
samples interaction observations from a parameterized conditional
distribution without any latent variables. Furthermore, we focus
on formulating a decomposable interpretable intensity function
through superposition then fitting it with stochastic gradients eval-
uated at event times, an approach that may be combined with the
aforementioned methods to incorporate more sophisticated uncer-
tainty quantification.

3 INHOMOGENEOUS POISSON PROCESS
SIMULATOR

In this section we present Accordion, a methodology for simu-
lating user-item trajectories with a variable number of events. In
Section 3.1, we introduce the simulator and its model components.
Then, in Section 3.2, we present an efficient training algorithm for
the simulator that scales to large recommendation datasets. Finally,
in Section 3.3, a scalable algorithm is developed for simulating new
trajectories after training.

3.1 Model
A simulated trajectory is a random number of N events consist-
ing of continuous times t1:N ∈ [0,T], user identifiers u1:N , items
i1:N , and rewards r1:N . Rewards may take any form, e.g. scalar or
vector, continuous or discrete. Call the simulated dataset S and

the real observed dataset D, both assumed to come from the same
generative model. A trainable simulator is one that can fit the set
of parameters θ determining the sampled trajectories S given the
data D and model.

The challenge arising from having the number of observations
N be random when training a simulator is that training objec-
tives in most modern machine learning methods take the form
Lθ =

∑N
n=1 l(xn ,θ) where N is a given quantity that is fixed and l

is the per-data point contribution to the objective. Yet, as argued in
Section 1, the number of observations provides important informa-
tion. Point processes provide a framework for modeling variable-
sized datasets. In a sense, the length of the dataset can expand or
contract depending on the distributions used in simulation.

The simplest point process is the Poisson process, which assumes
that non-overlapping time intervals have an independent number
of events and the number of events is Poisson-distributed [12]. We
focus our attention on the 1-dimensional Poisson process to capture
changes over time. Figure 3 gives two examples of a Poisson process.
For both, the number of events in the range [0,T] for any subin-
terval (t1, t2) is Poisson-distributed N (t1, t2) ∼ Poisson(

∫ t2
t1

λ(t)dt)
where λ is the intensity function that characterizes numbers of
events over time such that 0 ≤

∫
λ(t)dt ≤ ∞ for all time intervals.

Since the mean and variance of the Poisson distribution are equal to
its rate, the expected number of events in an interval is also equal
to the area under the curve E[N (t1, t2)] =

∫ t2
t1

λ(t)dt . When λ is a
constant function, the area becomes stationary, i.e., it depends only
on the size of the time interval, a special case known as the homoge-
neous Poisson process (Figure 3a). The more general case is known
as the inhomogeneous Poisson process (IPP) in Figure 3b where
the intensity function can be any arbitrary continuous function
respecting the non-negative finite area property.

Our goal is then to characterize visit patterns by learning the
intensity function λ. Since each user is likely to have a different
intensity, we condition the intensity function λ(t | ξ) on features
ξ ∈ RK that capture all relevant user and item information. As
we will discuss in Section 3.2, in contrast to standard learning
objectives, the Poisson process likelihood depends on features ξ
that were not explicitly logged in the dataset D. Therefore, it is
more convenient to refer to a featurizing function x : R+ → RK
which yields features ξ = x(t) for any query time t .2

In developing our approach, we use two important properties
of the Poisson process: superposition and marking. Overlapping
any two independent Poisson processes with intensities λ1 and
λ2 results in a third Poisson process with intensity λ = λ1 + λ2,
referred to as a superposition of Poisson processes. For simulation,
this enables modularity to capture different kinds of structure in
the data, e.g., visits driven by user state or recent activity, without
exploding the number of parameters in the simulator. It also enables
interpretability of model components because the overall intensity
is a sum of non-negative outputs of the intensity sub-models. As
an example of the kind of modularity and interpretability possible
using the superposition property, Figure 2 shows the events from a
real user in the ContentWise dataset (more details in Section 4) and
the overall model output with its constituent intensity functions.

2Since time is continuous in this setting, each unique timestamp maps to a specific
event or potential event that may be featurized.

105

Accordion: A Trainable Simulator for Long-Term Interactive Systems RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

The other key property of the Poisson process is the ability to
mark or annotate each event with additional random variables.
Specifically, we mark each event by i , the item the user interacted
with, r , the outcome of the interaction.

The visit model generates visits with intensity,

λ(t | x(t)) = λglobal(t) + λstate(t | x(t)) + λhawkes(t | x(t)), (1)

where the architectures for each intensity subcomponent are shown
in Figure 4 and each intensity is conditional on the set of parameters
θ , omitted here to reduce notational burden. The global intensity
(Figure 4a) acts across all users and can either be a constant scalar
or a function of time. State intensity in Figure 4b takes a user rep-
resentation (e.g., bag of words of items with positive interactions,
sequential summary of previous interactions) and maps it to the
intensity associated with that state. Hawkes intensity [23] in Fig-
ure 4c boosts the overall intensity after positive interactions up to
the query time t ,

λhawkes(t | x(t)) =
∑

j<n(t)

ai j exp{−bi j (t − tj)}. (2)

for non-negative parameters (a,b) that are indexed by the item that
was interacted with at event j. The Hawkes intensity allows for
good recommendations to boost the number of future visits.

There is broad scope for further exploring other types of struc-
ture in the intensity function, e.g., habitual time structure based on
time of day, week, month etc., or exogenous events such as weather
or public holidays.

We also require marking distributions p(i, r | x(t)) that deter-
mine which items are presented and interacted with on each visit,
i.e., the user selection model. We factorize the joint distribution over
item and reward p(i, r | x(t)) = p(i | x(t))p(r | i,x(t)) and model
each with a softmax, in line with policy imitation in reinforcement
learning and autoregressive models of click behavior [14]. Both the
impression model and user selection model use as input a bag of
words representation of previous user interactions with items and
map these though a dense network to a multinomial distribution
over items. A summary diagram of the observed random variables
in the model are shown in Figure 5. We next consider how to train
the model on large-scale data using stochastic gradients.

3.2 Training
The model presented in Section 3.1 has a set of free parameters
θ that comprise the weights and intercepts of all the functions
that define the overall intensity function λθ . The likelihood of the
Poisson process induced by λθ and the dataset D is,

p(D | θ) =

∏N
i=1 λθ (ti | x(ti))

exp
{∫ T

0 λθ (t | x(t))dt
} . (3)

Taking a maximum likelihood approach to train parameters θ
results in the objective,

L(θ) =
N∑
i=1

log λθ (ti | x(ti)) −
∫ T

0
λθ (t | x(t))dt , (4)

where the θ∗ = argθ maxL(θ) = argθ maxp(D | θ) due to the
increasing property of log.

Although the objective in Equation 4 arose naturally from the
definition of the Poisson process, it has another intuition in the
context of maximum likelihood estimation. The first term in Equa-
tion 4 rewards intensity models that place high intensity in the
regions of time ti where events were observed to occur, conditional
on the features xi . Since there is no constraint on the output of the
intensity networks, the first term alone is not useful because λθ
can be made arbitrarily large during training. The second term in
Equation 4 acts as a regularizer on λθ . It is a global term (i.e., not
specific to any particular event) that penalizes the area under the
intensity curve and plays a crucial role in training.

With the goal of scaling up the simulator to large recommenda-
tion datasets, the sum over observations in Equation 4 is suggestive
of stochastic gradient ascent methods. In more detail, we introduce
a stochastic objective L̃(θ) on a sample of a single event at time ti
with features x(ti),

L̃(θ) = log λθ (ti | x(ti)) −
1
N

∫ T

0
λθ (t | x(t))dt , (5)

where it can verified that E[L̃(θ)] = λθ .
However, Equation 5 is unable to reap the benefits of computa-

tionally cheap stochastic gradient updates due to the global regu-
larization term. Specifically, in order to take the gradient of L̃(θ)
w.r.t. θ it is necessary to sum over the area of the entire intensity
function which involves the set of features x over the entire time
range, including times that were never observed in the dataset. A
uniform sample approximation [17] requires multiple samples and
when the cost of featurization is non-trivial it is computationally
expensive to repeatedly featurize at unseen time points. Apply-
ing importance sample reweighting to account for the shift from
data-sampled times to uniform times does not help because the
denominator in the collection policy (i.e., data sampling distribu-
tion) is the same as the global regularization term. Self-normalized
importance sampling [25] results in a constant regularizer that
does not even depend on λ. We therefore seek a scalable way to
approximate Equation 4 for optimization.

Our solution is to replace the global regularization term in Equa-
tion 5 with a single event approximation that is based on treating
the area under the intensity curve as a rectangle with width T and
height λ at the sample,

L̂(θ) = log λθ (ti | x(ti)) −
T

N
λθ (ti | x(ti)). (6)

Note that, Equation 6 is not a Monte Carlo estimate of Equation 4
because the integral in Equation 4 is not over the dataset but over
the entire time range. Nonetheless, it is still a useful objective to
optimize over. In more detail, we will discuss an intuition for why it
works and then present a proof that L̂(θ) is a lower bound on L̃(θ)
in expectation after appropriate time rescaling. We also provide an
empirical study of its utility in training IPP in Section 4.1.

Intuitively, the objective in Equation 6 balances placing high
log intensity on the sampled event at time ti given xi against the
rescaled intensity for the same event. Viewing k = N

T as a pseudo-
count, Equation 6 is proportional to a log Poisson distribution ∝
N
T log λθ (ti | xi) − λθ (ti | xi) = log(Poisson(k = N

T | λθ (ti | xi)))
up to an additive constant that does not depend on θ . In this way,

106

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony Jebara

t

λ0

time

intensity

fully connected dense network

exponential activation

(a) Global intensity.

0 1 0 1 0 0

λu

user history

intensity

fully connected dense network

exponential activation

number of items

(b) State-based intensity.

ti 0 0 1 0 0

λh

event history features

intensity

(c) Recent activity intensity using Hawkes.

Figure 4: Architecture for subcomponents of the intensity function. Overall intensity is the sum of outputs of subcomponents.

rn-1

in-1

xn-1

rn

in

xn

rn+1

in+1

xn+1

recommendations

state

interactions

tn tn+1tn-1visit time

recommender imitator

visit model

user selection model

Figure 5: Diagram showing the random variables in the simulator. The trainable functions are the visit model, recommender
imitator, and user selection model. The visit times are continuous and inter-connected indicating a non-Markovian assump-
tion. State is updated deterministically given the previous state and interaction.

the stochastic objective L̂(θ) induces a set of linked Poisson distri-
butions whose likelihood is to be optimized w.r.t. θ at each event in
the training dataset, with pseudo-counts all set to the average num-
ber of events per unit of time (NT). Furthermore, it is providential
to have the region of λθ that is being altered during each stochastic
update appear in both the log intensity term and the regularizer
term of the gradient because the regularizer locally prevents large
increases in the log intensity for the sampled event.

Finally, we prove that L̂(θ) from Equation 6 is a lower bound
on L̃(θ) from Equation 5 in expectation under the data sampling
distribution given the condition that there is on average less than
one event per unit of time.

Theorem 3.1. EN ,t∼D [L̂(θ)] ≤ EN ,t∼D [L̃(θ)]whenT ≥ E[N].

Proof. The log intensity term log λθ (ti | x(ti)) is the same for
both L̂ and L̃ and their expectations are identical. Since expec-
tation is a positive linear operator, it only remains to show that
the regularizing terms follow the converse inequality. To reduce
notation, w.l.o.g. we refer next to the intensity function as λ(t)
and omit the sampling distribution from the expectation symbol.
Starting with condition T ≥ E[N], multiply both sides by E

[1
N
]

and manipulate the LHS,

TE

[
1
N

]
= TE

[
1
N

]
Var[N]
E[N]

= TE

[
1
N

]
E[λ(t)] = E

[
T

N
λ(t)

]
,

(7)

where we have used the Poisson variance-to-mean ratio and Camp-
bell’s theorem. The RHS of the condition is equal to,

E[N]E

[
1
N

]
= E

[
E[N]

N

]
= E

[
1
N

∫ T

0
λ(t)dt

]
. (8)

Therefore, the event regularizer is an upper bound of the full regu-
larizer in expectation E

[T
N λ(t)

]
≥ E

[
1
N

∫ T
0 λ(t)dt

]
which holds

when the expected number of events is less than the total units
of time. For model training purposes, we can always rescale the
dataset such that this condition holds on a per user basis. □

3.3 Simulation
The goal of simulation is to use a trained model generate a new
synthetic dataset consisting of rows {(tn , un , in , rn)}Nn=1, where tn
is the visit time, un is the user ID, in is the item ID, and rn is the
outcome of the interaction (e.g., click, purchase, stream). Note that

107

Accordion: A Trainable Simulator for Long-Term Interactive Systems RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Algorithm 1: Scalable user-based inhomogeneous Poisson
process thinning
Input: Simulator (λθ ,mθ), number of usersU , feature

function x , max. time T , max. intensity λh
Result: Simulated dataset S = {tn ,un , in , rn)}Nn=1

1 Sample number of potential visits Nu ∼ Poisson(λh) for
each user u ∈ [1,U]

2 Sample homogeneous visit times tu,b ∼ Uniform(0,T) for
each user u ∈ [1,U] and potential visit b ∈ [1,Nu]

3 Initialize batch index b ← 1
4 Initialize simulation S ← ∅
5 while b ≤ maxu (Nu) do
6 forall {u | b ≤ Nu } do
7 Calculate visit features ξ ← x(tu,b ,S)

8 Sample visit acceptance a ∼ Bernoulli
(
λ(tu,b | ξ)

λh

)
9 if a == 1 then
10 while visit has more interactions do
11 Sample marking i, r ∼m(· | ξ)
12 S ← S ∪ (tu,b ,u, i, r)

13 end
14 end
15 end
16 b ← b + 1
17 end

N is a random quantity owing to the fact that visits are randomly
generated.

There are two standard approaches to sampling from an inhomo-
geneous Poisson process: interarrival time sampling and rejection
sampling [23]. Interarrival time sampling for IPPs takes the history
of events in the sampled trajectory {(tn ,un , in , rn)}mn=1 up to the
current time tm and samples the next visit time and its markings
(tm+1,um+1, im+1, rm+1) and appends it to the history. In practice,
inhomogeneous interarrival time sampling requires iteratively ad-
vancing a global clock by shorter time steps, many of which do
not result in an accepted event . This approach is summarized in
Figure 6a. The issue with interarrival time sampling is that it is
not known prior to sampling which queries need be made to the
simulator models and which features are to be used for each query.
As a result, it is not possible to batch feature processing and model
prediction to take advantage of multicore processing.

In contrast, full rejection sampling enables planning computa-
tions in advance of the sampling and allows scalable simulation.
This approach is summarized in Figure 6b. Rejection sampling in
IPPs first samples a full set of trajectories from a homogeneous
Poisson process with constant intensity λh ≥ λ(t | x(t)) ∀t that
dominates the IPP intensity λ. This yields a superset of the events
that will eventually be the sample from the IPP. Although the state
and intensity cannot be determined in advance (as it depends on
the outcome of previous interactions that are yet to be sampled) the
visit times are known at this step. In the second step, each eventm is
thinned (i.e. rejected) by flipping a coin with probability of thinning
λ(tm | x (tm))

λh
. This process can be performed in parallel across all

simulated event

time

users
global clock

next arrival

(a) Interarrival sampling

time

users
global clock

simulated event

rejected event

(b) Rejection sampling

Figure 6: Examples of interarrival time and rejection sam-
pling for IPP.

users by iterating over each user’s next event asynchronously in
simulated time.3

Algorithm 1 is the resulting algorithm for scalable user-based
simulation. The algorithm takes as inputs the trained simulator con-
sisting of intensity function λ and marking distributionm, as well
as the feature function x , maximum timeT , and maximum homoge-
neous Poisson process intensity λh . Initially, a set of potential visits
is sampled from the homogeneous Poisson process with intensity
λh ; this is achieved by sampling the maximum number of events
and choosing their times uniformly. Then, the outer while loop
in Line 5 iterates over batches of all active users, defined as those
who still have remaining potential visits to process. For each active
user, the features are processed given the visit time and history of
simulation up to the visit time. Line 8 decides whether the potential
visit is accepted as a logged event in the simulation. If so, a set of
interactions is generated that depends on the mode of interaction,
e.g., the number of interactions for visiting user u could be sam-
pled from a Poisson distribution λu that is the empirical average
of number of interactions per visit from training data (as we do in
Section 4), or could be more structured such as a slate or cascade
model [5]. For each interaction, the marking (i, r), consisting of the
item impression and outcome of interaction from the recommender
imitator and user choice models (respectively), is sampled from the
marking distributionm given the features. Sampling each active
3That is, the computations are done in parallel but the visit times evaluated in any
batch are different (asynchronous).

108

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony Jebara

0 100 200 300 400 500
training step

9

10

11

12

13

14

15

16

17

re
gu

la
riz

at
io

n

Full Regularizer
Uniform Stochastic Regularizer
Event Regularizer
Event Stochastic Regularizer

(a) The event regularizer used to train the IPP is an upper bound in expec-
tation of full regularizer. In practice, stochastic versions of both approaches
maintain this relationship.

0 100 200 300 400 500
training step

390

400

410

420

430

440

450

460

su
m

 lo
g

ev
en

t i
nt

en
sit

y

Event Intensity w/ Full Regularizer
Event Intensity w/ Event Stochastic Regularizer

(b) Sum log intensity of observed events for the intensity trained with full
regularizer vs. stochastic event regularizer shows greater tempering for
event regularized intensity.

Figure 7: Comparison between approximate scalable training objective and exact objective.

user in batch b is amenable to simple parallelization over multiple
cores and/or machines.

4 EMPIRICAL EVALUATION
In this section, we perform experiments with real-world recommen-
dation datasets to evaluate Accordion. Section 4.1 is an empirical
study of the likelihood approximation (developed in Section 3.2).
In Section 4.2, we consider the task of fitting the exploration hy-
perparameter on the ContentWise dataset. Finally, in Section 4.3,
we evaluate the utility of Accordion in predicting an A/B test of
an interactive system where one of the recommenders is changed
between test cells while the others are held constant. Overall, this
series of empirical studies leads us to the following high-level con-
clusions: (1) the learnt intensity curves accurately capture user
activity, (2) the resulting simulated trajectories exhibit underdisper-
sion artifacts relating to the Poisson process assumptions, and (3)
despite this, the key emergent properties of the simulation such as
incremental impact on total number of positive interactions pro-
vide a valuable signal for navigating model space in an interactive
system.

Datasets and Code. Most of our experiments use the ContentWise
impressions dataset, a public dataset of interactions logged from a
video streaming platform [21]. After removing inactive users and
items4, the dataset comprises 127,904,252 impressions representing
the interactions between 15,983 users and 2,211 items across 98
days. The training set takes a random 70% subset of users for the
first 70 days of the dataset, the validation dataset the remaining
30% of users over the same time range. The test set spans the last 28
days of the dataset which were unseen during training. The source
code to reproduce the results of experiments using ContentWise
data is available on GitHub.5

4An inactive user is defined as having strictly fewer than 5 sessions, where a session
is defined as any impressions within a half hour period; an inactive item is defined as
having strictly fewer than 100 impressions or 5 positive interactions.
5https://github.com/jamesmcinerney/accordion

Using an observational dataset such as ContentWise is not suffi-
cient for a full evaluation of A/B test prediction because it is biased
by the recommenders used during data collection. To address this,
we also use a private dataset of an online randomized controlled
trial for recommenders where the user is the unit of randomization.
The private dataset comes from another video streaming platform
and contains a subset of 11,525 users and a subset of 1,723 items
over 28 days. The logs for 50% of the users were split into train data
and 50% into validation data.

4.1 Poisson Process Likelihood Approximation
Section 3.2 proposes a training objective that is amenable to stochas-
tic gradient ascent on large datasets. In this section, we compare
the proposed objective (Equation 6) against the full objective (Equa-
tion 4, which does not scale to large datasets) and a uniform time
approximation6 of the full objective [17] (i.e., sampling event times
mostly not seen in the dataset) on a subset of data for which all
approaches are applicable, i.e., 50 randomly selected users from the
ContentWise training data.

Figure 7a shows the value of the full regularizer, the stochastic
regularizer of 100 random events sampled from the dataset (referred
to as the event regularizer), and the stochastic regularizer of 100
random points sampled uniformly in time for each training step
in stochastic gradient ascent. Given the properties discussed in
Section 3.2, we expect the full regularizer to tend toward a lower
bound of the stochastic regularizer in expectation, and this is what
we see in practice throughout training. Further, while the uniform
time sampled stochastic regularizer is equal to the full regularizer in
expectation, it has slightly higher variance than event regularization
due to the fact that it may not sample times with high intensity
that contribute the most to the area under the curve. As a result of
these properties, the total intensity for observed events, shown in

6Note that sampling uniformly in time requires featurizing at unseen time points x (t)
on each iteration which is more computationally demanding than using the features
from observed events.

109

https://github.com/jamesmcinerney/accordion

Accordion: A Trainable Simulator for Long-Term Interactive Systems RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

0.2 0.4 0.6 0.8 1.0
inverse temperature

10

20

30

40

50

60 mean total reward per user
mean n_visits per user

(a) Hyperparameter sweep using simulations from Accordion. Y-axis shows
outcomes of interest in this example (higher is better) and error bars show two
times standard error of the mean.

0.2 0.4 0.6 0.8 1.0
inverse temperature

20

30

40

50

60

70

80

mean total reward per user
mean n_visits per user

(b) Hyperparameter sweep using simulations where user interactions do not
affect visits. Y-axis shows outcomes of interest in this example (higher is better)
and error bars show two times standard error of the mean.

Figure 8: Hyperparameter sweep on ContentWise data.

Figure 7b, is more regularized for the event stochastic regularizer
than with the full regularizer, helping to reduce overfitting and
allowing training to scale up in the number of users.

4.2 Simulation for Hyperparameter Fitting
We next perform experiments to quantify the validity of the sim-
ulator on prediction tasks using held-out data. In recognition of
the fact that recommender models exist in an interactive system
over time, it is common to use exploration in the recommender to
provide better data to train on in the next iteration. Options include
epsilon-greedy, Boltzmann exploration, Thompson sampling, and
upper confidence bounds. Each of these methods has a hyperparam-
eter controlling exploration. Given that changes to the exploration
behavior of the algorithm changes the data collected, any offline
evaluation that uses a fixed dataset will not take into account the
downstream effects of more informative data. On the other hand,

simulation can encompass retraining as part of the evolution of the
environment over time.

Our experimental setting is as follows. We trained Accordion
on our train split of the ContentWise dataset then evaluated a stan-
dard recommender (non-negative matrix factorization [7]) on the
200 most active users over 28 days. We added Boltzmann explo-

ration to the recommender scores s to make a policy h(ai) ∝ s
1
M
i

with the hyperparameter of inverse temperature 1
M guiding ex-

ploration (i.e., lower inverse temperature has more exploration).
The recommender was randomly initialized at the start of the test
period, then retrained within the simulation after 3 days, then every
7 days thereafter.7 Our comparison is against a method that does
not vary the pattern of visits in response to interaction outcomes
in the simulation, representing methods that take, as given, a set
of impressions and adjust only the markings (i.e., items selected
and user response). For the invariant visit simulator, we select a
random number of visits for each user Nu ∼ Poisson(28λu) using
the empirical average number of visits per day λu for user u cal-
culated from the train split, and verified the empirical average by
comparing against the real test data, 6.15 visits in test vs. 6.60 visits
in train.

Figure 8a shows the result of a sweep over 1
M ∈ {2

−k | k =
0, 1, 2, 3, 4} where k = 0 recovers the original recommender with-
out exploration. We found that Accordion shows much greater
sensitivity to exploration than the homgeneous approach, shown in
Figure 8b. In particular, Figure 8a suggests that 1

M = 2−3 optimizes
the number of visits and consequently positive interactions by bal-
ancing exploration with exploitation. The standard errors of the
mean in Figure 8b do not validate the selection of any individual
inverse temperature. It is not possible to verify these results with-
out collecting a new dataset under the target policy h. We address
this shortcoming in the next section with an experimental setting
where do verify h online.

4.3 Simulation for Predicting an A/B Test
Finally, we consider the problem of predicting the outcome of an
A/B test. A/B tests are an invaluable tool for generating randomized
controlled trial data to measure the benefit of a new recommender.
The downsides are that they are expensive to perform, have a risk of
diminished experience for users, and introduce delay to innovation
and development. This motivates debiasing the data offline without
online intervention.

In this setting, we assume that a machine learning practitioner
has trained a new recommender h offline with the intention of
replacing recommender π1 against a background of several other
recommenders, distilled as π2, that remain unchanged. We refer
to the combination (π1,π2) as the control policy and (h,π2) as the
target policy. The intention and hypothesis is that the target policy
will increase user satisfaction, as measured, for example, by number
of positive interactions or visits during the the test period. See
Figure 9 for a diagram of the simulation and test procedure.

To validate the simulator for this task, we train it to imitate
an existing interactive system of impressions, visits, and streams

7We could have set the training intervals more uniformly but truncated time to first
training to reduce number of pure random exploration actions.

110

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony Jebara

Target policy impressions

Other impressions

training data policies simulations metrics

Streams & visit times

h

π1

π2

user
model

visit
model

Control Cell

Target Cell Target Metrics

Control Metrics

Figure 9: Schematic showing the experimental setup for Section 4.3. Training data are used to learn the policies that are
different across A/B test cells (h and π1) as well as π2 which remains constant across cells. Models of user choice and visits are
also trained. Simulations generate data for the target cell against which the control cell is compared in the final metrics stage.

(a) Change in total positive interactions. (b) Change in total visits per user.

(c) Change in unique impressions per user.

Figure 10: Results of predicting A/B test results relative to control policy. Error bars show 2 standard deviations. The non-zero
values of the y-axis are obscured due to their business sensitive nature and the scale is not constant across figures.

111

Accordion: A Trainable Simulator for Long-Term Interactive Systems RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

from a private dataset collected from a video streaming platform
(as described at the beginning of Section 4), then use the trained
simulator to generate new trajectories under the control and target
policies. We compare the new trajectories to the existing system
by evaluating the number of visits, positive interactions, and im-
pressions.

Figure 10 shows the performance of the simulator on this task
against Norm-IPS, a popular existing method for debiasing data
offline that uses inverse propensity scores with variance reduc-
tion by normalization [25]. Figure 10a shows that the simulator, in
estimating the total number of positive interactions, is more conser-
vative and closer to the A/B test result than Norm-IPS. Norm-IPS
and related IPS methods (with or without variance reduction) can
be over-optimistic because they usually assume that the effects of
each logged action are independent. In addition, they provide no
signal on how the size of the dataset may change under alternative
policies, as shown in Figure 10b and Figure 10c. Simulation captures
the effects of interactions on the quantity, timing, and outcome of
subsequent interactions and provides valuable predictions about
the change in number of visits and impressions. This improvement
comes at the cost of introducing bias into the estimates, both finite
data and in the limit, as a result of the modeling assumptions. In
addition, optimizing a lower bound to the objective (Equation 6)
causes the method to underestimate the number of events. However,
as observed in Figure 10, an asymptotically unbiased method also
becomes biased when its strong assumptions are violated.

5 CONCLUSIONS & FUTUREWORK
In this paper, we presented a framework for simulating interactive
systems with multiple recommenders for realistic and interpretable
insights. We introduced Accordion, a trainable long-term simula-
tor for variable-sized datasets and applied it to a public and private
dataset on two important tasks. The training objective is scalable to
many users and features and is a lower bound of the true objective.
In future work, we aim to improve calibration in the estimated
intensity function to account for the lower bound and to extend
the Poisson model to allow overdispersion in the number of events.
Furthermore, we aim explore the wide range of intensity functions
that can be brought to bear on visit patterns such as weekly cadence,
alternative Hawkes decay, and featurizing items in the intensity
function to generalize to new items.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and our Netflix
colleagues for all their helpful questions and feedback.

REFERENCES
[1] Norman R. Baker and Richard E. Nance. 1968. The use of simulation in studying

information storage and retrieval systems. American Documentation 19, 4 (1968),
363–370. https://doi.org/10.1002/asi.5090190402

[2] Christopher M Bishop. 2006. Pattern recognition and machine learning. Springer.
[3] Alex Boyd, Robert Bamler, Stephan Mandt, and Padhraic Smyth. 2020. User-

dependent neural sequence models for continuous-time event data. In Advances
in Neural Information Processing Systems, Vol. 33. 21488–21499.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. arXiv 1606.01540
(2016). arXiv:1606.01540 http://arxiv.org/abs/1606.01540

[5] Ben Carterette, Evangelos Kanoulas, and Emine Yilmaz. 2011. Simulating simple
user behavior for system effectiveness evaluation. In International Conference on

Information and Knowledge Management, Proceedings. 611–620. https://doi.org/
10.1145/2063576.2063668

[6] Allison J B Chaney, Brandon M Stewart, and Barbara E Engelhardt. 2018. How
algorithmic confounding in recommendation systems increases homogeneity
and decreases utility. In Proceedings of the 12th ACM Conference on Recommender
Systems. ACM, New York, NY, USA. https://doi.org/10.1145/3240323.3240370

[7] Andrzej Cichocki and Anh Huy Phan. 2009. Fast local algorithms for large scale
nonnegativematrix and tensor factorizations. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences E92-A, 3 (2009), 708–721.
https://doi.org/10.1587/transfun.E92.A.708

[8] Michael D Cooper. 1973. A simulation model of an information retrieval system.
In Inform Stor. Retr, Vol. 9. Pergamon Press, 13–32. https://www.sciencedirect.
com/science/article/pii/0020027173900041

[9] Bradley Efron and Trevor Hastie. 2016. Computer age statistical inference. Vol. 5.
Cambridge University Press.

[10] Jin Huang, Harrie Oosterhuis, Maarten De Rijke, and Herke Van Hoof. 2020. Keep-
ing dataset biases out of the simulation: a debiased simulator for reinforcement
learning based recommender systems. In Proceedings of the 14th ACM Conference
on Recommender Systems, Vol. 22. Virtual Event. https://doi.org/10.1145/3383313.
3412252

[11] Eugene Ie, Chih-wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing
Wang, Rui Wu, and Craig Boutilier. 2019. RecSim: s configurable simulation
platform for recommender systems. arXiv 1909.04847 (2019). arXiv:1909.04847
http://arxiv.org/abs/1909.04847

[12] J.F.C. Kingman. 2005. Poisson processes. In Encyclopedia of Biostatistics. John
Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/0470011815.b2a07042

[13] Benjamin Letham, Lydia M. Letham, and Cynthia Rudin. 2016. Bayesian in-
ference of arrival rate and substitution behavior from sales transaction data
with stockouts. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, New York, NY, USA, 1695–1704.
https://doi.org/10.1145/2939672.2939810 arXiv:1502.04243

[14] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In The Web Conference 2018
- Proceedings of the World Wide Web Conference, WWW 2018. Association for
Computing Machinery, Inc, 689–698. https://doi.org/10.1145/3178876.3186150
arXiv:1802.05814

[15] Jean Michel Marin, Pierre Pudlo, Christian P. Robert, and Robin J. Ryder. 2012.
Approximate Bayesian computational methods. Statistics and Computing 22, 6
(2012), 1167–1180. https://doi.org/10.1007/s11222-011-9288-2 arXiv:1101.0955

[16] James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues
Bouchard, Alois Gruson, and Rishabh Mehrotra. 2018. Explore, exploit, and
explain: personalizing explainable recommendations with bandits. RecSys 2018 -
12th ACM Conference on Recommender Systems (2018), 31–39. https://doi.org/10.
1145/3240323.3240354

[17] Hongyuan Mei and Jason Eisner. 2017. The neural Hawkes process: a neurally
self-modulating multivariate point process. In arXiv 1612.09328.

[18] Martin Mladenov, Chih-Wei Hsu, Vihan Jain, Eugene Ie, Christopher Colby,
Nicolas Mayoraz, Hubert Pham, Dustin Tran, Ivan Vendrov, and Craig Boutilier.
2021. RecSim NG: toward principled uncertainty modeling for recommender
ecosystems. In arXiv 2103.08057. arXiv:2103.08057 http://arxiv.org/abs/2103.08057

[19] Javed Mostafa, Snehasis Mukhopadhyay, and Mathew Palakal. 2003. Simula-
tion studies of different dimensions of users’ interests and their impact on user
modeling and information filtering. Information Retrieval 6, 2 (2003), 199–223.
https://doi.org/10.1023/A:1023932221048

[20] Tin Lok James Ng and Andrew Zammit-Mangion. 2020. Non-homogeneous
Poisson process intensity modeling and estimation using measure transport.
arXiv 2007.00248 (2020).

[21] Fernando B. Pérez Maurera, Maurizio Ferrari Dacrema, Lorenzo Saule, Mario
Scriminaci, and Paolo Cremonesi. 2020. ContentWise impressions: an industrial
dataset with impressions included. In International Conference on Information
and Knowledge Management, Proceedings. ACM, New York, NY, USA, 3093–3100.
https://doi.org/10.1145/3340531.3412774

[22] Oliver Ratmann, Ole Jørgensen, Trevor Hinkley, Michael Stumpf, Sylvia Richard-
son, and Carsten Wiuf. 2007. Using likelihood-free inference to compare evolu-
tionary dynamics of the protein networks of H. pylori and P. falciparum. PLoS
Computational Biology 3, 11 (2007), 2266–2278. https://doi.org/10.1371/journal.
pcbi.0030230

[23] Marian Andrei Rizoiu, Young Lee, Swapnil Mishra, and Lexing Xie. 2017. A
tutorial on hawkes processes for events in social media. In arXiv 1708.06401.
arXiv. arXiv:1708.06401

[24] Torbjörn Sjöstrand, StephenMrenna, and Peter Skands. 2008. A brief introduction
to PYTHIA 8.1. Computer Physics Communications 178, 11 (2008), 852–867. https:
//doi.org/10.1016/j.cpc.2008.01.036 arXiv:0710.3820

[25] Adith Swaminathan and Thorsten Joachims. 2015. The Self-Normalized Estimator
for Counterfactual Learning. In Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 2 (NIPS’15). MIT Press, Cambridge,
MA, USA, 3231–3239.

112

https://doi.org/10.1002/asi.5090190402
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.1145/2063576.2063668
https://doi.org/10.1145/2063576.2063668
https://doi.org/10.1145/3240323.3240370
https://doi.org/10.1587/transfun.E92.A.708
https://www.sciencedirect.com/science/article/pii/0020027173900041
https://www.sciencedirect.com/science/article/pii/0020027173900041
https://doi.org/10.1145/3383313.3412252
https://doi.org/10.1145/3383313.3412252
https://arxiv.org/abs/1909.04847
http://arxiv.org/abs/1909.04847
https://doi.org/10.1002/0470011815.b2a07042
https://doi.org/10.1145/2939672.2939810
https://arxiv.org/abs/1502.04243
https://doi.org/10.1145/3178876.3186150
https://arxiv.org/abs/1802.05814
https://doi.org/10.1007/s11222-011-9288-2
https://arxiv.org/abs/1101.0955
https://doi.org/10.1145/3240323.3240354
https://doi.org/10.1145/3240323.3240354
https://arxiv.org/abs/2103.08057
http://arxiv.org/abs/2103.08057
https://doi.org/10.1023/A:1023932221048
https://doi.org/10.1145/3340531.3412774
https://doi.org/10.1371/journal.pcbi.0030230
https://doi.org/10.1371/journal.pcbi.0030230
https://arxiv.org/abs/1708.06401
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://arxiv.org/abs/0710.3820

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands James McInerney, Ehtsham Elahi, Justin Basilico, Yves Raimond, and Tony Jebara

[26] Flavian Vasile Criteo, David Rohde, Stephen Bonner, Travis Dunlop, Flavian
Vasile, and Alexandros Karatzoglou. 2018. RecoGym: A reinforcement learning
environment for the problem of product recommendation in online advertising. In

RecSys, Vol. 18. arXiv:1808.00720v2 https://github.com/criteo-research/reco-gym
[27] Simon N.Wood. 2010. Statistical inference for noisy nonlinear ecological dynamic

systems. Nature 466, 7310 (2010), 1102–1104. https://doi.org/10.1038/nature09319

113

https://arxiv.org/abs/1808.00720v2
https://github.com/criteo-research/reco-gym
https://doi.org/10.1038/nature09319

	Abstract
	1 Introduction
	2 Related Work
	3 Inhomogeneous Poisson Process Simulator
	3.1 Model
	3.2 Training
	3.3 Simulation

	4 Empirical Evaluation
	4.1 Poisson Process Likelihood Approximation
	4.2 Simulation for Hyperparameter Fitting
	4.3 Simulation for Predicting an A/B Test

	5 Conclusions & Future Work
	Acknowledgments
	References

